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ABSTRACT 

Multiple Sclerosis (MS) is an immune-mediated inflammatory neurodegenerative disease, 

affecting both white and gray matter, leading to physical and cognitive dysfunction. Exacerbation 

of symptoms, caused by intensification of neuroinflammation, is characteristic of the relapsing-

remitting type of MS while neurodegeneration is more typical of progressive stages. Because of 

the complexity of the disease, biomarkers are being sought to track progression and observe the 

benefits of treatments that aim to repair or protect the central nervous system. In my doctoral work, 

I used Transcranial Magnetic Stimulation (TMS), a tool that measures corticospinal excitability 

(CSE), to investigate biomarkers of MS progression, and to understand whether superior fitness 

and exercise training would positively impact these biomarkers. 

In my first study, I demonstrated that people with MS have alarmingly low 

cardiorespiratory fitness which was associated with increasing intracortical inhibition, a biomarker 

of diminished neuroplasticity. Such inhibition was also associated with fatigue, one of the most 

troubling symptoms experienced by people with MS. In the second study, I investigated the 

patterns of how MS affected each brain hemisphere and revealed that early in the disease, people 

with MS seem to have paradoxically higher excitability in the hemisphere corresponding to the 

weaker hand. This suggested that the central nervous system may be in a state of hyperexcitability 

which I could detect using TMS. In the next two studies, I investigated the acute and long-term 

(12 weeks) effects of exercise on CSE among people with progressive MS. An acute bout of 

exercise was accompanied by increased excitation and reduction in inhibition but mainly in the 

hemisphere corresponding to the stronger hand. Those who were fitter had more robust benefits. 

After 12 weeks (3x/week) of walking exercise training, CSE enhanced bilaterally. Importantly, all 

CSE enhancements were short term and returned to baseline 3 months after cessation of the 



iii 
 

exercise training. The results of my doctoral work support the use of TMS to investigate CSE and 

provide biomarkers of central nervous system integrity in MS. More importantly, these results 

demonstrated that sedentarism can negatively affect the MS brain, and that performing exercise 

can potentiate cortical mechanisms related to enhanced neuroplasticity. 

Abstract word count: 350/350. 

Keywords: Multiple Sclerosis, Transcranial Magnetic Stimulation, Corticospinal Excitability, 

Neuroplasticity, Fitness, Exercise, Progressive Multiple Sclerosis. 
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General Summary 

 Multiple sclerosis (MS) is a complex progressive brain disease that leads to body 

dysfunctions. Diagnosing, predicting, and understanding the effectiveness of treatments is 

challenging in MS, due to the high intra- and inter-individual variability of MS-related processes. 

Because of that, clinical tools that evaluate biological markers (i.e. biomarkers) in MS are being 

sought. In my doctoral work, I used transcranial magnetic stimulation (TMS), a tool that measures 

excitation and inhibition of the central nervous system, to investigate biomarkers in MS and to 

understand the impact of physical fitness and exercise training on the MS brain. 

 In my first study, I showed that the alarmingly low levels of fitness in people with MS was 

associated with increased levels of central nervous system inhibition, which in turn was associated 

with higher levels of fatigue, the most troubling symptom experienced by people with MS. Such 

inhibition is known to blunt capacity of the brain to undergo changes (i.e. neuroplasticity), and 

these findings suggest that improving fitness can boost brain mechanisms, improve neuroplasticity, 

and mitigate MS symptoms. In my second study, I investigated the patterns of how MS affected 

each brain hemisphere and I revealed an unbalance of excitability between brain hemispheres. My 

next two studies investigated the effects of exercise in people with MS who lost their walking 

ability due to progressive MS. A single session of exercise was able to increase excitation and 

reduce inhibition in the more intact brain hemisphere. Those who were fitter had more robust 

benefits. In the longer-term, 12 weeks of exercise training that aimed at restoration of walking 

ability, increased both hemisphere’s excitation. Importantly, all enhancements were short term and 

returned to baseline 3 months after cessation of the exercise training. The results of my doctoral 

work support the use of TMS to provide central nervous system biomarkers in MS. More 

importantly, these results demonstrated that sedentarism can negatively impact the MS brain, and 
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that performing exercise can potentially boost brain mechanisms related to enhanced 

neuroplasticity. 

General Summary word count: 329/350.  
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Chapter 1: INTRODUCTION 

1.1 Multiple Sclerosis (MS) 

MS is a progressive neurodegenerative disease that is characterized by chronic immune-

mediated processes that assault both white and gray matter of the central nervous system1-4. Sudden 

intensifications of inflammation that induce demyelination and neuronal death are called MS 

relapses – events typical of the relapsing remitting type of MS (RRMS)2. Spontaneous recovery 

from relapses (i.e. remitting phase) is typically only partial, thus leading to disability progression 

over time1. Approximately eighty percent of people with RRMS will accumulate brain lesions and 

develop secondary progressive MS (SPMS) – a phase in which there are no relapses or remissions 

but rather a steady progression of the disease2, 3. Studies suggest that teen to fifteen percent of 

people diagnosed with MS experience steady progression of symptoms with no remissions or 

relapses3, 5. These people are diagnosed with primary progressive MS (PPMS)5.  

Although these three forms of MS (RRMS, SPMS and PPMS) have been part of the lexicon 

of MS for decades, new understanding of disease activity, lesion formation and gray matter atrophy 

has led to reconsideration of these labels4, 6. Recent recommendations suggest that MS should be 

further categorized as active or inactive based on relapses and disease activity seen on central 

nervous system imaging. These new perspectives on MS clinical phenotypes indicates that the MS 

spectrum is more complex than previously thought and not fully understood. However in all cases, 

people with MS develop a variety of autonomic (e.g. thermoregulatory dysfunction)7, physical 

(e.g. fatigue, weakness), and cognitive (e.g. memory and learning impairments) dysfunctions8-11 

which negatively influence all dimensions of quality of life8, 10-13. 

1.2 Importance of a Biomarker. 
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The neurodegenerative processes underlying MS relapses and progression can be 

asymptomatic, with symptoms only clinically diagnosed when brain damage has already happened 

(i.e. relapse) or is extensive (i.e. progression)2-4. Because of the time delay, subsequent treatment 

strategies may be less effective due to the reduced capacity of the damaged brain to undergo 

changes (i.e. neuroplasticity)14-16. Therefore, identifying biomarkers that signal changes in central 

nervous system integrity which also measure the neurophysiological changes that precede MS 

attacks, neuronal death, and structural change (identified by structural central nervous system 

imaging) is highly warranted and a hot topic in the literature17-19. For example, serum levels of 

neurofilament light chain, a marker of neuroaxonal destruction (e.g. demyelination), appears years 

before MS diagnosis17. Development of these sensitive biomarkers could also help delineate when 

people transition between inflammatory (RRMS) and neurodegenerative phases (SPMS) of MS 

(i.e. prognosis). Identifying biomarkers that predict and characterize this pathophysiological 

transition is essential for introducing preferred and more effective treatments during each phase. 

Biomarkers would also help understand the effectiveness of treatment interventions, including 

rehabilitative therapies, and may help identify new drug targets. 

Bielekova and Martin19 provided the following definition to describe a biomarker of 

disease; “A biomarker is a characteristic that is objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes or pharmacological responses to 

a therapeutic intervention”. They described several categories of biomarkers. One type are those 

that change as a disease changes and correlate with disease severity between individuals and within 

an individual over time. The second type detects the effects of a treatment that correspond to that 

treatment’s proposed mechanism(s) of action. Some biomarkers can be collected and assayed from 

biological fluid such as blood or cerebrospinal fluid while others could involve sophisticated 
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imaging techniques such as positron emission tomography or magnetic resonance imaging19. One 

potential method to gather biomarkers of central nervous system (dys)function is to use 

Transcranial Magnetic Stimulation (TMS)20. 

1.3 Transcranial Magnetic Stimulation (TMS) – A Tool that Investigates Corticospinal 

Excitability and Provide Biomarkers of Neuroplasticity in Health and Disease. 

The most important underlying mechanism responsible for promoting neuroplasticity is 

long-term potentiation (LTP)16, 21-23. LTP involves complexes interactions between pre- and post-

synaptic inhibitory and excitatory connections mediated by a variety of neurotransmitters and their 

receptors activity. Among these cellular structures, importance has been given to excitatory 

ionotropic receptors of glutamate, N-methyl-D-aspartate (NMDAR)21 and α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPAR)24, as their upregulation increase brain excitability 

and strengthens neuronal connections to facilitate LTP. LTP also largely relies on the activity of 

ionotropic and metabotropic receptors of the inhibitory neurotransmitter gamma-aminobutyric 

acid (GABA), GABAA and GABAB, respectively. Increased amount of GABAergic-mediated 

intracortical inhibition undermines neuroplasticity, whereas its downregulation potentiates it16, 25, 

26. The process antagonist to LTP is called long-term depression (LTD)22, where the efficacy of 

neuronal connections is reduced and linked to reduced glutamatergic-mediated excitation and 

increased GABAergic-mediated inhibition26. It is important to note that, mechanistically, although 

neuroplasticity involves any brain change regardless the undergoing process (e.g. LTP or LTD)22, 

26, in the context of clinical research and rehabilitation, the term “neuroplasticity” is generally used 

to refer to positive changes that result from LTP processes. Therefore, throughout this thesis, 

“neuroplasticity” is being referred as the positive LTP-related processes. 
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In the human brain, the degree of neuronal excitation mediated by glutamatergic 

neurotransmission and voltage-gated sodium channels activity, and the degree of neuronal 

inhibition mediated by GABAergic neurotransmission can be measured by investigation of 

corticospinal excitability (CSE) using TMS20 (figure 1.1). By stimulating the brain’s primary 

motor area using a brief magnetic pulse (figure 1.1A), TMS can elicit neuronal activation and 

produce action potentials that travels through the corticospinal tract to generate a muscle twitch 

(figure 1.1B and C). This TMS-induced muscle twitch is referred to as motor evoked potential 

(MEP) and is collected via electromyography recording (figure 1.1D and E).  
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(A) The electrical current that is produced by the stimulator travels via an insulated wire and 

reaches the stimulator coil (e.g. figure of eight coil). The direction of flow of the electrical current 

within the coil (black arrows) is able to generate a perpendicular magnetic field (blue dotted lines), 

that (B) passes through the scalp painlessly and activates motor neurons in the primary motor area. 

(C) TMS elicits direct and/or indirect descending volleys (D- and I-waves, respectively) that travel 

from the brain to the spinal cord to elicit a MEP in the contralateral muscle under investigation 

(e.g. first dorsal interosseous, FDI). (D) TMS-induced MEPs are recorded via electromyography. 

(E) Offline analysis of corticospinal excitation (MEP peak-to-peak amplitude) and intracortical 

inhibition (cortical silent period (CSP) time; MEP onset to return of EMG background activity), 

and nerve conduction speed (MEP latency; time from TMS stimulus to MEP onset) from a TMS-

elicited MEP recorded by EMG of the FDI with participant performing tonic voluntary contraction 

(e.g. pinch grip). Original figure © Arthur R. Chaves. 

  

Figure 1. 1 Basic Neurophysiological Principles of a Transcranial Magnetic Stimulation 

(TMS)-induced motor evoked potential (MEP) 
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The most common TMS variable investigating CSE are the motor thresholds. Motor 

thresholds are evaluated as the least TMS intensity required to elicit a MEP, either in complete 

muscle relaxation or slight tonic contraction (resting and active motor threshold, respectively)20. 

Motor thresholds reflect the strength and size of the muscle representation in the primary motor 

area, availability of excitatory neurotransmitters (e.g. glutamate), its receptors (e.g. NMDAR and 

AMPAR), and sodium channels in cortical neurons20. A more detailed TMS protocol to investigate 

neuronal availability and strength of excitatory neurotransmission are the recruitment curves, in 

which a incremental increasing range of TMS stimulus intensities are employed to examine 

corresponding increases in MEP amplitudes that result from faster temporo-spatial summation of 

cortico-motoneuronal synapses20. GABAergic-mediated intracortical inhibition is typically 

measured using TMS as the length of the cortical silent period (CSP; Figure 1.1C), a period of 

interruption of muscle contraction tone post contralateral cortical stimulation, where short and 

long-lasting CSPs are mediated by GABAA and GABAB-receptor activity, respectively20. 

Therefore, given the impact that neurological damage and neurodegeneration has on glutamatergic 

and GABAergic neuroplasticity-like mechanisms27, 28, it makes sense to investigate corticospinal 

excitability using TMS to better understand whether the lesion-disrupted brain has the potential to 

undergo recovery through neuroplasticity27, 28. 

Highly excitable and disinhibited brains require less intense TMS stimuli to evoke MEPs 

(i.e. lower motor thresholds), demonstrate higher MEP amplitudes (e.g. higher recruitment curves), 

and shortened CSP length. On the contrary, increased motor thresholds, poor TMS stimulus-to-

MEP amplitude accordance (i.e. poor recruitment curve), and excessive intracortical inhibition 

mediated by both GABAA- and GABAB-receptor activity are all biomarkers of pathologically 

reduced CSE29, brain damage (e.g. stroke)30, and diminished neuroplastic potential16, 31. Therefore, 
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in the context of clinical research and neuro-rehabilitation, the use of TMS helps to: 1) provide 

better understanding neuro-pathophysiological events, 2) identify whether these events can be used 

biomarkers that help to predict disease severity, progression, and recovery, and 3) investigate 

whether rehabilitation therapies are truly acting on the central nervous system to improve 

neuroplasticity and recovery. Table 1.1 summarizes the most typical protocol (collection and 

analysis), the proposed neurophysiological mechanisms and neurotransmission involved, as well 

as the potential clinical relevance (health and disease) of the abovementioned single pulse TMS 

variables (motor thresholds, MEP amplitude, CSP, MEP latency). 

1.4 TMS and its Biomarkers of Exercise Training-Induced Brain Health and Enhanced 

Neuroplasticity. 

 A robust body of TMS research in healthy individuals has demonstrated that long-term 

physical exercise and superior fitness improves biomarkers of CSE32-37. Fit individuals have lower 

motor thresholds35, higher MEP amplitudes35, 37, decreased CSP32, 33, and demonstrate higher 

neuroplastic potential when tested for neuroplasticity-induced protocols such as CSE-induced 

changes following acute physical exercise38 and paired-associative stimulation39. Studies have 

shown that upregulation and the chronicity of exercise-induced release of neurotrophins such as 

brain-derived neurotrophic factor, insulin grow factor-1, vascular endothelial grow factors and, 

nerve grow factor, are factors that associate with such superior brain health seen in fitter 

individuals36, 40. Neurotrophins play an essential role in supporting optimal neuronal function and 

health, proliferation of neurons and glial cells (i.e. neurogenesis and gliogenesis, respectively) and 

formation of new cerebral blood vessels (i.e. angiogenesis). For all those reasons, physical exercise 

is believed to be a potential rehabilitation therapy for counteracting the maladaptive effects of 

brain lesions. Despite such evidence, several studies demonstrate that people with MS are 
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sedentary and do not exercise41-45. This is concerning since low fitness is known to aggravate MS46, 

47.  Yet, the effects of physical inactivity and low fitness on the MS brain, however, has not been 

described in depth. Investigating the relationship between TMS variables and fitness in the MS 

brain could provide some insight into the importance of long-term exercising on neuroplasticity-

like mechanisms in MS. 
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Table 1. 1 Commonly used TMS Single Pulse Derived variables 

 

Table 1.1 Commonly used TMS Single Pulse Derived variables. 

TMS 

Variable 
Protocol 

Analysis 

(Reported as) 
Proposed Neurophysiology 

Primary 

Signalling 

Mechanisms 

Clinical Relevance 

Long-Term 

Exercise Training 

Effects (Healthy 

individuals) 

Resting 

Motor 

Threshold 

(RMT) 

The minimal MSO% to 

elicit 5/10 MEPs with ≥ 

50µV, in the 

contralateral relaxed 

muscle. 

MSO% (0-100) 

Assesses integrity of the 

corticospinal tract; eliciting 

MEPs via indirect activation of 

cortical interneurons (I-wave). 
Glutamatergic 

(NMDA- and 

AMPA-receptor) 

activity 

Following brain damage 

(e.g. progressive MS, 

stroke) the corticospinal 

tract becomes less 

excitable and motor 

thresholds are typically 

increased. 

Fitter individuals 

demonstrate lower 

motor thresholds35. Active 

Motor 

Threshold 

(AMT) 

The minimal MSO% to 

elicit 5/10 MEPs with ≥ 

200µV, in the 

contralateral contracted 

muscle (e.g. 10% MVC). 

MSO% (0-100) 

Assesses integrity of the 

corticospinal tract; eliciting 

MEPs via direct activation of 

corticospinal tract neurons (D-

wave). 

MEP 

Amplitude 

TMS suprathreshold 

stimulations are 

delivered and MEPs are 

collected from the 

contralateral muscle 

Peak-to-peak 

MEP amplitude 

(Volts) 

Assesses ability of the 

corticospinal tract to permit 

increases in MEP amplitudes 

with increasing TMS intensities. 

Glutamatergic 

(NMDA- and 

AMPA-receptor) 

activity from faster 

temporospatial 

summation at 

cortico-

motoneuronal 

synapses. 

Following brain damage 

(e.g. progressive MS, 

stroke) MEP amplitudes 

are typically reduced and 

more difficult to facilitate 

with increases in TMS 

stimulation intensities. 

Fitter individuals 

demonstrate 

greater ability to 

facilitate MEPs35, 

37-39. 

Cortical 

Silent 

Period 

(CSP) 

TMS suprathreshold 

stimulations are 

delivered and MEPs are 

collected in the 

contralateral contracted 

muscle (e.g. 10% MVC). 

Time from the 

MEP onset or 

offset until the 

return of the 

EMG activity 

[Time (ms)] 

Assesses levels of spinal (initial 

~50ms of CSP) and cortical 

inhibition (later and predominant 

component of CSP). 

GABAA- GABAB-

receptor activity. 

CSP is prolonged 

especially in people 

having brain damage who 

demonstrate physical 

disabilities. 

Exercise training 

has shown to 

decrease CSP 

time32, 33. 

MEP 

Latency 

TMS stimulations are 

delivered and MEPs are 

collected in the 

contralateral muscle. 

Time from TMS 

stimulus to the 

MEP onset [Time 

(ms)]. 

Assesses the efficiency of 

neuronal signal propagation 

(conduction time from cortex to 

muscle) through the 

corticospinal tract. 

- 

Brain damage impairs the 

overall transmission of 

the nerve impulse and 

prolongs MEP latency. 

Fitter individuals 

demonstrate 

shorter MEP 

latencies35. 

Note: GABAA, γ-aminobutyric acid ionotropic receptor (role on short lasting inhibition); GABAB, γ-aminobutyric acid metabotropic receptor (role on long-lasting 

inhibition); MEP, motor evoked potential; MSO%, maximal stimulator output percentage (TMS stimulation intensity); NMDA, N-methyl-D-aspartate receptor; AMPA, 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; TMS, transcranial magnetic stimulation. 
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The key questions I address in this thesis are: 

1. To what extent do variables derived using TMS correlate with fitness and fatigue in people 

with MS?41 

2. Are there differences in corticospinal excitability between the hemispheres and if so, how 

does degree of asymmetry or laterality relate to disease severity?48 

3. When people with MS engage in a session of exercise, can we measure changes in 

corticospinal excitability using TMS? Are these exercise-induced changes in CSE related 

to symptom severity and/or baseline fitness?49 

4. Among people with MS with substantial walking disability, does a longer term exercise 

program produced sustained changes in CSE suggestive of neuroplasticity?50 

This thesis is written in manuscript style with each chapter addressing the overarching 

questions listed above. All the chapters have been published in peer reviewed journals with the 

publication information and authorship statements appearing before the respective chapter. For the 

purposes of thesis cohesiveness, the formatting and referencing is made uniform throughout in the 

superscript Vancouver style with the references appearing at the end of the thesis (after Chapter 6, 

Discussion). Because the chapters are stand-alone manuscripts, there is some overlap, but not 

duplication, of content particularly in the Introduction and Methods sections. 

1.5 Rationale and Objective of the Studies. 

 The ultimate goal of my doctoral work was to elucidate the effects of exercise training and 

fitness on biomarkers of CSE in MS as well as the association between exercise-induced CSE 

changes and MS symptoms. Although evidence demonstrating the impact of low levels of fitness 

on exacerbating MS symptoms exist, evidence on the impact of low fitness on the brain and 
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neuroplastic capacity in people with MS is lacking43. Yet, the current TMS literature in MS is 

marked by discrepancies across studies51-53, and therefore, it is challenging to predict and 

hypothesize the direction in which TMS biomarkers would change in response to improved fitness 

and exercise training. This variability could in part be due to the different TMS methodologies 

employed and MS population included as well as their levels of disability, and small sample sizes 

included51. Therefore, the first stage of my doctoral work was to investigate cross-sectionally the 

associations between physical fitness and neuroplastic-associated TMS variables in a cohort of 

people with MS who were consecutively recruited from an MS clinic. In this study41, I considered 

in my design and analysis some factors that could explain this literature’s variability; these 

included performing regressions while controlling for MS demographics such as disease duration, 

disability levels, MS types, and the use of disease modifying drugs, and assessing CSE bilaterally. 

The findings of this cross-sectional work would be essential in order to understand the 

relationships between CSE, fitness, and MS symptoms to finally hypothesize the direction in which 

the TMS variables would change in response to exercise in MS. The next stage of my doctoral 

work involved an interesting finding from this first work; a CSE symmetry (i.e. no difference 

between hemispheres) that is often reported by other authors as well. Because differences between 

hemispheres (e.g. dominant vs non-dominant) should exist based on healthy literature, I deemed 

that such grouped CSE symmetry in MS could be meaningful and worth of further investigation. 

Thus, in my second study48, I challenged this often overlooked finding of CSE symmetry, and I 

investigated the possible implications of such atypical feature during disease progression and MS 

symptoms. Because people with MS often demonstrate and/or complain about unilateral deficits 

such misrepresented CSE symmetry in MS suggested a particular pathophysiological feature of 

MS. The findings from these two studies paved the way in order to better design the TMS protocols 
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and hypothesize findings in my following studies. My next studies investigated the effects of 

exercise training in the CSE of highly disabled people with MS. First, I aimed to investigate the 

effects of acute exercise, and whether people with progressive MS were able to promote  bilateral 

exercise-induced CSE changes after the very first exercise session of  a 3-month period walking 

exercise training49 that was proposed to recover their walking ability54. In this study I also tested 

whether the acute exercise-induced CSE changes would be fitness dependent49. The next step was 

to test whether the in longer term this 3-month walking rehabilitative exercise training would 

promote CSE changes in these people with progressive MS, and whether the hypothesized 

enhancement in CSE would be correlated to symptom mitigation (e.g. reduces in fatigue) or fitness 

gains50. 

1.6 Specific objectives of the studies 

The four stages of my thesis are described separately in Chapters 2, 3, 4, 5, and 6 (Chapter 

1 is the thesis Introduction and Chapter 6 is the thesis (Discussion). 

Chapter 2: The primary aim of the first study was to investigate in people with MS the 

relationships between cardiorespiratory fitness, assessed as maximal volume of oxygen uptake 

(VO2max), and bilateral CSE assessed using TMS motor thresholds (resting and active motor 

threshold), MEP amplitudes and TMS recruitment curves, nerve conduction speed (MEP latency), 

and intracortical inhibition (CSP). The secondary aim of this first work was to investigate whether 

the fitness-associated CSE variables would predict MS-related fatigue when controlling for MS 

demographics [disability level (expanded disability status scale, EDSS), age, disease duration, MS 

type, and use of disease modifying drugs]. This study has been published in the Clinical 

Neurophysiology Journal41. 
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Chapter 3: The aim of this study was to elucidate the existence of CSE (a)symmetry in MS 

and whether CSE (a)symmetry would predict disease progression and symptoms in MS.  First, I 

explored the relationships between CSE excitability asymmetry, assessed as a ratio between 

weaker and stronger sides’ AMT, and objective and subjective measures of MS symptom severity. 

Objective measures included, overall MS severity (EDSS), upper extremity dexterity (nine-hole 

peg test) and walking speed, as well as measures of cognition measured using the Montreal 

Cognitive Assessment and the Symbol Digit Modality Test. Subjective measures included fatigue, 

pain, and heat sensitivity measured using visual analog scales, and the patients’ perceptions of the 

physical and psychological impact of MS in daily life measured using the MS Impact Scale. 

Finally, I tested whether and to what degree CSE (a)symmetry predicted the severity of objective 

and subjective symptoms when controlling for MS demographics (MS type, disease duration, use 

of disease-modifying drugs, and handedness), factors thought to modulate CSE in MS or have 

implications in brain (a)symmetry. This study has been published in the Behavioural Brain 

Research journal48. 

Chapter 4: Based on my findings demonstrating possible superior neuroplasticity in fitter 

MS patients that showed lower intracortical inhibition (shorter CSP)41, my next study investigated 

whether acute exercise-induced CSE changes related to neuroplasticity were still retained in highly 

disabled people with progressive MS, and, secondly, whether exercise-induced CSE changes were 

associated with levels of fitness. Fitness levels were assessed as cardiorespiratory fitness (VO2max) 

and amount of lean mass and body fat percentage (Dual-energy X-ray absorptiometry). Exercise-

induced neuroplasticity was assessed with TMS and included: 1) resting and active motor 

thresholds, 2) MEP amplitudes and recruitment curve (slope, R2, and area under the curve), 3) 
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Short- and long-lasting CSP, and 4) MEP latency. This study has been published in the Journal of 

Neurologic Physical Therapy49. 

Chapter 5: The primary aim of this study was to investigate the effects of a treadmill 

walking aerobic exercise training program (3 months, 3x/week) on the CSE of people with 

progressive MS with severe MS-related walking disabilities. As a secondary aim, based on my 

previous findings demonstrating the link between cardiorespiratory fitness, fatigue, and CSE (CSP 

time) (Chapter 241), I expected that potential improvements in physical fitness (cardiorespiratory 

fitness, body fat) and/or mitigation of MS-related fatigue after this longer-term aerobic exercise 

training would accompany enhancements of CSE. This study has been published in the Frontiers 

in Neurology journal50. 
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ABSTRACT 

Objective: Poor fitness among people with multiple sclerosis (MS) aggravates disease 

symptoms. Whether low fitness levels accompany brain functioning changes is unknown. 

Methods: MS patients (n=82) completed a graded maximal exercise test, blood was drawn, and 

transcranial magnetic stimulation determined resting and active motor thresholds, motor evoked 

potential latency, and cortical silent period (CSP). 

Results: Sixty-two percent of participants had fitness levels ranked below 10th percentile. Fitness 

was not associated with disability measured using the Expanded Disability Status Scale (EDSS). 

Regression analyses revealed that, cardiorespiratory fitness, when controlling for disease 

demographics, contributed 23.7% (p < 0.001) to the model explaining variance in CSP. 

Regression analysis using cardiorespiratory fitness and CSP as predictors showed that CSP alone 

explained 19.9% of variance in subjective fatigue (p = 0.002). Tumor necrosis factor was not 

associated with any variable. 

Conclusion: Low fitness was associated with longer CSP in MS. Longer CSP was, in turn, 

related to greater MS fatigue. 

Significance: MS patients had extremely low levels of cardiorespiratory fitness. Poor fitness 

predicted longer CSP, a marker of greater intracortical inhibition, which was linked to MS 

fatigue. Future research should examine whether aerobic training could shorten CSP and 

potentially lessen inhibition of cortical networks. 

Keywords: Multiple Sclerosis; cardiorespiratory fitness; fatigue; tumor necrosis factor; 

transcranial magnetic stimulation; corticospinal excitability; cortical silent period. 

Highlights 
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• MS patients have extremely low levels of fitness regardless of levels of disability. 

• Poor cardiorespiratory fitness in MS associated with increased GABAergic intracortical 

inhibition. 

• Increased GABAergic intracortical inhibition may explain exacerbated feelings of MS 

fatigue. 
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2.1 Introduction 

Multiple Sclerosis (MS) is a neuroimmune-inflammatory disease of the central nervous 

system and the most common cause of neurological disability among young adults worldwide55. 

In the relapsing remitting form of MS, unpredictable demyelination causes sudden loss of sensory, 

physical, and/or cognitive function, which may completely or partially recover as spontaneous 

remyelination occurs2. In the progressive form of MS, functions progressively worsen with little 

remyelination2. Disease-modifying therapies help reduce relapses, but presently, there is no cure 

for MS56. 

The healthy brain adapts in response to stimuli and to do so, requires the ability to undergo 

synaptic plasticity, an element of neuroplasticity57. Neuroplasticity may be useful following 

recovery from relapse and in resistance to MS progression14. A robust body of research has 

confirmed that physical exercise promotes neuroplasticity58-60, so, it is not surprising that exercise 

improves functional performance and strength61-64, fatigue62, 64, and cognition65 among people with 

MS. Unfortunately, several groups have reported that a large proportion of people with MS have 

low levels of fitness and are sedentary45, 66-70, and thus do not obtain the beneficial effects of 

exercise. Recent research in physical activity, rehabilitation and self-management, suggests that 

increasing levels of physical activity is of low priority for both clinicians and MS patients44. In 

fact, despite lack of convincing evidence, some MS patients are advised to rest and conserve 

energy to reduce fatigue; discouraging exercise because it could aggravate MS symptoms71. In 

fact, exercise is likely an essential component of MS management47, 70, since higher fitness is 

associated with better cognitive function and preserved brain white and grey matter structure on 

magnetic resonance imaging72. Exercise also reduces cardiovascular risk factors which have been 

shown to accelerate MS progression73. Nonetheless, researchers suggest that more evidence is 
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required to determine whether or not fitness modulates brain function in MS47. Current magnetic 

resonance imaging methods have failed to show enduring brain activation changes despite 

improvements in motor performance in MS patients after participating in physical exercise training 

74. Understanding the benefits of fitness on brain activation could help reveal important targets for 

rehabilitation and physical exercise interventions47, 75.  

Fatigue is the most frequent and disabling symptom76 interfering with physical and 

cognitive activities of daily living among people with MS77, and it has been proposed to be related 

to neuronal-connectivity disruption78. Fatigue may also be related to poor cardiorespiratory fitness 

or to high levels of circulating cytokines, and such, exercise prescription has been suggested in 

order to counteract inflammation in order to improve fatigue47, 79-82. Tumor necrosis factor (TNF) 

is a circulating cytokine and its dysregulation has been implicated in inflammatory-mediated 

diseases including MS83. For example, Deckx and group reported that a combined aerobic and 

resistance exercise program reduced TNF and other markers of inflammation in patients with 

MS84. Whether fitness, fatigue, brain function and levels of circulating TNF are linked is not 

known. 

Transcranial magnetic stimulation (TMS) is a non-invasive tool that measures brain 

function by quantifying the excitability of the corticospinal tract20, 85. Using TMS, corticospinal 

excitability (CSE) is determined by measuring motor neuron excitability and nerve conduction 

speed; resting and active motor thresholds (RMT and AMT, respectively), and motor evoked 

potential (MEP) latency20. Also, TMS assesses levels of brain inhibition, by measuring the length 

of the cortical silent period (CSP), an interruption of background muscle activity after a TMS 

pulse20. CSP is thought to be mediated by g-aminobutyric acid (GABA) inhibitory 

neurotransmission20 believed to be involved in neuroplasticity by modulating long-term 
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potentiation (LTP)25, 86. MS patients have several CSE abnormalities in comparison to the general 

population, including higher motor thresholds87, delayed MEP latencies87, and longer CSP88, 

which supports the usefulness of TMS as a biomarker of brain functioning in MS. 

As our primary objective, we investigated whether cardiorespiratory fitness, when 

controlling for MS severity, disease duration, and age, predicted RMT, AMT, MEP latency, and 

CSP. As our secondary aim, we investigated whether the TMS variables associated with 

cardiorespiratory fitness were related to TNF or subjective fatigue. We hypothesized that having 

lower levels of cardiorespiratory fitness would negatively impact brain excitability, and that, 

fitness-related TMS variables would be associated with greater fatigue and higher levels of TNF. 

2.2. Materials and Methods 

2.2.1 Participants.  

Eighty-two MS patients (58 females, 24 males) aged 47.81 ± 10.1 years (mean±SD), 

consecutively recruited from an MS clinic, participated in the study. All participants’ descriptive 

data are reported in table 2.1. Participants met the following inclusion criteria: 1) able to walk 

indoors independently with or without aid; 2) able to provide consent; 3) 18 years old or older, 

and; 4) no relapses in the previous 3 months. Demographic data were collected, including age 

(years), sex, MS type (relapsing remitting, secondary progressive, or primary progressive), disease 

duration ((DD) years), and type of medications and MS disability level was quantified by a 

neurologist using Expanded Disability Status Scale (EDSS; 0.5 unit increment; 0 = normal 

neurological exam, 10 = death due to MS). Participants were screened for exercise safety using 

the PAR-Q89 and for TMS safety using a standardized form90. All participants consented to 

participate in the study, and all procedures were approved by the local health research ethics board 

(Memorial University of Newfoundland; reference number: 2015.103). 
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Table 2.1 Participants characteristics 

Female (n) 58 

Male (n) 24 

Age (years) 47.40 ± 10.2 

MS Type 75 RRMS, 6 SPMS, 1 PPMS† 

Disease Duration (years) 13.10 ± 8.0 

MS Severity (EDSS 0-10) 2.04 ± 1.7 

Levels of Fatigue (0-100mm) 41.31 ± 32.5 

Fitness Profile  

VO2max (mL•min-1kg-1) 25.34 ± 7.0 

HRmax (bpm) 164 ± 17 

% of Predicted HRmax 93.46 ± 8.8 

RER at VO2max (VCO2/VO2) 1.07 ± 0.1 

TMS Variables  

RMT (MSO% 0-100) 41 ± 11 

AMT (MSO% 0-100) 36 ± 10 

MEP Latency (ms / ms/heightcm) 24.45 ± 2.6 / 0.14 ± 0.01 

CSP (ms)† 149.90 ± 37.2 

Note: Data presented as mean±SD. AMT, active motor threshold; CSP, cortical silent period; EDSS, 

Expanded Disability Status Scale; HRmax, maximal heart rate; MEP, motor evoked potential; MS, Multiple 

Sclerosis; MSIS, Multiple Sclerosis Impact Scale; MSO%, maximal stimulator output percentage; RER, 

respiratory exchange ratio; RMT, resting motor threshold; RRMS, relapsing remitting MS; TMS, 

transcranial magnetic stimulation; SPMS, secondary progressive MS; PPMS, primary progressive MS; 

VO2, volume of oxygen; VCO2, volume of dioxide oxygen; VO2max, maximal volume of oxygen intake 

(cardiorespiratory fitness); † CSP was collected in a subsample of 49 MS patients. † PPMS patient (female, 

52, EDSS 6) was removed from all analyses. 

Table 2. 1 Participants characteristics   
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2.2.1 TNF 

Peripheral venous blood (5mL) was drawn from all study participants in plasma collection 

tubes. Blood was spun at 1200 rpm for 10 minutes and plasma was aliquoted and stored in liquid 

nitrogen for long-term storage. The concentration of TNF within the plasma was quantified using 

a human BD OptEIATM TNF Enzyme-Linked Immunosorbent Assay kit (BD BioSciences) and 

performed according to manufacturer’s instructions. 

2.2.2 Transcranial Magnetic Stimulation 

Motor evoked potentials (MEP) were elicited from both brain hemispheres using 

monophasic magnetic posterior-anterior pulses from a BiStim 2002 stimulator (Magstim Co. 

Whitland, UK) connected to a double 70mm figure-of-eight coil (Magstim, Co.). To measure 

electromyography (EMG) activity and collect the MEPs, foam surface electrodes (Kendall 200 

Coviden, Mansfield, MA) were placed on the belly of the first dorsal interosseous (FDI) muscle, 

and the ground and the reference electrodes were placed on the styloid process and the 

interphalangeal joint of the index finger, respectively. Both dominant and non-dominant sides were 

assessed. Dominance determination was self-reported. A neuronavigation device (Brainsight, 

Rogue Research Inc, Montreal, QC, Canada) guided coil position and collected the MEPs with its 

built-in EMG system. This system uses a 2500V/V amplification and collects with a sampling rate 

of 3kHz and a gain of 600V/V with a bandwidth of 16-550Hz. The Montreal Neurological Institute 

brain template was rendered into the BrainSight software and used as a 3-D stereotaxic template91, 

92. 

With the participant seated, the TMS coil was maintained tangentially to the scalp with the 

handle pointing backward and laterally at an angle of 45° from the midline perpendicular to the 

central sulcus. First, TMS suprathreshold stimulations were fired at different locations over the 
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primary motor area and the site with the highest averaged FDI response (MEP peak-to-peak 

amplitude) was taken as the hotspot. Motor thresholds were determined as the minimum amount 

of intensity of the TMS necessary to elicit 5 out of 10 MEPs with a peak-to-peak amplitude of 

≥50µV during muscle relaxation and ≥200µV during 10% of FDI’s maximal voluntary 

contraction, known as RMT and AMT, respectively20. To measure CSP, 6 pulses at 155% of AMT 

were delivered with participants’ performing a pinch grip at 10% of the maximal contraction 

measured20. A pinch dynamometer (B&L engineering, Santa Ana, CA) was used to measure the 

maximal pinch grip, collected before the TMS assessment, and to provide feedback on the level of 

muscle contraction during the TMS assessment. 

AMT and RMT were recorded as the maximal stimulator output (0-100%). The time in 

milliseconds between the MEP onset until the EMG activity returned to ±2SD of the mean EMG 

background activity was taken as the CSP20. MEP latency was calculated from the valid MEPs 

recorded during the RMT assessment as the time in milliseconds from the TMS stimulus to the 

MEP onset. MEP onset was determined as the time-point where the MEP exceeded ±2SD from 

the EMG background activity20. Because MEP latency is influenced by height and limb length93-

96, the normalized MEP latency (ms/heightcm) was used for analysis. MEPs with preceding EMG 

background activity ±2SD from the mean were disregarded. Each MEP was visually inspected. 

MEPs were analyzed with Signal software v6.04 (Cambridge Electronic Design, Cambridge, UK). 

2.2.3 Subjective Fatigue  

Prior to any physical or neurophysiological assessment, participants indicated on a 100mm 

line their present level of MS-related fatigue, from worst (100mm – severely fatigued) to best 

(0mm – Not fatigued at all). 
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2.2.4 Cardiorespiratory Fitness  

Levels of cardiorespiratory fitness were determined by the maximal capacity of volume of 

oxygen uptake (VO2max) during a graded exercise test using a total body recumbent stepper 

(NuStep, Ann, Arbor, MI)97. Throughout the test, an indirect calorimetry system (Moxus, AEI 

Technologies, Pittsburgh, PA) was used to collect volume of oxygen uptake (VO2), volume of 

carbon dioxide production (VCO2), and heart rate (HR) (H10, Polar Electro Inc., NY, USA). In 

brief, participants were required to maintain a speed of 80 strides per minute while the load (1-10; 

beginning at level 3) was increased by one unit every 2 minutes. If exhaustion was not reached 

after completed load level 10 (maximal load), the strides per minute were increased by 10 every 2 

min. The criteria for terminating the test were: (i) volitional exhaustion, (ii) no increase in VO2 or 

HR despite increases in workload, (iii) inability to maintain workload, or; (iv) signs of excessive 

fatigue. Achievement of VO2max was assessed based on attainment of at least two of the following 

criteria: (i) a plateau in VO2 (<80 mL.min−1) despite increasing workload; (ii) respiratory exchange 

ratio (VCO2/VO2) ≥ 1.1; and/or (iii) HRmax ±10 bpm of predicted maximum HR, calculated as 

206.9 − (0.67 × age) or 164 − (0.7 × age) if prescribed beta-blockers98. The breath-by-breath 

collected data was smoothed using a moving average of 10 data points. From the smoothed data, 

the absolute VO2max was identified as the highest VO2 uptake from participants’ and further divided 

by their weight, to obtain participants’ relative VO2max (VO2max = mL.min-1kg-1). 

2.3 Statistical Analysis 

TMS variables (RMT, AMT, MEP latency, and CSP) differences were investigated 

between the dominant and non-dominant sides using paired t-tests. Differences in TMS variables 

between patients prescribed disease-modifying drugs versus those that were not were tested with 

Independent t-tests. Parametric or non-parametric t-tests were performed depending on the 
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normality of the data assessed with Shapiro-Wilk, kurtosis and skewness tests 99. For non-

parametric independent and paired t-tests, statistics were reported using Mann-Whitney U (Z-

value) and Wilcoxon Signed-Ranks Test (Z-value), respectively, whereas for parametric 

independent and paired t-tests, t statistic with degrees of freedom (e.g. t(dof)) was reported. In the 

case of differences or no differences between dominant and non-dominant sides, the TMS values 

were analyzed separately or collapsed, respectively. 

To explore the relationship between levels of cardiorespiratory fitness and levels of 

physical disability, Pearson’s correlation were performed with the absolute relative VO2max and 

EDSS, as well as between EDSS and participants’ VO2max when normalized for age and sex 98. 

Pearson’s correlations were also performed to explore the relationship between TNF and VO2max, 

fatigue, and TMS measures. 

Hierarchical linear regression analyses were performed to examine the degree to which 

cardiorespiratory fitness predicted the TMS variables when controlling for MS patients’ 

demographics. In the first block, MS type, disease duration, EDSS, disease-modifying drugs, and 

age, were included. In the second block, VO2max was added and its contribution (ΔR2) to the final 

model was calculated. Separate hierarchical regressions were performed for each TMS variable 

(RMT, AMT, MEP latency, and CSP). 

In order to better understand the relationship between the TMS variables that were 

associated with cardiorespiratory fitness and fatigue, stepwise linear regression analyses were 

performed with VO2max and TMS variables predicting level of fatigue. 

Acceptable collinearity between the predictors was identified using tolerance levels (> 0.1) 

and the variance inflation factor (< 5.0)100. Outliers were identified with residuals plots (±3SD) 



28 
 

and Cook’s distance (> 4/sample size), and removed from the regression analyses to avoid the 

influence of this data point on the results101. Due to the presence of random missing data, pairwise 

case exclusion was selected during the regressions102. 

Significance was set at an alpha level of <0.05. Data are reported as Mean±SD. All data 

were analyzed on SPSS v.24 (IBM Corporation, Armonk, New York). Graphs were created with 

GraphPad Software v.6 (La Jolla, California, USA). 

2.4. Results 

2.4.1 Transcranial Magnetic Stimulation 

All participants had recordable MEPs in at least one of the FDIs. RMT could not be 

measured in 11 dominant and 8 non-dominant sides, and AMT could not be measured in 7 

dominant, and 5 non-dominant sides, because: (i) TMS overheated; (ii) maximal levels of the 

stimulator output did not elicit MEPs, or; (iii) during RMT assessment, higher levels of EMG 

background activity preceding MEPs (i.e. participants unable to rest). 

There were no differences between dominant and non-dominant sides for RMT (Z=-0.1.33, 

p=0.183) or MEP latency (Z=-0.68, p=0.496). AMT was higher in the non-dominant in comparison 

to the dominant side (t(70)=-2.10, p=0.039). CSP was collected in a subsample of 49 MS patients, 

and for the same abovementioned reasons (i.e. i and ii), CSP could not be collected in 3 dominant 

side, and 8 non-dominant sides. There was no difference between dominant and non-dominant 

sides for CSP (t(37)=-1.52, p=0.138). All TMS variables, with exception of AMT, were averaged 

between hemispheres for further analyses (see table 2.1 for descriptive TMS values). Forty-seven 

patients were being treated with disease-modifying drugs including teriflunomide (2), interferon 

β-1a (4), glatiramer-acetate (6), fingolimod (5), dimethyl fumarate (29), and natalizumab (1). 
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There were no differences between treated and untreated MS patients for any TMS variable (Z < 

-0.754, p > 0.451; t < -0.634, p > 0.528), with exception of MEP latency, in which patients 

prescribed disease-modifying drugs had faster nerve conduction speed (untreated vs treated: 0.15 

± 0.01 vs 0.14 ± 0.02ms/heightcm; Z=-2.20, p=0.028). 

2.4.2 Levels of cardiorespiratory fitness were not associated with physical disability 

Fitness data is provided in table 2.1. Levels of cardiorespiratory fitness among participants 

ranged from very poor (n=31; ) to excellent (n=1)98 and were irrespective of their levels of physical 

disability measured using EDSS. Figure 2.1 shows the levels of physical disability and 

cardiorespiratory fitness normalized by age and sex as recommended by the American College 

Sports of Medicine98 (r=-0.055, p=0.645). There was a relationship between the non-normalized 

levels of cardiorespiratory fitness (mL.min-1Kg-1) and EDSS (r=-0.233, p=0.049). It was notable 

that 91% of participants had values below the 50th percentile, and 63% had values below the 10th 

percentile of normative values. Also, eighteen participants across all levels of disability (EDSS 0-

6) scored below the very poor cut off. We could not obtain VO2max values from 9 MS patients due 

to participants’ inability to wear a mask during the test. Seventeen participants did not meet the 

pre-determined criteria for achieving a VO2max (e.g. reached a respiratory exchange ratio of  ≤ 1.1 

and/or achieved at least 90% of predicted HRmax values98). 
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Figure 2. 1 Cardiorespiratory fitness and severity of MS-related disability 

73 MS patients were ranked against the percentiles of normative values for cardiorespiratory 

fitness with reference to age and sex as 1-15% (very poor), 20-35% (poor), 40-55% (fair), 60-

75% (good), and 90-99% (superior) levels of fitness98. EDSS, Expanded Disability Status Scale; 

MS, Multiple Sclerosis. 
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2.4.3 No association between cytokine levels and fitness, fatigue or TMS measures  

From the total sample, 72 participants (89%) were tested for TNF (mean±SD: 7.38 ± 

11.4pg/mL). TNF did not correlate with any physical (fitness and fatigue) or neurophysiological 

(AMT, RMT, CSP, and latency) measure (p>0.05). 

2.4.4 Low cardiorespiratory fitness predicted greater brain inhibition 

The results of the hierarchical regressions are summarized in table 2.2. In the first block, 

MS demographics explained significant variance in RMT (F(5, 61)=2.45, p=0.044), and MEP 

latency (F(5,60)=2.77, p=0.026), but not CSP or AMT (both sides). The addition of cardiorespiratory 

fitness in the second block contributed significantly (p=0.008), adding 13.8% to the final model 

explaining variance in CSP (R2=0.263, F(5,41)=2.43, p=0.042), whereby higher levels of fitness 

predicted less brain inhibition (shorter CSP). Figure 2.2A shows the association between CSP and 

VO2max (r=-0.424, p<0.003). Cardiorespiratory fitness did not contribute to variance in RMT, 

AMT, or MEP latency. Figure 2.3 shows representative data from three MS subjects, their levels 

of cardiorespiratory fitness and CSP. 
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(A) Low cardiorespiratory fitness predicted greater brain inhibition; (B) Greater inhibition 

predicted greater fatigue: MS patients with longer CSP reported greater levels of fatigue on a visual 

analog scale (0-100mm). 

  

Figure 2. 2 Associations between cardiorespiratory fitness and cortical silent period (CSP), 

and CSP with fatigue 
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Representative MEP outputs showing cortical silent period. (A) 33-year-old female, RRMS, EDSS 

2.0; (B) 23-year-old female, RRMS, EDSS 1.0, and; (C) female 40-year-old, RRMS, EDSS 2.0. 

Ranked fitness was normalized by age and sex according to American College Sports of Medicine 

(Ferguson, 2014). The vertical dotted lines indicate the CSP time in milliseconds, (time-point 

where the MEP leaves ±2SD from the EMG background activity until the EMG activity returned 

to ±2SD of the mean EMG background activity). 

Figure 2. 3 MS patients with poorer cardiorespiratory fitness had greater brain inhibition 
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2.4.5 Higher brain inhibition predicted greater fatigue 

CSP predicted 11.6% of the variance in fatigue (F(1,46)=6.04, p=0.018) while VO2max was 

excluded from the model. In other words, increased GABAergic-related brain inhibition (longer 

CSP) predicted worsened fatigue in MS. Figure 2.2B shows the associations between CSP and 

levels of fatigue. 
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Table 2. 2  Predictors of Corticospinal Excitability

Block 1 – MS demographics Block 2 – Cardiorespiratory Fitness Final Model 

Controlling 

Variables: 

Outcome 

Variables: 
R2 Fstatistic Sig.  ΔR2 Fstatistic Sig. R2 Fstatistic sig. 

E
D

S
S

, 
M

S
 

T
y

p
e,

 A
g

e,
 D

D
 RMT 0.158 2.71 0.039* 

V
O

2
m

a
x
 

+0.005 0.33 0.567 0.162 2.21 0.066 

AMT 0.167 2.85 0.032* +0.054 3.85 0.055 0.220 3.17 0.014* 

MEP Latency 0.186 3.49 0.012* +0.008 0.62 0.434 0.195 2.90 0.021* 

CSP 0.093 0.93 0.460 +0.237 12.41 <0.001† 0.331 3.46 0.012* 

Note: AMT, active motor threshold; CSP, cortical silent period; DD, disease duration; EDSS, Expanded Disability Status Scale; MEP, motor evoked 

potential; MS, Multiple Sclerosis; RMT, resting motor threshold; VO2max, maximal volume of oxygen intake (mL•min-1kg-1). Sig, p-value; * model 

significantly predicted the outcome variable (p<0.05); ΔR2, R2 change (amount of contribution of VO2max to the final model); † VO2max significantly 

contributed to the model (p<0.01).  
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2.5 Discussion 

 We undertook this study to examine the link between cardiorespiratory fitness, brain 

excitability, circulating TNF and subjective symptoms of fatigue in MS. In this clinic sample, we 

demonstrated that MS patients indeed had very low levels of cardiorespiratory fitness suggesting 

that participation in any exercise was very unlikely. Using TMS, we demonstrated that, when 

controlling for MS disease demographics, cardiorespiratory fitness predicted levels of brain 

inhibition, more specifically, MS patients with poor levels of cardiorespiratory fitness had greater 

brain inhibition. Moreover, having greater brain inhibition predicted worsened fatigue. Cytokine 

levels (TNF) were not associated with any other measure collected in this study. 

2.5.1 Levels of cardiorespiratory fitness and physical disability in MS 

In a meta-analysis involving 40 studies and a total of 1,137 MS patients, Langeskov-

Christensen et al. (2015) reported weak to moderate (r = -0.250-0.580) associations between poor 

levels of fitness and higher levels of disability. We also noted a similar association; however, in 

comparison to that reported by Langeskov-Christensen et al. (2015), our association of unadjusted 

fitness scores with disability was weaker (r = -0.233), and barely significant (p = 0.049). When 

values were converted to percentile ranks98, as previously proposed42, there was no significant 

relationship. This difference in results may be equipment-related, since previous authors employed 

bicycle ergometer during fitness testing103-106, which restricts the workload to the legs. Since 

degree of disability correlates with the severity of lower limb impairment107, it is likely that 

participants with greater leg weakness would not be able to fully achieve their maximal values on 

a leg ergometer. Ponichtera-Mulcare et al. (1995) confirmed that MS patients were only able to 

achieve their predicted maximal fitness values when using both upper and lower body, but not 

when using only the arms or the legs108. In our study, we employed a recumbent stepper which 
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permitted the workload to be distributed between the upper and lower body. It is also important to 

note that, our participants were recruited consecutively from an MS clinic and therefore they likely 

represent a typical clinic cohort. Other studies examining fitness levels among MS patients 

typically report baseline characteristics of people volunteering for exercise trials42, which could 

inflate fitness values due to recruitment bias. 

Over 60% of our participants had cardiorespiratory fitness levels below the cut off for high 

risk of all-cause mortality (< 27 mL.min-1 kg-1)42, and 28% had insufficient cardiorespiratory 

fitness to comfortably carry-out activities of daily living (< 20 mL.min-1 kg-1)109. Considering that 

MS patients require more energy to perform activities of daily living (e.g. walking) due to physical 

impairments110, poor fitness will likely impact independence111. Also, in an event of a relapse 

whereby physical function decreases considerably, the cardiorespiratory fitness reserve would not 

be sufficient to maintain and to optimally re-gain function during recovery. It is reasonable to 

consider therefore, that that exercise therapies should be implemented at the time of first MS 

symptoms43. Improving fitness during this “window of opportunity” may postpone diagnosis of 

clinical definite MS, preserve neurological reserve (i.e. brain volume and functionality), and 

reduce manifestation and progression of disability43. It was notable that all (100%) of our 

asymptomatic MS patients (EDSS 0) had poor fitness that was below the 50%, and alarmingly, 

65% of them were below the 1% of normative value98. Clearly, there is a need for both health care 

professionals and people with MS to increase focus on fitness. 

2.5.2 Cardiorespiratory fitness as a target to foster plasticity 

We demonstrated that, when controlling for MS demographics, higher levels of 

cardiorespiratory fitness predicted shorter CSP in MS, a measure of the strength of GABAergic-

mediated brain inhibition20. The long-lasting intracortical inhibition seen in the CSP is from both 
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spinal and cortical origins20 whereby longer CSP represents increased inhibition20. CSP is 

mediated by both ionotropic GABAA and the metabotropic GABAB receptors20, 25 as well as by 

glutamatergic activity112, 113. Increased activity of both GABAA and GABAB suppresses neuronal 

depolarization and undermines LTP formation25, 86. Accordingly, in healthy individuals, less 

GABAergic inhibition measured as shorter CSP predicts enhanced LTP response31 assessed with 

paired-associative stimulation114. Although in MS, reduced GABAergic activity (less inhibition) 

has been associated with greater disability115, it is unknown whether this phenomenon contributes 

to MS progression. Lengthening of CSP has been reported in MS patients with motor disfunction88, 

and in MS patients post-relapse, with longer CSP associated with larger brain lesions and poorer 

upper extremity function88, 116. Longer CSPs are indicative of exaggerated intracortical inhibition, 

greater disability, and poor motor function in other clinical populations such as Huntington’s117 

and stroke30, 118. 

Exercise may be a stimulant to foster LTP. Cirillo et al. (2009) showed that individuals 

involved in regular structured exercise (e.g. running, cycling) had superior LTP following paired-

associative stimulation in comparison to their sedentary peers39.  In healthy individuals, Sale et al. 

(2007) showed that CSP, but not other TMS measures, predicted LTP, more specifically, with 

shorter CSP predicting enhanced LTP31, which points the importance of having less GABAergic 

activity (short CSP) at baseline for neuroplasticity to occur. We suggest that poor fitness in MS 

patients may impact brain inhibition levels and hinder neuroplasticity. Longitudinal studies 

investigating physical, cognitive, and fitness changes over time should consider the investigation 

of CSP and its implication during learning, function, and neuroplasticity in MS. Our results support 

that improving cardiorespiratory fitness could enhance neuroplasticity mechanisms by decreasing 

brain inhibition and shortening CSP. 
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2.5.3 Fatigue and CSP 

 We showed that CSP, but not fitness or TNF, predicted fatigue, which suggests that 

improving fitness could mitigate fatigue by decreasing GABAergic-mediated brain inhibition 

(shortening CSP). In MS, previous studies support that physical disability and fatigue can be 

lessened by as little as 10 weeks of structured exercise training119. Using diffusor tensor imaging, 

Russo et al. (2017) demonstrated disruption of thalamo-frontal connections in MS patients with 

higher levels of subjective fatigue78. Interestingly, using TMS, these authors also demonstrated 

that fatigued MS patients had reduced brain facilitation78, concluding that reduced corticospinal 

output due microstructural damage in cortico-subcortical white matter tracts may explain 

subjective and central fatigue in MS patients120. Our findings align with Russo et al. (2017), since 

we demonstrated that greater brain inhibition predicted subjective fatigue in MS. Therefore, 

improving fitness may act through reduction in brain inhibition to reduce some of the central 

fatigue experienced by people with MS. 

2.5.4 No link between cardiorespiratory fitness and motor thresholds or nerve conduction 

speed 

In MS, prolonged MEP latency is a biomarker of degree of demyelination and disease 

progression 87, 116, 121 that is associated with decrements in motor function121, 122. The role of motor 

thresholds, RMT and AMT, in MS, however, remains ambiguous. For example, although lower 

CSE assessed by higher motor thresholds has been shown in MS patients recovering from relapses 

123 and in highly disabled MS patients124, there is an enormous variability among study results. For 

instance, when compared to healthy individuals, some authors report higher motor thresholds in 

MS87, 121 while others report no differences116, 122. Nonetheless, we confirmed that MS 

demographics (age, disease duration, EDSS, and type of MS) predicted 16.7% of variability in 
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RMT, and 18.7% of variability in MEP latency, suggesting that these biomarkers of damage and 

repair are being negatively affected by MS. It was interesting to note that the use of disease-

modifying drugs was related to faster conduction speed (MEP latency). This could be due to the 

neuroprotective effects of the prescribed drugs or the fact that drugs are prescribed earlier in the 

disease. Ayache et al. (2015) have previously demonstrated that disease-modifying drugs preserve 

CSE among MS patients125. 

In comparison to athletes, non-athletes have lowered CSE, as measured by decreased MEP 

amplitude responses38, 39, higher motor thresholds35, 126, and lengthened MEP latencies35. We 

expected therefore, that higher levels of cardiorespiratory fitness would be associated with lower 

motor thresholds and faster MEP latencies in our cohort of MS patients. However, we did not 

detect these associations; possibly due to the fact that our participants were severely deconditioned. 

Similarly, no differences in motor thresholds were detected between physically active and 

sedentary healthy subjects38, 39, such as that between athletes and non-athletes, suggesting that 

long-term intense structured exercise training may be necessary in order to modulate brain 

mechanisms that enhance CSE. For example, in an animal model of MS, Naghibzadeh et al. (2018) 

showed that a long-term aerobic exercise regimens of both moderate intensity continuous type or 

high intensity interval training protected against demyelination and loss of motor function, and 

increased neurotrophic factors, with greater responses after the high intensity interval type of 

training127. Future research should examine whether long-term exercise, especially using higher-

intensity type of training, could improve motor thresholds and MEP latency in MS. 

2.5.5 Cytokines, fitness, and fatigue 

Long-term strength or aerobic-type of training reduces cytokine levels in MS patients80, 81, 

84. We therefore hypothesized that MS patients with higher levels of fitness would have lower 
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levels of TNF, a pro-inflammatory cytokine that is thought to be related to MS disease activity and 

demyelination47, 83. However, we did not detect such association. This could be, again, due to the 

fact that our MS patients had very poor levels of fitness, and therefore, any anti-inflammatory 

effect from improved fitness may not become apparent in this cohort. Nonetheless, Dalgas et al 

(2012), reported in a review investigating exercise and disease progression that the effects of 

exercise on TNF levels is equivocal with some studies reporting increase, decrease or no change 

of this cytokine after chronic or acute exercise47. We also hypothesized that levels of TNF would 

correlate with fatigue, however, no association was found. Similarly, Malekzadeh, A. et al (2015) 

measured several anti- and pro-inflammatory cytokines, including TNF. With the exception of 

interleukin-6, there was no association between anti- or pro-inflammatory cytokines and fatigue128. 

Because, neuroinflammation in MS increases glutamatergic activity2, 129-132, and increased 

glutamatergic activity is known to prolong the CSP112, 113, 133, we expected that higher levels of 

cardiorespiratory fitness would exert anti-inflammatory effects, and an association between TNF 

and CSE would exist. However, circulating levels of TNF did not correlate to any TMS measure. 

Whether levels of cytokines within the CNS (rather than the systemic circulation) are associated 

with fitness, fatigue or CSE is an area for future research.   

6. Limitations 

 Although this study is the first to describe the relationship between fitness and CSE in MS, 

there are some limitations. First of all, we can not determine causality from this cross-sectional 

study. Longitudinal and interventional studies which measure fitness levels, CSE changes, and 

symptoms are necessary. The sample was one of convenience including consecutive patients 

recruited from an MS clinic, therefore generalizability cannot be assured. Furthermore, we 

attempted to recruit patients with a wide disability range, but those with EDSS > 4 were 
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underrepresented. Although we showed that fitness predicted short CSP, the functionality of 

having short CSP in MS needs to be elucidated. For example, studies investigating fitness and CSP 

change, in response to paired-associative stimulation and learning are needed to determine the role 

of fitness and CSP on neuroplasticity. Also, prolonged CSP only accounted for 11.6% of the 

variance in fatigue suggesting that other factors besides brain inhibition might explain fatigue. 

Moreover, levels of fatigue were measured subjectively, and although it correlates with 

fatigability, measuring fatigue objectively could have better helped decipher the mechanisms 

underlying fatigue and its relationship to CSP. We used a visual analogue scale to measure the 

experience of fatigue at the time of testing as opposed to validated questionnaires such as the 

modified Fatigue Impact Scale134. The relationship between CSE and impact of fatigue has yet to 

be elucidated. Also, MEPs could not be collected bilaterally from some participants because the 

TMS overheated or the stimulator output was not enough to elicit a MEP. Especially because of 

the latter, data from MS patients with greater unilateral CST damage could have been missed. 

Lastly, we attempted to use TNF as a biomarker of neuroinflammation, and possibly demonstrate 

that this biomarker would be decreased in MS patients with higher levels of fitness, decreased 

fatigue, or increased CSE. The susceptibility of this cytokine to daytime variations 135, 136, and 

gender-related differences137, 138, may explain these lack of associations between TNF and other 

values, especially in a cross-sectional design. Future research should take into consideration 

gender and time of the day when analysing TNF. 

7. Conclusion 

 MS patients had extremely low levels of cardiorespiratory fitness; 60% were in the high 

risk category of all-cause mortality (< 27 mL.min-1 kg-1) 42, and 28% had cardiorespiratory fitness 

too low to comfortably carry-out activities of daily living (< 20 mL.min-1 kg-1)109, which may also 
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worsen MS symptoms43, 47. Evidence in healthy populations supports that long-term training and 

higher fitness improves LTP, lowers motor thresholds and quickens nerve conduction speed 

(shorter MEP latency)35, 38, 39, 139. However, we did not detect an association between 

cardiorespiratory fitness and RMT, AMT, or MEP latency in this cohort of MS patients, which 

could be a result of their extremely low levels of cardiorespiratory fitness. Importantly, CSP, a 

measure of GABAergic-mediated brain inhibition, was a more sensitive biomarker, with poor 

cardiorespiratory fitness predicting greater brain inhibition (prolonged CSP). Prolonged CSP is 

indicative of neurological impairment88 and diminished neuroplastic capacity31. Moreover, greater 

brain inhibition, but not lower cardiorespiratory fitness, predicted fatigue, which may suggest that 

this mechanism of brain inhibition may explain some of the central fatigue experienced by MS 

patients. Levels of the pro-inflammatory cytokine TNF was not associated with any physical 

(fitness and fatigue) or TMS measure. Our findings support that poor cardiorespiratory fitness in 

MS patients may negatively impact brain mechanisms that are important for neuroplasticity to 

occur. Therapists should encourage physical exercise strategies such as aerobic exercise in order 

to improve cardiorespiratory fitness in MS patients. Assessing the effects of long-term exercise on 

brain excitability in MS is worthy of future research.  
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ABSTRACT 

Objectives: Investigate whether asymmetrical corticospinal excitability exists in Multiple 

Sclerosis (MS) and its association with MS symptoms.  

Methods: Bilateral resting and active motor thresholds (RMT, AMT) were gathered using 

transcranial magnetic stimulation among 82 MS patients. Corticospinal excitability (CSE) 

asymmetry was expressed as the ratio between weaker and stronger sides’ RMT and AMT. 

Stronger and weaker side was determined by pinch and grip strength. We examined whether 

CSE asymmetry predicted symptoms.  

Results: AMT asymmetry ratio revealed atypical CSE asymmetry whereby the hemisphere 

associated with the weaker hand was more excitable in early MS. After controlling for MS 

disease demographics, shifting of CSE asymmetry towards greater excitability in the stronger 

side significantly predicted more severe symptoms including Expanded Disease Severity Scale, 

nine-hole peg test, cognitive processing speed, walking speed, heat sensitivity, fatigue, and 

subjective impact of MS.  

Conclusion: CSE asymmetry significantly predicted the severity of MS-related physical and 

objective cognitive symptoms. The phenomenon may be related to neuroinflammation-mediated 

hyperexcitability. Shifting of asymmetry toward less excitability on the weaker side may suggest 

the onset of a more neurodegenerative phase of the disease.  

Significance: Shifting of hemispheric excitability, detected using a CSE asymmetry ratio, may 

be a useful biomarker to track disease progression and understand the benefits of treatments. 
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3.1 Introduction 

Multiple Sclerosis (MS), the most common cause of neurological disability among young 

adults worldwide, is an unpredictable inflammatory neuroimmune-mediated disease that 

demyelinates and degenerates the brain and spinal cord2, 55. MS lesions create structural and 

functional brain damage that affects essential sensorimotor and cognitive functions2, 3, 140. 

Magnetic resonance imaging (MRI) studies have helped elucidate the relationships between the 

integrity of the corticospinal tract (CST) and MS symptoms including severity 141, pain 142, walking 

function141, and upper extremity impairment143. However, MRI primarily detects structural change 

rather than dysfunction in neuronal networks, and only weakly predicts the severity of MS 

symptoms144, 145. Due to its relatively safe profile and ease of use, transcranial magnetic stimulation 

(TMS) has proved to be a suitable, non-invasive tool, to assess the functionality of the CST and to 

better understand the lesion-disrupted brain146-149. Yet, as with MRI, TMS variables have been 

reported to be weak biomarkers in MS52, 53.  

Measures of nerve conduction speed such as motor evoked potential (MEP) latency and 

central motor conduction time are among the most consistent TMS measures that correlate with 

MS symptoms and progression53, 87, 150. However, concerns have been raised regarding the 

variability that exists between studies investigating corticospinal excitability (CSE) using more 

sophisticated TMS protocols that probe intracortical excitatory and inhibitory mechanisms in 

MS52, 53. For example, studies investigating cortical silent period, have reported increased151, 

decreased152, or no differences153 in this GABAergic-mediated type of brain inhibition between 

MS and controls. In a recent review, Ayache, S. (2017) summarized the findings of TMS paired-

pulse studies in MS and argued that more reliable TMS biomarkers are greatly needed52. 
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Due to lesions in the frontal lobes, corona radiata, and CST, MS patients experience 

asymmetrical loss of upper154 and lower extremity strength155-160; this asymmetry is characteristic 

of disease progression142, 154-161. In the field of stroke, asymmetrical sensorimotor deficits 

correspond to an imbalance of CSE and TMS has helped demonstrate how excessive inhibition of 

the ipsilesional hemisphere by the contralesional hemisphere potentially limits recovery27, 162. 

Novel rehabilitative therapies involving brain stimulation techniques aim to increase CSE in the 

ipsilesional hemisphere or suppress CSE in the contralesional hemisphere27. Despite the fact that 

MS lesions are asymmetrically dispersed in the brain, TMS studies in MS tend to investigate 

variables derived from testing one hemisphere116, 122, 163 or collapse data from both hemispheres 

during analyses87, 164, 165. It is reasonable to think that disregarding bilateral measures may actually 

impede our understanding of whether an asymmetry of brain excitability exists and its role in MS. 

We hypothesized that, like in stroke, brain excitability asymmetry occurs in MS and is 

associated with upper extremity and walking impairment. The TMS variable motor threshold (MT) 

quantifies the ability of the CST to transmit a TMS pulse and elicit a MEP in the target muscle20, 

166. Increased levels of glutamate and/or larger motor cortex representation lower MT values 

indicating a higher CSE20, 27, 166. In MS, structural brain damage and neurochemical imbalance 

may increase MTs87. In this study, we measured MTs from each brain hemisphere of MS patients 

and calculated brain excitability asymmetry; a ratio between the hemispheres’ MTs. Greater 

symmetry between hemispheres’ MTs indicates recovery from stroke167, 168. Enhanced learning 

after an acute session of aerobic exercise in stroke survivors has been associated with more 

symmetrical intracortical inhibition between hemispheres169. 

To test the validity of this biomarker, we explored the relationships between brain 

excitability asymmetry and objective and subjective measures of MS symptom severity. Objective 
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measures included, overall MS severity (Expanded Disability Status Scale; EDSS), upper 

extremity dexterity (nine-hole peg test; 9HPT) and walking speed, as well as measures of cognition 

measured using the Montreal Cognitive Assessment (MoCA) and the Symbol Digit Modality Test 

(SDMT). The SDMT is considered the gold standard test to assess cognitive processing speed in 

MS170 and strongly correlates with brain atrophy and injury on MRI140. Subjective measures 

included fatigue, pain, and heat sensitivity measured using visual analog scales, and the patients’ 

perceptions of the physical and psychological impact of MS in daily life measured using the MS 

Impact Scale (MSIS-29)171, 172. These are symptoms that have been related to disease severity, 

brain lesions, and excitability abnormalities in MS7, 78, 173. Finally, we tested whether and to what 

degree the new brain excitability asymmetry ratio predicted the severity of objective and subjective 

symptoms when controlling for MS demographics (MS type, disease duration, use of disease-

modifying drugs and handedness) that are thought to modulate CSE in MS87, 125 or have 

implications in brain asymmetry174. 

3.2 Materials and Methods 

3.2.1 Participants 

Following approval by the local health research ethics board (HREB 2015.103), 

participants were recruited from a MS registry associated with a MS clinic. Inclusion criteria were: 

1) able to walk at least indoors with or without aid; 2) diagnosed with MS by a MS neurologist 

using MacDonald criteria 175; 3) ≥ 18 years old; 4) able to participate in TMS assessment as per 

standardized TMS screening form90, and; 5) ≥ 3 months relapse-free. Demographic data were 

recorded, including age, sex, MS type and disease duration (years). Levels of cognition were 

determined using the MoCA (normal > 26, mild cognitive impairment = 18-26, and moderate-

severe < 18)176. The MS neurologist provided the EDSS score177. 
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3.2.2 Walking performance 

Participants walked at a self-selected pace across an instrumented walkway (Protokinetics 

Inc., Havertown, PA, USA) to determine walking speed (cm/s). Walking speed was normalized by 

height (cm/s/heightcm)178. 

3.2.3 Upper extremity function 

First, in order to determine the strongest hand, grip and pinch strength were measured using 

a dynamometer (Lafayette Instruments, Lafayette, IN, and B&L Engineering, Santa Ana, CA, 

respectively). The dominant hand grip strength was measured prior to the non-dominant hand, and 

after a 2 minute-interval, the process was repeated. Pinch strength was measured using the same 

sequence. The average score from the 2 trials was reported. Since the weaker side of the body is 

thought to be the side that is most affected154, 157, 159, the hand with the lowest value of grip and 

pinch strength together (grip + pinch) was designated as the weaker (most affected) side. The 

bilateral measures (MTs and 9HPT) were divided based on this criterion (e.g. 9HPTWeaker (w), 

9HPTStronger (s)). During the 9HPT, participants placed and removed 9 pegs into 9 holes in a wooden 

board (7mm diameter, 32 mm length) as quickly as possible179. The time to complete the task 

(seconds) was recorded twice for each hand with the average score reported. 

3.2.4 Subjective Symptoms and Impact of MS 

Participants indicated their present level of fatigue, pain, and heat sensitivity using visual 

analog scales, from high (100mm) to low (0mm). The MSIS-29 was used to measure subjective 

physical and psychological impact of MS171. 

3.2.5 Cognitive Processing Speed 

 Cognitive processing speed was determined using the SDMT140. In brief, in a page 

containing rows of abstract symbols in random order, participants matched numeric values 
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provided in the page header with the symbols. The number of correct answers recorded in 90 

seconds was taken as the score, with higher scores indicating faster cognitive processing speed. 

3.2.6 Transcranial Magnetic Stimulation 

Motor evoked potentials (MEP) were elicited from each brain hemisphere by single 

monophasic magnetic posterior-anterior pulses that were delivered using a 70mm figure-of-eight 

coil connected to a BiStim 2002 (Magstim Co. Whitland, UK). To measure electromyography 

(EMG) activity and the MEPs, the skin was prepared 180 and foam surface electrodes (Kendall 200 

Covidien, Mansfield, MA) applied over the belly of the first dorsal interosseous (FDI) muscle.  

The ground and the reference electrodes were positioned on the styloid process and the 

interphalangeal joint of the index finger, respectively. A neuronavigation device (Brainsight, 

Rogue Research Inc, Montreal, QC, Canada) helped guide the coil and record the MEPs with its 

built-in EMG system. This system uses a 2500V/V amplification and has an analog to digital 

converter of 12-bits. It records with a sampling rate of 3kHz, has 4.5mVpp of input range, a gain 

of 600V/V, and has a passband bandwidth of 16-550Hz. The Montreal Neurological Institute brain 

template was rendered into the Brainsight and used as a 3-D stereotaxic template91, 92. 

With the participant seated, the coil was maintained tangentially to the scalp with the 

handle pointing backward and laterally at an angle of 45° from the midline perpendicular to the 

central sulcus. First, suprathreshold stimulations were performed at different sites over the primary 

motor area and the site with the highest averaged FDI response (MEP peak-to-peak amplitude) 

was taken as the hotspot. Secondly, MTs were determined as the minimum amount of intensity of 

the maximal stimulator output percentage (MSO%) necessary to elicit 5 out of 10 MEPs with a 

peak-to-peak amplitude of ≥ 50µV during muscle relaxation and ≥ 200µV during 10-15% of FDI’s 
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maximal voluntary contraction, known as resting motor threshold (RMT) and active motor 

threshold (AMT), respectively20, 166. MTs values were reported as MSO%.  

The asymmetry ratio was calculated by dividing the MTs of the weak side by the MTs of 

the stronger side (e.g. AMTW/AMTS). Values < 1.0 indicated that the weaker side of the body had 

higher CSE and values > 1.0 indicated that the weaker side had lower CSE in comparison to the 

stronger side. 

3.3 Statistical Analyses 

The existence of brain excitability (a)symmetry between weaker and stronger sides’ MTs 

was investigated with one sample t-test to test the null hypothesis (H0) that MS patients did not 

have brain asymmetry (MTW/MTS= 1.0) versus the alternative hypothesis (Ha) that MS patients 

did have brain asymmetry (MTW/MTS ≠ 1.0). Mean difference and 95% confidence intervals (CI) 

were reported. 

Side-to-side differences were investigated between MTs (AMTW vs AMTS and RMTW vs 

RMTS) and upper extremity function (9HPTW vs 9HPTS). Independent t-tests were performed to 

investigate whether MS patients using disease-modifying drugs had different RMTW, RMTS, 

AMTW, and AMTS, brain excitability asymmetry ratios (RMTW/RMTS and AMTW/AMTS) or 

performed differently in any of the objective physical or cognitive (9HPTW and 9HPTS, walking 

speed, and MoCA) or subjective symptoms (fatigue, pain, and heat sensitivity, MSISPhysical and 

MSISPsychological). Parametric or non-parametric t-tests were performed depending on normality of 

the data tested with Shapiro-Wilk (p < 0.05), skewness, and kurtosis tests99. For non-parametric 

independent, and paired t-tests, statistics were reported using Mann-Whitney U (Z-value) and 

Wilcoxon Signed-Ranks Test (Z-value), respectively, whereas for parametric independent and 
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paired t-tests, t-statistic with degrees of freedom (e.g. t(dof)) were reported. A total of 3 paired and 

15 independent t-tests were performed. To correct for multiple comparisons, levels of significance 

were adjusted with Bonferroni’s correction (α = 0.05/n of dependent variables) with α = 0.017 and 

α = 0.003 for paired t-test and independent t-test, respectively. 

To investigate the potential clinical relevance of CSE asymmetries in MS, Independent t-

tests were performed between MS patients with higher CSE in the weaker side (asymmetry ratio 

< 1.0) versus MS patients with higher CSE in the stronger side (asymmetry ratio > 1.0) for the 

objective (EDSS, MoCA, SDMT, walking speed, 9HPTW, and 9HPTS) and subjective (pain, 

fatigue, heat sensitivity, MSISPhysical and MSISPsychological) clinical variables measured. To correct 

for multiple comparisons, significance level was adjusted with Bonferroni Holm’s181. 

Pearson’s correlation coefficients were calculated with the asymmetry ratios 

(AMTW/AMTS and RMTW/RMTS) as the independent variables, and objective (age, disease 

duration, EDSS, MoCA, SDMT, walking speed, 9HPTW, and 9HPTS) and subjective (fatigue, pain, 

and heat sensitivity, MSISPhysical and MSISPsychological) measures as the dependent variables. 

Significance level during correlations was adjusted with Bonferroni Holm’s181. 

Using hierarchical linear regression analyses, we examined the degree to which the 

asymmetry ratio variable predicted the objective and subjective outcomes when controlling for 

MS type, disease duration, use of disease modifying drugs, and handedness. In the first step of the 

analysis, demographics (MS type, disease duration, use of disease modifying drugs, and 

handedness) were entered into the first block as independent variables to determine the amount of 

variance explained by these variables on the outcome (dependent) variables (EDSS, walking 

speed, MoCA, SDMT, 9HPTW, 9HPTS, subjective fatigue, pain, and heat sensitivity, and 

MSISPhysical and MSISPsychological). Brain excitability asymmetry ratio was added in the next block 
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as independent variable and amount of variance explained by this predictor variable in the models 

was calculated. Acceptable collinearity between the predictors was identified using tolerance 

levels (> 0.1) and the variance inflation factor (< 5.0)100. Outliers were identified with residuals 

plots (±3SD) and Cook’s distance (> 4/sample size)101, and removed from the regression analyses 

to avoid the influence of this data point on the results. Such a conservative method of identifying 

and removing outliers is essential to ensure validity of the brain asymmetry as a biomarker. Due 

to the presence of random missing data, pairwise case exclusion was selected during the 

regressions102. 

Data are reported as Mean±SD. All data were analyzed on SPSS (IBM Corporation, 

Armonk, New York). Graphs were created with GraphPad Software v.6 (La Jolla, California, 

USA). 

3.4 Results 

3.4.1 Participants 

Eighty-two MS patients (58 females) participated in the study. Among participants, 

seventy-four were diagnosed with relapsing-remitting MS (RRMS), six had secondary-progressive 

(SPMS), one had primary-progressive MS (PPMS), and one participant’s MS type was unknown. 

Levels of MS disability ranged from EDSS 0 (no symptoms) to 6 (walks with aid). MoCA scores 

revealed that forty-six participants had no cognitive impairment, thirty-six had mild impairment, 

and one participant had moderate-severe cognitive impairment176. The mean SDMT score 

indicated that participants had slower cognitive processing speed in comparison to normative 

values from the general population (47 vs ~52)182. Descriptive data are reported in Table 3.1. 
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Forty-seven patients were prescribed disease-modifying medications, including 

teriflunomide (n = 2), interferon β-1a (n = 4), glatiramer-acetate (n = 6), fingolimod (n = 5), 

dimethyl fumarate (n = 29), and natalizumab (n = 1). There were no differences in any subjective 

or objective physical or cognitive scores, RMT and AMT in either side (weak or strong), nor 

differences in brain asymmetry ratios (RMT or AMT) between patients taking or not taking 

medications (Z < -1.58, p > 0.113, and t < -1.50, p > 0.139, for non-parametric and parametric 

independent t-tests, respectively). 
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Table 3. 1 Participants and Pearson’s correlations with interhemispheric ratio using AMT and RMT. 
 

Variables (mean±SD) (n=82) 

Variables vs Interhemispheric Ratio (r) 

AMTW/AMTS (n=71) 

(mean±SD: 1.08 ± 0.3) 

RMTW/RMTS (n=67) 

(mean±SD: 1.07 ± 0.3) 

Age (years) 47.51 ± 10.2 -0.088 -0.102 

Disease duration (years) 13.06 ± 7.9 0.106 -0.015 

Disease severity (EDSS 0-10) 2.08 ± 1.7 0.384** 0.261 

Cognition (MoCA 0-30) 26.27 ± 2.8 -0.144 -0.051 

Cognitive Processing Speed (SDMT 0-110) 47.44 ± 11.9 -0.346* -0.041 

Physical Impact of MS (MSIS 20-100) 38.41 ± 15.7 0.326* 0.020 

Psychological Impact of MS (MSIS 9-45) 18.95 ± 7.9 0.034 -0.079 

Fatigue (0-100mm) 41.32 ± 32.3 0.320* 0.052 

Pain (0-100mm) 19.40 ± 26.1 0.136 0.043 

Heat Sensitivity (0-100mm) 27.43 ± 32.5 0.342** 0.203 

9HPT strong hand (seconds) 22.18 ± 4.4# 0.553** 0.121 

9HPT weak hand (seconds) 24.51 ± 8.6 0.475** -0.024 

Walking Speed (cm/s/heightcm) 0.61 ± 0.1 -0.271* -0.083 

Note: EDSS, Expanded Disability Status Scale; MoCA, Montreal Cognitive Assessment; MSIS, MS Impact Scale; 9HPT, nine-hole peg test; AMTW, active 

motor threshold from weaker side; RMTW, resting motor threshold from weaker side, AMTs, AMT from stronger side; RMTS, RMT from stronger side; 

SDMT, Symbol Digit Modality Test; **Significant correlations with Bonferroni-Holm’s correction (p<0.001); *Significant correlations without Bonferroni-

Holm’s correction (p<0.05); # 9HPT performance differed between weaker and stronger side (p=0.005). All participants (n=82) had recordable motor evoked 

potentials in at least one side of the body. Asymmetry ratios were only calculated for the MS patients with bilateral AMT (n=71) and RMT (n=67). Four 

participants were not assessed for MSIS and SDMT; one participant was not assessed for fatigue, pain, or heat sensitivity due to visual impairment, one 

participant was not assessed for 9HPT in either hand, and for one participant, EDSS level and disease duration was unknown. 
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3.4.2 AMT revealed brain asymmetry 

When testing the hypothesis that MTs were symmetrical (H0: MTW/MTS = 1.0 vs Ha: 

MTW/MTS ≠ 1.0), one sample t-test rejected the null hypothesis for AMTW/AMTS (t(70 )= 2.75, p = 

0.008; Mean difference = 0.08, 95% CI 0.02-0.14) but did not reject for RMTW/RMTS (t(64) = 1.74, 

p = 0.086; Mean difference = 0.04, 95% CI = -0.01-0.08). Therefore, MS patients demonstrated 

brain excitability asymmetry by measuring AMT, but not RMT. 

The non-dominant hand was weaker in 70.3% of participants. As expected, the weaker 

hand was slower to complete the 9HPT in comparison to the stronger hand (Z = -2.80, p = 0.005). 

Participants in this study had a relatively slow walking speed (0.61 cm/s/heightcm) in comparison 

to previously reported values from the general population of the same age and sex (~0.82 

cm/s/heightcm)178. 

RMT and AMT could not be measured from one side of the body in 16 and 11 participants, 

respectively, due to: (i) participant’s inability to rest during RMT assessment noted by high EMG 

background activity, or (ii) MSO at maximum value of 100% without eliciting MEPs (no 

response). The MEP amplitudes collected during the RMT and AMT experiments did not differ 

between stronger and weaker sides; RMT (stronger: 149.89 ± 90.3µV; weaker: 158.36 ± 105.5µV; 

Z = -1.35, p = 0.178) or AMT (stronger: 341.12 ± 118.22µV; weaker: 344.11 ± 111.5µV, Z=-1.02, 

p = 0.307). There were no significant differences between RMTW (43 ± 13) and RMTS (40 ± 10) 

MSO% (Z = -0.68, p = 0.495) nor differences between AMTW (37 ± 12) and AMTS (34 ± 7) 

MSO% (Z = -1.81, p = 0.07, corrected α = 0.017; Figure 3.1C), which is counterintuitive, since 

one would expect that the stronger and faster hand would have lower MTs in comparison to the 

weaker side. When calculating CSE asymmetry based on hand impairment, two groups of MS 

patients were noted: 1) MS patients with higher CSE in the weaker side (AMT asymmetry ratio < 
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1.0) (Figure 3.1A), and 2) MS patients with higher CSE in the stronger side (AMT asymmetry 

ratio > 1.0) (Figure 3.1B). However, when analyzing all MS participants together, CSE symmetry 

is observed (Figure 3.1C). MS patients with higher excitability in the weaker side were less 

physically disabled, having lower EDSS (t(68) = 3.58, p = 0.001), faster walking speed (t(68) = 2.74, 

p = 0.008), superior performance during 9HPT in both stronger (t(68) = -3.52, p = 0.002) and weaker 

(t(68) = -2.98, p = 0.007) hands, and had superior cognition, performing better in the SDMT (t(65) = 

2.49, p = 0.015) (Figure 3.1D). MS patients with the weaker side more excitable also reported less 

MS-related symptoms of fatigue (t(68) = -2.62, p = 0.011), heat sensitivity (t(68) = -4.67, p < 0.001), 

and less impact of MS in activities of daily living (MSISPhysical) (t(65) = -2.62, p = 0.011) (Figure 

3.1D). Pain levels, MoCA, and MSISPsychological did not differ between groups (t < -1.34, p > 0.05). 
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(A) MS patients with higher excitability (lower AMT) in the weaker side, and (B) MS patients with higher excitability in the stronger 

side. (C) When performing a paired t-test between weaker and stronger sides with all MS patients together, this asymmetry is diluted 

and no difference between hemispheres’ AMT is noted (corrected α < 0.017). (D) Independent t-tests between groups revealed that MS 

patients with higher excitability in the weaker side were less disabled and had less severe MS symptoms. Expanded Disability Severity 

Score (EDSS; corrected α < 0.007), faster walking speed (cm/s/heightcm; corrected α < 0.017), needed less time (seconds) to conclude 

the nine-hole peg test (9HPT) in both weaker (corrected α < 0.013), and stronger (corrected α < 0.008) hands, superior processing speed 

measured using the symbol digit modality test (SDMT; corrected α < 0.05), as well as reported less MS symptoms of fatigue (corrected 

α < 0.025) and heat sensitivity (corrected α < 0.006) measured using visual analog scales (0-100mm), and reported less physical impact 

of MS measured using the Multiple Sclerosis Impact Scale (MSIS; corrected α < 0.010). *Difference is statistically significant at the 

Bonferroni Holm’s corrected level of significance. 

  

Figure 3. 1 Calculating the active motor threshold (AMT) asymmetry ratio based on hand impairment revealed two groups of 

MS patients 
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3.4.3 AMT asymmetry ratio predicted clinical measures 

The regression analyses are summarized in Table 3.2. The addition of the AMT brain 

asymmetry ratio contributed significantly to the models predicting EDSS, subjective physical 

impact of MS, fatigue, heat sensitivity, upper extremity function in both hands, and processing 

speed, with a substantial degree of variance being predicted by AMT asymmetry ratio; from 5% 

(EDSS) to 31% (9HPTS).
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Table 3.2 Predictive value of brain asymmetry on subjective and objective MS measures. 

Predictors Outcome Variable R2 Fstatistic p-value ΔR2  Fstatistic p-value R2 

M
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7.11 <0.001 0.36 

MoCA 0.06 0.98 0.427 +0.02 0.80 0.557 0.06 

SDMT 0.20 3.76 0.008 +0.06† 4.25 0.002 0.26 

MSISPhysical 0.18 3.42 0.013 +0.07† 4.12 0.003 0.26 

MSISPsychological 0.17 3.14 0.020 +<0.01 2.47 0.042 0.17 

Heat Sensitivity 0.17 3.30 0.016 +0.07† 4.09 0.003 0.25 

Fatigue 0.09 1.22 0.196 +0.09** 2.73 0.027 0.18 

Pain 0.07 0.97 0.311 +0.01 1.14 0.346 0.08 

9HPTS 0.13 2.30 0.068 +0.31* 9.57 < 0.001 0.43 

9HPTW 0.34 8.51 < 0.001 +0.14* 11.88 < 0.001 0.48 

Walking Speed 0.25 5.06 0.001 +0.02 4.43 0.002 0.27 

Note: DD, disease duration; DMD, disease modifying drugs; EDSS, Expanded Disability Status Scale; MoCA, Montreal Cognitive Assessment; MSIS, MS 

Impact Scale; 9HPTW, nine-hole peg test weak hand; 9HPTS, strong hand; AMT asymmetry ratio (AMTW/AMTS); Heat sensitivity, pain, and fatigue were 

measured with visual analog scales (0-100mm); MS type: Relapsing remitting MS or Secondary Progressive MS; ΔR2, R2 change (amount of contribution of 

AMT asymmetry ratio to the final model). † significant contribution to the model (p<0.001); *significant contribution to the model (p<0.01); **significant 

contribution to the model (p<0.05). Outliers identified with Cook’s distance >4/sample size and removed from the regressions (n): EDSS (7), MoCA (5), 

SDMT (5), MSISPhysical (5), MSISPsychological (2), heat sensitivity (4), fatigue (3), pain (4), 9HPTS (8), 9HPTW (7), walking speed (6). 

Table 3. 2 Predictive value of brain asymmetry on subjective and objective MS measures
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3.4.4 Having higher excitability on the weaker side was associated with lower disability and 

faster cognitive processing speed 

Interestingly, correlation analysis revealed that having higher CSE in the weaker side 

(AMTW/AMTS < 1.0) was associated with lower disability measured using EDSS (p < 0.001) 

(Figure 3.2A) and superior performance during 9HPT in both weaker (p < 0.001) and stronger (p 

< 0.001) hands (Figure 3.2B and C). Having higher CSE in the weaker side was also associated 

with superior processing speed measured using the SDMT (p = 0.007) (Figure 3.2D) and with 

faster walking (p = 0.019) (Figure 3.1E), but only when considering the non-corrected p-value (α 

= 0.05). 
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(A) MS patients with the weaker side more excitable than the stronger side were less disabled 

(lower Expanded Disability Status Scale, EDSS) (corrected α  < 0.005), had superior hand 

dexterity in both (B) stronger (corrected α < 0.003) and (C) weaker hands (corrected α < 0.004), 

measured as shorter time in seconds to conclude the nine-hole peg test (9HPT), (D) walked faster 

(walking speed, cm/seconds/heigthcm) (uncorrected α < 0.05), and (E) had superior cognitive 

processing speed, measured with the symbol digit modality test (uncorrected α < 0.05).  

Figure 3. 2 Relationships between brain asymmetry and objective measures of MS symptoms 
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3.4.5 Having higher excitability on the weaker side was associated with less severe subjective 

MS symptoms 

Having higher CSE in the weaker side was associated with fewer subjective symptoms of 

heat sensitivity (p = 0.004) (Figure 3.3A) and with less subjective physical impact (MSISPhysical; p 

= 0.007) (Figure 3.3C) and fatigue (p = 0.007) (Figure 3.3B) but only when considering the non-

corrected p-value (α = 0.05). No other correlations were present for brain excitability asymmetry 

ratio using AMT. Brain asymmetry ratio using RMT did not relate to any variable. All correlations 

are shown in Table 3.1. 
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(A) MS patients with the weaker side more excitable reported less heat sensitivity (corrected α < 

0.005) and (B) fatigue measured using visual analog scale (0-100mm) (uncorrected α < 0.05), and 

(C) reported less impact of MS on physical activities of daily living, measured using the Multiple 

Sclerosis Impact Scale (MSIS) (uncorrected α < 0.05). 

  

Figure 3. 3 Figure 3.3 Relationship between brain asymmetry and subjective symptoms 
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3.5 Discussion 

Biomarkers help to signify the degree of underlying neurological injury and the potential 

for recovery 149, 183. In other fields, such as stroke, TMS biomarkers are recommended in clinical 

trials in order to track motor recovery18. MS is a heterogeneous disease and is therefore well-

positioned to benefit from biomarkers that could help predict treatment choices and outcomes. 

Data supports that, in stroke, a laterality index, calculated by examining the integrity of the CST 

bilaterally, predicts treatment gains167, 169, 184, 185. In this study we show, for the first time, that an 

asymmetry of brain excitability, particularly an atypical higher excitability in the weaker side, 

predicted lower disability, better upper extremity function, reduced fatigue and physical burden of 

MS, less heat sensitivity, and superior cognitive processing speed, when controlling for MS type, 

disease duration, use of disease modifying drugs, and handedness. All these symptoms worsened 

in MS patients when the CSE shifted towards symmetry or towards higher CSE in the stronger 

side. Furthermore, the AMT asymmetry ratio revealed asymmetry in brain excitability despite no 

differences between MTs when using conventional paired t-test analysis between hemispheres 

(Figure 3.1C). We propose that higher CSE in the weaker side could be explained by cortical 

hyperexcitability due to neuroinflammation, affecting predominantly one hemisphere in early MS. 

Loss of this unilateral neuroinflammation-mediated hyperexcitability may indicate a shift from 

inflammatory to neurodegenerative phases and signify MS progression (see Figures 3.1D and 

Figure 3.4). The AMT asymmetry ratio may serve as a useful biomarker of disease severity in MS 

that may help clinicians map MS-related changes, identify responders to interventions and monitor 

the effects of drug and rehabilitative therapies. 
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Figure 3. 4 Active motor threshold (AMT) asymmetry ratio (AMTweak side/AMTstronger side) 

revealed (a)symmetry patterns in MS patients associated with disease severity 

(A) Asymmetry towards higher corticospinal excitability (CSE) (lower AMT) in the weaker side 

(AMT asymmetry ratio < 1.0), was associated with early MS stages (EDSS 0-1, and better physical 

function). (B) MS patients slightly more progressed in the disease (EDSS 1.5-3) had a more 

symmetrical CSE (asymmetry ratio ~1.0). (C) CSE asymmetry with the stronger side having 

higher CSE (AMT asymmetry ratio > 1.0) was noted in patients in the late stages of MS (EDSS 

3.5-6). 
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3.5.1 Typical CSE asymmetry is disrupted in MS 

As a result of strengthening of neuronal connections through long-term potentiation from 

preferred use and extensive daily practice57, 186 MTs are typically lower in the dominant hand 

among healthy individuals 174. Following stroke, the affected side exhibits higher MTs (lower 

CSE)27, 162, associated with poorer motor recovery27. Likewise, it would be expected that MTs 

would be higher on the weakest (assumed to be the most affected) side in MS. Indeed, in 

comparison to healthy individuals, MTs are higher (lower CSE) in severely disabled MS 

patients124, a stage in which the CST is considerably damaged141, 187. CSE is also lowered during 

MS relapse123, possibly because of acute axonal loss and brain edema which weakens neuronal 

excitation2. In early or remitting MS, however, studies comparing MTs between healthy 

individuals and MS patients bilaterally87, 125, 164, 165, 188 or unilaterally (right, left, or dominant 

side)116, 121, 122, 153, 163, 189-192 have reported disparate results as some showed higher MTs and others 

no differences between controls and MS patients. One potential explanation is that, since unilateral 

deficits in MS are common142, 154-159, 161, assessing one side arbitrarily may create variability among 

results. TMS studies investigating MTs in the affected side of MS patients are scarce, lacking 

rationale for assessing the affected side125, 151, 163, 193 or they omit reporting of how the affected side 

was determined125, 151, 193. When converting the data to a brain excitability asymmetry ratio, we 

reveal atypical and unexpected CSE asymmetry in which MS patients with milder disability (lower 

EDSS), who were likely earlier in the disease, exhibited lower CSE (higher MTs) in the stronger 

and faster hand and higher CSE (lower MTs) in the weaker and slower hand (Figures 1D and 4). 

This suggests that the balance of CSE between the hemispheres was uniquely altered in mild and 

early MS. Detecting such a shift would have been impossible using conventional paired t-test 

analysis of MTs since participants with high levels of excitability and low levels of excitability 
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would be combined, essentially diluting the effect (see Figure 3.1C). In MS, especially in early 

and relapsing-remitting type, upregulation of chemokines130 and cytokines132 may mobilize 

immune cells into the brain and promote excessive release of glutamate leading to excessive 

excitation2, 194. Therefore, we suggest that the more affected side in MS, although damaged, may 

present with hyperexcitability due to neuroinflammation in the early stages. 

TMS may help fill the biomarker gap but it has been notoriously variable146-148, 195. Besides 

disease-related factors147, 148, CSE is also influenced by hormonal differences196, age197, physical 

fitness35, 198, cortical thickness199, wakefulness and amount of sleep200, 201, stimulants (e.g. caffeine) 

202 and medications203, and even levels of education198. With such numerous confounding variables 

in addition to MS heterogeneity, it is not surprising then that TMS has been reported as only weakly 

associated with clinical correlates of MS52, 53. Our findings reveal a new and potentially important 

TMS variable that should be subjected to scrutiny in a randomized controlled trial of disease-

modifying drugs or rehabilitative interventions. 

3.5.2 Is hyperexcitability compensatory, or an indicator of MS progression, or both? 

In MS, TMS studies using paired-pulse paradigms reported associations between increased 

intracortical facilitation130-132 or suppressed intracortical inhibition123 and higher levels of 

neuroinflammatory markers that are associated with hyperexcitability; mediated by increased 

glutamatergic and decreased GABAergic activity. Mori et al. (2014) proposed that 

hyperexcitability in MS, identified as increased intracortical facilitation assessed with TMS, may 

compensate for axonal loss and promote long-term potentiation131. However, other studies have 

failed to replicate the same results52, 122 or show long-term potentiation associated with 

hyperexcitability in MS130. Additionally, although compensatory, hyperexcitability may 

demyelinate and destroy neurons through excitotoxicity 2, 129. We showed that MS patients with 
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less disability, likely in early stages of the disease, had higher CSE in the brain hemisphere 

responsible for the weaker side of the body (Figure 3.1A). This suggests that, in early MS, 

hyperexcitability affecting one brain hemisphere could be compensatory, however, paradoxically, 

it may also lead to further neurodegeneration due to excitotoxicity2, 3, 129. This finding is in 

accordance with studies investigating other neurodegenerative diseases such as Alzheimer’s204, 205, 

Huntington’s206, and Amyotrophic Lateral Sclerosis207, whereby hyperexcitability-associated with 

excessive glutamate release in early stages is responsible for further neurodegeneration due to 

excitotoxicity. We propose that a similar pattern of disease progression, from hyperexcitability 

(early stages) to less excitability (late stages), could occur in MS. However, hyperexcitability in 

MS may affect predominantly one side as demonstrated by the lower AMT asymmetry ratios 

(AMTW/AMTS < 1.0) in early, and higher AMT asymmetry ratios (AMTW/AMTS > 1.0) in later 

stages. 

The AMT asymmetry ratio was highly associated with and was a strong predictor of hand 

function when controlling for MS type, disease duration, use of disease modifying drugs, and 

handedness. This relationship could be explained by the fact that the MEPs were measured in a 

hand muscle (FDI) that had an essential role in the upper extremity test employed (9HPT). The 

AMT brain asymmetry ratio also predicted subjective symptoms of fatigue, and physical impact 

of MS, but not pain or psychological impact. In fact, as far as we know, there have been no studies 

in MS associating TMS variables with pain scores or cognitive variables. This could be because 

pain relies on sensory systems208 which may not be adequately probed using TMS. 

Interestingly, the AMT asymmetry ratio also predicted subjective levels of heat sensitivity. 

MS patients experience heat sensitivity related to autonomic and endocrine dysfunction7. The 

degree of thermoregulatory dysfunction worsens as the disease progresses since demyelinated 
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axons increase heat-induced blockage of action potentials7. Our results confirmed that heat 

sensitivity and fatigue is worse among those with higher disability (and lower CSE on the weaker 

side; Figure 3.1). White et al. (2013) showed increased MTs (lowered CSE) and lowered nerve 

conduction speed in MS patients, but not in healthy controls, after 45-60 minutes of passive heat 

exposure 153. Grover, G. et al. (2017) showed decreased motor drive to the weaker leg of MS 

patients after 30 minutes of moderate aerobic exercise in ambient (warmer) temperatures 209. Also, 

cold therapy lessened the severity of physical symptoms and suppressed fatigue among MS 

patients reporting a high degree of heat sensitivity210. The AMT asymmetry ratio may be a useful 

tool to understand the effects of heat and cold on the motor system in order to build better 

rehabilitative treatments for MS. 

3.5.3 CSE asymmetry and its treatments – What can we learn from evidence in stroke? 

Following stroke, decreased excitation caused by neuronal loss in the affected hemisphere 

167, 168 or excessive activation in the contralateral hemisphere27 causes CSE asymmetry. The 

recovery process after stroke is marked by reduced CSE asymmetry167. In fact, Di Pino, G. et al. 

(2014) proposed that recovery post-stroke depends on brain structural reserve and the excitability 

relationships between hemispheres (bimodal balance-recovery model), whereby in large lesions, 

higher CSE of the unaffected hemisphere may be beneficial and compensatory (vicariation model), 

whereas, in smaller lesions, higher excitation of the non-affected brain may weaken motor 

recovery (interhemispheric competition model)27. These models were proposed based on TMS 

protocols, interhemispheric inhibition and interhemispheric facilitation, that investigate the ability 

of one hemisphere to inhibit or facilitate the other through callosal connections20, 27. We have 

shown that, like in stroke167, 168, participants with greater MS-related disability demonstrated brain 

excitability asymmetry due to lower CSE (higher MTs) in the weaker side. In fact, in MS, callosal 
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dysfunction becomes apparent even at the earliest stages of MS211. Previous TMS research 

reported increased interhemispheric inhibition (longer ipsilateral silent period) in MS patients that 

correlated with the degree of physical disability87, 212. Future research examining the relationships 

between affected and less affected hemispheres is needed in order to understand interhemispheric 

competition in MS. More importantly, elucidating the nature of this relationship, whether is 

harmful or beneficial, could guide new treatment strategies for MS.  

In stroke, brain stimulation methods such as repetitive transcranial magnetic stimulation 

(rTMS) and transcranial direct current stimulation (tDCS) have been used to either increase CSE 

in the ipsilesional213 or decrease CSE in the contralesional hemisphere214 to reduce 

interhemispheric inhibition and CSE asymmetry to improve capacity for motor recovery. Also, 

improved motor acquisition and learning of the affected hand following a bout of aerobic exercise 

has been related to suppressed CSE asymmetry169. Therefore, especially in late MS, as in stroke, 

increasing CSE in the affected hemisphere may be beneficial. However, due to the distinct nature 

of MS (both neuroinflammatory and degenerative), comparing our findings to the CSE 

interhemispheric relationship reported in stroke is challenging, and whether any of the models of 

recovery proposed by Di Pino, G. et al. (2014), and its treatments (e.g. brain stimulation methods) 

is applicable for MS is unknown and requires further investigation. If brain excitability asymmetry 

in MS exists because of excessive inflammation-induced excitation, further activation may be 

contraindicated because of the potential for further death of neurons from glutamate-mediated 

excitotoxicity2. In the few trials examining rTMS and transcranial direct current stimulation to 

increase CSE in MS, researchers treated the affected side and the results were inconclusive215, 216.  

Interestingly, Mori et al. (2014), using an inhibitory type of rTMS protocol to reduce CSE, showed 

decreased CSE post-rTMS in healthy controls but not in recently diagnosed MS patients 131. Using 
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a similar method, Zeller and group (2012)121 demonstrated that following inhibitory rTMS, CSE 

diminished and hand strength decreased in healthy controls but not in MS patients with low to 

moderate levels of disability. Taken together, these findings suggest that CSE is altered in early 

MS, and although pathological, hyperexcitation may function to lessen physical disability. 

Whether hyperexcitability is a reasonable and safe target for restorative interventions is worthy of 

further research. 

3.6 Limitations 

The limitations of this study include the fact that we used a convenience sample of 

consecutive MS patients attending a MS clinic who consented to the study, which may not 

represent all patients. Furthermore, we attempted to recruit patients with a wide disability range, 

but those with EDSS > 4 were underrepresented. Hand dominance can be an issue since 70.3% of 

participants showed weakness in the non-dominant hand, however, handedness was one of the 

variables we controlled for in the regression analyses. Future studies should be attentive to 

investigating the sample with respect to side of hand impairment. Also, as this was a cross-

sectional study, longitudinal data is required in order to confirm whether MS progression is 

accompanied by shifting CSE (loss of hyperexcitability) in the brain hemisphere responsible for 

the weaker side of the body. Based on our findings, TMS protocols investigating direct 

interhemispheric stimulation such as interhemispheric inhibition/facilitation and ipsilateral silent 

period are warranted to further elucidate the issues of hemispheric communication in MS. 

3.7 Conclusion 

Neurophysiological changes occurring in early and in pre-symptomatic MS may work as 

biomarkers to predict MS progression and to understand the benefits of drugs or rehabilitation 
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interventions. To date, TMS variables are only weakly associated with clinical symptoms52, 53. 

Using a ratio between weaker and stronger sides, we showed strong relationships between 

asymmetry of brain excitability measured using AMT and MS symptom severity and disability. 

Specifically, MS patients were less physically and cognitively disabled if presenting with a CSE 

asymmetry with the weaker side more excitable than the stronger side. This atypical CSE 

asymmetry could be a result of hyperexcitability induced by greater inflammation in early MS 2 

affecting predominantly the weaker side. In contrast, neurodegeneration and cessation of 

inflammatory events2 may explain the shift of CSE asymmetry later in the disease. Longitudinal 

studies are necessary in order to confirm whether the degree of unilateral hyperexcitation in the 

weaker side, may in fact predict degree of disease progression, in other words, whether a CSE 

asymmetry with weaker side presenting with higher excitability would signal faster MS 

progression due to excitoxicity-mediated degeneration. More studies are also necessary to 

understand the effects of drug therapies and rehabilitation interventions on CSE asymmetry. 
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ABSTRACT 

Background and Purpose: Even a single bout of aerobic exercise (AE) enhances corticospinal 

excitability (CSE); a biomarker of neuroplasticity. Because neurodegeneration limits capacity for 

neuroplasticity, it is not clear whether AE would induce CSE changes in people with progressive 

Multiple Sclerosis (MS). 

Methods: People with progressive MS (n = 10) requiring ambulatory assistive devices completed 

a graded maximal exercise test. Dual Energy X-Ray Absorptiometry was used to quantify body 

fat and lean mass. Before and following one 40-minute AE session using body-weight supported 

(<10% support) treadmill at moderate intensity, CSE was measured using transcranial magnetic 

stimulation (TMS). Variables included resting and active motor thresholds, motor evoked 

potentials (MEP) amplitudes, recruitment curves, and length of the cortical silent period (CSP). 

Results: AE reduced inhibition (shorter CSP) and increased excitation (increased MEP amplitude) 

only in the hemisphere corresponding to the stronger hand. Controlling for age, higher fitness and 

lower body fat significantly predicted exercise-induced reduction in resting motor threshold (ΔR2 

= +0.458, p = 0.046) and CSP (ΔR2 = +0.568, p = 0.030), respectively. 

Discussion and Conclusions: Despite high levels of disability, capacity for exercise-induced 

neuroplasticity was retained among people with progressive MS. The hemisphere contralateral to 

the weaker hand was resistant to exercise-induced CSE changes suggesting less neuroplastic 

potential. Lower fitness and higher body fat was associated with diminished exercise-induced CSE 

benefits suggesting that therapists should consider interventions aimed at improving fitness and 

combating sedentarism to ultimately enhance the benefits of exercise on the brain. 
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4.1 Introduction 

Multiple Sclerosis (MS) is a neuro-inflammatory mediated disease that affects both white 

and gray matter leading to physical, sensory, and cognitive impairments.1 In progressive MS, 

chronic brain lesions and neurodegeneration are thought to limit capacity for neuroplasticity and 

research suggests that gradual loss of plasticity explains disability progression.1 Exercise is one of 

several lifestyle interventions (e.g. abstaining from smoking, absence of cardiovascular co-

morbidities) purported to provide neuroprotection in MS43, 47, 65, 106 possibly by affecting the brain 

directly.41 In healthy people and people with stroke, a single bout of aerobic exercise (AE) is 

known to enhance cerebral blood flow, elevate serum levels of neurotrophic factors such as brain-

derived neurotrophic factor,107, 217 and upregulate neuroprotective hormones and 

neurotransmitters; processes that promote neuroplasticity.36, 40, 218-220 For this reason, there is an 

emerging field of research examining whether acute AE can ‘prime’ the brain to synergistically 

enhance the benefits of other rehabilitation therapies among clinical populations, such as stroke.169, 

217, 221-223 Using transcranial magnetic stimulation (TMS), a non-invasive tool that assess 

mechanisms of corticospinal excitability (CSE)20, several studies in healthy individuals have 

proposed that the main factors responsible for enhancing neuroplasticity-associated with improved 

brain function post AE are the transient increases in glutamatergic-mediated intracortical 

excitation and decreases in gamma-aminobutyric acid (GABA)-mediated intracortical 

inhibition.219, 221, 224, 225 Using TMS, Nepveu, et al. (2017) showed that among people with chronic 

stroke, reduced GABAergic-mediated intracortical inhibition in the affected hemisphere after a 

single AE session paired with a motor learning task was a potential mechanism that facilitated 

superior motor learning in the affected hand.169 Whether acute AE promotes similar 
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neuroplasticity-associated CSE changes among people who have substantial MS-related motor 

disability, such as in progressive MS, is not known. 

It is reasonable to think that people who have higher levels of fitness could respond 

differently to acute AE.226 TMS studies have shown that adherence to exercise in the longer term 

increases baseline levels of brain excitability, allowing fitter individuals to benefit more robustly 

from neuroplasticity-inducing interventions39 including acute AE.38 Likewise, among people with 

MS, Chaves et al. (2019) reported an association between lower levels of fitness and increased 

GABAergic-mediated intracortical inhibition measured with longer cortical silent period (CSP),41 

a TMS biomarker of diminished neuroplasticity.16, 31 Similarly longer CSP has been linked to 

greater neurological impairment in stroke,30, 118 Huntington’s,117 and in MS.88 In general, most 

people with MS do not engage in regular physical activity,41, 43, 45, 66 therefore it is important to 

understand whether lower fitness levels and sedentarism may be hindering the potential benefits 

of strategies aimed at improving brain function. The aim of this pilot study was to first, investigate 

whether a single bout of AE could induce neuroplasticity in people who had severe walking 

disability due to progressive MS, and second, to determine whether levels of fitness would be 

associated with CSE changes post AE. Based on previous research, we hypothesized that lower 

levels of fitness could be a factor limiting AE-induced changes in brain excitability. 

4.2 Methods 

4.2.1 Participants 

Ten people with progressive MS (9 females, and 1 male) aged 53.20 ± 15.6 years 

(mean±SD), recruited consecutively through referrals from a neurologist, physiotherapists, and 

through posters at a tertiary rehabilitation center, participated in the study. Participants met the 
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following inclusion criteria: 1) Confirmed diagnosis of progressive MS by a neurologist, 2) ≥ 18 

years of age, 3) free of relapses in the previous 3 months, 4) walking with bilateral (e.g. ambulatory 

assistive devices; canes or walker) support, 5) disability level quantified using the Expanded 

Disability Status Scale of ≥ 6.0 (EDSS; 0.5-unit increment; 0 = normal neurological exam, 10 = 

death due to MS), 6) able to participate in physical exercise as per PAR-Q screening form,89 and 

7) able to undergo TMS and Dual Energy X-ray Absorptiometry (DEXA) as per safety 

standardized forms.90, 227 All participants provided written consent. All procedures were approved 

by the local health research ethics board (Memorial University of Newfoundland, #2018.088). 

Participants’ descriptive data are reported in table 4.1. Demographic data were collected, including 

age (years), sex, MS type (secondary progressive (SPMS), or primary progressive (PPMS)), and 

disease duration (years).
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Table 4.1. Participants’ Demographics 

ID Gender Age (years) DD (years) 
MS Severity 

(EDSS 0-10) 
MS Type AAD 

1 Female 57 10 6.5 PPMS Walker 

2 Female 58 33 6.5 SPMS Walker 

3 Male 42 19 6.5 PPMS Walker 

4 Female 50 28 6.0 SPMS Canes 

5 Female 38 19 6.5 SPMS Canes 

6 Female 42 8 6.5 SPMS Walker 

7 Female 72 18 6.0 SPMS Canes 

8 Female 74 10 6.5 PPMS Walker 

9 Female 29 2 6.0 SPMS Canes 

10 Female 70 29 6.0 SPMS Canes 

 Mean ± SD: 53.20 ± 15.6 17.60 ± 10.2 6.3 ± 0.3 - - 

Note: Ambulatory assistive devices, AAD; DD, disease duration; EDSS, Expanded Disability Status Scale; MS, Multiple 

Sclerosis; PPMS, primary progressive MS; SPMS, secondary progressive MS. 

Table 4. 1 Participants’ Demographics
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4.2.2 Experimental design 

Participants were assessed in 3 sessions that were 7-10 days apart. In session 1, whole body 

lean mass (Kg) and fat percentage (%) were assessed using DEXA. In session 2, cardiorespiratory 

fitness (VO2max) was assessed in a graded maximal exercise test. In session 3, CSE was assessed 

with TMS, performed pre and post body-weight supported treadmill AE. Figure 1 illustrates a 

schematic overview of the experiment design.
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AMT, active motor threshold; DEXA, Dual Energy X-Ray Absorptiometry; eREC, excitatory 

recruitment curve (Motor evoked potentials amplitudes); GXT, graded maximal exercise test 

(VO2max, maximal volume of oxygen uptake); iREC, inhibitory recruitment curve (cortical silent 

period time); RMT, resting motor threshold; TMS, transcranial magnetic stimulation. 

Figure 4. 1 Schematic overview of the experimental design 
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4.2.3 Outcome Measures  

4.2.3.1 Body Composition & Cardiorespiratory Fitness 

 Levels of physical fitness were determined by quantifying cardiorespiratory fitness and 

body fat percentage, both of which are biomarkers of sedentarism and their poor levels have been 

proposed to contribute to development and progression of MS.41, 43, 47, 228, 229 Whole body Dual 

Energy X-Ray Absorptiometry (Discovery-A densitometer, Hologic Inc., Bedford, MA, USA) was 

used to assess participants’ total body weight (Kg), amount of muscle (i.e. lean) mass (Kg), and 

body fat percentage (%).230 Specialized trained technicians performed equipment calibration 

before the assessments as per manufacturer’s guidelines.227 Data analysis was performed using the 

system’s built in software (v.12.6.1:3, Hologic Inc., Bedford, MA, USA). 

Levels of cardiorespiratory fitness were determined by the maximal capacity of volume of 

oxygen uptake (VO2max) during a graded exercise test using a total body recumbent stepper 

(NuStep, Ann, Arbor, MI).97 The stepper permits subjects to use all for limbs in a seated position 

and has been shown to be acceptable for people with MS who have mobility disability.108, 231 With 

participants maintaining a speed of 80 strides per minute, the resistance level (1-10; beginning at 

level 3) was increased by one unit every 2 minutes. If exhaustion was not reached until completion 

of resistance level 10 (maximal NuStep resistance), workload was augmented by increasing the 

speed (strides per minute) by 10 every 2 minutes. During the test, an indirect calorimetry system 

(Moxus, AEI Technologies, Pittsburgh, PA) was used to measure volume of oxygen uptake (VO2), 

volume of carbon dioxide production (VCO2), and heart rate (HR) (H10, Polar Electro Inc., NY, 

USA). The criteria for terminating the test were: (i) volitional exhaustion, (ii) no increase in VO2 

or HR despite increases in workload, and (iii) inability to maintain required workload. The breath-
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by-breath collected data was smoothed using 15 seconds moving average. Proper achievement of 

VO2max was investigated based on: (i) respiratory exchange ratio (VCO2/VO2) ≥ 1.1; and/or (ii) 

HRmax ±10 bpm of predicted maximum HR calculated as 206.9 − (0.67 × age) or 164 − (0.7 × 

age) if prescribed beta-blockers.98 From the smoothed data, the highest absolute VO2 was divided 

the participants’ total body weight (Kg) to obtain participants’ relative VO2max (mL.min-1kg-1
Total 

body weight (TBW)) which was used for descriptive analysis of participants’ fitness. As well, the 

absolute VO2max was divided by the amount of muscle/fat free mass (i.e. lean mass (Kg)), to 

provide a more accurate value of cardiorespiratory fitness, especially in populations with higher 

body fat % (mL.min-1kg-1
Lean mass (LM)).

232 

4.2.3.2 Transcranial magnetic stimulation (TMS). 

With the participant seated, Motor Evoked Potentials (MEP) were elicited using 

monophasic magnetic pulses from a BiStim 2002 stimulator (Magstim Co. Whitland, UK) 

connected to a double 70mm figure-of-eight coil (Magstim, Co.). Throughout the experiment, the 

TMS coil was maintained tangentially to the scalp with the handle pointing backward and laterally 

at an angle of 45° from the midline perpendicular to the central sulcus to deliver posterior-anterior 

directed pulses in the primary motor cortex area.233 To measure electromyography (EMG) activity 

and collect the MEPs, foam surface electrodes (Kendall 200 Coviden, Mansfield, MA) were placed 

on the belly of the first dorsal interosseous hand’s muscle, and the ground and the reference 

electrodes were placed on the styloid process and the interphalangeal joint of the index finger, 

respectively. A neuronavigation device (Brainsight, Rogue Research Inc, Montreal, QC, Canada) 

guided coil position and collected the MEPs with its built-in electromyography (EMG) system. 

This system uses a 2500V/V amplification and collects with a sampling rate of 3kHz and a gain of 

600V/V with a bandwidth of 16-550Hz. The Montreal Neurological Institute brain template was 
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rendered into the BrainSight software and used as a 3-D stereotaxic template.91, 92 Since MS can 

affect either (or both) brain hemispheres, indiscriminately,48 MEPs were assessed bilaterally; 

Stronger (less affected) and weaker (more affected) hands48 were determined by EMG recordings 

of the first dorsal interosseous muscle with the participant performing maximal voluntary 

contraction of the pincer grip. Three to six trials were collected (10-15 seconds apart) and the EMG 

values were recorded and averaged for each hand. A priori analysis showed no differences pre or 

post AE on EMG values across the maximal voluntary contraction trials on each hand (t < 2.37, p 

> 0.099). None of the participants reported fatigue throughout the TMS assessment, pre or post 

AE. Therefore, fatigability was likely not an issue when identifying stronger and weaker hand or 

when assessing CSE. 

TMS suprathreshold stimulations were delivered at different locations over the primary 

motor area and the site with the highest averaged MEP peak-to-peak amplitude was taken as the 

hotspot. The hotspot was assessed pre and post AE because of its susceptibility to change in 

location as a result of acute interventions (e.g. exercise)234 and its higher variability, especially in 

older adults.235 Resting and active motor thresholds (RMT and AMT, respectively) were 

determined as the minimum amount of TMS intensity (maximal stimulator output percentage, 

MSO% 0-100) necessary to elicit MEPs with a peak-to-peak amplitude of ≥ 50µV during muscle 

relaxation and ≥ 200µV during 10% of pincer grip maximal voluntary contraction, respectively, 

in at least 50% of the trials.20 Recruitment curves (REC) were assessed with the participant 

contracting 10% of the pincer grip maximal voluntary contraction and 3-6 stimulations, 3-5 

seconds apart, at each 105%, 115%, 125%, 135%, 145%, and 155% of AMT, were performed in 

randomized order. The averaged Peak-to-peak MEP amplitudes and the CSP length at each TMS 

intensity (105-155% of AMT) were recorded.20 
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The absolute MEP amplitudes were normalized by the MEP with the largest peak-to-peak 

amplitude (µV) recorded during the REC assessment prior to the exercise (i.e. % of the largest 

baseline MEP).236 For the excitatory REC, normalized MEP amplitudes were plotted against the 

TMS intensities and the slope and R squared (R2) of this linear relationship were calculated, which 

represents neuronal recruitment gain and accuracy of the structurally available descending axonal 

tracts.237 Likewise, the inhibitory REC slope and R2 were calculated by plotting the CSP length 

against the TMS intensities.238 For calculation of overall corticospinal excitation237 and 

inhibition239, the area under the curve was calculated for both excitatory and inhibitory RECs using 

the trapezoid rule ΔX x (Y1+Y2)/2, whereby X were the MSO% used (i.e. X axis values, 105-155% 

of AMT) and Y are the recorded CSP lengths (ms) or the absolute MEP amplitudes (mV).237 The 

length of the CSP was taken as the time (milliseconds) between the MEP onset, time-point where 

the MEP exceeded ±2SD from the EMG background activity, until the EMG activity returned to 

±2SD of the mean EMG background activity.20 

4.2.3.3 Intervention 

The intervention consisted in 40 minutes of AE walking on a treadmill (model T652m, 

SportsArt Fitness Co.) with a harness supporting 10% of participants’ bodyweight. This AE dosage 

(type, length, and intensity) was based on previous review investigating the optimal AE dosage to 

promote neuroplasticity in MS.107 Body weight supported treadmill training has been used largely 

to restore walking ability in populations experiencing walking impairments due to stroke,240 spinal 

cord injury,241 and progressive MS.107, 242 The level of body weight support was kept to a minimum 

(10%); sufficient to reduce risk of fall while not affecting the work performed.243 During the AE, 

intensity was monitored using heart rate (Polar H10 Heart Rate monitor). During the first 5-

minutes, the speed (starting at 80% of self-selected speed) and/or incline of the treadmill (i.e. 
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grade; starting at 1%) were progressively increased until ~60% of heart rate reserve was achieved 

(e.g. intensity target = 60% x (HRMax – HRRest) + HRRest). Speed and incline were adjusted as 

necessary in order to maintain the intensity target throughout the AE. If breaks (resting) were 

required, treadmill was halted and only resumed when participants reported that they were ready 

to continue. The total time exercising was calculated by subtracting minutes resting from 40 

minutes. A 5-minute cooldown, in which the treadmill speed and incline were gradually decreased, 

was provided for participants who completed the 35-minute protocol (total AE session time = 40 

minutes). For those who could not complete the 40-minute AE (e.g. walked for a total of 7.7-30 

minutes; see table 4.2), the session was terminated after the last walking bout. The total amount 

of workload performed during the AE session was estimated using standardized prediction 

equations.244 First, the VO2 (mL.min-1.Kg-1) uptake during the AE was calculated using the 

equation VO2 (ml.min-1.Kg-1) = [(Resting component (3.5mL.min-1.Kg-1) + Horizontal component 

(speed (m/min) x 0.1mL.Kg-1.meter-1) + Vertical Component (1.8mL.Kg-1.meter-1 x speed (m.min-

1) x inclineFractional Grade)];244 changes in speed and incline throughout the AE were taken into 

consideration. The averaged VO2 (ml.min-1.Kg-1) was transformed into metabolic equivalents, and 

the kilocalorie(Kcal)/minute was calculated using the equation Kcal/min = (Metabolic equivalents 

x 3.5 x total body weight in kg) / 200.244 Finally, the total amount of workload performed was 

expressed as Kcal/session, calculated by multiplying the Kcal/minute by the total time in minutes 

the participants exercised (i.e. total minutes walking).
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Table 4. 2 Participants’ Physical Fitness Profile and Aerobic Exercise Session 

Table 4.2 Participants’ Physical Fitness Profile and Aerobic Exercise Session  

 Body Composition (DEXA) 
Cardiorespiratory Fitness (Graded Maximal Exercise 

Test) 

AE Session: Duration: 40min, Intensity Target: 

40-65% of HRR. 

ID 
Height 

(cm) 

Body 

weight 

(Kg) 

Body 

lean 

mass 

(Kg) 

Body 

Fat% 

VO2max 

(mL.mi

n-1kg-

1
LM) 

VO2max 

(mL.min-

1kg-1
TBW) 

RER 

at 

VO2max 

(VCO2

/VO2) 

HRmax 

(bpm) 

Achieved 

% of 

predicted 

HRmax 

Achieved % 

of target AE 

intensityb 

Total time 

exercisingc 

(min) 

Total 

workload 

performedd 

(Kcal/session) 

1 164.0 108.95 57.22 45.6 20.05 10.53 0.92 111 66.15 89.54 23.5 59.03 

2 162.0 81.54 43.26 44.8 22.61 11.99 0.80 129 77.18 92.72 9.0 15.81 

3 185.0 88.36 54.99 35.1 24.79 15.43 0.92 134 75.34 94.98 23.0 66.53 

4 167.6 51.38 29.47 39.1 41.84 24.00 1.23 158 91.59 90.00 40.0 87.64 

5 169.0 93.85 54.31 39.1 33.31 19.28 1.03 144 79.76 88.87 12.8 54.74 

6 157.0 79.30 41.62 45.0 26.87 14.10 1.01 156 87.71 85.53 30.0 73.96 

7 158.0 52.68 32.87 34.4 31.61 19.72 1.26 145 91.91 93.15 40.0 114.46 

8 162.0 84.90 # # 27.31a 13.86 1.05 148 94.62 97.27 7.7 12.68 

9 157.5 79.60 41.74 44.7 48.28 25.31 1.06 189 101.30 89.99 40.0 219.13 

10 161.0 55.34 32.46 38.4 19.13 11.22 0.88 150 94.28 99.33 40.0 85.52 

Mean 

± SD: 

164.31 

± 8.3 

77.59 ± 

19.0 

43.10 ± 

10.5 

40.69 

± 4.4 

29.83 ± 

10.0 

16.54 ± 

5.3 

1.02 ± 

0.2 

146 ± 

21 

85.98 ± 

10.9 
92.14 ± 4.2 26.60 ± 13.38 78.95 ± 58.3 

Note: AE, aerobic exercise; bpm, beats per minute; DEXA, dual energy x-ray absorptiometry scan; HR, heart rate; HRR, heart rate reserve (HRR = HRMax – 

HRRest); LM, lean mass; RER, respiratory equivalent ratio; VCO2, volume of carbon dioxide production; VO2, volume of oxygen uptake;  VO2max (mL.min-

1Kg-1 of lean mass (LM));  VO2max (mL.min-1Kg-1 of total body weight (TBW)); # participant 8 declined to undergo DEXA, and the aVO2max (mL.min-1Kg-1 of lean mass (LM)) was 

calculated by diving this participant’s VO2max (mL.min-1) by the LM (kg) of sample mean (43.10 Kg).  b AE Intensity target: [Intensity60% x (HRmax – HRrest) 

+ HRmax]; % of Predicted HRmax = 206.9 – (age x 0.67).c Rest time is subtracted from total exercise duration (40min) d AE total workload performed = 

3.5mL.min-1Kg-1 + (Speedm/min x 0.1) + (InclineGrade x Speedm/min x 1.8). The averaged VO2 (ml.min-1Kg-1) was transformed into metabolic equivalents, and 

the Kcal/minute was estimated using the equation Kcal/min = (Metabolic equivalents x 3.5 x total body weight in kilograms) / 200. The total amount of Kcal 

spent was calculated by multiplying the Kcal/minute by the total time in minutes participants spent exercising (Kcal/session). 
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4.3 Statistical Analysis 

4.3.1 Participants’ characteristics and its associations with baseline CSE and AE-induced 

CSE changes 

Exploratory relationships between fitness (mL.min-1Kg-1
LM and body fat %) with baseline 

CSE (TMS variables RMT, AMT, excitatory and inhibitory REC values (MEP amplitudes105-155% 

AMT, CSP lengths105-155% AMT, slope, R2, and area under the curve)), and AE-induced CSE changes 

(TMS variables % changes = post-exercise – pre-exercise / pre-exercise) were investigated in 

order to elucidate possible impact of fitness on baseline CSE and CSE responses to AE, 

respectively. Also, to examine the impact of the amount of exercise performed on CSE changes, 

relationships between the total workload performed during the AE (Kcal/session) and TMS 

variables’ % changes were investigated. Normally and non-normally distributed data were 

investigated with Pearson’s (r) or Spearman’s (rho) coefficients, respectively.245 Hierarchical 

regression analyses were performed in addition, to further test whether significant relationships (p 

< 0.05) were still present when controlling for age. We limited the inclusion of controlling 

variables to one due to the small sample size, and age was selected due to its known impact on 

both the independent (VO2max, body fat %, Kcal/session)98 and the dependent (TMS) variables.246 

Separate regressions were performed for each independent variable (VO2max, body fat %, and 

Kcal/session) which were added in the first block, with the independent controlling variable age 

(years) added in the second block. Significant contribution (ΔR2, F(dof) = rejection region, p-value) 

of each independent variable to the final model explaining variance on the CSE responses 

(dependent variables, CSE % changes) to exercise were investigated. Acceptable collinearity 

between the predictors was identified using tolerance levels (> 0.1) and the variance inflation factor 
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(< 5.0). Outliers (±3SD, and Cook’s distance > 1.0),247 if present, were removed from the 

regressions to avoid influence of this data point in the results. 

4.3.2 Effects of AE on CSE 

A priori, we used a two-way repeated measures ANOVA (2 x 2: Time (Pre x Post), and 

Group (Stronger x Weaker hands) for RMT, AMT, MEP latencies, and REC’s area under the 

curve, and a three-way repeated measures ANOVA (2 x 2 x 6: Time (Pre x Post), Group (Stronger 

x Weaker), and Intensity (105-155%) for each normalized MEP amplitude (excitatory REC) and 

CSP lengths (inhibitory REC) collected.248 Normality was assessed using Shapiro-Wilk. Since the 

majority of the data did not pass the assumptions of distribution, pre- and post-exercise differences 

between hands (stronger Pre vs. weaker Pre, and stronger Post vs. weaker Post) as well as within 

hands’ (weaker Pre vs. weaker Post, and stronger Pre vs. stronger Post) changes from exercise 

were assessed with separate parametric or non-parametric paired t-tests. CSE (a)symmetry indexes 

(ratio = CSE weaker / CSE stronger hand) differences between pre and post AE were also 

investigated using paired t-tests 169. When performing non-parametric t-tests, Wilcoxon or Sign 

paired t-tests were used depending on the distribution of the differences between the two related 

variables being compared (i.e. symmetrical: Wilcoxon, and asymmetrical: Sign).245 Non-

parametric, and parametric paired t-tests statistics were reported as Z-score and t(Degrees of Freedom(dof)), 

respectively (e.g. t(dof) = or Z = rejection region value, p-value). Sensitivity analysis249 were 

performed whenever outliers (±3SD) were present and both results, with and without outliers, were 

reported (see table 4). This approach was employed due to small sample size, to clarify possible 

impact of outliers in the results and avoid misleading conclusions.249  
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All comparison (t-tests) and relationship analysis’ significance were set at an alpha (α) 

level of < 0.05 and not Bonferroni adjusted  because: (i) they were exploratory, (ii) were a priori 

planned, and (iii) were planned to serve as hypothesis for future investigation.250 Data are reported 

as Mean±SD. Data were analyzed on SPSS v.24 (IBM Corporation, Armonk, New York). Graphs 

were created with GraphPad Software v.6 (La Jolla, California, USA). 

4.4 Results 

4.4.1 Participants’ characteristics 

All participants performed the graded maximal exercise test. Participants 4 and 7 met both 

pre-determined criteria for achieving VO2max whereas participants 8, 9 and 10 met at least one, and 

participants 1, 2, 3, 5, and 6 could not meet either criteria (RER ≥ 1.1 and/or HRmax within 10% of 

the predicted). Using normative percentiles values of cardiorespiratory fitness (VO2max = mL.min-

1Kg-1
TBW) normalized by age and sex,98 participants 4, 7, and 9, were ranked as having very poor 

fitness (< 15%) and the remaining seven participants had fitness levels that were below the 1% 

(i.e. worse than very poor fitness). Using normative percentiles values of body fat % normalized 

by age and sex 98, participant 7 had poor (< 30%), 3, 4, 5, and 10 had very poor (< 5%), and 

participant 1, 2, and 6 had values below the 1% of normative values (worse than very poor). 

Participant 8 declined to undergo DEXA scan. All fitness and body composition individuals’ 

values are reported in table 4.2. 

4.4.2 AE session 

Participants 4, 7, 9, and 10 were able to fully complete the exercise session at the intended 

duration and intensity (40 minutes at 60% of HRR). The remaining six participants (number 1, 2, 

3, 5, 6, and 8) could not exercise for the intended duration (range: 7.7-30 minutes), and three of 
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them (number 1, 2, and 5) could also not maintain the intensity target while exercising (HR was 

below 40% of HRR). Participants who exercised for longer duration and at higher intensity had 

greater workload performed during exercise (Kcal/session). 2 reports the participants’ individual 

data for intensity achieved (%HRR) and time exercising (minutes) as well as the total workload 

performed by the end of the AE session (Kcal/session). 

4.4.3 Physical fitness, not workload performed, was associated with greater AE-induced CSE 

changes 

Having higher cardiorespiratory fitness (mL.min-1Kg-1
LM) was associated with greater 

exercise-induced RMT reductions in the hemisphere corresponding to the stronger hand (r = -

0.745, p = 0.021) (Figure 4.2A). Furthermore, having lower body fat % was associated with 

greater increases of normalized MEP145% AMT post exercise in the weaker hand (r = -0.722, p = 

0.044; Figure 4.2B) and greater reductions of intracortical inhibition (shortened CSP105% AMT) in 

the stronger hand (r = 0.692, p = 0.039; Figure 4.2C). Total workload performed during the AE 

(Kcal/session) was not associated with any CSE change from AE. When testing these associations 

during the regression analyses controlling for age, in the stronger hand, higher cardiorespiratory 

fitness significantly contributed to the model explaining greater reductions of RMT (ΔR2 = +0.458, 

p = 0.046), and lower body fat % significantly contributed to the model explaining greater 

shortening of CSP105% AMT (ΔR2 = +0.568, p = 0.030). In the weaker hand, older age significantly 

predicted increases of normalized MEP145% AMT (increased CSE) (R2 = 0.697, p = 0.010), with 

lower body fat % contributing (ΔR2 = +0.162, p = 0.062) to the final model (R2 = 0.859, p = 0.007). 

Table 4.3 summarizes the regression analyses results.
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Table 4. 3 Predictors of Corticospinal Excitability Change Post Aerobic Exercise. 

  

Block 1: Controlling 

Variable – Age 

Block 2: Interesting Variable – Physical 

Fitness (VO2max, and Body Fat%) 

Final Model (Age + 

Interesting Variable) 

Hand: 
Outcome Variable 

(% Change): 
R2 Fstatistic Sig. 

Interesting 

Variable: 
ΔR2 Fstatistic Sig. R2 Fstatistic sig. 

Stronger 
RMT 0.105 0.82 0.395 VO2max +0.458 6.28 0.046* 0.563 3.86 0.084 

CSP105% AMT 0.003 0.02 0.885 Body Fat % +0.568 7.96 0.030* 0.572 4.00 0.079 

Weaker MEP145% AMT 0.697 13.77 0.010* Body Fat % +0.162 4.94 0.062† 0.859 15.21 0.007** 

Note: AMT, active motor threshold; CSP, cortical silent period; EDSS, Expanded Disability Status Scale; HRmax, maximal heart rate; MEP, motor evoked 

potential; MS, RMT, resting motor threshold; VO2max, maximal volume of oxygen uptake (mL.min-1kg-1
Lean Mass). Sig, p-value; ΔR2, R2 change (amount 

of contribution of interesting variable to the final model); % Change = [(post – pre-exercise) / pre-exercise]; * significantly contributed to the final model 

(p<0.05); ** final model significantly predicted the outcome variable (p<0.01); † contributed to the significant final model. 



93 
 

Physical fitness measured with (A) higher cardiorespiratory fitness (mL.min-1.Kg-1
Lean Mass) was 

associated with greater increases of corticospinal excitability (lowered resting motor threshold) in 

the stronger hand, and (B) Lower body fat percentage (%) was associated with greater increases 

in motor evoked potential (MEP) amplitude tested at 145% of active motor threshold (AMT) in 

the weaker hand, and (C) with greater reduction of cortical silent period tested at 105% of AMT 

in the stronger hand.

Figure 4. 2 Physical fitness was associated with CSE changes (% changes) from acute aerobic 

exercise (AE) 
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4.4.4 Exercise-induced CSE changes were limited to the stronger hand 

In the stronger hand, CSP lengths were shorter post- than pre-exercise; effect that was noted 

at 115% of AMT (t(9) = 2.71, p = 0.024) (Figure 3A). Normalized MEP amplitudes were slightly 

higher post- than pre-exercise in 5 out of 6 TMS intensities tested on the stronger hand. This effect 

was most evident at 125% of AMT (t(9) = -2.45, p = 0.037) (Figure 3C). There were no pre-post 

AE differences noted in the weaker hand for CSP lengths or normalized MEP amplitudes (Figure 

3B and D, respectively).
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Figure 4. 3 Effects of aerobic exercise on excitatory and inhibitory recruitment curves (REC) 

In the stronger hand, (A) Cortical silent period (CSP) time (milliseconds ms)) was reduced after 

aerobic exercise in the stronger hand when tested at a transcranial magnetic stimulation intensity 

(TMS) of 115% of active motor threshold (AMT). (B) CSP changes were not noted in the weaker 

hand in any TMS intensity. (C) Motor evoked potential (MEP) amplitude tested at 125% of AMT 

was higher, whereas (D) no change was noted in the weaker hand in any TMS intensity.  
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4.4.5 Effects of AE on CSE asymmetry 

Before AE, AMT was higher (lower CSE) in hemisphere corresponding to the weaker hand 

in comparison to the stronger hand (t(9) = -2.56, p = 0.031). Also, excitatory neuronal recruitment 

slope and accuracy (R2) were lower in the weaker in comparison to the stronger hand (t(7) = 3.36, 

p = 0.012, and t(6) = 2.49, p = 0.047, respectively) (Figure 4). Compared to the stronger, the weaker 

hand presented with an earlier neuronal recruitment saturation (i.e. plateauing), noted by an earlier 

approach of MEP amplitudes to the largest MEP value (i.e. 100%) at lower MSO% intensities, 

indicating limited ability of the contralateral hemisphere to recruit further neurons with increased 

stimulations intensities (e.g. MEP125% AMT: t(7) = -2.70, p = 0.031). After AE, these baseline 

differences between weaker and stronger hand did not exist (p > 0.05). For the AMT, this 

difference did not exist after AE because of participants 2 and 8 whom had great asymmetry at 

baseline could not be re-assessed, likely reducing the AMT asymmetry group effect. Nonetheless, 

because participants 2 and 8 could not be assessed for REC neither pre or post AE (too high AMT 

to perform REC) in the weaker side, the reduced asymmetry between hands for REC values (slope 

and R2) was likely a true group effect (Figure 4). Although the within weaker hand’s difference 

(Pre x Post) was not significant (p > 0.05), there were observable improvement in recruitment gain 

(slope) and accuracy (R2) in the weaker hand post AE (Figure 4). There were no pre-post AE 

differences for the (a)symmetry indexes (p > 0.05).
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(A) eREC gain (slope) and (B) eREC accuracy (R2) were different between stronger and weaker 

hand pre but not post aerobic exercise. 

Figure 4. 4 Effects of aerobic exercise on reducing asymmetry of excitatory recruitment 

curve (eREC) parameters 
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RMT could not be collected in participant 2 in either hand pre or post exercise because of 

very low CSE at rest (e.g. > 100% of MSO). All participants had recordable AMT in both hands 

before exercise. Before exercise, REC could not be recorded on the weaker side of participant 2 

and 8 because participants’ AMTs reached the 100 % of the MSO and higher stimulus intensities 

based on AMT could not be applied, and because TMS overheated during the assessment, 

respectively. Prior to exercise, 155% of AMT could not be obtained in the weaker side of 

participant 5 during the REC because the required intensity surpassed the limits of the stimulator 

(i.e. AMT155% = 104 > 100% MSO). After exercise, AMT could not be measured in the weaker 

side of participants 2 and 8 because of lowered CSE (i.e. MEPs of ≥ 200µV were not detected 

during contraction), as well, procedures based on this measure (e.g. REC) could not be recorded. 

RMT and AMT amplitudes did not differ within or between stronger and weaker hands at pre or 

post exercise (t < 1.73, p > 0.123) indicating that the same relative TMS intensities between hands 

and across participants were provided throughout the TMS assessments. All TMS data is provided 

in table 4.4.
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Table 4. 4 Between and Within hands’ CSE differences – Sensitivity Analysis 

 Between Hands’ Differences 
Within Hands’ 

Differences 

 Pre AE Post AE Stronger Weaker 

TMS Variable 
Stronger Weaker Sig. Stronger Weaker Sig. Pre vs. Post 

Pre vs. 

Post 

RMT (MSO%) 43 ± 12 54 ± 23 0.174 45 ± 15 53 ± 24 0.248 0.222 0.930 

AMT (MSO%) 36 ± 13 49 ± 26 0.031* 34 ± 13 37 ± 13 0.080 0.138 0.370 

MEP105% AMT 31.67 ± 22.3 44.78 ± 21.1 0.069 28.85 ± 19.2 36.49 ± 19.35 0.441 0.333 0.192 

MEP115% AMT 40. 17 ± 28.04 62.12 ± 32.19 0.195 46.17 ± 27.8 59.65 ± 25.1 0.372 0.396 0.776 

MEP125% AMT 47.09 ± 20.9 70.70 ± 25.5 0.031* 68.58 ± 30.3 62.48 ± 28.3 0.731 0.037* 0.312 

MEP135% AMT 74.52 ± 18.77 78.61 ± 20.8 0.497 66.12 ± 20.1 77.72 ± 37.7 0.567 0.279 0.934 

MEP145% AMT 79.50 ± 22.2 79.67 ± 22.5 0.985 91.18 ± 46.6 89.52 ± 33.8 0.952 0.592 0.279 

MEP155% AMT 99.79 ± 0.6 91.18 ± 8.8 0.068 115.66 ± 52.2 107.71 ± 33.9 0.674 0.575 0.310 

eREC Slope 

(Gain) 
1.49 ± 0.4 0.79 ± 0.6 0.012** 1.45 ± 1.1 1.24 ± 1.0 0.755 0.751 0.246 

eREC R2 

(Accuracy) 

0.82 ± 0.1 

0.86 ± 0.1b 

0.49 ± 0.4 

0.48 ± 0.4b 

0.058 

0.047b** 

0.76 ± 0.3 

0.87 ± 0.1d 

0.71 ± 0.3 

0.69 ± 0.3d 

0.674 

0.237d 

0.799 

0.767d 
0.161 

eREC AUC 

(Overall 

Excitation) 

48.00 ± 41.7 36.12 ± 20.8 0.472 46.55 ± 31.3 36.70 ± 22.3 0.418 0.884 0.853 

CSP105% AMT 
83.73 ± 44.9 

67.20 ± 34.29b 

90.81 ± 71.2 

68.12 ± 33.2b 

0.401 

0.949b 

65.07 ± 28.2 

61.05 ± 31.2b 

88.26 ± 68.8 

65.81 ± 28.7b 

0.401 

0.746b 
0.199 

0.843 

0.484b 

CSP115% AMT 
102.58 ± 47.3 

86.81 ± 44.2b 

111.15 ± 68.4 

88.92 ± 29.2b 

0.401 

0.735b 

84.50 ± 40.1 

72.56 ± 38.0b 

100.99 ± 60.4 

81.36 ± 25.6b 

0.327 

0.620b 
0.024* 

0.263 

0.421b 

CSP125% AMT 
121.75 ± 52.8 

98.92 ± 35.6b 

128.68 ± 57.7 

110.57 ± 28.6b 

0.161 

0.462b 

102.98 ± 40.0 

90.95 ± 40.1b 

125.31 ± 79.9 

100.42 ± 40.8b 

0.263 

0.447b 
0.101 

0.779 

0.428b 

CSP135% AMT 
134.53 ± 51.8 

116.95 ± 43.0b 

142.58 ± 64.6 

124.09 ± 40.9b 

0.308 

0.659b 

124.09 ± 54.1 

112.12 ± 61.2b 

133.03 ± 60.3 

115.97 ± 39.1b 

0.441 

0.852b 
0.499 

0.139 

0.161b 

CSP145% AMT 
143.79 ± 62.5 

120.72 ± 44.4b 

155.33 ± 79.7 

130.95 ± 43.2b 

0.220 

0.432b 

139.93 ± 49.0 

122.51 ± 48.1b 

151.27 ± 71.3 

129.60 ± 39.3b 

0.401 

0.603b 
0.742 

0.579 

0.861b 

CSP155% AMT 
159.45 ± 62.0 

146.67 ± 37.7c 

143.73 ± 41.1 

157.86 ± 18.7c 

0.487 

0.372c 

165.22 ± 65.5 

160.77 ± 58.9c 

163.82 ± 72.7 

178.91 ± 63.5c 

0.615 

0.574c 
0.646 

0.821 

0.840c 

iREC Slope 

(Gain) 
1.36 ± 0.6 1.49 ± 0.6 0.572 1.79 ± 1.2 1.53 ± 0.7 0.598 0.402 0.817 

iREC R2 

(Accuracy) 
0.84 ± 0.2 0.85 ± 0.1 0.889 0.79 ± 0.3 0.80 ± 0.2 0.889 0.241 0.263 
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iREC AUC 

(Overall 

Inhibition) 

54.88 ± 19.4 62.57 ± 24.3 0.307 51.29 ± 19.8 59.81 ± 24.3 0.306 0.260 0.389 

Note: AE, aerobic exercise; AMT, active motor threshold; CSE, corticospinal excitability; CSP, cortical silent period; eREC, excitatory recruitment curve; 

iREC, inhibitory recruitment curve; MEP, motor evoked potential; MSO%, maximal stimulator output percentage; RMT, resting motor threshold; eREC 

Slope = Normalized MEP (% of the largest baseline MEP amplitude) by TMS intensity105-155% AMT; iREC Slope = CSP timems by TMS intensity105-155% AMT; 

** Difference is significant at α < 0.05; * Difference is significant at the unadjusted α (adjusted α for eREC and iREC (MEP amplitudes and CSP) = < 0.008); 

Outliers (±3SD) removed during analysis: a participant 6 (MEP latency: Pre and Post AE: Stronger hand: 31.20 and 32.09ms, and weaker hand: 30.26 and 

29.42ms; b participant 5 (Weaker hand’s CSP105-145% AMT time (ms) (pre and post AE): 249.76 and 245.35, 266.75 and 238.38, 255.44 and 299.54, 272.03 and 

252.41, 325.93 and 302.92; Stronger hand’s eREC R2 (pre-exercise): 0.51. c participant 10 (Weaker hand CSP155% AMT time (ms) (pre and post): 58.22ms; d 

participant 1, stronger hand’s eREC R2 (post-exercise):  < 0.01. 
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4.5 DISCUSSION 

This is the first study to investigate the effects of acute AE on neuroplasticity-like 

mechanisms measured in the upper limb among people with progressive MS. Previous research 

has proposed that CSE changes following a bout of AE when measured in the non-exercised upper 

limb are likely mediated by neuroplasticity-related mechanisms,40, 169, 219, 225, 251 rather than 

peripheral exercise-induced fatigue.252 In this preliminary pilot study, we showed that capacity for 

AE-induced improvements in brain excitability still exists in this group of people with progressive 

MS, who, because of significant central nervous system damage, require bilateral ambulatory 

assistive devices (e.g. canes, walker) in order to walk. Regardless of whether they were able to 

complete the entire 40-minute bout of exercise, changes in brain excitability were noted. These 

benefits were observed only in the hemisphere corresponding to the stronger hand suggesting that 

there may be somewhat reduced flexibility in the hemisphere corresponding to the weaker side of 

the body. Furthermore, when controlling for age, responsivity to exercise was greater in those 

participants with higher levels of cardiorespiratory fitness and lower body fat. Our results support 

that improving fitness and participation in AE is an important therapeutic target among people 

with progressive MS because AE likely has beneficial effects directly on the brain. 

4.5.1 The effects of AE on intracortical inhibition 

Intracortical inhibition occurs when the main inhibitory neurotransmitter GABA binds to 

its ionotropic GABAA or metabotropic GABAB receptor, producing a short- or long-lasting type 

of inhibition, respectively.25 In the adult brain, the balance between brain excitation and inhibition 

assures proper brain functioning.253 Excessive activity of both GABAA- and GABAB-receptor 

activity, however, is considered pathological16, 25 because it diminishes neuroplasticity-like 
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mechanisms  that are necessary for learning and memory consolidation.16, 25, 31, 254 Measured with 

longer CSP, excessive GABAergic-mediated intracortical inhibition corresponds to greater lesion 

load, poorer recovery, and worse symptom progression in diseases affecting the brain such as 

stroke, 30, 118 Huntington’s, 117 and MS. 88, 116 For this reason, treatment strategies aiming at 

reducing GABAergic-mediated intracortical inhibition are purported to improve neuroplasticity, 

protect brain functions, and prime recovery in ageing and in disease neurodegenerative 

conditions,25, 254 including MS.14 

In this sample of people with progressive MS, we noted that CSP tested at lower but not 

higher TMS intensities was reduced immediately following a single session of AE. GABAA and 

GABAB-receptor activity are sensitive to stimulus intensity, with lower TMS stimulations 

intensities producing shorter CSPs predominantly mediated by GABAA-receptors.20, 238 Our results 

showing AE-induced shortening of CSP only when tested at lower TMS intensities suggest 

predominant involvement of GABAA-receptors. This finding align with those previously described 

in healthy populations exposed to acute AE,40, 219, 251, 255 supporting that the benefit of AE on 

reducing GABAA-mediated brain inhibition is preserved in people with progressive MS. It is 

important to note that this benefit was detected only in the hemisphere corresponding to the 

stronger hand. Compared to the weaker side at baseline, the hemisphere corresponding to the 

stronger hand had higher CSE (lower AMT) and superior excitatory neuronal recruitment gain 

(slope) and accuracy (R2). Because lower RECs parameters are indicative of corticospinal tract 

damage and predictors of poor recovery following stroke,237, 256, 257 our results suggest that a more 

intact and efficient cortical representation and excitatory network of contralateral descending 

neurons could explain the retained and higher capacity for neuroplasticity in the hemisphere 

corresponding to the stronger side. We have previously shown that lower CSE in the hemisphere 
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corresponding to weaker side among people with MS corresponds to a more advanced disease 

stage, and poorer physical and cognitive performance.48 

In comparison to GABAA, the effects of acute exercise on GABAB-mediated intracortical 

inhibition have not been as elucidated.40 In these progressive MS patients, reductions of CSP tested 

at higher TMS stimulations intensities were not noticed, indicating that acute AE likely did not 

reduce GABAB-receptor activity. In healthy volunteers, CSP investigated with higher TMS 

stimulations intensities is reduced following long-term exercise training.32, 33 Accordingly, we 

have recently reported that CSP derived from higher TMS stimulation intensities were longer in 

people with MS with lower fitness levels.41 This suggests that GABAB-mediated intracortical 

inhibition is fitness-associated in healthy and in people with MS. Because excessive activity of 

both GABAA- and GABAB-receptors diminishes neuroplasticity, rehabilitation strategies should 

not only rely on acute AE, but, more importantly, should also focus on implementing long-term 

exercise training to improve physical fitness of people with MS. 

4.5.2 The effects of AE on intracortical excitation 

Higher amplitude of the MEP is a key indicator of elevated brain excitability20 and 

improved neuroplasticity-like mechanisms.39 Increases in MEPs following exercise have been 

attributed to increased release of catecholamines, such as norepinephrine, a key mediator of 

increased sympathetic nervous system activity to prepare the brain and body during exercise (e.g. 

flight-or-fight response), and to enhance neuroplasticity.40 We report here that, only measured in 

the stronger hand, MEP amplitudes were higher post AE in 5 out of 6 intensities tested during the 

REC. Statistical significance was reached around the midpoint of the REC (i.e. 125% of AMT), 

previously shown to correspond to the “inflection point” of the REC,237 which represents the point 
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of steep recruitment of higher threshold motoneuronal pool lying deep within the corticospinal 

tract. It is interesting to note that this point in the REC is also sensitive and negatively affected by 

passive heat stress among people with MS.153 

Previous studies investigating the effects of acute AE on CSE have shown benefits among 

young (~20-30 years-old) healthy individuals with high levels of fitness (~50 mL.min-1Kg-1).40, 225, 

251, 258, 259 It is noteworthy that only a modest volume of AE (moderate intensity, 7.7-40min) 

performed by these older, disabled, and deconditioned progressive MS patients was able to induce 

similar observable CSE improvements. Our findings support that patients with MS, even those 

with more advanced disease, should be prescribed AE. 

4.5.3 Effects of AE on CSE in progressive MS – the role of fitness  

Previous research has confirmed that the effects of AE on brain excitability appear to be 

intensity-dependent with higher exercise intensities inducing greater increases of brain excitability 

associated with higher levels of neurotrophins such as brain-derived neurotrophic factor,260 

excitatory neurotransmitters (e.g. dopamine, norepinephrine), lactate,259 and increases in cerebral 

blood flow.36, 40 Based on this assertion, we expected that higher total workload could be associated 

with superior CSE gains, with participants performing 40 minutes of exercise benefiting more than 

those who performed only 7 minutes. However, this was not the case; total workload performed 

(Kcal/session) was not associated with AE-induced changes in any TMS variable tested. 

Importantly, higher fitness tested at baseline, was associated with greater CSE gains. Specifically, 

higher cardiorespiratory fitness (mL.min-1Kg-1
LM) was associated with increases in CSE (measured 

with reductions of RMT) in the hemisphere corresponding to the stronger hand. Coco, M. et al., 

(2010) showed that reduction of RMT after a single session of exhaustive AE was associated with 
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increased levels of lactate.259 However, Coco, M. et al., (2010) investigated highly fit, lean, and 

young individuals; fitness profiles opposite that of our participants. Whether the fitness-dependent 

changes in CSE could be related to elevated lactate levels in people with MS is worthy of future 

research. Furthermore, we found that lower body fat % was also associated with greater CSP 

reductions (less intracortical inhibition) in the hemisphere corresponding to the stronger side and 

elevated MEP amplitudes (higher CSE) in the hemisphere corresponding to the weaker hand. 

Recent evidence has demonstrated the link between disability, poor cardiorespiratory fitness, and 

higher body fat percentage in MS patients.228 We suggest that lower cardiorespiratory fitness and 

higher body fat percentage may also diminish AE-induced neuroplasticity-like mechanisms in 

people with MS. 

4.5.4 Effects of AE on reducing CSE asymmetry 

CSE asymmetry is a hallmark of stroke, whereby the lesioned brain has a much lower 

excitability,27 with its magnitude related to lesion size, predicting worse symptoms and 

disability.167 For that reason, reducing CSE asymmetry with advanced brain stimulation techniques 

has been a desirable goal during rehabilitation interventions in stroke.27, 169 In MS, we have 

recently demonstrated that CSE asymmetry also predicts disease and symptom progression, with 

CSE asymmetry of more advanced MS stages (EDSS 3-6) comparable to the ones reported in 

stroke.48 In accordance with our previous results, we noted in this group of people with progressive 

MS, lower excitability (higher AMT) and inferior quality of excitatory neuronal activity (lower 

excitatory REC gain (slope) and accuracy (R2)) in the weaker compared to the stronger hand. It is 

noteworthy that only the TMS variables measuring excitation (AMT, excitatory REC) and not 

inhibition (CSP, inhibitory REC), were different between hemispheres. This asymmetry of 

excitation could be mediated by excitotoxicity due to excessive glutamatergic activity typical of 
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early MS stages.2, 48 After AE, we noted that differences between excitatory REC (slope and R2) 

were dissolved, with slight increase of the excitatory REC parameters in the weaker side. 

Therefore, it is possible that AE could have transiently restored excitatory glutamatergic activity 

in the hemisphere corresponding to the weaker side in this sample of people with progressive MS. 

4.5.5 Limitations 

This pilot study was designed to explore, in a preliminary way, the effects of acute AE on 

brain excitability in a group of people with progressive MS who use bilateral ambulatory assistive 

devices to walk. There are some important limitations to the study, most important of which is the 

small sample size. Because severity of MS could have a major impact on acute AE effects, we 

attempted to recruit a homogenous group of people with MS with EDSS scores between 6.0 and 

6.5. We did not complete a power analysis, so it is not surprising that some of our regression 

analyses were underpowered. Moreover, because we performed multiple comparisons (sensitivity 

analysis using t-tests), the unadjusted (i.e. Bonferroni corrected) significances found in this study 

should be interpreted with care. Despite a small sample size, our findings may serve to develop 

hypotheses and methods for future longitudinal and interventional studies investigating 

associations between fitness and neuroplasticity in progressive MS. 

4.6 Conclusion 

MS patients participating in this study were diagnosed with the progressive form of MS 

and required ambulatory assistive devices (e.g. canes, walker) to walk likely due to severely 

damaged corticospinal tract. In addition, their fitness scores indicated that they were also severely 

deconditioned and only 4 of 10 participants could complete the intended 40 minutes of body-

weight supported treadmill AE. Despite these physical challenges, neuroplasticity-related CSE 
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improvements were noted after a single bout of AE. Specifically, a bout of AE resulted in enhanced 

excitation (increased MEP amplitude) and reduced intracortical inhibition (shortened CSP) in the 

hemisphere associated with the stronger hand. The hemisphere contralateral to the weaker hand 

was resistant to exercise-induced CSE changes, had lower baseline CSE (higher AMT) and poorer 

neuronal recruitment (lower excitatory REC), likely suggesting less neuroplastic potential. 

Nonetheless, typical CSE asymmetry expected in this group of people with progressive MS was 

dissolved after AE, which could indicate some potential for neuroplasticity in the hemisphere 

corresponding to the weaker side. The benefits of AE-induced improvements in CSE was not 

related to intensity of the workload but rather baseline cardiorespiratory fitness and percentage of 

body fat; with fitter participants with less body fat receiving greater benefits. The results of this 

preliminary study support that reducing levels of sedentarism, prescription of AE, and decreasing 

body fat, may have direct benefits on the brain; improving brain plasticity in people with 

progressive MS-related walking disability. 
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ABSTRACT 

Background: Inflammatory lesions and neurodegeneration leads to motor, cognitive and sensory 

impairments in people with multiple sclerosis (MS).  Accumulation of disability is at least partially 

due to diminished capacity for neuroplasticity within the central nervous system. Aerobic exercise 

is a potentially important intervention to enhance neuroplasticity since it causes upregulation of 

neurotrophins and enhances corticospinal excitability which can be probed using single-pulse 

Transcranial Magnetic Stimulation (TMS). Whether people with progressive MS who have 

accumulated substantial disability could benefit from walking rehabilitative training to enhance 

neuroplasticity is not known. 

Objective: We aimed to determine whether 10 weeks of task-specific walking training would 

affect corticospinal excitability over time (PRE, POST and 3-month Follow-Up) among people 

with progressive MS who required walking aids.  

Results: Eight people with progressive MS (7 females; 29-74 years-old) with an Expanded 

Disability Status Scale of 6-6.5 underwent harness-supported treadmill walking training in a 

temperature controlled room at 16°C (10 weeks; 3 times/week; 40 minutes at 40-65% heart rate 

reserve). After training, there was significantly higher corticospinal excitability in both brain 

hemispheres; reductions in TMS active motor thresholds and increases in motor evoked potential 

amplitudes and slope of the recruitment curve (REC). Decreased intracortical inhibition (shorter 

cortical silent period) after training was noted in the hemisphere corresponding to the stronger 

hand only. These effects were not sustained at follow-up. There was a significant relationship 

between increases in corticospinal excitability (REC, area under the curve) in the hemisphere 

corresponding to the stronger hand and lessening of both intensity and impact of fatigue on 

activities of daily living (Fatigue Severity Scale, and Modified Fatigue Impact Scale, respectively).  
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Conclusion: Our pilot results support that vigorous treadmill training can potentially improve 

neuroplastic potential and mitigate symptoms of the disease even among people who have 

accumulated substantial disability due to MS. 

Keywords: Transcranial Magnetic Stimulation (TMS), Neuroplasticity, Rehabilitation, Exercise, 

Progressive Multiple Sclerosis, Corticospinal Excitability, Fatigue. 
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5.1 Introduction 

Multiple sclerosis (MS) is a chronic neurodegenerative disease that causes structural (i.e. brain 

lesions and atrophy) and functional (i.e. neuronal connectivity and conduction alterations) central 

nervous system dysfunction261. Most people with MS are initially diagnosed with the relapsing-

remitting form of the disease (RRMS). RRMS is considered to be the inflammatory phase of MS 

with unpredictable development of central nervous system lesions that result in physical, sensory, 

and/or cognitive symptoms (i.e. relapses)2. About 80% of people diagnosed with RRMS will 

eventually develop secondary progressive MS (SPMS), that is considered to be less inflammatory 

and more neurodegenerative2, 3. As well, approximately ten percent of people with MS present 

with primary progressive MS (PPMS), in which there is a steady disease progression from initial 

diagnosis of MS2, 3. Several lines of evidence suggest that accumulation of disability in progressive 

MS is related to diminished capacity for neuroplasticity2, 3, 262. Because most disease modifying 

drugs act by reducing neuroinflammation, these same treatments do not seem to be as effective 

during progressive stages263. Treatments that provide neuroprotection and enhancement of 

neuroplasticity to recover function and halt MS progression are highly warranted14, 52, 125, 264, 265. 

Animal and human research has shown that exercise enhances neuroplasticity by upregulating 

neurotrophins that facilitate cerebral gliogenesis, neurogenesis, synaptogenesis, and angiogenesis 

(for reviews see 60, 266). In some neurological conditions, such as Alzheimer’s disease267, stroke60, 

217 and spinal cord injury268, exercise has also been shown to promote neuroplasticity. In MS, 

studies have shown that engagement in physical exercise training improves aerobic capacity42, 43, 

physical function (e.g. walking capacity)107, and mitigates physical symptoms (e.g. reduce fatigue, 

muscle weakness)43, 269, 270. Recent studies support that a high degree of task practice (e.g. 
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constraint-induced movement therapy) can enhance neuroplasticity in people with progressive 

MS271, suggesting that there is continued capacity for plasticity even in later stages of the disease. 

In humans, rehabilitation-induced neuroplasticity is typically measured using functional brain 

imaging272, 273 and transcranial magnetic stimulation (TMS)20. TMS generates a brief magnetic 

field through an insulated coil placed on the participant’s scalp that induces neuronal activation of 

the primary motor cortex resulting in a motor evoked potential (MEP) travelling through the 

corticospinal tract20. Studies using TMS in healthy individuals have shown that exercise training 

promotes corticospinal excitability changes that are related to enhanced neuroplasticity32, 33, 38, 236. 

Typical TMS biomarkers that demonstrate exercise training-induced changes in corticospinal 

excitability include lower motor thresholds35 and higher input-to-output MEP amplitudes 

responses38; biomarkers mediated by increased glutamatergic (excitatory) neurotransmission274. 

As well, in healthy individuals, exercise training has shown to reduce cortical silent period (CSP) 

duration33, 34, an interruption of the electromyographic activity of a sustained muscle contraction 

after TMS-elicited MEP, suggestive of less activity of the inhibitory neurotransmitter gamma-

aminobutyric acid (GABA)20, 29. 

Excessive GABAergic-mediated intracortical inhibition and lower corticospinal excitability 

measured with longer CSP and higher motor thresholds and lower input-to-output MEP 

amplitudes, respectively, are biomarkers of neurological impairment (e.g. stroke and MS)30, 48, 87, 

88, 116, 118, 125 and reduced neuroplastic potential16, 31. In MS, demyelination causes delay of the onset 

latency of the TMS-elicited MEP51. Since MEP latency shortening is associated with recovery of 

physical function after stroke28 and is faster in physically active individuals35, in addition to 

excitatory and inhibitory TMS variables, MEP latency could also be altered by exercise221. 

Although evidence from cross-sectional studies suggest a possible link between greater physical 
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fitness and enhanced neuroplasticity in MS41, no study has investigated the long-term effects of 

exercise training on neuroplasticity-like mechanisms using TMS, particularly in progressive stages 

of MS. 

The primary aim of the present study was to investigate whether an rehabilitative walking training 

program induced corticospinal excitability changes related to enhanced neuroplasticity in people 

with progressive MS with severe MS-related walking disabilities. Since, excessive fatigue is 

among the most disabling symptoms in progressive MS107 and previous research has demonstrated 

the link between corticospinal excitability, fatigue41, 120, 275 and fitness levels41, 49, our secondary 

aim was to investigate whether exercise training-induced corticospinal excitability changes were 

associated with changes in physical fitness (cardiorespiratory fitness, body fat)98 and subjective 

levels of fatigue134, 276. 

5.2 Materials and Methods 

5.2.1 Experimental design 

This study was part of a feasibility and proof-of-principle interventional study aiming at restoring 

walking function among patients with MS-related walking disability54. The data on feasibility and 

restoration of walking has been reported elsewhere54. This interventional study (10-week, 3x/week 

exercise training) with TMS assessment Pre, Post, and 3-month Follow-up was approved by the 

local health ethics board prior to initiation (Health Research Ethics Board, #2019.0225, 

NCT04066972). 

5.2.2 Participants 

Ten participants were recruited via referral from neurologists and physiotherapists in the local MS 

clinic, as well as from an outpatient rehabilitation service discharge database. All participants 
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signed informed consent prior to study inclusion. Recruitment and screening details have been 

described elsewhere54. Participants; 1) were diagnosed with progressive MS (SPMS or PPMS), 2) 

reported no relapses three months prior to inclusion, 3) presented with walking impairments (e.g. 

use of bilateral or unilateral gait aids), 4) had disability level  6.0 on the Expanded Disease Status 

Scale (EDSS), 3) were capable of participating in physical exercise (as per Physical Activity 

Readiness Questionnaire (PAR-Q) screening form277), and 4) were eligible to undergo TMS278 and 

Dual Energy X-ray Absorptiometry (DEXA)279 as per screening procedures. Written informed 

consent was obtained from participants for the publication of any potentially identifiable images 

or data included in this article. 

Two participants dropped out during the intervention54, reporting not being able to commit 

to the proposed frequency of exercise sessions (3x/week). Eight participants (7 females) completed 

the intended exercise training and pre-post data was collected. One participant (number 2) could 

not be reached during follow-up assessment. Participant demographics are presented in table 5.1.



115 
 

Table 5. 1 Participants’ Demographics, Body Composition, and Fitness 

Table 5.1 Participants’ Demographics, Body Composition, and Fitness 

ID 
MS 

Type 

MS Severity 

(EDSS 0-10) 

Walking 

Aid 

Age 

Range 

(years) 

DD 

(years) 

Lean mass (Kg) VO2peak (mL.min-1kg-1
LM) Body Fat % 

Pre Post 3-mo Pre Post 3-mo Pre Post 3-mo 

1 PPMS 6.5 Walker 55-60 10 57.22 58.47 59.88 20.05 21.71 19.48 45.6 46.6 46.5 

2 SPMS 6.5 Walker 55-60 33 43.26 44.64 - 22.61 20.75 - 44.8 44.5 - 

3 PPMS 6.5 Walker 40-45 19 54.99 57.06 57.63 24.79 34.28 29.74 35.1 35.4 34.6 

4 SPMS 6.0 Cane 45-50 28 29.47 31.18 33.56 41.84 36.98 36.50 39.1 39.6 36.9 

5 SPMS 6.5 Cane 35-40 19 54.31 56.05 54.52 33.31 37.87 41.17 39.1 40.0 37.8 

6 SPMS 6.0 Cane 70-75 18 32.87 32.32 33.12 31.61 37.69 41.28 34.4 37.4 33.1 

7 PPMS 6.5 Walker 70-75 10 - - - 27.31# 21.69# 18.09# - - - 

8 SPMS 6.0 Cane 25-30 2 41.74 43.56 42.62 48.28 48.66 48.13 44.7 40.8 39.9 

Note: DD, disease duration; EDSS, Expanded Disability Status Scale; MS, Multiple Sclerosis; PPMS, primary progressive MS; SPMS, secondary progressive MS; 

# participant 7 declined to undergo Dual Energy X-ray Absorptiometry, and the maximal (peak) volume of oxygen uptake (VO2peak (mL.min-1Kg-1
Lean Mass(LM)) was 

calculated by diving this participant’s VO2peak (mL.min-1) by the LM (kg) of total sample mean. 3-mo, 3-month follow-up. 
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5.2.3 Exercise intervention 

Participants underwent a 10-week (3x/week) of vigorous treadmill walking exercise 

training in a temperature-controlled room (16ºC)54. The treadmill was equipped with a harness to 

prevent falls and to support ≤ 10% of participants’ body weight. The dosage target of the exercise 

was 40 minutes (5 minutes warm-up and cool down) at a moderate-high intensity (40-65% heart 

rate reserve) which was adjusted throughout the training by increasing the speed and incline of the 

treadmill and/or reducing body weight support. Manual assistance to advance legs and resting 

breaks of ≤ 2 minutes were provided whenever necessary54. 

5.2.4 Outcome measures 

All outcome measures were assessed before the intervention (n = 8), after the 10-week 

period intervention (n = 8) and at 3-month follow-up after the exercise intervention had ended (n 

= 7). 

5.2.4.1 Cardiorespiratory fitness 

Levels of cardiorespiratory fitness were assessed as the peak rate of oxygen uptake (VO2peak 

expressed in mL O2.min) during a graded maximal exercise test performed on a recumbent stepper 

(NuStep, Ann Arbor, MI, USA) as described elsewhere41, 54, 217, 221, 280. Briefly, participants 

exercised at a cadence of 80 strides per minute while the equipment resistance level (1-10, 

beginning at level 3) was increased by one level every 2 minutes. If exhaustion was not reached at 

resistance level 10 (maximal NuStep resistance) the cadence was increased by 10 strides per 

minute every 2 minutes. Heart rate was continuously monitored during the test (H10, Polar Electro 

Inc., Kempele, Finland). The maximal and resting heart rate were used to calculate the proposed 

intensities of the exercise sessions (e.g. intensity target = 60% × (Heart RateMax – Heart RateRest) 
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+ Heart RateRest)). Fitness levels were calculated as the absolute VO2peak (mL O2.min) relative to 

the total lean body mass (kg) (VO2peak = mL O2.min-1Kg-1
lean mass). The latter has been shown to be 

a more accurate measure of cardiorespiratory fitness in populations with a high body fat 

percentage281. 

5.2.4.2 Body composition 

Participants’ total body weight (kg), body fat percentage (%), and lean body mass (kg) 

were assessed using whole body Dual Energy X-ray Absorptiometry (Discovery-A densitometer, 

Hologic Inc., Bedford, MA, USA). Trained technicians calibrated the system prior to each 

assessment and built-in software was used to analyze the data (v.12.6.1:3, Hologic Inc., Bedford, 

MA, USA). 

5.2.4.3 Total amount of workload performed during the exercise sessions 

Total amount of workload performed was estimated using standardized equations98. First, 

the VO2 (mL O2.min-1.Kg-1) uptake during the exercise was calculated using the equation VO2 (mL 

O2.min-1.Kg-1) = [(Resting component (3.5mL O2.min-1.Kg-1) + Horizontal component (speed 

(m/min) x 0.1mL O2.Kg-1.meter-1) + Vertical Component (1.8mL O2.Kg-1.meter-1 x speed (m.min-

1) x inclineFractional Grade)]; adjusted for treadmill changes in speed and incline throughout the 

exercise were taken into consideration. The averaged VO2 (ml O2.min-1.Kg-1) was transformed into 

metabolic equivalents. The kilocalorie (Kcal)/minute was calculated using the equation Kcal/min 

= (Metabolic equivalents x 3.5 x total body weight in kg) / 200. Finally, the total amount of 

workload performed was calculated by multiplying the Kcal/minute by the total time in minutes 

the participants exercised. This data was calculated from the first and the last exercise session 
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participants performed during the exercise training and from the exercise session performed during 

the follow-up visit. 

5.2.4.4 Levels of fatigue 

The intensity of fatigue perceived by the patients was assessed by the Fatigue Severity 

Scale (FSS)276, 282, whereas the impact of fatigue on activities of daily living was measured by the 

Modified Fatigue Impact Scale (MFIS)134, 283, 284 (for more details see54). 

5.2.4.4 Transcranial magnetic stimulation 

Monophasic magnetic pulses were delivered to the right and left brain hemispheres using 

a BiStim 2002 stimulator (Magstim Co. Whitland, UK). With participants seated, a coil (70mm 

figure-of-eight coil; Magstim Co. Whitland, UK) was positioned tangentially to the scalp with the 

handle pointing backwards and laterally at an 45 angle from the midline perpendicular to the 

central sulcus to deliver posterior-anterior directed pulses in the area of the primary motor 

cortex233. Electromyographic (EMG) activity and MEPs were collected by surface electrodes 

(Kendall 200 Coviden, Mansfield, MA, USA) placed on the contralateral first dorsal interosseous 

hand muscle. Assessing corticospinal excitability on a non-exercised muscle (i.e. FDI rather than 

leg muscles) was considered important in order to more accurately investigate widespread effects 

on central nervous system mechanisms involved in brain plasticity258, 285. A neuronavigation 

system (Brainsight, Rogue Research Inc, Montreal, QC, Canada) was used to ensure consistency 

of the coil position (i.e. angle and orientation) on participants’ scalp during the TMS assessment. 

The Montreal Neurological Institute brain template was rendered in the BrainSight software and 

used as a 3-D stereotaxic template92. The same system was used to collect EMG muscle activity 

and record MEPs with its built-in EMG system. The system collects at a sample rate of 3kHz and 
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uses a 2500 V/V amplification and a gain of 600 V/V with a bandwidth of 16-550 Hz. Stronger 

and weaker hands were determined during baseline assessment (Pre) by EMG recorded in the FDI 

muscle while participants performed a pinch grip maximal voluntary contraction (MVC) (mean 

EMG activity during MVC (stronger vs weaker hand (mean±SD)): 106.07 ± 79.3µV vs 51.49 ± 

45.12µV; Z = -2.34, p = 0.018). In order to be more precise when differentiating between stronger 

and weaker sides’ brain-to-muscle connectivity (potentially less and more affected sides, 

respectively), EMG signal was prioritized over force production, since EMG represents the 

electrical activity from motor units firing action potentials generated by the central nervous system. 

5.2.4.4.1 Motor thresholds and MEP latency 

Suprathreshold TMS stimulations were delivered at different locations around the hand 

primary motor area. The location with the highest average peak-to-peak MEP amplitude was 

chosen as the hotspot. The hotspot was re-assessed at Pre, Post, and Follow-up, since it can show 

variability235 and changes following interventions (e.g. exercise234). The relative frequency method 

was used to determine resting motor thresholds (RMT) and active motor thresholds (AMT)20, 286, 

and were determined as the minimum TMS intensity (maximal stimulator output percentage, 

MSO%) required to elicit peak-to-peak MEP amplitudes of  50 V at rest (RMT) and  200 V 

with participant performing 10% of pinch grip MVC (AMT) in at least 5 out of 10 trials. RMT and 

AMT are reported as MSO% (0-100). MEP latencies were determined from the valid MEPs 

collected during the RMT experiment and were calculated as the time (in milliseconds (ms)) 

between the TMS artifact and the MEP onset; the timepoint where the MEP amplitude surpassed 

±2 standard deviation from the mean EMG background activity (100 ms prior to the TMS 

stimulation). 
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5.2.4.4.2 Excitatory and Inhibitory recruitment curves 

To create recruitment curves, TMS stimulation intensities of 105%-155% of AMT 

(increments of 10%) were employed in randomized order with participants performing a pinch 

grip at 10% of MVC49. Three to six stimulations38, 193, 287 were delivered at each intensity and the 

averaged peak-to-peak MEP amplitude (µV) and CSP time (ms) were recorded. CSP was defined 

as the time between the MEP onset to the return of EMG activity ( ±2 standard deviation from 

background EMG activity)20. MEP amplitudes were normalized to the largest peak-to-peak 

amplitude236 collected during baseline assessment (i.e. first TMS session; prior to beginning of the 

exercise training). A linear relationship between the normalized MEP amplitudes against the used 

TMS intensities (105-155% of AMT) determined the excitatory recruitment gain and accuracy 

(slope and R2 of the linear relationship, respectively) of the corticospinal tract in recruiting 

neurons87, 236, both previously reported potential biomarkers of corticospinal tract integrity237. 

Similarly, the inhibitory recruitment curve slope and R2 was calculated by plotting the CSP time 

against the TMS intensities. As an estimate of overall corticospinal excitation (MEP amplitudes) 

and inhibition (CSP time), the area under the curve was calculated using the trapezoid rule ΔX x 

(Y1+Y2)/2, with X being the TMS intensity used (105-155% of AMT) and Y being the normalized 

MEP amplitudes (% of largest baseline MEP) or the recorded CSP time. 

5.2.5 Statistical Analysis 

A priori, we planned to use a one-way repeated measures analysis of variance and Friedman 

test when testing normal and non-normally distributed data, respectively. Because tests of 

normality (e.g. Shapiro Wilk) typically require samples sizes of n ≥10 to generate reliable 

results288, the more robust non-parametric alternative (i.e. Friedman test)289 was preferred245 to 

determine changes in TMS variables (RMT, AMT, and excitatory and inhibitory recruitment 
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curves (MEP amplitudes105-155% AMT, CSP time105-155% AMT, slope, R2, and area under the curve)), 

fitness (mL.min-1Kg-1
LM, body fat %), and workload performed (Kcal/session), at the different time 

points (Pre, Post, and follow-up). Analysis between time points (Pre vs Post vs Follow-up) is 

reported as χ2
(degrees of freedom) = test statistic, p-value. When statistically significant (p < 0.05), 

Bonferroni corrected pairwise comparisons were performed to identify the difference across time 

points, and the adjusted p-value for multiple comparisons is reported. All data in the text is 

presented as median (Mdn). 

Relationships between changes in cardiorespiratory fitness (mL.min-1Kg-1
lean mass), lean mass 

(Kg), body fat (%), levels of fatigue (FSS, MFIS), workload performed (Kcal/session) and TMS changes 

were investigated with Spearman’s coefficient (rho) at the unadjusted significance level of p < 

0.05. Change scores were calculated as % changes = post – pre / pre. 

Difference between TMS values of the stronger and weaker hand were investigated 

separately for each time point (Pre, Post, Follow-up) with Wilcoxon non-parametric paired t-tests. 

5.3 Results 

5.3.1 Exercise training increased corticospinal excitability in both hemispheres 

Friedman’s test showed a significant difference for AMT between time points (Pre, Post, 

Follow-up) in both stronger and weaker hands (χ2
(2) ≥ 8.27, p ≤ 0.016). Pairwise analysis revealed 

higher corticospinal excitability (i.e. lower AMT) in participants post compared to pre intervention 

in both stronger (MSO%; Mdn (Pre vs Post) = 33 vs 27, p = 0.033) and weaker hands (MSO%; 

Mdn (Pre vs Post) = 41 vs 37, p = 0.013) which returned to baseline at follow-up (Figure 5.1A 

and B). Higher variability was found for RMT; no change, increases, and decreases of RMT were 
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noted across participants in both hemispheres (stronger and weaker hands), and no statistically 

significant changes were observed in either hemisphere (Figure 5.1C and D).
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(A and B) Increased corticospinal excitability (CSE) was noted during active motor threshold 

(AMT) assessment, in both brain hemispheres (i.e. corresponding to the weaker and stronger 

hands) as lower values of the maximal stimulator output (MSO%) were needed to elicit motor 

evoked potentials (MEPs) in the contralateral first dorsal interosseous muscle (200µV amplitude 

MEPs collected during 10% of pincer grip maximal voluntary contraction). AMT returned to 

baseline during the 3-month follow up period assessment (3-mo). (C and D) There was no 

difference in MSO% between time points (Pre, Post, 3-month follow-up) for resting motor 

threshold (RMT) (i.e. MEPs collected during resting) measured in the hemisphere corresponding 

to the weaker hand. Because the absence of MEPs is an outcome that represents too low CSE (i.e. 

100% of MSO not eliciting MEPs)27, participants in this condition are represented as open circles. 

Pre intervention, too low CSE (i.e. no MEPs) was noted in Participant 2’s stronger and weaker 

hands during RMT assessment. This participant’s weaker hand demonstrated some recovery of 

CSE post intervention as RMT’s MEPs could be elicited at 92% of MSO. Lowered CSE (no MEPs) 

at 3-month follow-up was noted in participant 8’s weaker hand as AMT and RMT could not be 

recorded. 

Figure 5. 1 Effects of 10-week treadmill walking exercise training on active and resting 

motor thresholds 



124 
 

Corticospinal gain (excitatory recruitment curve slope) was statistically different between 

time points in both stronger and weaker hands (χ2
(2) ≥ 8.40, p ≤ 0.015). Pairwise analysis revealed 

increased capacity to recruit excitatory neurons with increased TMS stimulation intensities (i.e. 

higher slope) post compared to pre intervention (Mdn = (Pre vs Post) = stronger: 1.33 vs 2.20, p = 

0.013; weaker: 0.67 vs 2.08, p = 0.028), which returned to baseline at follow-up (Figure 5.2). 

Recruitment curve accuracy (R2) did not change in neither stronger or weaker hand  (χ2
(2) ≤ 4.00), 

p ≥ 0.135).
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After 10-weeks of exercise training, availability to recruit corticospinal tract neurons with 

increased transcranial magnetic stimulation intensities was increased (i.e. higher slope) in both 

brain hemispheres corresponding to the stronger and weaker hands and returned to baseline at 3-

month follow-up (3-mo). Though, two participants (number 6 and 8) continued to increase 

corticospinal gain in the hemisphere corresponding to the weaker hand during follow up. The 

recruitment curve as collected using transcranial magnetic stimulation intensities of 105-155% of 

the active motor threshold (AMT) (increments of 10%), and the slope was determined from a linear 

regression between the normalized MEP amplitudes (% of the largest baseline motor evoked 

potential (MEP)) against the TMS intensities performed (105-155% of AMT).

Figure 5. 2 Effects of 10-week treadmill walking exercise training on corticospinal gain. 



126 
 

For MEP amplitudes, statistical significance between time points were noted at the 

intensities of 135% (χ2
(2) = 7.00, p = 0.030) and 145% (χ2

(2) = 9.33, p = 0.009) of AMT in the 

weaker hand, and at 145% of AMT in the stronger hand (χ2
(2) = 6.00, p = 0.050). In all cases, 

pairwise analysis revealed increased corticospinal excitability (higher normalized MEP 

amplitudes) post compared to pre intervention with return to baseline at follow-up (% of largest 

baseline MEP; Mdn (Pre vs Post): weaker hand: 135% of AMT: 85.49 vs 111.39, p = 0.028; 145% 

of AMT: 85.78 vs 151.66, p = 0.012; stronger hand: 145% of AMT: 88.73 vs 127.05, p = 0.048; 

Figure 5.3).
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(A) Higher normalized MEP amplitudes (% of largest baseline MEP) demonstrate higher 

corticospinal excitability after the exercise training (ET) with return to baseline at 3-month follow-

up (3-mo) in the hemisphere corresponding to the stronger hand at a transcranial magnetic 

stimulation (TMS) intensity of 145% of the active motor threshold (AMT) and (B) in the 

hemisphere corresponding to the weaker hand at the TMS intensities of 135% and 145% of the 

AMT. 

Figure 5. 3 Effects of 10-week treadmill walking exercise training on motor evoked potential 

(MEP) amplitudes 
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5.3.2 Exercise training reduced intracortical inhibition in the hemisphere corresponding to 

the stronger hand 

In the stronger hand, differences between time points time were noted for CSP investigated 

in all TMS intensities (105-155% of AMT; χ2
(2) ≥ 6.00, p < 0.050). Pairwise analysis revealed 

reductions of CSP time post compared to pre intervention across all intensities used (p ≤ 0.048), 

which returned to baseline level at follow-up (Figure 5.4A). In the hemisphere corresponding to 

the weaker hand, there was a statistical significance difference for CSP time at the different time 

points at lower TMS intensities (105-125% of AMT (χ2
(2) = 6.33, p = 0.042)), however statistical 

significance was not reached during pairwise analysis (p ≥ 0.063; Figure 5.4B).
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(A) In the hemisphere corresponding to the stronger hand, shorter CSP time (ms) at all transcranial 

magnetic stimulation intensities used (105-155% of active motor threshold AMT)) suggested less 

GABAergic-mediated intracortical inhibition post exercise training (ET), with return to baseline 

at 3-month follow-up (3-mo). (B) In the hemisphere corresponding to the weaker hand, although 

statistical significance was reached for the TMS intensities of 105, 115, and 125% of AMT 

between the different time points (Friedman’s test: Pre vs Post vs 3-mo; χ2
(2) = 6.33, p = 0.042), 

there was no statistical significance during pairwise analysis. 

Figure 5. 4 Effects of 10-week treadmill walking exercise training on cortical silent period 

(CSP) time 
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5.3.3 Changes in body composition, fitness, and exercise performance 

Lean body mass of the participants increased from pre to post intervention and from post 

intervention to follow-up, however, only the change from pre to follow-up was statistically 

significant (χ2
(2) = 7.00, p = 0.030; Mdn, lean mass (Kg) (Pre vs Follow-up): 41.74 vs 48.57, p = 

0.028) (Figure 5.5A). Body fat also decreased during follow-up, and a statistical significance was 

noted from post to follow-up (χ2
(2) = 8.33, p = 0.016; Mdn, body fat % (Post vs Follow-up): 40.00 

vs 37.35, p = 0.012; Figure 5.5B). 

Although 4 out of 8 participants improved their cardiorespiratory fitness (mL.min-1Kg-1
lean 

mass), no overall statistical change was reached (p ≥ 0.368; Figure 5.5D). However, an increased 

capacity to perform exercise were noted as participants were able to perform a higher exercise 

workload (Kcal/session) in the last compared to the first exercise session (χ2
(2) = 7.14, p = 0.028; 

Mdn, Kcal/session (Pre vs Post) = 121.39 vs 70.24, p = 0.023), and this capacity was maintained 

during follow-up (Figure 5.5C).
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(A) Amount of lean body mass (Kg) measured using Dual Energy X-ray Absorptiometry (DEXA) was higher at 3-month follow-up (3-

mo) compared to pre exercise training. (B) body fat percentage (%) measured using DEXA was lower at 3-month follow-up compared 

to post exercise training. (C) participants were able to perform a higher exercise workload (Kcal/session) at their last exercise session 

compared to the first. Total amount of workload performed was estimated using standardized equations98.(D) No change was noted for 

cardiorespiratory fitness measured as peak rate of oxygen uptake during a graded maximal exercise test (VO2peak = mL.min-1Kg-1
of lean 

mass (LM)). 

Figure 5. 5 Effects of 10-week treadmill walking exercise training on body composition and physical fitness 
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5.3.4 Overall corticospinal excitation increased post intervention in the stronger hand and 

was associated with reductions in fatigue 

In the stronger hand, overall corticospinal excitation (AUC, normalized MEP amplitudes) 

differed between time points (χ2
(2) = 11.14, p = 0.004). Pairwise analysis revealed increased overall 

corticospinal excitation (higher AUC) post compared to pre intervention (Mdn, AUC105-155% of AMT 

(Pre vs Post) = 3237 vs 3947, p ≤ 0.016) with returned to baseline level at follow-up (Figure 5.6A). 

Relationship analysis demonstrated that greater increases in overall corticospinal excitation in the 

stronger hand were associated with greater reduction in fatigue severity levels measured with the 

FSS (rho = 0.762, p = 0.028; Figure 5.6B) and fatigue impact measured with the MFIS (rho = 

0.962, p = 0.001; Figure 5.6C).
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Figure 5. 6 Ten weeks of treadmill walking exercise training induced increased overall corticospinal excitation that was 

associated with reductions in subjective fatigue 

(A) In the hemisphere corresponding to the stronger hand, higher overall corticospinal excitation was noted post exercise training, with 

complete return to baseline during 3-month follow-up (3-mo). Overall excitation was calculated as the area under the curve (AUC) using 

the trapezoid rule ΔX x (Y1+Y2)/2, with X being the transcranial magnetic intensities used (105-155% of AMT; increments of 10%) and 

Y being the normalized MEP amplitudes (% of largest baseline MEP). (B) Increases in overall excitation (AUC) in the hemisphere 

corresponding to the stronger hand were associated to reductions in subjective levels of fatigue measured using the fatigue severity scale 

(FSS) and the modified impact scale (MFIS).  
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Nerve conduction speed (MEP latency) did not change in either side (χ2
(2) ≤ 1.14, p ≥ 0.565; 

Mdn, milliseconds (Pre vs Post vs Follow-up): stronger hand: 24.17 vs 24.51 vs 22.12; weaker 

hand: 26.26 vs 25.94 vs 25.97). 

All the TMS values (median and range), differences between stronger and weaker hands 

across time points, and reasons for missing values across time points are reported on Table 5.2.
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Table 5.2 Transcranial Magnetic Stimulation Values Between Stronger and Weaker Sides  

Median (range) Pre Training Post Training 3-month Follow up 

TMS Variable Stronger Weaker Sig. Stronger Weaker Sig. Stronger Weaker Sig. 

RMT (MSO%) 40 (28-68)a 45 (30-73)a 0.618 37 (22-76) 48 (26-92) 0.205 43 (24-56)d 40 (29-81)f 0.138 

AMT (MSO%) 33 (20-64) 42 (27-100) 0.058 27 (17-45) 37 (18.76) 0.042* 30 (20-60)e 31 (21-64)f 0.307 

MEP105% AMT 

231.13 

(186.67-

331.17) 

415.5 

(181.5-

464.25)b 

0.046* 

477.18 

(243.50-

1097.17) 

222.50 

(124.17-

1072.20) 

0.012 

374.60 

(91.50-

634.40)e 

295.88 

(165.33-

358.67)f 

0.116 

MEP115% AMT 

310.00 

(96.75-

1398.00) 

593.05 

(174.00-

1130.00)b 

0.463 

621.21 

(319.00-

1422.75) 

320.75 

(172.75-

1720.80) 

0.050 

430.75 

(146.25-

1360.50)e 

370.42 

(153.00-

860.33)f 

0.600 

MEP125% AMT 

344.92 

(199.50-

2640.00) 

818.47 

(161.00-

1365.77)b 

0.753 

740.50 

(209.47-

1592.00) 

510-13 

(226.60-

3030.33) 

0.779 

597.40 

(213.20-

2100.00)e 

772.17 

(228.67-

1453.75)f 

0.753 

MEP135% AMT 

672.58 

(248.00-

3546.00) 

550.23 

(206.00-

1483.67)b 

0.345 

1348.75 

(353.33-

1722.25) 

665.50 

(237.75-

3587.33)c 

0.237 

724.20 

(117.00-

4664.40)e 

994.67 

(232.67-

2159.67)f 

0.463 

MEP145% AMT 

568.00 

(334.50-

3727.80) 

564.63 

(248.00-

1812.67)b 

0.345 

1784.88 

(430.33-

4608.00) 

765.67 

(310.50-

3998.00)c 

0.128 

1065.67 

(272.00-

4634.00)e 

1165.08 

(260.33-

2814.80)f 

0.345 

MEP155% AMT 

1037.55 

(357.00-

3771.33) 

870.67 

(468.50-

1933.00)b 

0.686 

2047.85 

(373.75-

4031.20) 

892.50 

(232.33-

4268.00)c 

0.091 

1346.17 

(98.00-

4669.00)e 

1252.75 

(257.20-

2798.00)f 

0.249 

eREC Slope 

(Gain) 

14.80 (3.53-

77.38) 

3.14 (-1.83-

30.00)b 
0.075 

28.41 (3.22-

82.06) 

10.18 (1.70-

66.77)c 
0.091 

15.51 

(0.90-

49.28)e 

19.11 (2.24-

59.03)f 
0.686 

eREC R2 

(Accuracy) 

0.77 (0.51-

0.97) 

0.35 (0.00-

0.97)b 
0.173 

0.76 (.042-

0.96) 

0.82 (0.66-

0.99)c 
0.499 

0.78 (0.05-

0.87)e 

0.91 (0.82-

0.95)f 
0.043* 

eREC AUC 

(Overall 

Excitation) 

25852 

(13182-

126385) 

30498 

(7558-

65129)b 

0.463 

58744.17 

(16940.42-

108246.00) 

30189.83 

(11258.50-

150065.17)c 

0.176 

34050.50 

(8432.00-

154112.00)e 

40965.42 

(10859.33-

83448.00)f 

0.463 

CSP105% AMT 

89.56 

(34.65-

177.40) 

72.47 

(50.61-

249.76)b 

0.249 

33.35 

(16.17-

91.63) 

82.77 

(31.92-

279.04) 

0.012* 

49.66 

(32.80-

269.32)e 

75.26 

(37.17-

229.93)f 

0.249 

CSP115% AMT 

118.31 

(45.06-

181.49) 

102.27 

(84.86-

266.75)b 

0.345 

62.34 

(19.35-

219.98) 

112.16 

(40.96-

271.27) 

0.036* 

98.03 

(18.88-

279.07)e 

108.28 

(55.22-

229.40)f 

0.046* 
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CSP125% AMT 

138.49 

(58.90-

233.98) 

128.85 

(101.84-

255.44)b 

0.116 

71.41 

(44.46-

190.77) 

148.58 

(52.44-

307.23) 

0.017* 

124.91 

(45.60-

186.06)e 

169.13 

(87.86-

259.93)f 

0.046* 

CSP135% AMT 

151.60 

(67.87-

237.88) 

150.01 

(121.46-

272.03)b 

0.345 

83.57 

(40.51-

201.44) 

140.24 

(73.29-

292.23)c 

0.018* 

142.76 

(47.85-

304.16)e 

170.69 

(77.56-

225.96)f 

0.173 

CSP145% AMT 

157.33 

(82.26-

282.32) 

151.81 

(139.38-

325.93)b 

0.173 

137.96 

(67.22-

238.43) 

159.61 

(94.94-

347.51)c 

0.018* 

167.32 

(123.66-

316.11)e 

175.15 

(83.65-

252.69)f 

0.345 

CSP155% AMT 

174.75 

(101.28-

294.92) 

158.33 

(146.92-

187.09)b 

0.893 

143.82 

(66.13-

257.88) 

156.08 

(129.73-

233.08)c 

0.028* 

156.71 

(121.33-

179.94)e 

169.94 

(149.51-

293.69)f 

0.046* 

iREC Slope 

(Gain) 

1.88 (0.91-

3.68) 

1.84 (0.83-

2.19)b 
0.893 

2.04 (0.89-

2.56) 

1.97 (0.29-

2.88)c 
0.866 

2.17 (0.75-

2.73)e 

1.76 (1.03-

2.27)f 
0.345 

iREC R2 

(Accuracy) 

0.94 (0.75-

0.99) 

0.88 (0.84-

0.99)b 
0.893 

0.88 (0.67-

0.97) 

0.87 (0.01-

0.95)c 
0.237 

0.90 (0.73-

0.93)e 

0.70 (0.54-

0.79)f 
0.028* 

iREC AUC 

(Overall 

Inhibition) 

6975.5 

(3262.0-

11718.0) 

6531.5 

(5823.00-

12450.30)b 

0.249 

4369.13 

(2271.20-

10254.75) 

6666.25 

(3601.05-

13043.85)c 

0.018* 

5857.20 

(3397.85-

7825.15)e 

7482.20 

(3976.30-

12292.90)f 

0.116 

MEP Latency 

(ms) 

24.17 

(21.38-

43.15)a 

26.26 

(20.45-

35.52)a 

0.866 

24.51 

(19.48-

43.78) 

25.95 

(20.36-

38.02) 

1.000 

22.12 

(21.88-

29.69)e 

25.97 

(20.26-

28.20)f 

0.686 

Note:  AMT, active motor threshold; CSP, cortical silent period; eREC, excitatory recruitment curve; iREC, inhibitory recruitment curve; MEP, motor 

evoked potential; MSO%, maximal stimulator output percentage; RMT, resting motor threshold; eREC Slope = MEP Amplitude (µV) by TMS intensity105-

155% AMT; iREC Slope = CSP time (ms) by TMS intensity105-155% AMT;  Area under the curve (AUC) was calculated for both excitatory and inhibitory RECs 

using the trapezoid rule ΔX x (Y1+Y2)/2, whereby X were the MSO% used (i.e. X axis values, 105-155% of AMT) and Y are the recorded CSP lengths (ms) 

or the MEP amplitudes (µV). 

 

* Difference between stronger and weaker hand is statistically significant at α < 0.05. 
a, missing data from participant 2 due to too low corticospinal excitability (i.e. no resting MEPs)). 
b, missing data from participant 2 and 7 due to too high AMT (AMT = 100% and 82%, respectively), thus the required increases in MSO% based on AMT 

to assess the REC could not be performed) 
c, missing data from participant 7 due to high AMT (AMT = 76%), thus the required intensities of 135-155% of AMT could not be performed, and the slope, 

R2 and AUC could not be calculated). 
d, Time point with n = 5 (participant 2 could not be reached during follow-up assessment, missing data from participant 7 and 6 due to too low corticospinal 

excitability (i.e. no resting MEPs) and overheating of equipment (i.e. stimulator). 
e, missing data from participant 2 (could not be reached during follow-up). 
f, missing data from participant 2 (could not be reached during follow-up) and 7 (too low corticospinal excitability, (i.e. no resting or contracting MEPs 

(RMT and AMT)). 
Table 5. 2 Transcranial Magnetic Stimulation Values Between Stronger and Weaker Sides 



137 
 

5.4 Discussion 

We undertook this study to determine whether a 10-week, 3x/week walking exercise 

training program would alter corticospinal excitability among people with walking disability due 

to progressive MS. We report four main findings. First, exercise training resulted in short-term 

enhancement of corticospinal excitability in both brain hemispheres, which was lost when re-

assessed during follow-up three months later. Secondly, participants’ intracortical inhibition was 

decreased after training, however, this effect was also short-term (lost at follow-up) and was 

restricted to the hemisphere corresponding to the stronger hand. Thirdly, the training augmented 

lean mass and reduced body fat, and although there was no change in cardiorespiratory fitness 

measured as peak of oxygen consumption, capacity to perform exercise (workload) was increased 

after training and sustained at follow-up54. Finally, enhancement in corticospinal excitability in the 

hemisphere corresponding to the stronger hand was correlated with reductions in both severity and 

impact of fatigue on everyday life (FSS and MFIS, respectively). 

5.4.1 Physical exercise training to enhance corticospinal excitation in progressive MS 

Motor thresholds and MEP amplitudes are considered indicators of corticospinal 

excitation; mediated by glutamate and its activity on NMDA and AMPA receptors20, 274. In fact, 

higher glutamatergic receptor activity is associated with greater capacity for synaptic plasticity290, 

291 and disruption of this excitatory circuitry is responsible for diminished neuroplasticity and 

lower capacity to learn new tasks and recover from neurological damage (e.g. aging, stroke, MS) 

14, 27, 262. Therefore, there are important initiatives underway to develop new treatments (e.g. 

exercise, pharmacological, non-invasive brain stimulation) aimed at increasing glutamatergic-

mediated brain excitation in the injured brain to enhance neuroplasticity and recover function27, 
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215, 265, 275, 292, 293. For instance, studies using TMS have confirmed that, in comparison to those who 

are less physically active, individuals with higher fitness have lower motor thresholds and higher 

MEP amplitudes35 (i.e. higher corticospinal excitability) and demonstrate superior increases in 

MEP amplitudes (i.e. greater neuroplastic response) following paired associative stimulation to 

induce neuroplasticity38, 39. 

We have previously shown that acute exercise increases corticospinal excitation (i.e. higher 

MEP amplitude) and reduces intracortical inhibition (i.e. shorter CSP) among people with walking 

disability due to progressive MS49. Importantly, this effect was noted only in the stronger hand49, 

likely due to a more intact (i.e. less affected) contralateral corticospinal representation48. Here, we 

showed bilateral reductions in AMT, increases in MEP amplitudes, and superior motor neuronal 

recruitment (higher recruitment curve slope) after 10 weeks of aerobic exercise training. This 

suggests that the stimulus from regular exercise training may have led to the chronic enhancements 

in excitatory synaptic transmission noted in these participants. Moreover, even though the 

hemisphere corresponding to the weaker hand, which was likely more affected by MS48, 174, was 

unresponsive after one exercise session49, in this longer term exercise training, it demonstrated 

capacity to improve in synaptic excitatory transmission. It is interesting to observe that Nicoletti, 

et al. (2019) recently reported enhanced corticospinal excitation in people with progressive MS 

after 4 weeks of D-aspartate treatment which aimed  to enhance NMDA receptor activity265. They 

also showed increases in MEP amplitudes following intermittent theta burst stimulation (i.e. 

enhanced neuroplasticity)265. It appears that exercise training has comparable benefits in terms of 

enhancing capacity for neuroplasticity in progressive MS. It is important to note that, the 

corticospinal excitability enhancements reported here and those by Nicoletti, et al. (2019) were 

short term and disappeared 3 months after cessation of the intervention. Therefore, we suggest that 
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treatments that enhance neuroplasticity, such as physical exercise training, should be prescribed 

continuously in progressive MS to protect the brain, improve brain function, and likely to 

potentiate the effects of treatments (e.g. drugs) and other neuroplasticity-inducing protocols (e.g. 

non-invasive brain stimulation). 

5.4.2 Physical exercise training to reduce intracortical inhibition in progressive MS 

When applying suprathreshold TMS stimulations to the primary motor cortex with 

participants performing a tonic muscle contraction of the contralateral target muscle, the length of 

the period of cessation of muscle activity (CSP) is an indicator of intracortical inhibition mediated 

by the activity of the inhibitory neurotransmitter GABA on its ionotropic and metabotropic 

receptors (GABAA and GABAB, respectively)20, 29. Although the cortical and spinal contribution 

to the CSP length is still unclear20, 294, it is generally accepted that the cortex is the main modulator 

of CSP change29. Because excessive GABAergic-mediated intracortical inhibition is considered 

pathological25, 295, detrimental to neuroplasticity16, 31, 295, 296, and is associated with disease 

progression in MS88 and stroke40, decreasing its activity is an attractive treatment strategy to boost 

neuroplasticity16, 295. 

In healthy people and people with stroke, studies have confirmed that even a single bout 

of aerobic exercise is able to acutely reduce short intracortical inhibition40, 169, 219, 248, 258 assessed 

with TMS paired-pulse, a TMS biomarker of GABAA-receptor activity20. We recently reported a 

similar effect after acute aerobic exercise in people with progressive MS49. Interestingly, here we 

showed that after 10 weeks of exercise training, CSP duration was reduced at all TMS intensities, 

indicating reductions in both GABAA and GABAB-mediated intracortical inhibition. This result 

aligns with findings in healthy individuals demonstrating that 4-12 weeks of strength exercise 
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training reduced both GABAA and GABAB-receptor activity, as decreasing in short-intracortical 

inhibition and duration of the CSP elicited at higher TMS intensities, respectively32. We have 

previously shown that among people with MS, superior cardiorespiratory fitness was related to 

shorter CSP41. In our present findings, although there were no significant improvements in 

cardiorespiratory fitness measured as the peak of oxygen consumption (VO2peak), there were other 

indicators of improved physical health98 such as higher capacity to perform exercise (i.e. 

Kcal/session), greater lean mass, and lower body fat percentage, and increases in other parameters 

of cardiorespiratory fitness such as the oxygen uptake efficiency slope (for details see 54). The fact 

that the beneficial reduction (acute and long-term) in intracortical inhibition was only observed in 

the brain hemisphere corresponding to the stronger hand may suggest a greater neuroplastic-

potential of inhibitory mechanisms in the hemisphere thought to be less affected by MS. 

Furthermore, our walking training provided a high degree of task-specific training107, 297, 298. 

Ziemann, U. et al. (2001) has shown that less GABAergic-mediated intracortical inhibition, 

assessed with TMS, was essential for motor learning processes from task-specific training to 

occur224. Decreasing GABAergic-mediated intracortical inhibition has also been proposed to be 

an important factor initiating increases in muscular strength32-34. Although we did not measure 

muscular strength (e.g. MVC pre-post training), we did note increases in lean mass at post and 

follow-up as well as improvements in walking function (e.g. walking speed; see54). Altogether, 

this indicates that long-term physical exercise that utilizes task-specific training in highly disabled 

people with progressive MS reduces intracortical inhibition and possibly improves and restores 

physical function through enhanced neuroplasticity. Though, because no correlation between 

changes in intracortical inhibition, body composition, and walking function was noted, it remains 

to be answered whether decreasing intracortical inhibition would lead to improvements in learning 
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and restoration of function in people with MS. Future research should examine whether such 

effects would take place in a larger sample with different walking abilities using a randomized 

controlled design. As well, because we measured overall gains in walking function54 and body 

composition, future research should examine whether the enhanced plasticity (reduced inhibition) 

measured in the hemisphere corresponding to the stronger side of the body indeed translates into 

global brain function improvement285 (e.g. bilateral and cognitive function) or whether it is 

restricted to the contralateral representation. This would be an important discovery for 

interventions aiming at improving function of the most affected side. 

It is interesting that, when compared to healthy controls, some studies have shown reduced 

intracortical inhibition (shorter CSP) in MS patients152, 299. Nantes, et al., (2016) reported that 

shorter CSP correlated with lower whole brain cortical volume (MRI, magnetic transfer ratio) in 

progressive MS, and that, interestingly, longer CSP was a predictor of upper extremity motor 

dysfunction122. Therefore, when compared to the healthy central nervous system (CNS), the CNS 

affected by MS may display decreased activity of inhibitory mechanisms that, curiously, may work 

as a compensatory mechanism during brain disease. The concept that there are compensatory 

mechanisms that increase brain excitation and decrease brain inhibition in order to preserve brain 

function in CNS disease has been recently proposed by other authors14, 41, 48, 130, 300, 301. However, 

these processes are certainly not uniform across CNS disorders. For instance, in Parkinson’s 

disease, Fisher, B. E. et al., (2008) showed that high-intensity treadmill exercise program improved 

walking performance and lengthened CSP time302, which is typically shortened in people with 

Parkinson’s disease303. Thomas, S. L. et al., (2005) also showed lengthening of CSP in people with 

incomplete spinal cord injury after a regimen of treadmill training304. Although the mechanisms 
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are not entirely clear, our work and the work of others suggests that rehabilitation and exercise 

primes the CNS as measured by shifting of CSP. 

5.4.3 Corticospinal excitability and fatigue in MS 

Fatigue is one of the most disabling symptoms in MS41, 120, 275. Although the etiology of 

MS-related fatigue is not completely understood, neuroimaging studies (e.g. MRI, fMRI) have 

proposed that its development and progression is due to structural and functional abnormalities in 

both cortical and subcortical areas275. Previous studies have shown that 10-12 weeks of physical 

exercise training can lessen subjective fatigue in people with MS119, including progressive MS54, 

231. Based on previous findings showing an association between shorter CSP and lowered levels 

of subjective fatigue in a cohort of people with MS41, we proposed that improving fitness through 

exercise training could mitigate fatigue by decreasing GABAergic-mediated intracortical 

inhibition (i.e. shortening CSP). In this current pilot study, we reported a strong association 

between increases in corticospinal excitation (recruitment curve; AUC) and reductions in 

subjective fatigue (FSS and MFIS). Nicoletti, et al (2019) also demonstrated reductions in 

subjective fatigue (FSS) and increases in corticospinal excitation (intracortical facilitation) after 

D-aspartate treatment in people with progressive MS265. Furthermore, Créange et al. (2013) have 

also shown increases in corticospinal excitation (e.g. RMT reduction) and reduction in levels of 

fatigue after erythropoietin treatment to improve walking in people with progressive MS305. Our 

results and the results of others support that there is a link between corticospinal 

excitation/inhibition and fatigue which should be examined in larger trials. In fact, non-invasive 

brain stimulation methods (repetitive TMS, transcranial direct current stimulation) which aim to 

increase cortical excitation and treat MS fatigue have been recently proposed275. It is important to 

note that the above mentioned experiments, and the present study, measured perceived (i.e. 
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subjective) fatigue and not fatigability (i.e. muscle/performance fatigability measured during 

contraction). Nonetheless, because perceived fatigue and fatigability closely associate306, our 

results showing reduced levels of perceived fatigue and improved fitness suggests that following 

training, subjects required less physical effort to perform activities of daily living, suggesting 

superior energy availability and reduced fatigability306. Therefore, we propose that exercise 

training might be able to mitigate symptoms of fatigue possibly by acting through increases in 

excitatory circuitry. 

5.4.4 Limitations 

There are some important limitations to consider when interpreting the results of the 

present study. First, this was a small pilot study, and no statistical sample size calculation was 

conducted for the outcomes presented in this manuscript, which limits the statistical power to 

obtain conclusive results. Second, no control group was included which limits the conclusion on 

the true effect of the intervention. Third, as only patients with progressive MS and severe MS-

related walking disabilities (EDSS 6.0-6.5) were included, the findings may not be applicable for 

relapsing remitting and/or less disabled MS patients. Despite these limitations, the novel insights 

from this study may serve as a rationale for larger studies and continued efforts in investigating 

the effects of exercise and physical rehabilitation on neuroplasticity and functional recovery in 

MS. 

As for considerations for future studies, although the aim to this study was to investigate 

changes in corticospinal excitability in a non-exercised hand muscle to demonstrate widespread 

effects of exercise training on global brain plasticity258, 285, investigating muscles that were more 

involved in the walking training (e.g. lower limb muscles) could provide more insight regarding  

the link between the trained muscle and cortical function (TMS)33. Moreover, having participants’ 
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neuroimaging data (e.g. magnetic resonance imaging) could help to better understand the role of 

lesion volume and location on exercise-induced corticospinal excitability changes. We determined 

averaged MEP amplitudes and CSP times from a small number of trials (three to six) as done 

previously by others38, 193, 287, and with participants performing tonic contraction, in order to reduce 

intra subject variability33. Future studies should examine the optimal number of stimulation 

trials307 in order to produce reliable MEP/CSP data. With respect to the TMS recruitment curve 

parameters, we  used linear regression (TMS intensities by MEP amplitudes), as done by others87, 

236, in an attempt to assess the corticospinal tract recruitment gain (slope) and accuracy (R2); 

biomarkers previously proposed by Potter-Baker, K. A. et al (2016) to reflect morpho-

physiological integrity of the corticospinal tract in stroke237. However, more studies are necessary 

in order to understand what the best model is (e.g. sigmoidal237 or linear87, 236) when calculating 

these parameters, while taking into consideration the different TMS methodologies (e.g. range of 

TMS intensities employed), the clinical population (e.g. stroke, MS), and lesion profile (e.g. lesion 

volume, location). 

5.5 Conclusion 

To our knowledge, this is the first study to investigate longer term effects of exercise on 

corticospinal function using TMS in patients with progressive MS. This exploratory pilot study 

provides evidence that a neuroplastic potential still exists in patients with progressive MS and 

severe MS-related walking disability. Specifically, we found that 10 weeks of vigorous treadmill 

training reduced intracortical inhibition and increased corticospinal excitability. These 

corticospinal adaptations were predominately found in the brain hemisphere corresponding to the 

stronger hand, suggesting a greater neuroplastic potential in the hemisphere that may be less 

affected by MS. Moreover, the exercise-induced enhancement in cortical excitation was associated 
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with reductions in fatigue, suggesting this as a potential mechanism involved in the effects of 

exercise on fatigue. The novel findings from this pilot study highlight the importance of long-term 

exercise efforts – even in patients with progressive MS – and can serve as a rationale for future 

studies and continued efforts in investigating the effects of exercise on the brain. 
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6.1 Thesis Overview 

 Two of the most important uses of any health biomarker are, 1) to track disease progression 

and, 2) to examine the mechanistic underpinnings of a therapy (‘how’ treatments work). The aim 

of my doctoral research was to use TMS to investigate CSE biomarkers of disease and symptom 

progression in MS and to examine whether exercise training would positively impact those 

biomarkers. My research asked the question, “Can superior fitness and exercise boost brain 

mechanisms to improve neuroplasticity and act as a disease modifying therapy to mitigate brain 

dysfunction and reduce symptoms in MS?” Such research would further inform therapists and 

clinicians of the importance of exercise prescription and rehabilitation to affect the central nervous 

system. My doctoral work addressing such questions was accomplished in four stages (i.e. studies). 

6.2 Summary of findings 

The main findings from the studies (Chapters 2, 3, 4, and 5) included in the thesis are 

summarized in the following sections. 

6.2.1 Findings from Chapter 2 

I undertook this study to examine the link between cardiorespiratory fitness, CSE, 

circulating tumor necrosis factor, and subjective symptoms of fatigue in MS.  

The key findings of this study were: 

1) Across all levels of disability, MS patients had very low levels of 

cardiorespiratory fitness suggesting that participation in any exercise was very 

unlikely. 
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2) When controlling for MS demographics, low cardiorespiratory fitness predicted 

longer CSP time, a biomarker of increased GABAergic-mediated intracortical 

inhibition. 

3) Increased GABAergic-mediated intracortical inhibition (longer CSP) predicted 

worsened fatigue. 

In this study, I learned that: 

1) The levels of cardiorespiratory fitness were alarmingly low in this population 

of people with MS. This is concerning since, low fitness is known to contribute 

to comorbidities, increase risk of all-cause mortality, and may intensify 

symptoms and progression of MS. 

2) Poor fitness predicted greater GABAergic-mediated intracortical inhibition 

(longer CSP), a biomarker of impaired neuroplasticity. Poor fitness might be 

linked to an inability of the MS brain to undergo plastic changes, which could 

contribute to progression of MS and/or poor recovery from brain dysfunction 

and symptoms provoked by MS. 

3) Greater GABAergic-mediated intracortical inhibition predicted greater fatigue, 

which may indicate that this central nervous system mechanism is being 

responsible for some of the fatigue in MS. 

6.2.2 Findings from Chapter 3 

 Although unilateral deficits are commonly reported, studies investigating CSE 

typically report no differences in CSE between hemispheres in MS (i.e. no side-to-side 

differences). In this study, I challenged this concept by calculating a laterality index 
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between the hemispheres corresponding to the stronger and weaker sides. Also, I tested 

whether (a)symmetry would be useful as a biomarker of disease progression in MS. 

The key findings of this study were: 

1) Calculating a laterality index based on hand impairment (e.g. weaker 

and stronger sides) revealed two subgroups of people with MS: 1) 

people with MS with higher CSE (i.e. lower AMT) in the weaker side, 

who were less disabled and had less severe MS symptoms, and 2) people 

with MS with higher CSE in the stronger side, who were more disabled 

and had more severe MS symptoms. 

2) When controlling for MS demographics, the degree of CSE asymmetry 

towards higher CSE in the stronger side predicted worsened MS 

symptoms. 

In this study, I learned that: 

1) Higher CSE in the weaker side could be explained by the higher degree of 

neuroinflammation-mediated hyperexcitability, that may affect predominantly 

one hemisphere in early MS. This loss of this unilateral neuroinflammation-

mediated hyperexcitability may indicate a shift from inflammatory to 

neurodegenerative phases and signify MS progression.  

2) The AMT asymmetry ratio may serve as a biomarker in MS helping with 

surveillance of MS and predicting its progression as well as monitoring the 

effects of drugs and rehabilitative therapies. 
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3) Since one brain hemisphere can be predominantly affected during the course of 

MS, it may be important to consider such pathophysiology, and, rather than 

assessing sides arbitrarily (e.g. right, left, dominant, non-dominant), TMS 

experimenters should better discriminate between sides (e.g. affected, less 

affected) when performing TMS in people with MS. 

6.2.3 Findings from Chapter 4 

 In this study, I investigated whether neuroplasticity could occur in people with progressive 

MS in response to a single exercise session and whether the degree of exercise-induced 

neuroplasticity would be fitness dependent. 

 The key findings of this study were: 

1) Controlling for age, in the stronger side, reductions in intracortical inhibition 

assessed as CSP investigated at lower TMS intensities (105% of active motor 

threshold) and decreases in resting motor threshold (increased CSE) were 

associated to superior cardiorespiratory fitness (VO2max). In the weaker side, 

increases in MEP amplitude assessed at 145% of active motor threshold were 

associated to lower body fat percentage. 

2) As a group, exercise-induced CSE changes were noted in the hemisphere 

corresponding to the stronger hand only. Specifically, reduced intracortical 

inhibition investigated as CSP time stimulated at 115% of AMT and increased 

MEP amplitude tested using 125% of AMT were noted in the stronger hand 

post exercise. The hemisphere corresponding to the weaker hand was resistant 

to exercise-induced neuroplasticity and no CSE changes were noted. 
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In this study, I learned that: 

1) Exercise was able to positively induce CSE changes in this group of highly 

disabled people with progressive MS. This demonstrates that there is still 

capacity in the progressive MS brain to promote neuroplasticity, and moreover, 

can be induced by a single exercise session. 

2) The exercise-induced CSE benefits were noted in the brain hemisphere 

corresponding to stronger hand, only. No pre-post exercise CSE change was 

noted in the hemisphere corresponding to the weaker hand. This suggests that 

the hemisphere corresponding to the weaker hand, likely more affected by MS, 

was resistant to CSE changes induced by a single exercise session. 

3) Participants who were fitter (higher VO2max and lower body fat percentage) had 

greater CSE responsiveness to the exercise session. Exercise workload 

(Kcal/session) was not associated with CSE changes. This indicates that 

reducing sedentarism, prescribing exercise in the longer term, and decreasing 

body fat may positively affect the MS brain and potentiate the effects of 

neuroplasticity inducing-protocols in progressive MS. 

6.2.4 Findings from Chapter 5 

 I undertook this study to investigate whether a longer term exercise training aimed at 

restoring walking would induce CSE changes related to enhanced neuroplasticity in severely 

affected people with progressive MS who required walking aids (e.g. canes, walker).  

 The key findings of this study were: 
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1) After the exercise training, CSE was increased in both brain hemispheres as 

noted by decreases in AMT and increases in the ability of recruiting neurons 

with accordingly increases in TMS stimulation intensities (i.e. slope and area 

under the curve of the excitatory recruitment curve). 

2) Exercise training reduced intracortical inhibition (shortened CSP) only the 

hemisphere corresponding to the stronger hand. This CSP reduction was noted 

when tested at all TMS stimulation intensities (105-155% of AMT), likely 

signifying reductions in both GABAA- and GABAB-receptor activity. 

3) After training, increased overall CSE (excitatory recruitment curve area under 

the curve) in the stronger hand was associated with reductions in subjective 

fatigue (severity and impact of fatigue on daily life). 

4) All training-induced CSE enhancements were short-term, and disappeared three 

months after cessation of training (follow-up assessment). 

In this study, I learned that: 

1) Three months of this task-specific walking exercise training was able to 

enhance CSE in these deconditioned and severely affected people with 

progressive MS. Specifically, CSE increased bilaterally, while intracortical 

inhibition reduced only in the hemisphere corresponding to the stronger hand. 

This may indicate that, while exercise training was able to increase 

glutamatergic activity bilaterally, reduced GABAergic activity was restricted to 

the likely more intact hemisphere. Such CSE enhancements may signify 

enhanced neuroplastic capacity post-training. 
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2) The fact that all CSE enhancements were short-term may suggest on the 

importance of exercise prescription in the long-term, probably with no 

cessation, to maintain brain health and potentiation of neuroplastic mechanisms 

in people with progressive MS. 

3) Enhancement in CSE in the hemisphere corresponding to the stronger hand was 

correlated with reductions in both severity and impact of fatigue on everyday 

life. Exercise training might be able to mitigate symptoms of fatigue by acting 

through CSE enhancements. 

6.2 Overall Discussion  

The findings of my doctoral work provided evidence supporting the use of TMS to study 

the MS brain and provide biomarkers of disease progression in MS. Using TMS, I also 

demonstrated that improved levels of fitness and exercise training can positively affect the MS 

brain and reduce symptoms even in late stages of MS, by potentially enhancing neuroplasticity-

like mechanisms. In the following sections, I have linked and discussed the studies findings’ 

(Chapter 2, 3, 4, and 5), discussed its strengths and weaknesses, and provided insight for future 

research. 

6.2.1 Using TMS to Provide Biomarkers in MS 

In MS, the integrity of the central nervous system as well as disease activity is, to date, 

mainly probed with the use of imaging techniques such as Magnetic Resonance Imaging (MRI). 

MRI is the gold-standard technique in order to evaluate the presence of cortical and/or spinal 

lesions (i.e. disease-associated structural change) for the ultimate diagnosis MS. However, its use 

for monitoring dysfunction and disease activity has been shown to be less efficient. For instance 

MRI does not correlate with dysfunction and symptoms, and for this reason are considered weak 
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biomarkers in MS144, 145. This is not surprising since it is possible that symptoms arise and/or 

intensify due to dysfunction of brain networks that develop prior to structural damage detected by 

MRI. That is the reason why the use of electrophysiological tools that can measure brain 

connectivity and its molecular activity such as TMS20 is appealing to provide earlier and more 

sensitive brain biomarkers in MS51. By endeavouring to determine central nervous system 

excitability abnormalities that could help better monitor MS activity and predict its progression, 

several studies have suggested the potential use of TMS as a tool in MS management51, 53, 87, 147. 

However, despite its apparent usefulness, TMS findings in the MS literature is often conflicting, 

and, as with MRI, TMS has been considered a weak tool providing biomarkers in MS51. This 

discrepancy across studies’ results could be due to the different MS populations included and the 

heterogeneity of MS, small sample sizes included, and/or the different TMS methodologies 

employed across studies51. 

Standardization of TMS methods across laboratories could help to create a common 

understanding of CSE in MS, and ultimately a better understanding the rehabilitation-induced 

changes in the MS brain. In regard to that, the results of my studies (Chapter 3, 4, and 5) 

demonstrated that, because MS is a neurological disease and can affect brain hemispheres 

indiscriminately, rather than assessing brain hemispheres arbitrarily (e.g. left, right, dominant, non-

dominant), considering hand impairment might be essential to improve TMS results and provide 

better TMS biomarkers, and to understand rehabilitation-induced CSE changes in MS. Another 

factor that might contribute to the lack of concordance among TMS studies’ results, interpretations, 

and conclusions, is the numerous existing TMS protocols that are used. An example of that, are 

the many and popular TMS paired-pulses paradigms20, in which new protocols continue to be 

developed at the time of this writing. Briefly, during TMS paired-pulses, a conditioning stimulus 
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(first stimulation) is followed by a test stimulus (second stimulation) that is separated by a certain 

interval (interstimulus interval) in milliseconds. Depending on the interstimulus interval, 

intracortical mechanisms can be studied such as short- and long-intracortical inhibition and 

intracortical facilitation. In order to be comprehensive, however, a TMS paired-pulse experiment 

require testing in a wide range of stimulus intensities and interstimulus intervals due to the high 

inter- and intra-subject variability; in other words, subjects inhibit and facilitate at different stimuli 

and intervals308. This comes with the expense of a lengthy experiment that is not always practical 

in clinical settings. Moreover, because paired pulses rely on two stimulator units, incongruent 

voltage delivery during paired stimulation is highly possible and stimulation intensities for the 

conditioned and test stimulus may not remain standardized during the assessment221, 286. In fact, 

this occurred during my experiments and I was informed by the TMS manufacturer that there could 

be variation in pulse strength during paired-pulse protocols (~11 MSO% or ~350v difference 

between our TMS units output). Since most experiments often do not take those factors into 

consideration, the outputs could generate unreliable data without the experimenter even being 

aware of it. In my research, I carefully designed a single-pulse TMS experiment that was based on 

previously proposed concepts in an attempt to investigate multiple mechanisms of CSE. In the next 

session, I discuss in more detail each of the TMS variables included in my studies in the context 

of their proposed neurophysiology, clinical implications, and recommendations for future 

research. 

6.2.2 Single Pulse TMS to investigate Multiple Mechanisms of CSE 

6.2.2.1 Motor Thresholds – Is AMT a better biomarker than RMT? 
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A typical TMS assessment starts with the assessment of motor thresholds – the least TMS 

intensity to elicit a MEP in the corresponding muscle20. Motor thresholds are mainly used to adjust 

for individual factors (e.g. skull thickness, levels of arousal) to ensure normalization of the 

subsequent TMS experiments20. Because motor thresholds are reflective of global CSE, they can 

also be used as biomarkers. Resting motor threshold (RMT) is collected in the resting muscle (i.e. 

complete muscle relaxation), and because in this condition corticospinal motor neurons are below 

firing threshold, RMT MEPs likely result from the summation of many indirect waves (I-waves) 

from cortico-cortical connections20, 203. Because these cortico-cortical synapses are dependent on 

voltage-gated sodium channels, RMT is therefore believed to be mediated largely by glutamatergic 

synaptic activity203. Motor threshold can also be investigated in the contracted muscle, referred to 

as the active motor threshold (AMT)20. Physiologically, the difference between RMT and AMT is 

not entirely known20, 203. However, when compared to RMT, MEPs are more easily elicited during 

AMT assessment (requiring lower stimulation intensity), which implies that previously recruited 

indirect waves from the individual’s own voluntary motor drive (i.e. already-firing motor neurons), 

brings motor neurons closer to their firing threshold. AMT-evoked MEP likely results from direct 

waves (D-waves) and may evaluate more directly the axonal threshold (rather than temporo-spatial 

summation) and deeper corticospinal tract neurons20, 203. In my studies AMT was, in general, a 

stronger and more consistent biomarker than RMT. For instance, in my first study (Chapter 2), MS 

demographics (age, disease duration, disability, and MS type) were better predictors of AMT than 

RMT. In my second study (chapter 3), the index ratio using AMT (AMT (a)symmetry), but not 

RMT predicted multiple (physical and cognitive) objective and subjective MS symptoms. In my 

fourth study, AMT but not RMT was reduced after exercise training. The neurodegenerative 

processes in MS have been convincingly shown to be mediated by glutamatergic excitotoxicity. 
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Previous research has shown that spinal motor neurons are more vulnerable to neurodegeneration 

from glutamate-mediated excitotoxicity than cortical neurons309. It is possible that by investigating 

AMT, we better target these deeper corticospinal connections that are possibly more sensitive to 

glutamatergic activity, consequently better evaluating current and past MS-related processes. 

Another reasonable explanation for the AMT’s superiority as a biomarker is that MEPs, when 

controlling for muscle torque (i.e. during muscle contraction), are more reliable and may decrease 

inter- and intra-subject variability32, 33. Although it would seem that collecting both RMT and AMT 

would be standard practice, in MS, many studies have investigated RMT while relatively few have 

investigated AMT. My findings suggest that studies should consider collecting AMT preferably 

when studying CSE in MS. Future studies, in healthy and other clinical populations, should attempt 

to thoroughly investigate the physiological differences between RMT and AMT. 

6.2.2.2 Recruitment Curve to measure MEP amplitudes and CSPs to provide information 

on excitatory and inhibitory mechanisms 

In a healthy brain, incrementally increasing TMS stimulation intensity (e.g. above 

threshold; 120% of RMT) produces corresponding increases in peak-to-peak MEP amplitudes20.  

Assessment of MEP amplitudes at these suprathreshold increments provides an indication of 

corticospinal glutamatergic-mediated excitation as a consequence of faster temporospatial 

summation at corticospinal synapses and recruitment of high-threshold motor neurons.  The output 

curve that is produced in this experiment is called the recruitment curve (or MEP/stimulus response 

input-output curve); a very useful and important biomarker of CSE20, 237. In my early experiments, 

I observed that RMT was often impossible to elicit among people with MS having high levels of 

disability. Since RMT is the benchmark from which to create a recruitment curve, these patients 

would have absent values which would be subsequently lost in the analysis.  I modified the method 
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of measuring recruitment curve by taking AMT as the baseline and by performing fewer 

stimulations at each TMS intensity. In this way, I found that we were able to collect important data 

while decreasing experiment time, avoiding patient fatigue, and preventing equipment 

overheating. Furthermore, because I collected the recruitment curve during muscle contraction, 

the TMS variable cortical silent period (CSP), an interruption of background EMG activity post-

MEP and a biomarker of GABAergic-mediated intracortical inhibition, was concomitantly 

collected. Collecting CSPs at a wide range of stimulation intensities has been previously proposed 

as an alternative way to measure short- and long-lasting inhibition (GABAA- and GABAB-receptor 

activity, respectively)20, 29. It was interesting to note that, in my studies’ findings in progressive 

MS, reduced CSP was more prominent when assessed at lower TMS intensities after acute 

exercise, whereas after long term exercise, CSP was reduced at all TMS intensities. I also showed 

reduced CSP assessed at higher intensities in fitter MS individuals. These CSP findings coincide 

with data collected after exercise using paired pulse TMS techniques in healthy individuals 

showing reduced short intracortical inhibition (GABAA -receptor activity) after both acute and 

long-term exercise40, 258, and reduced long-intracortical inhibition (GABAB-receptor activity) after 

longer-term training32-34. The concordance between my findings using CSP derived from single 

pulse TMS, and the work of others using paired pulse TMS techniques, suggests there may be 

several methods to obtain the same biomarker. My experiences in observing data patterns and 

adapting the TMS technique for a unique group of individuals with substantial motor impairment 

supports the need for clear TMS protocols. Clearly, there is an art and a science of TMS; a field 

that is in its infancy. My future work will involve deciphering the neurophysiological mechanisms 

underlying these techniques in animal models. 
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6.2.3 Is There a Potential Link between Inflammation and CSE? 

The findings from chapter 3 showed that people with MS may display asymmetrical 

corticospinal excitability, in which, an asymmetry towards higher excitability in the hemisphere 

corresponding to the weaker hand predicts earlier and asymptomatic MS, whereas a shift towards 

an asymmetry towards less excitation in the weaker hand predicts late and more symptomatic MS. 

From this result, I proposed that this hyperexcitability in earlier stages could be reflective of 

increased MS activity and higher degree of neuroinflammation in the more affected hemisphere 

(i.e. corresponding to the weaker hand). In MS, hyperexcitability is known to cause 

neurodegeneration-mediated by excitotoxicity1-3; this could explain the gradual shift from higher 

to lower excitability in the more affected hemisphere as MS progresses. Nonetheless, to confirm 

such theory, longitudinal, and larger studies should be performed, ideally including additional 

techniques (e.g. brain imaging, inflammatory markers) for a better understanding of whether shift 

of CSE asymmetry relates to hyperexcitability and neurodegeneration-mediated by excitotoxicity.  

6.3 Summary and Conclusions 

In summary, the work within this thesis supports that TMS is a potential method to measure 

integrity of the corticospinal tract and possibly even the stage of inflammation or 

neurodegeneration in MS. Some of the variables derived from TMS more consistently relate to 

disease demographics and others are more responsive to exercise. The work outlined in this thesis 

is a starting point to develop and refine TMS techniques in neurological disorders. It helps set the 

stage for future research understanding the underlying mechanisms of TMS and creating a valid 

and reliable TMS protocol that can be used to map progression and response to treatment in various 

neurological disorders. 

 



160 
 

REFERENCES 

1. Criste G, Trapp B and Dutta R. Axonal loss in multiple sclerosis: causes and mechanisms. Handbook 
of clinical neurology. 2014; 122: 101-13. 
2. Dutta R and Trapp BD. Relapsing and progressive forms of multiple sclerosis: insights from 
pathology. Curr Opin Neurol. 2014; 27: 271-8. 
3. Mahad DH, Trapp BD and Lassmann H. Pathological mechanisms in progressive multiple sclerosis. 
Lancet Neurol. 2015; 14: 183-93. 
4. Trapp BD, Vignos M, Dudman J, et al. Cortical neuronal densities and cerebral white matter 
demyelination in multiple sclerosis: a retrospective study. Lancet Neurol. 2018; 17: 870-84. 
5. Miller DH and Leary SM. Primary-progressive multiple sclerosis. Lancet Neurol. 2007; 6: 903-12. 
6. Lublin FD. New Multiple Sclerosis Phenotypic Classification. European Neurology. 2014; 72(suppl 
1): 1-5. 
7. Davis SL, Wilson TE, White AT and Frohman EM. Thermoregulation in multiple sclerosis. J Appl 
Physiol (1985). 2010; 109: 1531-7. 
8. Bollaert RE and Motl RW. Physical and Cognitive Functions, Physical Activity, and Sedentary 
Behavior in Older Adults With Multiple Sclerosis. Journal of geriatric physical therapy (2001). 2019; 42: 
304-12. 
9. Motl RW, Gappmaier E, Nelson K and Benedict RH. Physical activity and cognitive function in 
multiple sclerosis. Journal of sport & exercise psychology. 2011; 33: 734-41. 
10. Carrieri L, Sgaramella TM, Bortolon F, et al. Determinants of on-the-job-barriers in employed 
persons with multiple sclerosis: the role of disability severity and cognitive indices. Work. 2014; 47: 509-
20. 
11. Ben Ari Shevil E, Johansson S, Ytterberg C, Bergstrom J and von Koch L. How are cognitive 
impairment, fatigue and signs of depression related to participation in daily life among persons with 
multiple sclerosis? Disability and rehabilitation. 2014; 36: 2012-8. 
12. Heesen C, Böhm J, Reich C, Kasper J, Goebel M and Gold S. Patient perception of bodily functions 
in multiple sclerosis: gait and visual function are the most valuable. Multiple Sclerosis Journal. 2008; 14: 
988-91. 
13. Paltamaa J, Sarasoja T, Leskinen E, Wikström J and Mälkiä E. Measures of physical functioning 
predict self-reported performance in self-care, mobility, and domestic life in ambulatory persons with 
multiple sclerosis. Archives of physical medicine and rehabilitation. 2007; 88: 1649-57. 
14. Stampanoni Bassi M, Leocani L, Comi G, Iezzi E and Centonze D. Can pharmacological manipulation 
of LTP favor the effects of motor rehabilitation in multiple sclerosis? Multiple sclerosis (Houndmills, 
Basingstoke, England). 2017: 1352458517721358. 
15. Tomassini V, Matthews PM, Thompson AJ, et al. Neuroplasticity and functional recovery in 
multiple sclerosis. Nature reviews Neurology. 2012; 8: 635-46. 
16. Sale A, Berardi N and Maffei L. Environment and brain plasticity: towards an endogenous 
pharmacotherapy. Physiological reviews. 2014; 94: 189-234. 
17. Ziemssen T, Akgün K and Brück W. Molecular biomarkers in multiple sclerosis. Journal of 
Neuroinflammation. 2019; 16: 272. 
18. Boyd LA, Hayward KS, Ward NS, et al. Biomarkers of stroke recovery: Consensus-based core 
recommendations from the Stroke Recovery and Rehabilitation Roundtable. International journal of 
stroke : official journal of the International Stroke Society. 2017; 12: 480-93. 
19. Bielekova B and Martin R. Development of biomarkers in multiple sclerosis. Brain : a journal of 
neurology. 2004; 127: 1463-78. 



161 
 

20. Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, 
spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research 
application. An updated report from an I.F.C.N. Committee. Clinical neurophysiology : official journal of 
the International Federation of Clinical Neurophysiology. 2015; 126: 1071-107. 
21. Luscher C and Malenka RC. NMDA receptor-dependent long-term potentiation and long-term 
depression (LTP/LTD). Cold Spring Harbor perspectives in biology. 2012; 4. 
22. Bliss TVP and Cooke SF. Long-term potentiation and long-term depression: a clinical perspective. 
Clinics. 2011; 66: 3-17. 
23. Ziemann U, Ilic TV, Pauli C, Meintzschel F and Ruge D. Learning modifies subsequent induction of 
long-term potentiation-like and long-term depression-like plasticity in human motor cortex. The Journal 
of neuroscience : the official journal of the Society for Neuroscience. 2004; 24: 1666-72. 
24. Malinow R. AMPA receptor trafficking and long-term potentiation. Philos Trans R Soc Lond B Biol 
Sci. 2003; 358: 707-14. 
25. Mott DD and Lewis DV. The pharmacology and function of central GABAB receptors. Int Rev 
Neurobiol. 1994; 36: 97-223. 
26. Kullmann Dimitri M, Moreau Alexandre W, Bakiri Y and Nicholson E. Plasticity of Inhibition. 
Neuron. 2012; 75: 951-62. 
27. Di Pino G, Pellegrino G, Assenza G, et al. Modulation of brain plasticity in stroke: a novel model 
for neurorehabilitation. Nature reviews Neurology. 2014; 10: 597-608. 
28. Beaulieu LD and Milot MH. Changes in transcranial magnetic stimulation outcome measures in 
response to upper-limb physical training in stroke: A systematic review of randomized controlled trials. 
Ann Phys Rehabil Med. 2017. 
29. Epstein CM, Wassermann EM, Ziemann U, Wolters A, Ziemann U and Benecke R. The cortical silent 
period. New York, NY: Oxford University Press, 2012. 
30. Classen J, Schnitzler A, Binkofski F, et al. The motor syndrome associated with exaggerated 
inhibition within the primary motor cortex of patients with hemiparetic. Brain : a journal of neurology. 
1997; 120 ( Pt 4): 605-19. 
31. Sale MV, Ridding MC and Nordstrom MA. Factors influencing the magnitude and reproducibility 
of corticomotor excitability changes induced by paired associative stimulation. Experimental brain 
research. 2007; 181: 615-26. 
32. Kidgell DJ, Bonanno DR, Frazer AK, Howatson G and Pearce AJ. Corticospinal responses following 
strength training: a systematic review and meta-analysis. Eur J Neurosci. 2017; 46: 2648-61. 
33. Kidgell DJ and Pearce AJ. What has transcranial magnetic stimulation taught us about neural 
adaptations to strength training? A brief review. J Strength Cond Res. 2011; 25: 3208-17. 
34. Kidgell DJ and Pearce AJ. Corticospinal properties following short-term strength training of an 
intrinsic hand muscle. Human movement science. 2010; 29: 631-41. 
35. Monda V, Valenzano A, Moscatelli F, et al. Primary Motor Cortex Excitability in Karate Athletes: A 
Transcranial Magnetic Stimulation Study. Frontiers in Physiology. 2017; 8: 695. 
36. Basso J and Suzuki W. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology and 
Neurochemical Pathways: A Review. 2017, p.1-26. 
37. Pearce AJ, Thickbroom GW, Byrnes ML and Mastaglia FL. Functional reorganisation of the 
corticomotor projection to the hand in skilled racquet players. Experimental brain research. 2000; 130: 
238-43. 
38. Lulic T, El-Sayes J, Fassett HJ and Nelson AJ. Physical activity levels determine exercise-induced 
changes in brain excitability. PLoS One. 2017; 12: e0173672. 
39. Cirillo J, Lavender AP, Ridding MC and Semmler JG. Motor cortex plasticity induced by paired 
associative stimulation is enhanced in physically active individuals. J Physiol. 2009; 587: 5831-42. 



162 
 

40. Singh AM and Staines WR. The effects of acute aerobic exercise on the primary motor cortex. 
Journal of motor behavior. 2015; 47: 328-39. 
41. Chaves AR, Kelly LP, Moore CS, Stefanelli M and Ploughman M. Prolonged cortical silent period is 
related to poor fitness and fatigue, but not tumor necrosis factor, in Multiple Sclerosis. Clinical 
Neurophysiology. 2019. 
42. Langeskov-Christensen M, Heine M, Kwakkel G and Dalgas U. Aerobic capacity in persons with 
multiple sclerosis: a systematic review and meta-analysis. Sports medicine (Auckland, NZ). 2015; 45: 905-
23. 
43. Riemenschneider M, Hvid LG, Stenager E and Dalgas U. Is there an overlooked "window of 
opportunity" in MS exercise therapy? Perspectives for early MS rehabilitation. Multiple sclerosis 
(Houndmills, Basingstoke, England). 2018; 24: 886-94. 
44. Kinnett-Hopkins D, Learmonth Y, Hubbard E, et al. The interpretation of physical activity, exercise, 
and sedentary behaviours by persons with multiple sclerosis. Disability and rehabilitation. 2017: 1-6. 
45. Veldhuijzen van Zanten JJ, Pilutti LA, Duda JL and Motl RW. Sedentary behaviour in people with 
multiple sclerosis: Is it time to stand up against MS? Multiple sclerosis (Houndmills, Basingstoke, England). 
2016; 22: 1250-6. 
46. Casey B, Coote S, Hayes S and Gallagher S. Changing physical activity behavior in people with 
Multiple Sclerosis: A Systematic Review and Meta-Analysis. Archives of physical medicine and 
rehabilitation. 2018. 
47. Dalgas U and Stenager E. Exercise and disease progression in multiple sclerosis: can exercise slow 
down the progression of multiple sclerosis? Therapeutic advances in neurological disorders. 2012; 5: 81-
95. 
48. Chaves AR, Wallack EM, Kelly LP, et al. Asymmetry of Brain Excitability: A New Biomarker that 
Predicts Objective and Subjective Symptoms in Multiple Sclerosis. Behavioural brain research. 2019; 359: 
281-91. 
49. Chaves AR, Devasahayam AJ, Kelly LP, Pretty RW and Ploughman M. Exercise-Induced Brain 
Excitability Changes in Progressive Multiple Sclerosis: A Pilot Study. Journal of neurologic physical therapy 
: JNPT. 2020; 44: 132-44. 
50. Chaves AR, Devasahayam AJ, Riemenschneider M, Pretty RW and Ploughman M. Walking Training 
Enhances Corticospinal Excitability in Progressive Multiple Sclerosis—A Pilot Study. Frontiers in Neurology. 
2020; 11. 
51. Snow NJ, Wadden KP, Chaves AR and Ploughman M. Transcranial Magnetic Stimulation as a 
Potential Biomarker in Multiple Sclerosis: A Systematic Review with Recommendations for Future 
Research. Neural plasticity. 2019; 2019: 6430596. 
52. Ayache SS and Chalah MA. Cortical excitability changes: A mirror to the natural history of multiple 
sclerosis? Neurophysiologie clinique = Clinical neurophysiology. 2017; 47: 221-3. 
53. Simpson M and Macdonell R. The use of transcranial magnetic stimulation in diagnosis, 
prognostication and treatment evaluation in multiple sclerosis. Multiple sclerosis and related disorders. 
2015; 4: 430-6. 
54. Devasahayam AJ, Chaves AR, Lasisi WO, et al. Vigorous cool room treadmill training to improve 
walking ability in people with multiple sclerosis who use ambulatory assistive devices: a feasibility study. 
BMC neurology. 2020; 20: 33. 
55. Amankwah N, Marrie RA, Bancej C, et al. Multiple sclerosis in Canada 2011 to 2031: results of a 
microsimulation modelling study of epidemiological and economic impacts. Health promotion and chronic 
disease prevention in Canada : research, policy and practice. 2017; 37: 37-48. 
56. Zheleznyakova GY, Piket E, Marabita F, et al. Epigenetic research in multiple sclerosis: progress, 
challenges, and opportunities. Physiological genomics. 2017; 49: 447-61. 



163 
 

57. Granger AJ and Nicoll RA. Expression mechanisms underlying long-term potentiation: a 
postsynaptic view, 10 years on. Philos Trans R Soc Lond B Biol Sci. 2014; 369: 20130136. 
58. Ploughman M. Exercise is brain food: the effects of physical activity on cognitive function. Dev 
Neurorehabil. 2008; 11: 236-40. 
59. Austin MW, Ploughman M, Glynn L and Corbett D. Aerobic exercise effects on neuroprotection 
and brain repair following stroke: a systematic review and perspective. Neuroscience research. 2014; 87: 
8-15. 
60. Ploughman M, Austin MW, Glynn L and Corbett D. The effects of poststroke aerobic exercise on 
neuroplasticity: a systematic review of animal and clinical studies. Translational stroke research. 2015; 6: 
13-28. 
61. Ozkul C, Guclu-Gunduz A, Irkec C, et al. Effect of combined exercise training on serum brain-
derived neurotrophic factor, suppressors of cytokine signaling 1 and 3 in patients with multiple sclerosis. 
Journal of neuroimmunology. 2018; 316: 121-9. 
62. Driehuis ER, van den Akker LE, de Groot V and Beckerman H. Aerobic capacity explains physical 
functioning and participation in patients with multiple sclerosis-related fatigue. Journal of rehabilitation 
medicine. 2018. 
63. Donze C, Massot C, Hautecoeur P, Cattoir-Vue H and Guyot MA. The Practice of Sport in Multiple 
Sclerosis: Update. Current sports medicine reports. 2017; 16: 274-9. 
64. Edwards T and Pilutti LA. The effect of exercise training in adults with multiple sclerosis with 
severe mobility disability: A systematic review and future research directions. Multiple sclerosis and 
related disorders. 2017; 16: 31-9. 
65. Motl RW and Sandroff BM. Exercise as a Countermeasure to Declining Central Nervous System 
Function in Multiple Sclerosis. Clinical therapeutics. 2018; 40: 16-25. 
66. Sasaki JE, Motl RW, Cutter G, Marrie RA, Tyry T and Salter A. National estimates of self-reported 
sitting time in adults with multiple sclerosis. Multiple sclerosis journal - experimental, translational and 
clinical. 2018; 4: 2055217318754368. 
67. Hubbard EA, Motl RW and Fernhall B. Sedentary Behavior and Blood Pressure in Patients with 
Multiple Sclerosis. International journal of MS care. 2018; 20: 1-8. 
68. Bollaert RE and Motl RW. Physical and Cognitive Functions, Physical Activity, and Sedentary 
Behavior in Older Adults With Multiple Sclerosis. Journal of geriatric physical therapy (2001). 2017. 
69. Ploughman M. Breaking down the barriers to physical activity among people with multiple 
sclerosis – a narrative review. Physical Therapy Reviews. 2017; 22: 124-32. 
70. Casey B, Coote S, Galvin R and Donnelly A. Objective Physical Activity Levels in People with 
Multiple Sclerosis: Meta-Analysis. Scandinavian journal of medicine & science in sports. 2018. 
71. Blikman LJ, van Meeteren J, Twisk JW, et al. Effectiveness of energy conservation management on 
fatigue and participation in multiple sclerosis: A randomized controlled trial. Multiple sclerosis 
(Houndmills, Basingstoke, England). 2017; 23: 1527-41. 
72. Prakash RS, Snook EM, Motl RW and Kramer AF. Aerobic Fitness is Associated with Gray Matter 
Volume and White Matter Integrity in Multiple Sclerosis. Brain research. 2010; 1341C: 41-51. 
73. Marrie RA. Comorbidity in multiple sclerosis: implications for patient care. Nature Reviews 
Neurology. 2017; 13: 375. 
74. Tavazzi E, Bergsland N, Cattaneo D, et al. Effects of motor rehabilitation on mobility and brain 
plasticity in multiple sclerosis: a structural and functional MRI study. Journal of neurology. 2018. 
75. Ploughman M. A new era of multiple sclerosis rehabilitation: lessons from stroke. Lancet Neurol. 
2017; 16: 768-9. 
76. Vucic S, Burke D and Kiernan MC. Fatigue in multiple sclerosis: mechanisms and management. 
Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2010; 
121: 809-17. 



164 
 

77. Ayache SS and Chalah MA. Fatigue in multiple sclerosis - Insights into evaluation and 
management. Neurophysiologie clinique = Clinical neurophysiology. 2017; 47: 139-71. 
78. Russo M, Calamuneri A, Cacciola A, et al. Neural correlates of fatigue in multiple sclerosis: a 
combined neurophysiological and neuroimaging approach (R1). Arch Ital Biol. 2017; 155: 142-51. 
79. Barry A, Cronin O, Ryan AM, et al. Impact of Exercise on Innate Immunity in Multiple Sclerosis 
Progression and Symptomatology. Front Physiol. 2016; 7: 194. 
80. Kjolhede T, Dalgas U, Gade AB, et al. Acute and chronic cytokine responses to resistance exercise 
and training in people with multiple sclerosis. Scandinavian journal of medicine & science in sports. 2016; 
26: 824-34. 
81. Alvarenga-Filho H, Sacramento PM, Ferreira TB, et al. Combined exercise training reduces fatigue 
and modulates the cytokine profile of T-cells from multiple sclerosis patients in response to 
neuromediators. Journal of neuroimmunology. 2016; 293: 91-9. 
82. Mokhtarzade M, Ranjbar R, Majdinasab N, Patel D and Molanouri Shamsi M. Effect of aerobic 
interval training on serum IL-10, TNFalpha, and adipokines levels in women with multiple sclerosis: 
possible relations with fatigue and quality of life. Endocrine. 2017; 57: 262-71. 
83. McCoy MK and Tansey MG. TNF signaling inhibition in the CNS: implications for normal brain 
function and neurodegenerative disease. J Neuroinflammation. 2008; 5: 45. 
84. Deckx N, Wens I, Nuyts AH, et al. 12 Weeks of Combined Endurance and Resistance Training 
Reduces Innate Markers of Inflammation in a Randomized Controlled Clinical Trial in Patients with 
Multiple Sclerosis. Mediators of inflammation. 2016; 2016: 6789276. 
85. Rösler KM. Transcranial Magnetic Brain Stimulation: a Tool to Investigate Central Motor 
Pathways. Physiology. 2001; 16: 297-302. 
86. Jurado-Parras MT, Delgado-Garcia JM, Sanchez-Campusano R, Gassmann M, Bettler B and Gruart 
A. Presynaptic GABAB Receptors Regulate Hippocampal Synapses during Associative Learning in Behaving 
Mice. PLoS One. 2016; 11: e0148800. 
87. Neva JL, Lakhani B, Brown KE, et al. Multiple measures of corticospinal excitability are associated 
with clinical features of multiple sclerosis. Behavioural brain research. 2016; 297: 187-95. 
88. Tataroglu C, Genc A, Idiman E, Cakmur R and Idiman F. Cortical silent period and motor evoked 
potentials in patients with multiple sclerosis. Clin Neurol Neurosurg. 2003; 105: 105-10. 
89. Bredin SSD, Gledhill N, Jamnik VK and Warburton DER. PAR-Q+ and ePARmed-X+: New risk 
stratification and physical activity clearance strategy for physicians and patients alike. Canadian Family 
Physician. 2013; 59: 273-7. 
90. Rossi S, Hallett M, Rossini PM and Pascual-Leone A. Safety, ethical considerations, and application 
guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical 
neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2009; 120: 
2008-39. 
91. Fonov V, Evans AC, Botteron K, et al. Unbiased average age-appropriate atlases for pediatric 
studies. Neuroimage. 2011; 54: 313-27. 
92. Collins DL, Neelin P, Peters TM and Evans AC. Automatic 3D intersubject registration of MR 
volumetric data in standardized Talairach space. J Comput Assist Tomogr. 1994; 18: 192-205. 
93. Livingston SC, Friedlander DL, Gibson BC and Melvin JR. Motor evoked potential response 
latencies demonstrate moderate correlations with height and limb length in healthy young adults. The 
Neurodiagnostic journal. 2013; 53: 63-78. 
94. Sollmann N, Bulubas L, Tanigawa N, Zimmer C, Meyer B and Krieg SM. The variability of motor 
evoked potential latencies in neurosurgical motor mapping by preoperative navigated transcranial 
magnetic stimulation. BMC Neuroscience. 2017; 18: 5. 
95. Tobimatsu S, Sun SJ, Fukui R and Kato M. Effects of sex, height and age on motor evoked potentials 
with magnetic stimulation. Journal of neurology. 1998; 245: 256-61. 



165 
 

96. Matamala JM, Nunez C, Lera L, et al. Motor evoked potentials by transcranial magnetic stimulation 
in healthy elderly people. Somatosensory & motor research. 2013; 30: 201-5. 
97. Billinger SA, Tseng BY and Kluding PM. Modified total-body recumbent stepper exercise test for 
assessing peak oxygen consumption in people with chronic stroke. Physical therapy. 2008; 88: 1188-95. 
98. Ferguson B. ACSM’s Guidelines for Exercise Testing and Prescription 9th Ed. 2014. The Journal of 
the Canadian Chiropractic Association. 2014; 58: 328-. 
99. Mohd Razali N and Yap B. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and 
Anderson-Darling Tests. Journal of Statistical Modeling and Analytics, 2011. 
100. Vatcheva KP, Lee M, McCormick JB and Rahbar MH. Multicollinearity in Regression Analyses 
Conducted in Epidemiologic Studies. Epidemiology (Sunnyvale, Calif). 2016; 6. 
101. Bollen K and W. Jackman R. Regression Diagnostics: An Expository Treatment of Outliers and 
Influential Cases. 1990. 
102. Peugh JL and Enders CK. Missing Data in Educational Research: A Review of Reporting Practices 
and Suggestions for Improvement. Review of Educational Research. 2004; 74: 525-56. 
103. Langeskov-Christensen M, Langeskov-Christensen D, Overgaard K, Moller AB and Dalgas U. 
Validity and reliability of VO(2)-max measurements in persons with multiple sclerosis. Journal of the 
neurological sciences. 2014; 342: 79-87. 
104. Heine M, Hoogervorst EL, Hacking HG, Verschuren O and Kwakkel G. Validity of maximal exercise 
testing in people with multiple sclerosis and low to moderate levels of disability. Physical therapy. 2014; 
94: 1168-75. 
105. Romberg A, Virtanen A, Aunola S, Karppi SL, Karanko H and Ruutiainen J. Exercise capacity, 
disability and leisure physical activity of subjects with multiple sclerosis. Multiple sclerosis (Houndmills, 
Basingstoke, England). 2004; 10: 212-8. 
106. Motl RW and Goldman M. Physical inactivity, neurological disability, and cardiorespiratory fitness 
in multiple sclerosis. Acta neurologica Scandinavica. 2011; 123: 98-104. 
107. Devasahayam AJ, Downer MB and Ploughman M. The Effects of Aerobic Exercise on the Recovery 
of Walking Ability and Neuroplasticity in People with Multiple Sclerosis: A Systematic Review of Animal 
and Clinical Studies. Multiple sclerosis international. 2017; 2017: 4815958. 
108. Ponichtera-Mulcare JA, Mathews T, Glaser RM and Gupta SC. Maximal aerobic exercise of 
individuals with multiple sclerosis using three modes of ergometry. Clinical Kinesiology, 1995, p.4-13. 
109. Cress ME and Meyer M. Maximal Voluntary and Functional Performance Needed for 
Independence in Adults Aged 65 to 97 Years. Physical therapy. 2003; 83: 37-48. 
110. Kempen JC, de Groot V, Knol DL, Lankhorst GJ and Beckerman H. Self-reported fatigue and energy 
cost during walking are not related in patients with multiple sclerosis. Archives of physical medicine and 
rehabilitation. 2012; 93: 889-95. 
111. Rosalie Driehuis E, van den Akker LE, de Groot V and Beckerman H. Aerobic capacity explains 
physical functioning and participation in patients with multiple sclerosis-related fatigue. Journal of 
rehabilitation medicine. 2018; 50: 185-92. 
112. Dyke K, Pépés SE, Chen C, et al. Comparing GABA-dependent physiological measures of inhibition 
with proton magnetic resonance spectroscopy measurement of GABA using ultra-high-field MRI. 
Neuroimage. 2017; 152: 360-70. 
113. Tremblay S, Beaule V, Proulx S, et al. Relationship between transcranial magnetic stimulation 
measures of intracortical inhibition and spectroscopy measures of GABA and glutamate+glutamine. 
Journal of neurophysiology. 2013; 109: 1343-9. 
114. Meunier S, Russmann H, Simonetta-Moreau M and Hallett M. Changes in Spinal Excitability After 
PAS. Journal of neurophysiology. 2007; 97: 3131-5. 



166 
 

115. Cawley N, Solanky BS, Muhlert N, et al. Reduced gamma-aminobutyric acid concentration is 
associated with physical disability in progressive multiple sclerosis. Brain : a journal of neurology. 2015; 
138: 2584-95. 
116. Nantes JC, Zhong J, Holmes SA, et al. Intracortical inhibition abnormality during the remission 
phase of multiple sclerosis is related to upper limb dexterity and lesions. Clinical neurophysiology : official 
journal of the International Federation of Clinical Neurophysiology. 2016; 127: 1503-11. 
117. Priori A, Berardelli A, Inghilleri M, Polidori L and Manfredi M. Electromyographic silent period after 
transcranial brain stimulation in Huntington's disease. Movement disorders : official journal of the 
Movement Disorder Society. 1994; 9: 178-82. 
118. Gray WA, Palmer JA, Wolf SL and Borich MR. Abnormal EEG Responses to TMS During the Cortical 
Silent Period Are Associated With Hand Function in Chronic Stroke. Neurorehabilitation and neural repair. 
2017; 31: 666-76. 
119. Coote S, Uszynski M, Herring MP, et al. Effect of exercising at minimum recommendations of the 
multiple sclerosis exercise guideline combined with structured education or attention control education - 
secondary results of the step it up randomised controlled trial. BMC neurology. 2017; 17: 119. 
120. Russo M, Crupi D, Naro A, et al. Fatigue in patients with multiple sclerosis: from movement 
preparation to motor execution. Journal of the neurological sciences. 2015; 351: 52-7. 
121. Zeller D, Dang SY, Weise D, Rieckmann P, Toyka KV and Classen J. Excitability decreasing central 
motor plasticity is retained in multiple sclerosis patients. BMC neurology. 2012; 12: 92. 
122. Nantes JC, Zhong J, Holmes SA, Narayanan S, Lapierre Y and Koski L. Cortical Damage and Disability 
in Multiple Sclerosis: Relation to Intracortical Inhibition and Facilitation. Brain Stimul. 2016; 9: 566-73. 
123. Caramia MD, Palmieri MG, Desiato MT, et al. Brain excitability changes in the relapsing and 
remitting phases of multiple sclerosis: a study with transcranial magnetic stimulation. Clinical 
neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2004; 115: 
956-65. 
124. Fierro B, Salemi G, Brighina F, et al. A transcranial magnetic stimulation study evaluating 
methylprednisolone treatment in multiple sclerosis. Acta neurologica Scandinavica. 2002; 105: 152-7. 
125. Ayache SS, Creange A, Farhat WH, et al. Cortical excitability changes over time in progressive 
multiple sclerosis. Funct Neurol. 2015; 30: 257-63. 
126. Jensen JL, Marstrand PCD and Nielsen JB. Motor skill training and strength training are associated 
with different plastic changes in the central nervous system. Journal of Applied Physiology. 2005; 99: 1558-
68. 
127. Naghibzadeh M, Ranjbar R, Tabandeh MR and Habibi A. Effects of Two Training Programs on 
Transcriptional Levels of Neurotrophins and Glial Cells Population in Hippocampus of Experimental 
Multiple Sclerosis. International journal of sports medicine. 2018. 
128. Malekzadeh A, Van de Geer-Peeters W, De Groot V, Teunissen CE and Beckerman H. Fatigue in 
patients with multiple sclerosis: is it related to pro- and anti-inflammatory cytokines? Disease markers. 
2015; 2015: 758314. 
129. Stampanoni Bassi M, Mori F, Buttari F, et al. Neurophysiology of synaptic functioning in multiple 
sclerosis. Clinical neurophysiology : official journal of the International Federation of Clinical 
Neurophysiology. 2017; 128: 1148-57. 
130. Mori F, Nistico R, Nicoletti CG, et al. RANTES correlates with inflammatory activity and synaptic 
excitability in multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England). 2016; 22: 1405-12. 
131. Mori F, Nistico R, Mandolesi G, et al. Interleukin-1beta promotes long-term potentiation in 
patients with multiple sclerosis. Neuromolecular Med. 2014; 16: 38-51. 
132. Rossi S, Furlan R, De Chiara V, et al. Interleukin-1beta causes synaptic hyperexcitability in multiple 
sclerosis. Ann Neurol. 2012; 71: 76-83. 



167 
 

133. Khedr EM, Ahmed MA, Darwish ES and Ali AM. The relationship between motor cortex excitability 
and severity of Alzheimer's disease: a transcranial magnetic stimulation study. Neurophysiologie clinique 
= Clinical neurophysiology. 2011; 41: 107-13. 
134. Fisk JD, Ritvo PG, Ross L, Haase DA, Marrie TJ and Schlech WF. Measuring the functional impact 
of fatigue: initial validation of the fatigue impact scale. Clinical infectious diseases : an official publication 
of the Infectious Diseases Society of America. 1994; 18 Suppl 1: S79-83. 
135. Zhou X, Fragala MS, McElhaney JE and Kuchel GA. Conceptual and methodological issues relevant 
to cytokine and inflammatory marker measurements in clinical research. Current opinion in clinical 
nutrition and metabolic care. 2010; 13: 541-7. 
136. Altara R, Manca M, Hermans KCM, et al. Diurnal rhythms of serum and plasma cytokine profiles 
in healthy elderly individuals assessed using membrane based multiplexed immunoassay. Journal of 
Translational Medicine. 2015; 13: 129. 
137. Luchetti S, van Eden CG, Schuurman K, van Strien ME, Swaab DF and Huitinga I. Gender differences 
in multiple sclerosis: induction of estrogen signaling in male and progesterone signaling in female lesions. 
Journal of neuropathology and experimental neurology. 2014; 73: 123-35. 
138. Nguyen LT, Ramanathan M, Weinstock-Guttman B, Baier M, Brownscheidle C and Jacobs LD. Sex 
differences in in vitro pro-inflammatory cytokine production from peripheral blood of multiple sclerosis 
patients. Journal of the neurological sciences. 2003; 209: 93-9. 
139. Fulton RC, Strutton PH, McGregor AH and Davey NJ. Fatigue-induced change in corticospinal drive 
to back muscles in elite rowers. Exp Physiol. 2002; 87: 593-600. 
140. Benedict RH, DeLuca J, Phillips G, LaRocca N, Hudson LD and Rudick R. Validity of the Symbol Digit 
Modalities Test as a cognition performance outcome measure for multiple sclerosis. Multiple sclerosis 
(Houndmills, Basingstoke, England). 2017; 23: 721-33. 
141. Fritz NE, Keller J, Calabresi PA and Zackowski KM. Quantitative measures of walking and strength 
provide insight into brain corticospinal tract pathology in multiple sclerosis. NeuroImage Clinical. 2017; 
14: 490-8. 
142. Spissu A, Cannas A, Ferrigno P, Pelaghi AE and Spissu M. Anatomic correlates of painful tonic 
spasms in multiple sclerosis. Movement disorders : official journal of the Movement Disorder Society. 
1999; 14: 331-5. 
143. Bonzano L, Tacchino A, Brichetto G, et al. Upper limb motor rehabilitation impacts white matter 
microstructure in multiple sclerosis. Neuroimage. 2014; 90: 107-16. 
144. Hemond CC and Bakshi R. Magnetic Resonance Imaging in Multiple Sclerosis. Cold Spring Harbor 
perspectives in medicine. 2018. 
145. Inglese M, Oesingmann N, Casaccia P and Fleysher L. Progressive multiple sclerosis and gray 
matter pathology: an MRI perspective. The Mount Sinai journal of medicine, New York. 2011; 78: 258-67. 
146. Houdayer E, Comi G and Leocani L. The Neurophysiologist Perspective into MS Plasticity. Frontiers 
in Neurology. 2015; 6: 193. 
147. Vucic S and Kiernan MC. Transcranial Magnetic Stimulation for the Assessment of 
Neurodegenerative Disease. Neurotherapeutics. 2017; 14: 91-106. 
148. Ni Z and Chen R. Transcranial magnetic stimulation to understand pathophysiology and as 
potential treatment for neurodegenerative diseases. Translational neurodegeneration. 2015; 4: 22. 
149. Ahmed RM, Ke YD, Vucic S, et al. Physiological changes in neurodegeneration - mechanistic 
insights and clinical utility. Nature reviews Neurology. 2018; 14: 259-71. 
150. Humm AM, Magistris MR, Truffert A, Hess CW and Rosler KM. Central motor conduction differs 
between acute relapsing-remitting and chronic progressive multiple sclerosis. Clinical neurophysiology : 
official journal of the International Federation of Clinical Neurophysiology. 2003; 114: 2196-203. 
151. Ayache SS, Creange A, Farhat WH, et al. Relapses in multiple sclerosis: effects of high-dose steroids 
on cortical excitability. Eur J Neurol. 2014; 21: 630-6. 



168 
 

152. Santarnecchi E, Rossi S, Bartalini S, et al. Neurophysiological Correlates of Central Fatigue in 
Healthy Subjects and Multiple Sclerosis Patients before and after Treatment with Amantadine. Neural 
plasticity. 2015; 2015: 616242. 
153. White AT, Vanhaitsma TA, Vener J and Davis SL. Effect of passive whole body heating on central 
conduction and cortical excitability in multiple sclerosis patients and healthy controls. J Appl Physiol 
(1985). 2013; 114: 1697-704. 
154. Severijns D, Lamers I, Kerkhofs L and Feys P. Hand grip fatigability in persons with multiple 
sclerosis according to hand dominance and disease progression. Journal of rehabilitation medicine. 2015; 
47: 154-60. 
155. Fritz NE, Newsome SD, Eloyan A, Marasigan RER, Calabresi PA and Zackowski KM. Longitudinal 
relationships among posturography and gait measures in multiple sclerosis. Neurology. 2015; 84: 2048-
56. 
156. Chung LH, Remelius JG, Van Emmerik RE and Kent-Braun JA. Leg power asymmetry and postural 
control in women with multiple sclerosis. Medicine and science in sports and exercise. 2008; 40: 1717-24. 
157. Sandroff BM, Sosnoff JJ and Motl RW. Physical fitness, walking performance, and gait in multiple 
sclerosis. Journal of the neurological sciences. 2013; 328: 70-6. 
158. Sutliff MH, Naft JM, Stough DK, Lee JC, Arrigain SS and Bethoux FA. Efficacy and safety of a hip 
flexion assist orthosis in ambulatory multiple sclerosis patients. Archives of physical medicine and 
rehabilitation. 2008; 89: 1611-7. 
159. Larson RD and White LJ. Asymmetrical Hip Bone Density in Multiple Sclerosis. International journal 
of MS care. 2011; 13: 43-7. 
160. Psarakis M, Greene D, Cole MH, Lord SR, Hoang P and Brodie MAD. Wearable technology reveals 
gait compensations, unstable walking patterns and fatigue in people with Multiple Sclerosis. Physiological 
measurement. 2018. 
161. Waubant E. Improving Outcomes in Multiple Sclerosis Through Early Diagnosis and Effective 
Management. The Primary Care Companion for CNS Disorders. 2012; 14: PCC.11016co2cc. 
162. Lamola G, Fanciullacci C, Sgherri G, et al. Neurophysiological Characterization of Subacute Stroke 
Patients: A Longitudinal Study. Front Hum Neurosci. 2016; 10: 574. 
163. Wahl M, Lauterbach-Soon B, Hattingen E, Hubers A and Ziemann U. Callosal anatomical and 
effective connectivity between primary motor cortices predicts visually cued bimanual temporal 
coordination performance. Brain Struct Funct. 2016; 221: 3427-43. 
164. Gagliardo A, Galli F, Grippo A, et al. Motor evoked potentials in multiple sclerosis patients without 
walking limitation: amplitude vs. conduction time abnormalities. Journal of neurology. 2007; 254: 220-7. 
165. Manogaran P, Vavasour I, Borich M, et al. Corticospinal tract integrity measured using transcranial 
magnetic stimulation and magnetic resonance imaging in neuromyelitis optica and multiple sclerosis. 
Multiple sclerosis (Houndmills, Basingstoke, England). 2016; 22: 43-50. 
166. Goss DA, Hoffman RL and Clark BC. Utilizing transcranial magnetic stimulation to study the human 
neuromuscular system. J Vis Exp. 2012. 
167. Julkunen P, Kononen M, Maatta S, et al. Longitudinal study on modulated corticospinal excitability 
throughout recovery in supratentorial stroke. Neuroscience letters. 2016; 617: 88-93. 
168. Farias da Guarda SN, Cohen LG, da Cunha Pinho M, et al. Interhemispheric Asymmetry of 
Corticomotor Excitability After Chronic Cerebellar Infarcts. Cerebellum (London, England). 2010; 9: 398-
404. 
169. Nepveu JF, Thiel A, Tang A, et al. A Single Bout of High-Intensity Interval Training Improves Motor 
Skill Retention in Individuals With Stroke. Neurorehabilitation and neural repair. 2017; 31: 726-35. 
170. Lopez-Gongora M, Querol L and Escartin A. A one-year follow-up study of the Symbol Digit 
Modalities Test (SDMT) and the Paced Auditory Serial Addition Test (PASAT) in relapsing-remitting 
multiple sclerosis: an appraisal of comparative longitudinal sensitivity. BMC neurology. 2015; 15: 40. 



169 
 

171. Hobart J, Lamping D, Fitzpatrick R, Riazi A and Thompson A. The Multiple Sclerosis Impact Scale 
(MSIS-29): a new patient-based outcome measure. Brain : a journal of neurology. 2001; 124: 962-73. 
172. Gray O, McDonnell G and Hawkins S. Tried and tested: the psychometric properties of the multiple 
sclerosis impact scale (MSIS-29) in a population-based study. Multiple sclerosis (Houndmills, Basingstoke, 
England). 2009; 15: 75-80. 
173. Seixas D, Foley P, Palace J, Lima D, Ramos I and Tracey I. Pain in multiple sclerosis: A systematic 
review of neuroimaging studies. NeuroImage : Clinical. 2014; 5: 322-31. 
174. Triggs WJ, Calvanio R and Levine M. Transcranial magnetic stimulation reveals a hemispheric 
asymmetry correlate of intermanual differences in motor performance. Neuropsychologia. 1997; 35: 
1355-63. 
175. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the 
McDonald criteria. Lancet Neurol. 2018; 17: 162-73. 
176. Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief 
screening tool for mild cognitive impairment. Journal of the American Geriatrics Society. 2005; 53: 695-9. 
177. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale 
(EDSS). Neurology. 1983; 33: 1444-52. 
178. Bohannon RW. Comfortable and maximum walking speed of adults aged 20-79 years: reference 
values and determinants. Age and ageing. 1997; 26: 15-9. 
179. Mathiowetz V, Weber K, Kashman N and Volland G. Adult norms for the Nine Hole Peg Test of 
finger dexterity. Occupational Therapy Journal of Research. 1985; 5: 24-38. 
180. Gilmore KL and Meyers JE. Using surface electromyography in physiotherapy research. The 
Australian journal of physiotherapy. 1983; 29: 3-9. 
181. Holm S. A Simple Sequentially Rejective Multiple Test Procedure. 1979, p.65-70. 
182. Sheridan LK, Fitzgerald HE, Adams KM, et al. Normative Symbol Digit Modalities Test performance 
in a community-based sample. Archives of clinical neuropsychology : the official journal of the National 
Academy of Neuropsychologists. 2006; 21: 23-8. 
183. Bernhardt J, Borschmann K, Boyd L, et al. Moving rehabilitation research forward: Developing 
consensus statements for rehabilitation and recovery research. International journal of stroke : official 
journal of the International Stroke Society. 2016; 11: 454-8. 
184. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK and Byblow WD. Functional potential in 
chronic stroke patients depends on corticospinal tract integrity. Brain : a journal of neurology. 2007; 130: 
170-80. 
185. Doughty C, Wang J, Feng W, Hackney D, Pani E and Schlaug G. Detection and Predictive Value of 
FA Changes of the CST in the Acute Phase of a Stroke. Stroke; a journal of cerebral circulation. 2016; 47: 
1520-6. 
186. Adam A, De Luca CJ and Erim Z. Hand dominance and motor unit firing behavior. Journal of 
neurophysiology. 1998; 80: 1373-82. 
187. DeLuca GC, Ebers GC and Esiri MM. Axonal loss in multiple sclerosis: a pathological survey of the 
corticospinal and sensory tracts. Brain : a journal of neurology. 2004; 127: 1009-18. 
188. Feuillet L, Pelletier J, Suchet L, et al. Prospective clinical and electrophysiological follow-up on a 
multiple sclerosis population treated with interferon beta-1 a: a pilot study. Multiple sclerosis (Houndmills, 
Basingstoke, England). 2007; 13: 348-56. 
189. Perretti A, Balbi P, Orefice G, et al. Post-exercise facilitation and depression of motor evoked 
potentials to transcranial magnetic stimulation: a study in multiple sclerosis. Clinical neurophysiology : 
official journal of the International Federation of Clinical Neurophysiology. 2004; 115: 2128-33. 
190. Zeller D, aufm Kampe K, Biller A, et al. Rapid-onset central motor plasticity in multiple sclerosis. 
Neurology. 2010; 74: 728-35. 



170 
 

191. Wirsching I, Buttmann M, Odorfer T, Volkmann J, Classen J and Zeller D. Altered motor plasticity 
in an acute relapse of multiple sclerosis. Eur J Neurosci. 2017. 
192. Mori F, Kusayanagi H, Monteleone F, et al. Short interval intracortical facilitation correlates with 
the degree of disability in multiple sclerosis. Brain Stimul. 2013; 6: 67-71. 
193. Jorgensen LM, Nielsen JE and Ravnborg M. MEP recruitment curves in multiple sclerosis and 
hereditary spastic paraplegia. Journal of the neurological sciences. 2005; 237: 25-9. 
194. Nisticò R, Mori F, Feligioni M, Nicoletti F and Centonze D. Synaptic plasticity in multiple sclerosis 
and in experimental autoimmune encephalomyelitis. Philosophical Transactions of the Royal Society B: 
Biological Sciences. 2014; 369: 20130162. 
195. Wassermann EM. Variation in the response to transcranial magnetic brain stimulation in the 
general population. Clinical neurophysiology : official journal of the International Federation of Clinical 
Neurophysiology. 2002; 113: 1165-71. 
196. Perciavalle V, Coco M, Alagona G, Maci T and Perciavalle V. Gender differences in changes of 
motor cortex excitability during elevated blood lactate levels. Somatosensory & motor research. 2010; 27: 
106-10. 
197. Bhandari A, Radhu N, Farzan F, et al. A meta-analysis of the effects of aging on motor cortex 
neurophysiology assessed by transcranial magnetic stimulation. Clinical neurophysiology : official journal 
of the International Federation of Clinical Neurophysiology. 2016; 127: 2834-45. 
198. McGregor KM, Crosson B, Mammino K, Omar J, García PS and Nocera JR. Influences of 12-Week 
Physical Activity Interventions on TMS Measures of Cortical Network Inhibition and Upper Extremity 
Motor Performance in Older Adults—A Feasibility Study. Frontiers in Aging Neuroscience. 2018; 9. 
199. List J, Kubke JC, Lindenberg R, et al. Relationship between excitability, plasticity and thickness of 
the motor cortex in older adults. Neuroimage. 2013; 83: 809-16. 
200. Bertini M, Ferrara M, De Gennaro L, et al. Corticospinal excitability and sleep: a motor threshold 
assessment by transcranial magnetic stimulation after awakenings from REM and NREM sleep. Journal of 
sleep research. 2004; 13: 31-6. 
201. Ly JQ, Gaggioni G, Chellappa SL, et al. Circadian regulation of human cortical excitability. Nature 
communications. 2016; 7: 11828. 
202. Specterman M, Bhuiya A, Kuppuswamy A, Strutton PH, Catley M and Davey NJ. The effect of an 
energy drink containing glucose and caffeine on human corticospinal excitability. Physiology & behavior. 
2005; 83: 723-8. 
203. Ziemann U, Reis J, Schwenkreis P, et al. TMS and drugs revisited 2014. Clinical neurophysiology : 
official journal of the International Federation of Clinical Neurophysiology. 2015; 126: 1847-68. 
204. Di Lazzaro V, Oliviero A, Pilato F, et al. Motor cortex hyperexcitability to transcranial magnetic 
stimulation in Alzheimer's disease. Journal of neurology, neurosurgery, and psychiatry. 2004; 75: 555-9. 
205. Pennisi G, Ferri R, Lanza G, et al. Transcranial magnetic stimulation in Alzheimer's Disease: A 
neurophysiological marker of cortical hyperexcitability. 2011, p.587-98. 
206. Philpott AL, Fitzgerald PB, Cummins TD and Georgiou-Karistianis N. Transcranial magnetic 
stimulation as a tool for understanding neurophysiology in Huntington's disease: a review. Neuroscience 
and biobehavioral reviews. 2013; 37: 1420-33. 
207. Eisen A, Braak H, Del Tredici K, Lemon R, Ludolph AC and Kiernan MC. Cortical influences drive 
amyotrophic lateral sclerosis. Journal of neurology, neurosurgery, and psychiatry. 2017; 88: 917-24. 
208. Seixas D, Foley P, Palace J, Lima D, Ramos I and Tracey I. Pain in multiple sclerosis: a systematic 
review of neuroimaging studies. NeuroImage Clinical. 2014; 5: 322-31. 
209. Grover G, Ploughman M, Philpott DT, et al. Environmental temperature and exercise modality 
independently impact central and muscle fatigue among people with multiple sclerosis. Multiple sclerosis 
journal - experimental, translational and clinical. 2017; 3: 2055217317747625. 



171 
 

210. Miller E, Saluk J, Morel A and Wachowicz B. Long-term effects of whole body cryostimulation on 
uric acid concentration in plasma of secondary progressive multiple sclerosis patients. Scandinavian 
journal of clinical and laboratory investigation. 2013; 73: 635-40. 
211. Wahl M, Hubers A, Lauterbach-Soon B, et al. Motor callosal disconnection in early relapsing-
remitting multiple sclerosis. Hum Brain Mapp. 2011; 32: 846-55. 
212. Schmierer K, Irlbacher K, Grosse P, Roricht S and Meyer BU. Correlates of disability in multiple 
sclerosis detected by transcranial magnetic stimulation. Neurology. 2002; 59: 1218-24. 
213. Brodie SM, Meehan S, Borich MR and Boyd LA. 5 Hz repetitive transcranial magnetic stimulation 
over the ipsilesional sensory cortex enhances motor learning after stroke. Front Hum Neurosci. 2014; 8: 
143. 
214. Wang CC, Wang CP, Tsai PY, Hsieh CY, Chan RC and Yeh SC. Inhibitory repetitive transcranial 
magnetic stimulation of the contralesional premotor and primary motor cortices facilitate poststroke 
motor recovery. Restorative neurology and neuroscience. 2014; 32: 825-35. 
215. Palm U, Ayache SS, Padberg F and Lefaucheur JP. Non-invasive brain stimulation therapy in 
multiple sclerosis: a review of tDCS, rTMS and ECT results. Brain Stimul. 2014; 7: 849-54. 
216. Nasios G, Messinis L, Dardiotis E and Papathanasopoulos P. Repetitive Transcranial Magnetic 
Stimulation, Cognition, and Multiple Sclerosis: An Overview. Behavioural neurology. 2018; 2018: 8584653. 
217. Ploughman M, Eskes GA, Kelly LP, et al. Synergistic Benefits of Combined Aerobic and Cognitive 
Training on Fluid Intelligence and the Role of IGF-1 in Chronic Stroke. Neurorehabilitation and neural 
repair. 2019: 1545968319832605. 
218. McDonnell MN, Buckley JD, Opie GM, Ridding MC and Semmler JG. A single bout of aerobic 
exercise promotes motor cortical neuroplasticity. J Appl Physiol (1985). 2013; 114: 1174-82. 
219. Mang CS, Snow NJ, Campbell KL, Ross CJ and Boyd LA. A single bout of high-intensity aerobic 
exercise facilitates response to paired associative stimulation and promotes sequence-specific implicit 
motor learning. J Appl Physiol (1985). 2014; 117: 1325-36. 
220. Ploughman M, Granter-Button S, Chernenko G, Tucker BA, Mearow KM and Corbett D. Endurance 
exercise regimens induce differential effects on brain-derived neurotrophic factor, synapsin-I and insulin-
like growth factor I after focal ischemia. Neuroscience. 2005; 136: 991-1001. 
221. Abraha B, Chaves AR, Kelly LP, et al. A Bout of High Intensity Interval Training Lengthened Nerve 
Conduction Latency to the Non-exercised Affected Limb in Chronic Stroke. Front Physiol. 2018; 9: 827. 
222. Steib S, Wanner P, Adler W, Winkler J, Klucken J and Pfeifer K. A Single Bout of Aerobic Exercise 
Improves Motor Skill Consolidation in Parkinson’s Disease. Frontiers in Aging Neuroscience. 2018; 10. 
223. Mori F, Ljoka C, Magni E, et al. Transcranial magnetic stimulation primes the effects of exercise 
therapy in multiple sclerosis. Journal of neurology. 2011; 258: 1281-7. 
224. Ziemann U, Muellbacher W, Hallett M and Cohen LG. Modulation of practice-dependent plasticity 
in human motor cortex. Brain : a journal of neurology. 2001; 124: 1171-81. 
225. Neva JL, Brown KE, Mang CS, Francisco BA and Boyd LA. An acute bout of exercise modulates both 
intracortical and interhemispheric excitability. Eur J Neurosci. 2017; 45: 1343-55. 
226. Nielsen JB and Cohen LG. The Olympic brain. Does corticospinal plasticity play a role in acquisition 
of skills required for high-performance sports? J Physiol. 2008; 586: 65-70. 
227. Agency IAE. Dual Energy X Ray Absorptiometry for Bone Mineral Density and Body Composition 
Assessment. Vienna: International Atomic Energy Agency, 2011. 
228. Pilutti LA and Motl RW. Body composition and disability in people with multiple sclerosis: A dual-
energy x-ray absorptiometry study. Multiple sclerosis and related disorders. 2019; 29: 41-7. 
229. Jakimovski D, Weinstock-Guttman B, Gandhi S, et al. Dietary and lifestyle factors in multiple 
sclerosis progression: results from a 5-year longitudinal MRI study. Journal of neurology. 2019. 
230. Laskey MA. Dual-energy X-ray absorptiometry and body composition. Nutrition. 1996; 12: 45-51. 



172 
 

231. Pilutti LA, Paulseth JE, Dove C, Jiang S, Rathbone MP and Hicks AL. Exercise Training in Progressive 
Multiple Sclerosis: A Comparison of Recumbent Stepping and Body Weight-Supported Treadmill Training. 
International journal of MS care. 2016; 18: 221-9. 
232. Krachler B, Savonen K, Komulainen P, Hassinen M, Lakka TA and Rauramaa R. Cardiopulmonary 
fitness is a function of lean mass, not total body weight: The DR’s EXTRA study. European Journal of 
Preventive Cardiology. 2015; 22: 1171-9. 
233. Di Lazzaro V, Oliviero A, Saturno E, et al. The effect on corticospinal volleys of reversing the 
direction of current induced in the motor cortex by transcranial magnetic stimulation. Experimental brain 
research. 2001; 138: 268-73. 
234. Liepert J, Weiss T, Meissner W, Steinrucke K and Weiller C. Exercise-induced changes of motor 
excitability with and without sensory block. Brain Res. 2004; 1003: 68-76. 
235. McGregor KM, Carpenter H, Kleim E, et al. Motor map reliability and aging: a TMS/fMRI study. 
Experimental brain research. 2012; 219: 97-106. 
236. Schättin A, Gennaro F, Egloff M, Vogt S and Bruin EDd. Physical Activity, Nutrition, Cognition, 
Neurophysiology, and Short-Time Synaptic Plasticity in Healthy Older Adults: A Cross-Sectional Study. 
Frontiers in Aging Neuroscience. 2018; 10. 
237. Potter-Baker KA, Varnerin NM, Cunningham DA, et al. Influence of Corticospinal Tracts from 
Higher Order Motor Cortices on Recruitment Curve Properties in Stroke. Frontiers in neuroscience. 2016; 
10: 79-. 
238. Werhahn KJ, Behrang-Nia M, Bott MC and Klimpe S. Does the recruitment of excitation and 
inhibition in the motor cortex differ? J Clin Neurophysiol. 2007; 24: 419-23. 
239. Wolters A, Ziemann U and Benecke R. The cortical silent period. 2012. 
240. Hesse S. Treadmill training with partial body weight support after stroke: a review. 
NeuroRehabilitation. 2008; 23: 55-65. 
241. Giangregorio LM, Hicks AL, Webber CE, et al. Body weight supported treadmill training in acute 
spinal cord injury: impact on muscle and bone. Spinal cord. 2005; 43: 649-57. 
242. Pilutti LA, Lelli DA, Paulseth JE, et al. Effects of 12 weeks of supported treadmill training on 
functional ability and quality of life in progressive multiple sclerosis: a pilot study. Archives of physical 
medicine and rehabilitation. 2011; 92: 31-6. 
243. MacKay-Lyons M, Makrides L and Speth S. Effect of 15% body weight support on exercise capacity 
of adults without impairments. Physical therapy. 2001; 81: 1790-800. 
244. Whaley MH, Brubaker PH, Otto RM and Armstrong LE. ACSM's guidelines for exercise testing and 
prescription. Philadelphia, Pa.: Lippincott Williams & Wilkins, 2006. 
245. Sheskin DJ. Handbook of Parametric and Nonparametric Statistical Procedures: Third Edition. New 
York, NY: CRC Press, 2003. 
246. Freitas C, Farzan F and Pascual-Leone A. Assessing brain plasticity across the lifespan with 
transcranial magnetic stimulation: why, how, and what is the ultimate goal? Frontiers in Neuroscience. 
2013; 7. 
247. Cook RD and Weisberg S. Residuals and Influence in Regression. Chapman & Hall, 1982. 
248. Smith AE, Goldsworthy MR, Garside T, Wood FM and Ridding MC. The influence of a single bout 
of aerobic exercise on short-interval intracortical excitability. Experimental brain research. 2014; 232: 
1875-82. 
249. Thabane L, Mbuagbaw L, Zhang S, et al. A tutorial on sensitivity analyses in clinical trials: the what, 
why, when and how. BMC medical research methodology. 2013; 13: 92-. 
250. Armstrong RA. When to use the Bonferroni correction. Ophthalmic and Physiological Optics. 2014; 
34: 502-8. 
251. Mang CS, Brown KE, Neva JL, Snow NJ, Campbell KL and Boyd LA. Promoting Motor Cortical 
Plasticity with Acute Aerobic Exercise: A Role for Cerebellar Circuits. Neural plasticity. 2016; 2016: 12. 



173 
 

252. Collett J, Meaney A, Howells K and Dawes H. Acute recovery from exercise in people with multiple 
sclerosis: an exploratory study on the effect of exercise intensities. Disability and rehabilitation. 2017; 39: 
551-8. 
253. Dehghani N, Peyrache A, Telenczuk B, et al. Dynamic Balance of Excitation and Inhibition in Human 
and Monkey Neocortex. Scientific reports. 2016; 6: 23176-. 
254. Stagg CJ, Bachtiar V and Johansen-Berg H. The role of GABA in human motor learning. Current 
biology : CB. 2011; 21: 480-4. 
255. Ziemann U. LTP-like plasticity in human motor cortex. Suppl Clin Neurophysiol. 2004; 57: 702-7. 
256. Liepert J, Restemeyer C, Kucinski T, Zittel S and Weiller C. Motor strokes: the lesion location 
determines motor excitability changes. Stroke. 2005; 36: 2648-53. 
257. Ward N. Assessment of cortical reorganisation for hand function after stroke. The Journal of 
physiology. 2011; 589: 5625-32. 
258. Singh AM, Duncan RE, Neva JL and Staines WR. Aerobic exercise modulates intracortical inhibition 
and facilitation in a nonexercised upper limb muscle. BMC sports science, medicine & rehabilitation. 2014; 
6: 23. 
259. Coco M, Alagona G, Rapisarda G, et al. Elevated blood lactate is associated with increased motor 
cortex excitability. Somatosensory & motor research. 2010; 27: 1-8. 
260. Schmolesky MT, Webb DL and Hansen RA. The effects of aerobic exercise intensity and duration 
on levels of brain-derived neurotrophic factor in healthy men. Journal of sports science & medicine. 2013; 
12: 502-11. 
261. Thompson AJ, Baranzini SE, Geurts J, Hemmer B and Ciccarelli O. Multiple sclerosis. Lancet. 2018; 
391: 1622-36. 
262. Weiss S, Mori F, Rossi S and Centonze D. Disability in multiple sclerosis: when synaptic long-term 
potentiation fails. Neuroscience and biobehavioral reviews. 2014; 43: 88-99. 
263. Ciotti JR and Cross AH. Disease-Modifying Treatment in Progressive Multiple Sclerosis. Curr Treat 
Options Neurol. 2018; 20: 12. 
264. Thompson AJ. Challenge of progressive multiple sclerosis therapy. Curr Opin Neurol. 2017; 30: 
237-40. 
265. Nicoletti CG, Monteleone F, Marfia GA, et al. Oral D-Aspartate enhances synaptic plasticity reserve 
in progressive multiple sclerosis. Multiple Sclerosis Journal. 2019; 0: 1352458519828294. 
266. Voss MW, Vivar C, Kramer AF and van Praag H. Bridging animal and human models of exercise-
induced brain plasticity. Trends in cognitive sciences. 2013; 17: 525-44. 
267. Lin T-W, Tsai S-F and Kuo Y-M. Physical Exercise Enhances Neuroplasticity and Delays Alzheimer's 
Disease. Brain Plast. 2018; 4: 95-110. 
268. Filli L and Schwab ME. Structural and functional reorganization of propriospinal connections 
promotes functional recovery after spinal cord injury. Neural Regen Res. 2015; 10: 509-13. 
269. Heine M, van de Port I, Rietberg MB, van Wegen EE and Kwakkel G. Exercise therapy for fatigue 
in multiple sclerosis. Cochrane Database Syst Rev. 2015: CD009956. 
270. Motl RW and Pilutti LA. The benefits of exercise training in multiple sclerosis. Nature reviews 
Neurology. 2012; 8: 487-97. 
271. Mark VW, Taub E, Uswatte G, et al. Phase II Randomized Controlled Trial of Constraint-Induced 
Movement Therapy in Multiple Sclerosis. Part 1: Effects on Real-World Function. Neurorehabilitation and 
neural repair. 2018; 32: 223-32. 
272. Rasova K, Prochazkova M, Tintera J, Ibrahim I, Zimova D and Stetkarova I. Motor programme 
activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study. 
International journal of rehabilitation research Internationale Zeitschrift fur Rehabilitationsforschung 
Revue internationale de recherches de readaptation. 2015; 38: 49-54. 



174 
 

273. Bonzano L, Pedulla L, Tacchino A, et al. Upper limb motor training based on task-oriented 
exercises induces functional brain reorganization in patients with multiple sclerosis. Neuroscience. 2019; 
410: 150-9. 
274. Stagg CJ, Bestmann S, Constantinescu AO, et al. Relationship between physiological measures of 
excitability and levels of glutamate and GABA in the human motor cortex. J Physiol. 2011; 589: 5845-55. 
275. Chalah MA, Riachi N, Ahdab R, Créange A, Lefaucheur J-P and Ayache SS. Fatigue in Multiple 
Sclerosis: Neural Correlates and the Role of Non-Invasive Brain Stimulation. Frontiers in Cellular 
Neuroscience. 2015; 9. 
276. Krupp LB, LaRocca NG, Muir-Nash J and Steinberg AD. The fatigue severity scale. Application to 
patients with multiple sclerosis and systemic lupus erythematosus. Archives of neurology. 1989; 46: 1121-
3. 
277. Bredin SS, Gledhill N, Jamnik VK and Warburton DE. PAR-Q+ and ePARmed-X+: new risk 
stratification and physical activity clearance strategy for physicians and patients alike. Can Fam Physician. 
2013; 59: 273-7. 
278. Rossi S, Hallett M, Rossini PM, Pascual-Leone A and Safety of TMSCG. Safety, ethical 
considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical 
practice and research. Clinical neurophysiology : official journal of the International Federation of Clinical 
Neurophysiology. 2009; 120: 2008-39. 
279. IAE A. Duel Energy X-ray Absorptiometry for Bone Mineral Density and Body Composition 
Assessment. Vienna: International Atomic Energy Agency. 2011. 
280. Kelly LP, Devasahayam AJ, Chaves AR, et al. Intensifying Functional Task Practice to Meet Aerobic 
Training Guidelines in Stroke Survivors. Front Physiol. 2017; 8: 809. 
281. Krachler B, Savonen K, Komulainen P, Hassinen M, Lakka TA and Rauramaa R. Cardiopulmonary 
fitness is a function of lean mass, not total body weight: The DR's EXTRA study. Eur J Prev Cardiol. 2015; 
22: 1171-9. 
282. Krupp LB, LaRocca NG, Muir-Nash J and Steinberg AD. The fatigue severity scale. Application to 
patients with multiple sclerosis and systemic lupus erythematosus. Archives of Neurology. 1989; 46: 1121-
3. 
283. Fisk JD, Ritvo PG, Ross L, Haase DA, Marrie TJ and Schlech WF. Measuring the functional impact 
of fatigue: initial validation of the fatigue impact scale. Clinical infectious diseases : an official publication 
of the Infectious Diseases Society of America. 1994; 18 Suppl 1: S79-83. 
284. Learmonth YC, Dlugonski D, Pilutti LA, Sandroff BM, Klaren R and Motl RW. Psychometric 
properties of the Fatigue Severity Scale and the Modified Fatigue Impact Scale. Journal of the neurological 
sciences. 2013; 331: 102-7. 
285. Walsh JA, Stapley PJ, Shemmell JBH, Lepers R and McAndrew DJ. Global Corticospinal Excitability 
as Assessed in A Non-Exercised Upper Limb Muscle Compared Between Concentric and Eccentric Modes 
of Leg Cycling. Sci Rep. 2019; 9: 19212. 
286. Groppa S, Oliviero A, Eisen A, et al. A practical guide to diagnostic transcranial magnetic 
stimulation: report of an IFCN committee. Clinical neurophysiology : official journal of the International 
Federation of Clinical Neurophysiology. 2012; 123: 858-82. 
287. Thirugnanasambandam N, Khera R, Wang H, Kukke SN and Hallett M. Distinct interneuronal 
networks influence excitability of the surround during movement initiation. Journal of neurophysiology. 
2015; 114: 1102-8. 
288. Burke S. Missing values, outliers, robust statistics & non-parametric methods. Scientific Data 
Management. 1998; 1: 32-8. 
289. Friedman M. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of 
Variance. Journal of the American Statistical Association. 1937; 32: 675-701. 



175 
 

290. Forsyth JK, Bachman P, Mathalon DH, Roach BJ and Asarnow RF. Augmenting NMDA receptor 
signaling boosts experience-dependent neuroplasticity in the adult human brain. Proceedings of the 
National Academy of Sciences. 2015; 112: 15331. 
291. Hunt DL and Castillo PE. Synaptic plasticity of NMDA receptors: mechanisms and functional 
implications. Curr Opin Neurobiol. 2012; 22: 496-508. 
292. Silasi G and Murphy TH. Stroke and the connectome: how connectivity guides therapeutic 
intervention. Neuron. 2014; 83: 1354-68. 
293. Mori F, Ljoka C, Magni E, et al. Transcranial magnetic stimulation primes the effects of exercise 
therapy in multiple sclerosis. Journal of neurology. 2011; 258: 1281-7. 
294. Yacyshyn AF, Woo EJ, Price MC and McNeil CJ. Motoneuron responsiveness to corticospinal tract 
stimulation during the silent period induced by transcranial magnetic stimulation. Experimental brain 
research. 2016; 234: 3457-63. 
295. Fernandez F and Garner CC. Over-inhibition: a model for developmental intellectual disability. 
Trends in neurosciences. 2007; 30: 497-503. 
296. Stagg CJ, Bachtiar V, Amadi U, et al. Local GABA concentration is related to network-level resting 
functional connectivity. eLife. 2014; 3: e01465. 
297. Sullivan KJ, Brown DA, Klassen T, et al. Effects of Task-Specific Locomotor and Strength Training in 
Adults Who Were Ambulatory After Stroke: Results of the STEPS Randomized Clinical Trial. Physical 
therapy. 2007; 87: 1580-602. 
298. Visintin M, Barbeau H, Korner-Bitensky N and Mayo NE. A new approach to retrain gait in stroke 
patients through body weight support and treadmill stimulation. Stroke. 1998; 29: 1122-8. 
299. Vucic S, Burke T, Lenton K, et al. Cortical dysfunction underlies disability in multiple sclerosis. 
Multiple sclerosis (Houndmills, Basingstoke, England). 2012; 18: 425-32. 
300. Mango D, Nistico R, Furlan R, Finardi A, Centonze D and Mori F. PDGF Modulates Synaptic 
Excitability and Short-Latency Afferent Inhibition in Multiple Sclerosis. Neurochemical research. 2018. 
301. Wirsching I, Buttmann M, Odorfer T, Volkmann J, Classen J and Zeller D. Altered motor plasticity 
in an acute relapse of multiple sclerosis. Eur J Neurosci. 2018; 47: 251-7. 
302. Fisher BE, Wu AD, Salem GJ, et al. The effect of exercise training in improving motor performance 
and corticomotor excitability in people with early Parkinson's disease. Archives of physical medicine and 
rehabilitation. 2008; 89: 1221-9. 
303. Lefaucheur J-P. Motor cortex dysfunction revealed by cortical excitability studies in Parkinson's 
disease: influence of antiparkinsonian treatment and cortical stimulation. Clinical Neurophysiology. 2005; 
116: 244-53. 
304. Thomas SL and Gorassini MA. Increases in corticospinal tract function by treadmill training after 
incomplete spinal cord injury. Journal of neurophysiology. 2005; 94: 2844-55. 
305. Creange A, Lefaucheur JP, Balleyguier MO and Galacteros F. Iron depletion induced by 
bloodletting and followed by rhEPO administration as a therapeutic strategy in progressive multiple 
sclerosis: a pilot, open-label study with neurophysiological measurements. Neurophysiologie clinique = 
Clinical neurophysiology. 2013; 43: 303-12. 
306. Gruet M. Fatigue in Chronic Respiratory Diseases: Theoretical Framework and Implications For 
Real-Life Performance and Rehabilitation. Frontiers in Physiology. 2018; 9. 
307. Chang WH, Fried PJ, Saxena S, et al. Optimal number of pulses as outcome measures of 
neuronavigated transcranial magnetic stimulation. Clinical neurophysiology : official journal of the 
International Federation of Clinical Neurophysiology. 2016; 127: 2892-7. 
308. Du X, Summerfelt A, Chiappelli J, Holcomb HH and Hong LE. Individualized brain inhibition and 
excitation profile in response to paired-pulse TMS. Journal of motor behavior. 2014; 46: 39-48. 
309. Regan RF. The vulnerability of spinal cord neurons to excitotoxic injury: comparison with cortical 
neurons. Neuroscience letters. 1996; 213: 9-12. 



176 
 

 

  



177 
 

Appendices 

Appendix 1: Ethics Approval (Chapter 2 and 3). 

  



178 
 

Appendix 2: Ethics Approval (Chapter 4 and 5) 

 

  



179 
 

 

  



180 
 

 


