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Abstract

The interactions between the lower atmosphere and the land surface are associated

with weather and climate phenomena such as the duration, frequency and intensity

of extreme temperature and precipitation events. Thus, the representation of land-

atmosphere interactions in climate model simulations is crucial for projecting future

changes in the statistics of extreme events as realistically as possible. Given the im-

portance of the land-atmosphere interaction, the purpose of the thesis is to evaluate

climate simulations performed by General Circulation Models (GCMs) and Regional

Climate Models (RCMs) and examine the role of the Land Surface Model (LSM)

component and the horizontal resolution over North America. For this purpose, I

analyze a large set of simulations from GCMs and RCMs used by the fifth assessment

report of the Intergovernmental Panel on Climate Change (IPCC) as well as my own

simulations performed by the Weather Research and Forecasting (WRF) model. Re-

sults show that GCM simulations present large uncertainties in the representation of

land-atmosphere interactions in comparison with observations. This work also reveals

a dependence of the simulated land-atmosphere interactions on the LSM components

used in regional and global simulations. Additionally, the LSM component is identified

as an important source of uncertainty in the simulation of extreme temperature and

precipitation events. Increasing the horizontal resolution also affects the simulation of
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land-atmosphere interactions, which lead to the intensification of precipitation, evap-

otranspiration and soil moisture at low latitudes; that is increased latent heat flux,

soil moisture, and precipitation. The impact of both factors, horizontal resolution

and the LSM, is larger in summer in agreement with the summer intensification of

land-atmosphere interactions reported in the literature. The comparison of model

simulations and observations indicates that the use of the most comprehensive LSM

component available in WRF, the Community Land Model version 4 (CLM4), leads

to a better representation of temperature climatologies. In contrast, finer horizontal

resolutions are associated with larger biases in the WRF simulation of precipitation

climatology, due to the overestimation of precipitation in the WRF model. Due to the

large effect of the LSM component on the simulation of near-surface conditions shown

in this dissertation, the use of simple version of LSM component in GCMs, RCMs

or reanalyses can be an important limitation in climate simulations and reanalysis

products.
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Chapter 1
Introduction

1.1 Background

Climate is changing across our planet. The current difference between the incoming

and outgoing shortwave and longwave radiation has been leading to a small positive

energy imbalance that increases the global heat content of the Earth’s system (Hansen

et al., 2005, 2011). The Earth’s energy imbalance is affected by both natural and hu-

man forcings (Hansen et al., 2005). For example, natural fluctuations in solar activity

and volcanic eruptions influence the energy imbalance by changing the incoming and

outgoing radiation (Trenberth et al., 2014). Human activities are responsible for this

energy imbalance through emissions of greenhouse gasses and aerosols, which influence

atmospheric chemistry and lead to changes in the absorbed, scattered and reflected

radiation. Additionally, human activities can modify the Earth’s energy imbalance,

for example modifying surface albedo through changes in vegetation, land surface

properties, snow cover and sea ice (Cubasch et al., 2013).

The Earth’s energy imbalance influences weather and climate processes with im-

portant consequences for the environment and society. Examples are the changes

in probability of occurrence, duration and intensity of temperature and precipitation

3
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extremes (Hartmann et al., 2013). Regional Climate Models (RCMs) and General Cir-

culation Models (GCMs) are currently the most useful tools available for the future

projection and study of climate change. These tools allow us to explore ways human

activities affect the Earth’s climate and to project this knowledge into the future in

order to provide information for mitigation and adaptation strategies. Climate mod-

els are becoming more sophisticated over time, improving their representation of the

Earth’s climate and producing useful information about climate change. Climate mod-

els used by the fifth Assessment Report of the Intergovernmental Panel on Climate

Change (IPCC) include numerous model components to simulate climate dynamics

(Taylor et al., 2012). These climate models typically include an atmospheric model

component, an ocean model component and a Land Surface Model (LSM) component,

among others (e.g. components responsible for the simulation of the cryosphere and

the carbon cycle). Although the new generation of climate models have shown im-

provements in the representation of the Earth’s climate subsystems, the uncertainty

in their climate projections is still large (Flato et al., 2013).

The interactions between the lower atmosphere and the land surface determine

the strength of land-atmosphere coupling, whose representation in climate models is

currently attracting considerable interest among scientists. The lower atmosphere

and the land surface are hydrologically and energetically coupled, thus land surface

variations in temperature, moisture, albedo, etc., affect and are affected by atmo-

spheric processes acting on daily to seasonal scales through exchanges of water and

energy (Bonan, 1995; Lawrence et al., 2007; Phillips et al., 2014; Smerdon et al.,

2004, 2006a). For instance, variations in surface heat fluxes induced by soil moisture

availability yield variations in precipitation (Koster et al., 1995; Wang et al., 2010a).

Additionally, other exchanges take place at the land surface, such as exchanges of mat-

ter in the form of gasses related to biogeochemical cycles, which also alter weather
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and climate evolution (Lawrence et al., 2007; Schuur et al., 2001; Skopp et al., 1990;

Stark et al., 1995).

Land-atmosphere coupling has been associated with changes in the mean state of

several variables, but also in their variability, and in the probability, magnitude, and

duration of temperature and precipitation extremes (Guo et al., 2013; Hirschi et al.,

2011; Lorenz et al., 2015). Some specific events that have been related to changes in

land-atmosphere interactions are: the Dust Bowl drought in the United States (US)

(Hu et al., 2018b), the 2003 European heat wave (Fischer et al., 2007) and the 2010

Russian Heatwave (Hauser et al., 2016). Due to the strong effect of land-atmosphere

interactions on the climate system, the representation of land-atmosphere coupling

has been employed as a criterion for the evaluation of climate model performance

(Dirmeyer et al., 2006a; Ferguson et al., 2012; Henderson-Sellers et al., 1995; Knist

et al., 2016; Koster et al., 2006b; Seneviratne et al., 2013). However, evaluating

climate models using metrics based on land-atmosphere coupling is difficult due to

the challenges of measuring land-atmosphere interactions and the lack of observational

data above and below the ground surface useful for the evaluation of land-atmosphere

interactions (Guo et al., 2006; Seneviratne et al., 2008; Seneviratne et al., 2010).

1.1.1 Water and energy balance at the surface

The coupling between the land surface and the lower atmosphere is driven by the

water and energy balance at the air-ground interface. The water balance (Figure 1.1)

for a surface soil layer without lateral water exchanges can be represented by:

dS

dt
= PRE − E − Q, (1.1)
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Figure 1.1: Components of the water balance at the surface for an infinitesimally small
ground surface layer. PRE is precipitation, E is evapotranspiration from soils and vegetation,
and Q is river discharge including surface runoff and groundwater flow.

where dS
dt

is the change in water content within the surface soil layer (soil moisture,

surface water, snow, ice and ground water). PRE is precipitation, Q is the river dis-

charge (surface runoff and groundwater flow), and E is evapotranspiration, including

soil evaporation, vegetation evaporation, vegetation transpiration, snow sublimation

and evaporation from surface water (Seneviratne et al., 2010; Wang et al., 2012a).

The term dS
dt

tends to zero for an infinitesimally small soil layer at annual and longer

time scales, however, its value may not always be negligible depending on the region

(Hobbins et al., 2001; Teuling et al., 2009; Wang et al., 2012a).

The energy balance for a similar surface soil layer can be represented by:

dH

dt
= RNET − LH − HFX − GHF, (1.2)

where dH
dt

is the energy variation within the surface soil layer, including terms asso-

ciated with the soil water content, such as temperature change, phase changes from

freezing or melting soils and from snow melting systems. RNET is the net radiation

absorbed by soil defined as the sum of incident downward and upward shortwave

(S ↓ −S ↑) and longwave (L ↓ −L ↑) radiation (Equation 1.3).

RNET = S ↓ −S ↑ +L ↓ −L ↑ . (1.3)
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LH in Equation 1.2 is the latent heat flux, defined as the energy used in evap-

otranspiration (E in Equation 1.1). HFX is the sensible heat flux and GHF is the

ground heat flux to deeper soil layers. These surface fluxes are given by the following

equations (Bonan, 2002):

a) LH = −ρCp

γrw

(ea − e∗[Ts]), b) HFX = −ρCp

rH

(Ta − Ts), c) GHF = κ
∆T

∆z
, (1.4)

where ρ is the density of air, which varies with temperature and humidity, Cp is the

heat capacity of the air at constant pressure, γ is the psychrometric constant, which

depends on Cp, pressure and the latent heat of vaporization or sublimation; rw and rH

are resistances that depend on wind speed and surface state, ea is the vapor pressure

of air, e∗[Ts] is the saturation vapor pressure at the surface temperature (Ts) and Ta

is the air temperature. In the ground heat flux equation (Equation 1.4c), κ represents

the thermal conductivity of the soil, varying with soil composition and water or ice

content and ∆T
∆z

is the temperature gradient between the surface and a soil layer at z.

The term dH
dt

from the energy balance equation tends to zero for an infinitesimally

small ground surface layer at annual and longer time scales (Bonan, 2002; Seneviratne

et al., 2010; Wang et al., 2012a). Thus, the energy balance at the surface can be

described as shown in Figure 1.2. Additionally, the reflected shortwave radiation (S ↑

in Equation 1.3) is equal to αS ↓, where α is the surface albedo, while the outgoing

longwave radiation (L ↑) is defined as L ↑ ∝ σT 4
s , where Ts is surface temperature and

σ is the Stefan-Boltzmann constant. The incoming longwave radiation (L ↓) includes

the longwave radiation emitted from the atmosphere due to atmospheric temperature

and the proportion of the outgoing longwave radiation that is reflected by atmospheric

mass to the surface, due to the effect of greenhouse gases, such as water vapor and
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Figure 1.2: Components of the energy balance at the surface for an infinitesimally small
ground surface layer. S↓, S↑ are the incident downward and upward shortwave radiation.
L↓, L↑ are the incident downward and upward longwave radiation. LH is the latent heat
flux, HFX is the sensible heat flux and GHF is the ground heat flux at the surface.

atmospheric Carbon Dioxide (CO2) (Bonan, 2002; Seneviratne et al., 2010; Wang

et al., 2012a).

As seen in Equations 1.1 and 1.2, the water and energy balance at the surface are

coupled through the evapotranspiration (E) and latent heat flux (LH) terms. The

evapotranspiration term corresponds to the water transferred from the land surface

to the atmosphere through wind turbulence. This exchange of water involves a phase

change of water or ice into water vapor, which absorbs energy from the soil surface

(LH), leading to the cooling of the soil (Mao et al., 2015; Seneviratne et al., 2010;

Wang et al., 2012a). Evapotranspiration has two limiting factors: soil water content

and available energy. Variations in one of the two limiting factors determine the

amount of water that is exchanged with the atmosphere and the required energy in the

process, considering the given near-surface conditions and land cover. Variations in
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Figure 1.3: Soil moisture - climate feedbacks: soil moisture - temperature feedback (left),
a decrease in soil moisture limits latent heat flux affecting the partition of energy into la-
tent and sensible heat flux, and therefore affecting surface temperatures. Soil moisture
- Precipitation (center), an increase in precipitation leads to an increase in soil moisture
enhancing latent heat flux and affecting the formation of clouds and precipitation. Soil
moisture -Stability of the planetary boundary layer (right), the previous soil moisture feed-
backs modify atmospheric conditions (temperature and water content) affecting the depth
and stability of the planetary boundary layer.

soil moisture induce evapotranspiration changes in soil-moisture limited areas, while

in areas where soil moisture is plentiful but available energy is the limiting factor,

high (low) net radiation increases (decreases) evapotranspiration (Koster et al., 2004a;

Seneviratne et al., 2006).

Soil moisture plays a key role in several weather and climate processes through its

impact on the water and energy balance at the surface in soil-moisture limited regions.

Studies based on observational data and models’ outputs have shown the impact of

soil moisture on air temperature, the stability of the atmospheric boundary layer and

precipitation rates in summer (e.g. Hirschi et al., 2011; Jaeger et al., 2011; Koster et

al., 2003; Santanello-Jr. et al., 2011). Our knowledge about the processes that explain

soil moisture - climate feedbacks is still developing, but can be summarized in three

main processes (Figure 1.3): i) soil moisture - temperature feedback: decreased soil

moisture alters the surface energy balance, limiting the latent heat flux component

and leading to more available energy for the sensible and ground heat fluxes, induc-
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ing an increase in surface air and soil temperatures. Increased temperature implies

higher vapor pressure deficit and evaporative demand, leading to a potential increase

in evapotranspiration and possibly a further decrease in soil moisture, closing the

loop of soil moisture and surface air temperature (Berg et al., 2015; Herold et al.,

2016; Hirsch et al., 2014b; Jaeger et al., 2011; Lorenz et al., 2016). ii) Soil moisture

- precipitation feedback (i.e. moisture recycling): higher precipitation rates at the

surface lead to higher soil moisture anomalies in unsaturated soils when infiltration

is possible. Higher soil moisture can lead to higher evapotranspiration in areas where

soil moisture is the limiting factor (Cook et al., 2006; Koster et al., 2003, 2004a;

Lorenz et al., 2016). However, a negative relationship between soil moisture and evap-

otranspiration can also be found, because increasing evapotranspiration decreases soil

moisture. The final change in evapotranspiration resulting from these competing pro-

cesses will affect precipitation rates (Seneviratne et al., 2010). Some studies employing

climate models have reported a correlation between soil-moisture/evapotranspiration

and precipitation, which may be positive or negative depending on the region (Ek

et al., 2004; Hohenegger et al., 2009). iii) Soil moisture - stability of the atmospheric

boundary layer feedback: soil moisture locally affects the growth and entrainment of

the atmospheric boundary layer by moistening/drying and cooling/heating the lower

atmosphere through changes in the energy partition at the surface (Santanello-Jr. et

al., 2007). Also, changes in the atmospheric boundary layer’s depth and state may

lead to the formation or disappearance of clouds, inducing variations in precipitation

and affecting the water and ice content of soils, which can alter soil moisture recycling

(Ek et al., 2004; Santanello-Jr. et al., 2007, 2011). In addition to the soil moisture

impact on climate, soil moisture anomalies have been related to biogeochemical cycles,

such as the carbon and nitrogen cycles, through relationships with vegetation tran-

spiration, photosynthesis, and microbial activities (Dirmeyer et al., 2006b; Lawrence
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et al., 2007; Schuur et al., 2001; Skopp et al., 1990; Stark et al., 1995).

The available energy at the surface can be limited by changes in surface albedo,

leading to variations in the outgoing shortwave radiation. Several processes lead to

changes in surface albedo, e.g. variations in the water content of the soil, changes in

land cover and land uses. A high albedo increases the outgoing shortwave radiation

at the surface, limiting the energy available for moistening and heating the lower

atmosphere by latent and sensible heat fluxes, and therefore, limiting soil moisture

impact on temperature, precipitation and stability of the atmospheric boundary layer

(Ban-Weiss et al., 2011; Lejeune et al., 2017; Wild et al., 2015).

Other surface processes affect the water and energy balance, such as variations in

wind speed and direction or the presence of dust in the lower atmosphere. Changes

in land cover and land uses vary surface roughness, which leads to changes in the

direction and velocity of wind. These wind changes influence the energy partition at

the surface by altering soil moisture content and latent and sensible heat fluxes (see

Equation 1.4a and 1.4b), therefore, limiting the water and energy exchanges between

the lower atmosphere and the shallow subsurface (Wild et al., 2010; Zhou et al.,

2016a). Dust also influences the radiation budget and precipitation by direct and

indirect effects on the surface energy budget (Cook et al., 2008; Solmon et al., 2008).

Dust absorbs and scatters the incoming solar radiation, limiting the net radiation

absorbed by the soil, and the energy available for evapotranspiration. The dust-

induced limitation in evapotranspiration may affect precipitation by the feedbacks

described above.
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1.1.2 Impacts of land surface processes on land-atmosphere

interactions

As mentioned above, land surface processes alter the water and energy balance at

the surface, i.e. land-atmosphere interactions, through changes in near-surface soil

and air conditions (temperature, soil moisture, radiation, etc.) and land properties

(roughness, albedo, dust, etc.). During the last decade, vegetation cover has received

much attention due to its effect on land-atmosphere interactions. Changes in veg-

etation cover, such as deforestation, modify the carbon cycle due to a reduction of

photosynthesis activity and the return of stored carbon to the ground and the at-

mosphere as material decays and burns. Additionally, vegetation activity alters the

water and energy exchanges between the shallow subsurface and the lower atmosphere

by changing albedo, evapotranspiration and surface roughness (Krinner et al., 2005).

The effect of changes in vegetation on climate varies geographically and temporally,

depending on the type of land cover; grass, forest, agriculture terrains, etc. The effect

of deforestation and afforestation on climate at local and regional scales as well as at

different temporal scales from monthly to centennial has been studied using satellite

data and climate models (Garnaud et al., 2015; Li et al., 2016; Pu et al., 2012; Wil-

helm et al., 2015). These studies have reported a latitudinal pattern in the impact

of deforestation on temperature, inducing a warming in tropical areas and a cooling

in boreal regions (Li et al., 2016). This latitudinal pattern is mainly caused by the

competing effects of albedo and evapotranspiration on temperature (Pu et al., 2012;

Zscheischler et al., 2015). Several studies have also shown a local impact of deforesta-

tion on annual temperature and monthly rainfall anomalies over the Amazonian basin

(Lejeune et al., 2015; Lorenz et al., 2014). Usually, changes in land cover imply shifts

in soil moisture regimes, thus the impact of vegetation changes on climate is often
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associated with soil moisture feedbacks (Alessandri et al., 2008; Meng et al., 2014).

Snow cover influences the energy and water balance at the surface by changing sur-

face albedo, altering the reflected solar radiation and consequently the net radiation

absorbed by the ground. The decrease in energy induced by snow’s high albedo af-

fects the energy partition at the surface, decreasing the turbulent heat flux exchanges

between the lower atmosphere and the ground surface (Bonan, 2002). Additionally,

melting of snow and soil ice generates an energy sink in spring due to the large amount

of latent heat required to freeze and thaw snow cover and soil water (Gouttevin et al.,

2012; Koven et al., 2013). Snow cover acts as an insulator between the shallow subsur-

face and the lower atmosphere (Goodrich, 1982b; Sokratov et al., 2002). Changes in

the energy partition at the surface, arising from the insulating effect of snow and the

increase in soil water content caused by snow and ice melting, affect climate dynamics

following the previously mentioned soil moisture - climate feedbacks (Thomas et al.,

2016).

1.1.3 Land-atmosphere interactions in a changing climate

Anthropogenic activities are expected to affect numerous processes associated with

land-atmosphere interactions. Changes in greenhouse gases, land cover, and land uses

may lead to shifts of climate and soil moisture regimes resulting in changes in the

strength and the location of areas with strong land-atmosphere coupling (Dirmeyer

et al., 2012; Seneviratne et al., 2013). This in turn has been linked to variations in the

mean state and variability of near-surface conditions, as well as in the frequency, inten-

sity and duration of extreme temperature and precipitation events (Guo et al., 2013;

Hirschi et al., 2011; Lorenz et al., 2015). The relationship between land-atmosphere

interactions and extreme events has been demonstrated using observational data and

climate model simulations in many regions of the world (Dirmeyer et al., 2013c; Koster
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et al., 2003; Phillips et al., 2014; Wang et al., 2010a). For example, analyses based on

observational data indicate a strong relationship between precipitation deficits and

hot extremes (Hauser et al., 2016; Hirschi et al., 2011; Mueller et al., 2012) and a

negative relationship between preceding soil moisture conditions and summer monthly

maximum temperatures in Europe (Herold et al., 2016). The importance of soil mois-

ture for the projections of heat waves has also been shown in modeling studies (Berg

et al., 2015; Decker et al., 2015; Lorenz et al., 2016). Additionally, the strength of

land-atmosphere coupling may increase under changing climate conditions, leading to

intensified impacts of land use and cover changes in the future (Dirmeyer et al., 2014).

Climate model projections under different greenhouse gas emission scenarios sug-

gest several changes in climate and soil moisture regimes around the world, which

may alter land-atmosphere interactions. These shifts of climate regimes are not only

induced by increased atmospheric greenhouse gas concentrations, but also by any

modification of the climate system resulting in significant soil moisture changes, such

as variations in aerosols concentrations due to volcanic eruptions (Mao et al., 2015;

Seneviratne et al., 2006). Future shifts of climate regimes lead to changes in the

location of transitional climates, and thus, to changes in the areas with strong land-

atmosphere coupling (Guo et al., 2006; Koster et al., 2002). A poleward shift of

climate regimes has been identified in the Northern Hemisphere consistent with the

projected changes in radiation, temperature, and soil moisture (Flato et al., 2013).

For example, soil-moisture shifts have been identified over Central Europe, and North

Eastern United States (Flato et al., 2013). The future transitional climate zones may

become areas with enhanced land-atmosphere interactions and therefore increased cli-

mate variability. However, soil moisture may both lead to an increase or decrease

in climate variability, depending on the original climate regime (Seneviratne et al.,

2010).
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Land-atmosphere interactions have also been related to some inter-model differ-

ences and uncertainties in the simulation of climate change impacts on natural and

human systems. Several studies have identified the representation and understanding

of land-atmosphere interactions as key elements for climate predictability at several

temporal and spatial scales, and for advances of many climate applications important

for society such as seasonal forecasting and climate change modeling (Berg et al., 2015;

Hirschi et al., 2014; Lorenz et al., 2016; Seneviratne et al., 2008).

1.1.4 Representation of land-atmosphere interactions within

climate models

Due to the relationship between land-atmosphere interactions and climate conditions,

and the expected changes in the strength and location of areas with strong land-

atmosphere coupling, the representation of land-atmosphere interactions within cli-

mate models has been used as a criterion for the evaluation of climate models’ perfor-

mance (Dirmeyer et al., 2006a; Ferguson et al., 2012; Henderson-Sellers et al., 1995;

Knist et al., 2016; Koster et al., 2006b; Seneviratne et al., 2013). Thus, previous inter-

comparison studies using global and regional climate models as well as assessments

of model simulations against observations indicate the inter-model differences and

difficulties in representing land-atmosphere interactions. However, sources leading

to model uncertainties in representing land-atmosphere interactions are still unclear.

The following subsections review prior analyses of climate model outputs in terms of

land-atmosphere interactions.

Inter-model comparison projects

Land-atmosphere coupling within climate models is the net result of all interactions

between the described processes at the air-ground interface. Therefore, the represen-
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tation of land-atmosphere coupling within a climate model depends on the parame-

terizations of the atmosphere and LSM components, the information shared between

components, and the assumptions taken to simulate near-surface processes associated

with land-atmosphere interactions, such as vegetation and snow covers, soil moisture,

and precipitation (Ferguson et al., 2012; Guo et al., 2006; Koster et al., 2002, 2006b;

Xue et al., 2004). For example, there are large differences among models in simulating

vegetation cover that may affect the representation of land-atmosphere interactions;

some LSM components represent different types of vegetation at each grid-cell, allow-

ing the evolution of vegetation with a dynamical model and the simulation of natural

forest fires (e.g. Oleson et al., 2010), while other LSM components consider the dom-

inant vegetation type at each grid-cell, simulating a constant vegetation cover with

time (e.g. Tewari et al., 2004).

The number of analyses comparing the strength and location of areas with strong

land-atmosphere coupling in several climate models is extensive. For instance, the

world climate research Programme for Intercomparison of Land-surface Parametriza-

tion Schemes (PILPS) was developed in the 1990s to investigate the uncertainties in

the behavior of LSM components and their effects on climate simulations (Henderson-

Sellers et al., 1995, 1996). PILPS compared offline simulations from approximately

20 LSMs at several locations and found that although the models were forced by the

same external forcing data, each LSM component yields a different surface state at

inter-annual scales. In the following decade, the Global Land-Atmosphere Coupling

Experiment (GLACE) (Guo et al., 2006; Koster et al., 2006b) evaluated the role of

the land state in numerical weather and climate predictions using 12 different GCMs

from a new generation of models. This analysis showed a large variability between

GCMs while also identifying regions where land-atmosphere interactions exhibited a

strong effect on climate for most of the simulations. Most recently, a new multimodel
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experiment was carried out using the experimental protocol of GLACE and the gen-

eral circulation models from the 5th phase of the Coupled Model Intercomparison

Project (CMIP5). This new experiment (GLACE-CMIP5) (Seneviratne et al., 2013)

found a strong impact of soil moisture on climate variables such as temperature and

precipitation, but also its contribution to the intensity, frequency and duration of

extreme events (Lorenz et al., 2016; Seneviratne et al., 2013).

Currently, the research community is developing a new inter-model comparison

project as part of the 6th phase of the Coupled Model Intercomparison Project (CMIP6).

This new project (Land Surface Snow and Soil Moisture Model Intercomparison

Project (LS3MIP)), is designed to provide a comprehensive assessment of land surface,

snow and soil moisture feedbacks on climate variability and climate change, and to

diagnose systematic biases in LSM components used within state-of-the-art climate

models (Hurk et al., 2016).

Comparison of climate model simulations and observations

Among the literature, we also find studies focused on the comparison of climate model

simulations with observations. For example, Dirmeyer et al. (2006a) compared results

from GLACE GCMs with observational data at a few locations and suggested that

most of the GCMs used in GLACE do not represent land-atmosphere interactions

accurately. However, the representation of land-atmosphere interactions for the mul-

timodel mean of the experiments was more closely aligned with observations than

individual results from the GLACE GCMs. An analysis of land-atmosphere interac-

tions was also developed by Ferguson et al. (2012) using a set of GCMs, reanalyses

and satellite data to evaluate the ability of offline simulations from LSM components

and reanalysis products to reproduce the strength and location of areas with strong

land-atmosphere coupling. Their results indicate that satellite data yield a substan-
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tially weaker coupling over the globe relative to LSM components and reanalyses,

concluding that both GCMs and reanalyses overestimate land-atmosphere coupling.

Other analyses based on model outputs and observations have related the un-

certainties in climate projections to the different representation of land-atmosphere

interactions within climate models (Guo et al., 2006; Seneviratne et al., 2008; Senevi-

ratne et al., 2010). These analyses remain limited by the challenges of measuring

land-atmosphere interactions and the lack of observational data above and below the

ground surface. Thus, more studies comparing climate models and new observations

are required to confirm the role of the different representation of land-atmosphere

coupling in the uncertainties in climate projections (Orlowsky et al., 2010).

Differences in terms of land-atmosphere interactions arising from the use

of General Circulation Models and Regional Climate models

GCMs and RCMs consist of model components which simulate climate subsystems.

At a minimum, contemporary GCMs include an atmospheric model component, an

ocean model component, a land surface model component, a sea-ice component and

a component for connecting all of them ("coupler"). Thus, GCMs independently

replicate atmosphere, ocean and land surface processes, as well as coupled processes

limited by the simulated physics of the model components and the coupler connecting

them. By contrast, most of RCMs are less complete, including an atmospheric model

component and a land surface model component, therefore providing atmosphere-land

coupled simulations over specific regions. Since RCMs do not perform simulations over

the entire globe and over the ocean, the computational resources required for running

a RCM are generally lower than for a GCM, allowing the performance of regional

simulations with finer horizontal resolutions. However, climate information from GCM

simulations or reanalysis products is required as initial and boundary conditions for



1.2. RESEARCH FOCUS 19

performing RCM simulations. Several studies have shown the importance of land-

atmosphere interactions in simulating climate variability, trends and extreme events

in GCM and RCM simulations (Berg et al., 2015; Jaeger et al., 2011; Jeong et al., 2014;

Lorenz et al., 2016). Results from both types of climate models suggest a dependence

of the represented land-atmosphere interactions on the LSM components coupled to

each model (Ferguson et al., 2012; Guo et al., 2006; Koster et al., 2002, 2006b; Xue

et al., 2004).

RCMs use outputs from GCMs as boundary conditions in order to increase the

resolution of their climate simulations over specific regions (downscaling). Since land-

atmosphere interactions have an important local component, some studies hypothesize

a possible improvement in the representation of land-atmosphere interactions within

RCMs due to the use of finer resolutions in their simulations in contrast to GCM

simulations (see Lejeune et al., 2015 for a brief discussion). However, as far as I know

there are no studies testing that hypothesis by comparing the performance of global

and regional climate models using metrics based on land-atmosphere interactions.

1.2 Research Focus

The literature review included in this chapter illustrates the impact of land-atmosphere

interactions on the simulation of near-surface conditions as well as the large uncer-

tainties in the representation of land-atmosphere interactions within climate models.

This thesis aims to provide new knowledge of the factors leading to discrepancies in cli-

mate model representation of land-atmosphere interactions, focusing on the following

questions:

• Are land-atmosphere interactions properly represented within the global climate

models used by the fifth assessment report of the IPCC?
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• What factors lead to model differences in the representation of land-atmosphere

interactions? Do they also contribute to uncertainties in near-surface condi-

tions?

• How does horizontal resolution affect the representation of land-atmosphere

interactions within climate models? Are land-atmosphere interactions better

represented within RCMs than within GCMs due to the use of finer horizontal

resolution?

Answering these research questions has been the focus of investigation in the three

scientific articles included in Chapters 2, 3, and 4. Each article/chapter provides

information on a particular research question. The objectives of these studies are

detailed below.

1.2.1 Manuscript 1: Characterization of air and ground tem-

perature relationships within the CMIP5 historical and

future climate simulations

This article presents the evaluation of the CMIP5 climate model simulations, using

a metric based on the representation of land-atmosphere interactions. This metric

focusses on the thermal component of land-atmosphere interactions, and is defined as

the difference between soil and air temperatures. The relationship between air and

ground temperatures results from the solution of the water and energy balance at

the surface, and depends on the processes that take place at the surface. The use of

this simple metric allows the evaluation of model simulations against meteorological

observations over North America, providing information about the ability of climate

models to reproduce the relationship between air and soil temperatures. Additionally,

this article examines the factors leading to model differences, identifying the LSM
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component and the associated representation of land cover as possible contributors to

model uncertainties.

1.2.2 Manuscript 2: Land Surface Model influence on the

simulated climatologies of temperature and precipita-

tion extremes in the WRF v.3.9 model over North

America

The research presented in Manuscript 1 suggests that the LSM component is the

main factor leading to GCM differences in the representation of the thermal compo-

nent of land-atmosphere interactions. Since this article used GCM climate simulations

provided by the CMIP5 project, the large number of structural differences and sim-

ilarities between this set of GCMs prevented the attribution of model differences to

the LSM component, thus presenting this result as an hypothesis in the manuscript.

Manuscript 2 explores this hypothesis and examines possible implications for the sim-

ulation of extreme temperature and precipitation events. For this purpose, I designed

a modeling experiment using an RCM to perform a set of simulations that only differ

in the LSM component used. This modeling approach allows the identification and

LSM-attribution of uncertainties in the simulation of land-atmosphere interactions

and extreme events. Additionally, the uncertainties arising from the LSM component

are compared with the uncertainties in a set of RCM simulations participating in the

Coordinated Regional climate Downscaling Experiment (CORDEX) project, enabling

the study of the applicability of these results to other model ensembles.
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1.2.3 Manuscript 3: Effect of horizontal resolution on near-

surface climate in the WRF v3.9 model over North

America

Previous works on the representation of land-atmosphere interactions within climate

models suggest that the simulation of energy and water exchanges between the lower

atmosphere and soil surface may be better represented in RCM simulations than in

GCM simulations, due to the associated increase in horizontal resolution and the more

detailed representation of complex topography. The main objective of Manuscript 3

is to test that hypothesis, evaluating the effect of increasing horizontal resolution on

the climatology of the surface energy balance and therefore on the climatology of near-

surface conditions. Additionally, the influence of horizontal resolution on the energy

balance is tested using different LSM components. Thereby, this manuscript presents

the analysis of simulations with different horizontal resolutions and LSM components

performed by the same RCM, allowing the comparison of uncertainties arising from

the LSM choice and from horizontal resolution separately. The comparison of this

set of simulations with observations of near-surface conditions allows to identify the

contribution of these two factors to the bias in climate simulations.

1.3 Co-Authorship Statement

The manuscript included in Chapter 2 and entitled "Characterization of Air and

Ground Temperature Relationships within the CMIP5 Historical and Future Climate

Simulations" was published in Journal of Geophysical Research: Atmosphere and co-

authored by F.J. Cuesta-Valero (Memorial University of Newfoundland - St. Francis

Xavier University), H. Beltrami (St. Francis Xavier University), and J.E. Smerdon
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(Columbia University). The research question studied in this manuscript arose from

a conversation with all the authors. As the principal author, I was responsible for

reviewing the literature, obtaining the data from the available archives indicated on

the text, analyzing the data, presenting and interpreting the results, and writing the

manuscript. The co-authors gave guidance in the interpretation of results, and re-

viewed the written manuscript several times before submission. The manuscript was

critically reviewed by four anonymous reviewers. I was responsible for replying the re-

viewers comments and for modifying the manuscript accordingly, obtaining feedback

from my co-authors.

The manuscript included in Chapter 3 entitled "Land Surface Model influence on

the simulated climatologies of temperature and precipitation extremes in the WRF

v.3.9 model over North America" was submitted to Geocientific Model Development

and co-authored by F.J. Cuesta-Valero (Memorial University of Newfoundland - St.

Francis Xavier University), H. Beltrami (St. Francis Xavier University), J.F. González-

Rouco (Universidad Complutense de Madrid), E. García-Bustamante (Research Cen-

ter for Energy, Environment and Technology, CIEMAT), and J. Finnis (Memorial

University of Newfoundland). The research question included in this manuscript

arose from the results of the article included in Chapter 2, as an experiment to test

its main hypothesis. Thus, I was responsible for designing the modeling experiment,

installing the RCM on the server, downloading the required data, performing the

model simulations, analyzing the data, presenting and interpreting the results, and

writing the manuscript. The co-authors gave guidance in the interpretation of results,

and reviewed the written manuscript several times before submission.

The manuscript included in Chapter 4 entitled "Effect of horizontal resolution on

near-surface climate in the WRF v3.9 model over North America" is in preparation for

submission and co-authored by F.J. Cuesta-Valero (Memorial University of Newfound-
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land - St. Francis Xavier University), and H. Beltrami (St. Francis Xavier University).

As in the case of the second article, the research question examined here, arose from

the results included in Chapter 2 and Chapter 3. Thus, I was responsible for designing

the modeling experiment, downloading the required code and data, performing the

model simulations, analyzing the data, presenting and interpreting the results, and

writing the manuscript. The co-authors gave guidance in the interpretation of results,

and reviewed the written manuscript.

1.4 Thesis Overview

This thesis is prepared in manuscript format, thus the thesis research is divided into

three main chapters, which correspond to three articles that have either been pub-

lished, submitted, or in preparation for publication. The first chapter includes a

general introduction to the topic and the literature review of previous works in this

area of expertise. The second chapter presents the contents of the published article

entitled, "Characterization of Air and Ground Temperature Relationships within the

CMIP5 Historical and Future Climate Simulations". The third chapter is constituted

by the contents included in the article entitled, "Land Surface Model influence on

the simulated climatologies of temperature and precipitation extremes in the WRF

v.3.9 model over North America", which has been already submitted to a peer-review

scientific journal. The fourth chapter contains the third manuscript included in this

thesis, in preparation for submission and entitled, "Effect of horizontal resolution on

near-surface climate in the WRF v3.9 model over North America". The tables and

figures included in the supplementary information of each article are presented in

separate appendices: Appendix A for Chapter 2, Appendix B for Chapter 3, and Ap-

pendix C for Chapter 4. The fifth chapter of this thesis summarized the conclusions
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reached in the three presented studies and includes a discussion about implications of

the research and possible future working lines. Each chapter associated with scientific

articles includes an individual bibliography, while a general bibliography is presented

at the end of the document.
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Chapter 2
Characterization of Air and

Ground Temperature Relationships

within the CMIP5 Historical and

Future Climate Simulations

This chapter is based on the contents of the published article:

García-García, A. et al. (2019). Characterization of Air and Ground Temperature

Relationships within the CMIP5 Historical and Future Climate Simulations. Journal

of Geophysical Research: Atmospheres(124), 3903–3929. doi: https://doi.org/10.

1029/2018JD030117

27

https://doi.org/https://doi.org/10.1029/2018JD030117
https://doi.org/https://doi.org/10.1029/2018JD030117
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Abstract

The relationships between air and ground surface temperatures across North Amer-

ica are examined in the historical and future projection simulations from 32 General

Circulation Models (GCMs) included in the 5th phase of the Coupled Model Inter-

comparison Project (CMIP5). The difference between surface air ( approx. 2 m) and

ground surface (10 cm) temperatures is affected by simulated snow cover, vegetation

cover and precipitation by means of changes in soil moisture and soil properties. In

winter, the differences between air and ground surface temperatures, for all CMIP5

simulations, are related to the insulating effect of snow cover and soil freezing phenom-

ena. In summer, large Leaf Area Index (LAI) and large precipitation rates correspond

to smaller differences between air and ground temperatures for the majority of simu-

lations, likely due to induced changes in latent and sensible heat fluxes at the ground

surface. Our results show that the representation of air-ground coupling, analyzed

using the difference between ground and air surface temperatures as a metric, differs

from observations, the North American Regional Reanalysis (NARR) product and

among the CMIP5 GCM simulations. The CMIP5 models differ by amounts that

depend on the employed land-surface model. The large variability among GCMs and

the marked dependence of the results on the choice of the land-surface model illustrate

the need for improving the representation of processes controlling the coupling of the

lower atmosphere and the land surface in GCMs as a mean of reducing the variability

in their representation of weather and climate phenomena.
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2.1 Introduction

The land surface and the lower atmosphere are hydrologically and energetically cou-

pled. Atmospheric variations directly alter soil conditions through changes in temper-

ature, precipitation, and moisture. Meanwhile, soil moisture and temperature also

affect surface fluxes at daily to seasonal scales. For example, variations in surface

fluxes induced by soil moisture anomalies yield variations in precipitation (Koster et

al., 1995; Ruiz-Barradas et al., 2005; Schlosser et al., 2002; Wei et al., 2010; Welty et

al., 2018). Other near-surface processes also influence atmospheric phenomena, such

as the influence of dust on the radiation budget and precipitation by absorption and

scattering of incoming solar radiation (Cook et al., 2008; Solmon et al., 2008). For

the purpose of this study, we will refer to the collection of these interacting processes

between the land and atmosphere as air-ground coupling. The degree of air-ground

coupling has been associated with the evolution of meteorological phenomena such as

the duration and intensity of heat waves, droughts, heavy precipitation episodes, and

other extreme events (Fischer et al., 2007; Ruiz-Barradas et al., 2005; Seneviratne

et al., 2006; Seneviratne et al., 2010; Zhang et al., 2008a). These phenomena exert a

strong socioeconomic impact on society, highlighting the importance of understanding

air-ground coupling for assessments of the effect of climate change on these extremes

(Seneviratne et al., 2006). Air-ground coupling has also been identified as a determin-

ing factor for the evolution of temperature-dependent soil processes, such as changes

in ground heat content (Cuesta-Valero et al., 2016), and permafrost and soil carbon

stability (Koven et al., 2013).

General Circulation Models (GCMs) and Regional Climate Models (RCMs) have

been used for studying the effects of air-ground coupling on climate dynamics, find-

ing a relationship between air-ground coupling and precipitation anomalies in Africa,
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North America, India, and Europe (Cook et al., 2006; Dirmeyer et al., 2009; Guo

et al., 2006; Jaeger et al., 2011; Koster et al., 2004, 2006b; Seneviratne et al., 2008;

Zeng et al., 2010). Additionally, previous studies have shown a relationship between

air-ground coupling and surface temperature, mostly associated with changes in warm

temperature extremes or summer temperature variability, in the above mentioned re-

gions, eastern China, Europe, Australia, and Russia (Fischer et al., 2007; Hauser et al.,

2016; Hirsch et al., 2014; Koster et al., 2006a,b; Seneviratne et al., 2008; Seneviratne

et al., 2006; Zhang et al., 2008b). The coupling between the land and atmosphere

within GCMs and RCMs is the net result of all the interactions between the described

processes at the air-ground interface. The degree of air-ground coupling within a cli-

mate model is therefore dependent on the parameterizations of the atmosphere and

land-surface models and the manner in which they are coupled (Ferguson et al., 2012;

Guo et al., 2006; Koster et al., 2002, 2006b; Xue et al., 2004). The simulation of near-

surface processes also affects air-ground coupling by increasing or decreasing energy

and water exchanges between the land surface and the lower atmosphere. For example,

snow cover acts as an insulating layer, decreasing the exchange of energy between the

ground and atmosphere (Broxton et al., 2017; Zhang, 2005), while vegetation cover

enhances evapotranspiration, which increases the surface energy and water exchanges

(Bonan, 2002). Precipitation increases the water content of the soil, enhancing evapo-

transpiration when energy is not a limitation and cooling the ground, particularly in

summer (Lin et al., 2003; Seneviratne et al., 2010; Smerdon et al., 2004).

Due to the strong influence of air-ground coupling on climate dynamics, the char-

acterization of the relationships between the land and atmosphere has also been em-

ployed as a criterion for evaluating the performance of climate models (Ferguson et al.,

2012; Henderson-Sellers et al., 1995; Knist et al., 2016; Koster et al., 2006b; Senevi-

ratne et al., 2013). For instance, the Global Land-Atmosphere Coupling Experiment
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(GLACE) (Guo et al., 2006; Koster et al., 2006b) evaluated the role of the land state

in numerical weather and climate predictions using 12 different GCMs. This analysis

showed large variability between GCMs and identified regions where air-ground cou-

pling exhibited a strong effect on climate for most of the simulations. Dirmeyer et

al., 2006 compared the results from GLACE GCMs with observational data at a few

locations and suggested that most of the GCMs used in GLACE do not represent air-

ground coupling correctly. However, the representation of the air-ground coupling for

the multimodel mean of the experiments was more closely aligned with observations

than results of GLACE GCMs separately. An analysis of air-ground coupling was

also developed by Ferguson et al., 2012 using a set of GCMs, reanalyses, and satellite

remote sensing data to evaluate the ability of offline simulations from Land Surface

Models (LSMs) to reproduce air-ground coupling as derived from observations. Their

results indicate that remote sensing data yield a substantially weaker coupling over the

globe relative to LSMs, concluding that these GCMs and reanalyses overestimate the

magnitude of air-ground coupling. A new multimodel experiment was carried out us-

ing the experimental protocol of GLACE and global climate models from the Coupled

Model Intercomparison Project, Phase 5 (GLACE-CMIP5) (Seneviratne et al., 2013).

This new experiment found a strong impact of soil moisture on climate variables such

as temperature and precipitation, but also its contribution to the intensity, frequency

and duration of extreme events (Lorenz et al., 2016; Seneviratne et al., 2013). All

these studies follow different approaches to analyze air-ground coupling, using differ-

ent metrics such as correlation coefficients and differences between ground surface and

atmosphere variables; air-ground coupling assessments are also carried out comparing

climate simulations with and without prescribed values of soil variables, removing

the effect of land-atmosphere feedbacks (Dirmeyer et al., 2006, 2013; Ferguson et al.,

2012). Previous analyses have also evaluated air-ground coupling by comparing offline
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simulations with observational data using different metrics. The challenges of mea-

suring elements of air-ground coupling that characterize relevant processes and the

lack of observational data above and below the ground surface, nevertheless, present a

limitation in comparing and evaluating model simulations against observations (Guo

et al., 2006; Seneviratne et al., 2008; Seneviratne et al., 2010).

Temperature is one of the variables with longer and broader observational data

records in comparison with other variables employed in the air-ground coupling liter-

ature, such as surface heat fluxes. In this study, we employ the difference between

Ground Surface Temperature (GST) at 10 cm and Surface Air Temperature (SAT)

as a metric for the evaluation of air-ground coupling. Changes in air and soil tem-

peratures are the consequence of energy and water partitioning at the surface, thus

making differences between the two temperatures a useful metric for the evaluation

of air-ground coupling within climate models (Koven et al., 2013; Smerdon et al.,

2006). We use the set of simulations that were used to evaluate and to understand

the impacts of climate change by the last assessment report of the Intergovernmental

Panel on Climate Change (IPCC) and to inform the 21st Conference of the Parties

(COP21) international climate agreement in December 2015 in Paris (Christoff, 2016;

IPCC, 2013). This set of simulations was carried out using 32 GCMs, included in

the 5th phase of the Coupled Model Intercomparison Project (CMIP5), coupled to

12 different land surface models and 18 different atmospheric models with the same

external forcings (Taylor et al., 2012). This allows for the analysis of model discrepan-

cies attributed mostly to each model component and the shared information between

them. The relationship between air and ground temperatures is also evaluated as

represented within the NARR product (Mesinger et al., 2006). The use of this metric

based on air and soil temperatures allows the comparison between models, reanalysis,

and observations over a 27 years period at annual and seasonal scales over North
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America. Additionally, we use the CMIP5 climate simulations to study the influence

of present and future changes in near-surface processes such as snow cover, vegeta-

tion cover, precipitation and soil moisture on the representation of air and ground

temperature relationships.

2.2 Data

2.2.1 CMIP5 GCM simulations

The simulations used herein are those included in a set of coordinated climate model

experiments known as CMIP5 (Taylor et al., 2012) (https://esgf-index1.ceda.

ac.uk/search/cmip5-ceda/, access date 2015/09/07). We specifically employ the

first available ensemble member (see Table A.1) for each CMIP5 GCM historical

simulation (1861-2005 of the Common Era (CE)) and two future climate projections

under different concentration pathways (2006-2100 CE) from 32 CMIP5 GCMs (Table

2.1).

The historical experiment (Mieville et al., 2010; Schultz et al., 2008; Werf et al.,

2006) allows the evaluation of the model performance against recent and present cli-

mate change. In these experiments, land use changes (Hurtt et al., 2011) are common

to all modeling groups for the last two centuries, while vegetation dynamics are spe-

cific to each modeling group. Each model’s historical experiment yields the initial

conditions for the future projections. The CMIP5 future climate projections, Repre-

sentative Concentration Pathways (RCPs), adopt four socio-economic and emission

scenarios for future climate (Vuuren et al., 2011). The RCPs were developed accord-

ing to the approximate magnitude of radiative forcing expected in the year 2100 CE,

relative to pre-industrial conditions. The objectives of these scenarios are to provide

estimates of future climate change under anthropogenic influences, to facilitate the

https://esgf-index1.ceda.ac.uk/search/cmip5-ceda/
https://esgf-index1.ceda.ac.uk/search/cmip5-ceda/
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comparison between model projections, to quantify risks associated with future cli-

mate change and to explore the impact of societal mitigation and adaptation efforts.

We use the RCP4.5 and the RCP8.5 experiments as representations of moderate

mitigation and business-as-usual emission scenarios, respectively (Riahi et al., 2011;

Thomson et al., 2011).

The GCM simulations used in our analysis (Table 2.1) were performed by different

modeling groups. Thus, each GCM differs in the character of its land-surface and

atmospheric models and their configurations. We note that LSMs all adopt different

subsurface thermal properties, maximum depths of the deepest soil layer (from 3 m

to 43 m), the depth intervals of the soil layers and their total number (from 3 to 23);

the latter three characteristics are summarized in Figure 2.1.

2.2.2 North American Regional Reanalysis (NARR)

The NARR project (Mesinger et al., 2006) is an extension of the NCEP Global Re-

analysis over North America for the period 1979-2017 (https://www.esrl.noaa.gov/

psd/data/gridded/data.narr.html, access date 2017/03/24). NARR was devel-

oped with the 2003 version of the Eta Model coupled to the Noah land surface model,

and the Regional Data Assimilation System (RDAS), which assimilates temperature

and precipitation observations along with other variables (Berbery et al., 2003; Ek

et al., 2003; Mitchell et al., 2004). The use of an atmospheric model and a land

surface model together with observational data for generating its final product makes

the NARR comparable to GCMs in terms of air-ground coupling. We used the NARR

variables of surface air temperature and soil temperature at 10 cm (herein referenced

as Ground Surface Temperature, GST) to compare the characterization of air and

ground surface temperature relationships within the CMIP5 simulations and within

an observationally constrained model product.

https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
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Figure 2.1: Depths and number of layers of the 12 land-surface models (in brackets),
employed by the 32 CMIP5 GCMs.
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2.2.3 Observational data

We employ a set of temperature observations from meteorological stations in the

United States and Canada to compare the relationships between air and ground sur-

face temperatures with those from the CMIP5 simulations and the NARR product.

Observations include United States (US) measurements of air and ground surface

temperatures from 1969 to 2001 and Canadian measurements from 1979 to 2005. We

select the period of overlap between the historical simulation, the NARR product and

observations from 1979 to 2001 for our analysis.

Monthly mean surface air temperature measurements from 292 US stations were

obtained from the Monthly Summaries of the Global Historical Climatology Network

(GHCN), NOAA NCEI (https://www.ncdc.noaa.gov/, access date 2015/02/21).

The data were produced by computing simple averages of the daily maximum and

minimum observations. Monthly ground surface temperature measurements were

provided by Xia et al., 2013 and were taken as described and validated in the arti-

cle. These soil measurements include temperature observations from 209 US stations

at 10 cm depth. The annual mean values are computed for the years that have no

missing values using the monthly data of both air and ground surface temperatures.

The annual temperatures are additionally aggregated to a 1◦ × 1◦ grid by averaging

observations over each grid cell.

Monthly mean surface air temperature measurements at Canadian stations were

obtained from the Environment and Natural Resources, Government of Canada (http:

//climate.weather.gc.ca/prods_servs/cdn_climate_summary_e.html, access date

2016/07/04). These data were provided as mean monthly values of maximum and min-

imum temperatures. Canadian measurements of soil temperature at 10 cm were pro-

vided by the National Office of Climate Services - Environment and Climate Change,

https://www.ncdc.noaa.gov/
http://climate.weather.gc.ca/prods_servs/cdn_climate_summary_e.html
http://climate.weather.gc.ca/prods_servs/cdn_climate_summary_e.html
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Canada. These data contain daily soil temperatures at 12 a.m. and 12 p.m.. Daily

mean temperatures are approximated as the average of both temperatures. Monthly

mean values are calculated as the mean of the daily data when they have fewer than

10 missing values and less than 5 consecutive missing values. This criterion is used

for consistency with the observations from the US stations (Xia et al., 2013). Annual

mean values of air and ground temperatures are calculated for years that have no

missing values. Otherwise, the annual mean value is characterized as missing. An-

nual values of both air and ground surface temperatures are aggregated to a 1◦ × 1◦

grid by averaging observations over each grid cell.

Monthly surface air and ground surface temperatures from the US and Canadian

stations are used to calculate the differences between air and ground temperatures at

each grid cell at annual and seasonal scale for the period 1979-2001. However, we do

not have data from observations at all stations for the whole period. For this reason,

we filter the observational database estimating the period mean only at grid cells with

more than 10 annual values. Thus, our domain compromises 113 grid cells with at

least one observation of SAT and GST for the mean period 1979-2001. A discussion of

the uncertainty in the comparison between simulations and observations is included

in Section 2.5.

2.3 Methodology

The relationships between air and ground surface temperatures depend on soil prop-

erties, surface roughness, and the energy and water exchange processes operating

between the lower atmosphere and the ground surface. Because the CMIP5 simula-

tions include a variety of LSMs, each of which involves different parameterizations

of the energy and water exchanges at the land-atmosphere boundary, the air and
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ground temperature relationships for each simulation may exhibit different behav-

ior. We define an evaluation metric as the difference between mean Ground Surface

Temperature at 10 cm and Surface Air Temperature at 2 m (GST-SAT) from obser-

vations, the NARR product and each CMIP5 simulation over a time interval of a

calendar year, the boreal winter months (December, January and February (DJF))

and summer months (June, July and August (JJA)). This metric removes possible

biases in the mean states within the models and reanalysis, thus allowing comparisons

with observations. The use of GST at a depth of 10 cm allows us to evaluate both

the annual and seasonal differences among models in simulating air-ground coupling.

Soil temperature at 10 cm from the CMIP5 simulations are obtained using a linear

interpolation between nodes of each soil layer. The difference between GST and SAT

has been previously used to track the relationship between air and ground surface tem-

peratures at daily, seasonal and annual scales (Koven et al., 2013; Melo-Aguilar et al.,

2018; Smerdon et al., 2006). Smerdon et al., 2006 proposed a method to study and

validate the long-term coupling between air and ground surface temperatures, which

is the main assumption of paleoclimate reconstructions from geothermal data (e.g.

Beltrami, 2002). Koven et al., 2013 employed the difference between GST and SAT

as part of an analysis to evaluate the propagation of heat into the soil and its effect

on permafrost soils within the CMIP5 simulations. Melo-Aguilar et al., 2018 most

recently used the temperature difference as a metric to study the effect of radiative

forcings on the coupling between air and ground temperatures within the CESM-LME

ensemble.

The seasonal and annual characterization of the relationships between GST and

SAT within the CMIP5 GCMs and the NARR product is compared with observa-

tions using the mean temperature difference (GST-SAT) for the period 1979-2001.

We estimate spatial correlation coefficients as in Santer et al., 1995 and the Root
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Mean Square Errors (RMSEs), as metrics of the agreement between simulations and

observations. For the calculation of correlation coefficients and the RMSEs between

models and observations, each model pattern is interpolated to the observation grid

(1◦ × 1◦), selecting only the grid cells where observations are available. For the visual

comparison between simulations and observational data, we interpolate the observa-

tions using the nearest neighbor algorithm from the Generic Mapping Tools (GMT)

software (Wessel et al., 2013), which uses the weighted mean of the nearest point in

each sector considering the distance to assign an average value to each node. We set

the interpolation to have a search radius of 4◦ and divide the area centered on each

point into four sectors. Average values are only computed at nodes with at least one

value in each sector (Figure A.1).

After the comparison between simulations and observations, we investigate the

role of near-surface processes in the model performance by studying the correlation

between simulated annual and seasonal temperature differences and snow cover, veg-

etation cover, precipitation and soil moisture within the CMIP5 simulations and the

NARR product. We compute the correlation coefficients between the absolute value

of the air-ground temperature difference and the means of the monthly CMIP5 vari-

ables associated with the mentioned near-surface processes at each grid cell for the

period of comparison with observations (1979-2001). We use the absolute value of

the temperature differences to avoid problems in the interpretation of the correlation

coefficients, when the temperature differences are negative (SAT > GST). For ex-

ample, snow cover has an insulating effect (Zhang, 2005), which means that thicker

snow cover leads to larger differences between air and ground temperatures (positive

correlation coefficients). In cases where the ground-air temperature difference is neg-

ative, however, an increase in snow cover leads to larger differences between air and

ground temperatures, which correspond to more negative GST-SAT values, yielding
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negative correlation coefficients between snow cover and GST-SAT. The use of abso-

lute values yields the correct correlation sign in those cases with negative temperature

differences. The near-surface processes included in this study have a strong seasonal

character, hence the computation of the seasonal correlation coefficients using the DJF

and JJA means. The variables employed in this analysis are: Surface Snow Amount

(SNW) -defined as the ratio of the mass of surface snow on the land portion of a grid

cell and the grid cell land area (kg/m2); Leaf Area Index (LAI) -defined as the frac-

tion of green leaf area over the total ground area at each grid cell; Precipitation Rate

(PR) -constituted by water in all phases at the surface (kg/m2s); and Soil Moisture

(SM) -defined as the mass of water in all phases in a 10 cm surface soil layer (kg/m2).

The models that do not include these variables in the CMIP5 archive are excluded

from this part of the study (see Table A.1 for a detailed list of the models and their

variables). For the correlation analysis, grid cells containing null values for the vari-

ables associated with each near-surface process in the 23-year period of interest are

masked in grey. The areas with significant correlation coefficients at the 95% level are

calculated for the CMIP5 ensemble and the NARR product using 1000 Monte Carlo

runs of a phase-randomizing bootstrapping technique that preserves autocorrelation

structure (Ebisuzaki, 1997). We also calculate the multimodel mean of the correlation

coefficients as the mean of the correlation maps interpolated to the coarsest grid of

the ensemble (2.81◦ × 2.81◦).
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2.4 Results

2.4.1 Air and ground temperature relationships within the

CMIP5 GCMs, the NARR and Observations

There is large variability across the CMIP5 simulations in the character of air and

ground temperature relationships. The annual mean of the temperature difference

(GST-SAT) from 1979 to 2001 CE varies spatially in North America among the GCMs

(Figure 2.2). These results suggest a dependence of the GST-SAT differences on the

LSM employed by each GCM, such that GCMs with the same LSM yield similar

behavior for the temperature difference. However, the representation of air and ground

temperature relationships seems to be independent of the atmospheric model. For

example, the 7 GCMs that use the CLM4 LSM or the 3 GCMs that use the LM3

LSM do not show different relationship between GST and SAT despite using different

versions of atmospheric models. There are small differences in the representation of air

and ground temperature relationships for the simulations that use different versions of

the same atmospheric model coupled to either the MOSES2 or the MATSIRO LSMs,

but they are much smaller than the differences with simulations that use other LSMs.

The horizontal resolution employed in each simulation is another factor expected to

affect air-ground coupling (Wang et al., 2004; Xue et al., 2014), nevertheless, the

differences between models in the GST-SAT metric arising from the use of different

LSMs are larger than those arising from the use of different spatial resolutions (Figure

2.2). For example, the NORESM1 and the CESM1-WACCM models employ grid cells

two times larger than the rest of the CLM4 simulations and show very similar values of

GST-SAT. The IPSL-ESM-MR and the BCC-CSM1.1-M models use finer resolutions
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than their shared-LSM simulations and also show similar relationships between GST

and SAT. Otherwise, models with similar resolutions such as the GFDL and the

GISS models show different results. We have tried to relate the LSM-dependency to

the soil depth of each LSM and the effect of the bottom boundary condition on soil

temperatures (Smerdon et al., 2006), but we have found no relationship between them,

likely because we use shallow soil temperatures in our analysis. As shown in Smerdon

et al., 2006, the zero-flux condition used at the bottom boundary of the soil column by

all the CMIP5 LSMs affects the simulation of soil temperatures depending on the soil

depth, but this effect is very weak in the first several centimeters of the soil. We also

have analyzed the effect of the linear interpolation used to obtain soil temperatures

at 10 cm within the models. The temperature differences using soil temperatures at

the node of the soil layer containing the soil depth of 10 cm are similar to those of

the interpolated GST, which indicates that the effect of the interpolation of GST on

these results is negligible (Figures 2.2 and A.2).

The model discrepancies in simulating the difference between air and ground tem-

peratures are larger at seasonal scales, showing the same LSM-dependency than in

the annual analysis (Figures 2.3 and 2.4). Most of the models and the NARR product

show larger temperature differences in DJF that those for the annual mean particularly

at high latitudes, which is consistent with observations (Figures 2.2 and 2.3). This

likely indicates a consistency across most of the models, the NARR, and the observa-

tions regarding the influence of the insulating effect of snow cover, which is the main

influence on air-ground coupling in DJF and increases the difference between air and

ground temperatures (e.g. Zhang, 2005). In JJA, most of the models show positive

temperature differences over the western US and negative or near zero temperature

differences over the rest of the domain, in agreement with the sign of the GST-SAT

value at the available observations (Figure 2.4). The models showing very small GST-
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Figure 2.2: Annual mean of GST-SAT differences from 1979 to 2001 for the CMIP5 GCMs,
the multimodel mean, the NARR and observations. Each map shows the GCM name on the
bottom-left corner and the LSM and atmospheric model names on the bottom-right corner.
The map of the observational data is interpolated using the nearest neighbor algorithm of
GMT with a search radius of 4◦. Black dots in the observation map show the locations of
the data on a 1◦ × 1◦ grid, and grey color was used to indicate missing data.
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Figure 2.3: DJF mean of GST-SAT differences from 1979 to 2001 for the CMIP5 GCMs,
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Figure 2.4: JJA mean of GST-SAT differences from 1979 to 2001 for the CMIP5 GCMs,
the multimodel mean, the NARR and observations. Each map shows the GCM name on the
bottom-left corner and the LSM and atmospheric model names on the bottom-right corner.
The map of the observational data is interpolated using the nearest neighbor algorithm of
GMT with a search radius of 4◦. Black dots in the observation map show the locations of
the data on a 1◦ × 1◦ grid, and grey color was used to indicate missing data.
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Figure 2.5: Boxplots (75th and 25th spatial percentiles (boxes), medians (center lines),
maximums and minimums (extremes of dashed lines)) for the annual and seasonal temper-
ature differences at the locations of the observations (black dots in Figure A.1). Outliers
(points located 1.5 times the interquartile range above the upper quartile and bellow the
lower quartile) are not included. Results are sorted from deeper to shallower LSM and each
LSM is indicated using a different color. The results from the multimodel mean, the NARR
product and observations are plotted on the far right.

SAT differences (the MPI, the CMCC and the IPSL models) for the annual mean also

show very small values of GST-SAT in DJF and JJA in contrast to the observations.

The INM-CM4 model, which shows annual negative temperature differences over most

of the domain, displays positive values of the GST-SAT difference in DJF for most of

the domain with large values at high latitudes. Meanwhile, the GISS and CANESM2

models, which also show negative annual temperature differences, maintain the an-

nual spatial pattern in DJF, showing larger values of the GST-SAT metric in DJF. In

JJA, the INM and the GISS models differ from observations, showing large negative

temperature differences over the whole domain.
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Both the coupled models and NARR do not accurately represent observations at

annual and seasonal scales. While observations indicate that the difference between

GST and SAT ranges from 0 K to 5 K for the annual mean, from -3 K to 9 K in DJF

and from -2 K to 7 K in JJA, the temperature differences from models display values

from -5 K to 5 K for the annual mean, from -3 K to 14 K in DJF and -9 K to 6 K in

JJA (Figure 2.5). Results from the multimodel mean range from -1 K to 3 K for the

annual mean, from -1 K to 7 K in DJF and from -2 K to 1 K in JJA, while results

from the NARR range from -1 K to 2 K for the annual mean, from 0.5 K to 6 K in

DJF and from -7.5 K to 3 K in JJA (Figure 2.5). Observations show that annual GST

is warmer than SAT (GST-SAT > 0) at all locations, however, most simulations show

locations with annually colder GSTs than SATs (Figure 2.5). In DJF, observations

show more spatial variability than for the annual mean, presenting GST warmer than

SAT at most locations. Most simulations agree with observations in the sign of DJF

GST-SAT values, except for the CANESM2 and GISS models that show GST colder

than SAT at more than the 25% of the locations. The disagreement between models

and observations in the character of GST and SAT relationships is larger in JJA,

when observations indicate GST higher than SAT at most locations and most of the

models show areas with GST lower than SAT (Figure 2.5). The multimodel mean

shows GST higher than SAT for the annual mean and in DJF at most locations in

agreement with observations, in contrast to the results in JJA. The NARR product

is in agreement with observations in the character of the temperature difference in

DJF, but differs with the annual and JJA results.

Comparison with observations is focused on two conditions expected to be repro-

duced by climate models; the values of the temperature differences and the variability

of the spatial pattern. We examine both features using RMSE and the spatial cor-

relation coefficients (Table 2.2). Models using the same LSM show similar values of
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Table 2.2: Spatial correlation coefficients and RMSE values of the temperature differences
shown in Figure 2.2 relative to observations. The correlation coefficients and the RMSE
values were calculated for each GCM, for the multimodel mean of the 32 GCMs and for
the NARR product. For the comparison of simulations and observations, all maps were
interpolated to the observational grid (1◦×1◦), selecting only the grid cells with observational
data (black dots in Figure A.1).

GCM Annual DJF JJA
Cor. Coeff. RMSE Cor. Coeff. RMSE Cor. Coeff. RMSE

CCSM4 0.130 1.846 0.775 2.120 0.139 3.030
CESM1-BGC 0.144 1.853 0.777 2.154 0.134 3.058

CESM1-CAM5 0.180 1.835 0.800 2.260 0.135 3.092
CESM1-FASTCHEM 0.138 1.847 0.758 2.278 0.130 3.047

CESM1-WACCM 0.153 1.854 0.784 2.080 0.213 2.867
NORESM1-M 0.199 1.900 0.759 2.355 0.165 2.986

NORESM1-ME 0.209 1.909 0.742 2.501 0.172 2.997
INM-CM4 0.405 3.839 0.843 2.038 0.150 7.979

MIROC-ESM 0.100 2.149 0.684 3.192 0.241 3.115
MIROC-ESM-CHEM 0.118 2.091 0.693 3.047 0.235 3.09

MIROC5 0.160 1.904 0.727 2.756 0.252 2.532
GFDL-CM3 0.193 2.053 0.698 3.390 0.206 2.564

GFDL-ESM2G 0.105 1.940 0.689 3.126 0.208 2.380
GFDL-ESM2M 0.134 1.987 0.675 3.419 0.169 2.400
MRI-CGCM3 0.368 2.038 0.810 2.217 0.330 2.836
MRI-ESM1 0.359 2.042 0.826 2.131 0.303 2.830

MPI-ESM-LR -0.132 2.533 0.801 4.253 -0.050 2.894
MPI-ESM-MR -0.159 2.524 0.818 4.240 -0.021 2.866
MPI-ESM-P -0.141 2.520 0.833 4.214 -0.102 2.889
CMCC-CM -0.043 2.878 0.711 3.767 0.182 3.903
CMCC-CMS 0.115 2.558 0.822 3.746 0.093 3.263
CANESM2 0.019 2.108 0.275 4.979 0.365 1.788

IPSL-CM5A-LR -0.066 2.331 0.782 3.668 -0.021 3.001
IPSL-CM5A-MR -0.137 2.307 0.740 3.619 -0.044 3.000
IPSL-CM5B-LR -0.032 2.279 0.762 3.569 0.032 2.840

GISS-E2-H 0.346 3.874 0.806 2.963 -0.120 5.307
GISS-E2-R 0.362 4.135 0.789 3.081 0.018 5.794

BCC-CSM1.1 0.252 1.877 0.799 2.504 0.287 2.341
BCC-CSM1.1-M 0.238 1.672 0.815 2.080 0.114 2.254

HADCM3 0.116 2.188 0.775 3.114 0.340 2.836
HADGEM2-CC -0.017 2.089 0.743 3.033 0.115 2.913
HADGEM2-ES -0.037 2.160 0.711 3.192 0.078 2.842

MULTIMODEL MEAN 0.232 2.146 0.811 2.436 0.259 2.918
NARR -0.098 2.856 0.786 2.267 0.295 6.064
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spatial correlation and RMSEs for the annual and seasonal temperature differences,

further reinforcing the dependence of GST-SAT on the LSM employed (Figures 2.2,

2.3, 2.4 and 2.5). The CMIP5 models show high spatial correlation coefficients with

observations for the difference between air and ground temperatures in DJF, display-

ing a decrease in correlation with the observations when using results for the JJA

and annual means. The multimodel mean and the NARR product also show results

in DJF in better agreement with observations than those for the JJA and annual

means, again indicating their possible agreement in simulating the snow effect on the

GST-SAT metric. At annual scales, the LSMs showing higher correlation coefficients

than the multimodel mean are the ones used in the INM, the MRI, the GISS, and

the BCC simulations. However, only the MRI and the BCC models show smaller

annual RMSEs than the multimodel mean among these models. The BCC and MRI

models therefore appear to yield annual temperature differences closer to observations

in that they reproduce both the spatial pattern and the magnitudes of the temper-

ature difference. In DJF, the models showing higher spatial correlation coefficients

and lower RMSEs than the multimodel mean are the INM, the MRI, and the BCC-

CSM1.1-M models, which differs from the BCC-CSM1.1 only in resolution. In JJA,

the models showing higher spatial correlation coefficients and lower RMSEs than the

multimodel mean are the MRI, the CANESM2, the HADCM3, and the BCC-CSM1.1

models. Thus, the MRI simulations appear to achieve the closest temperature dif-

ferences to the observations at annual and seasonal scales. The multimodel mean of

all GCMs achieves higher correlation coefficients and lower RMSEs than most of the

CMIP5 models at annual and seasonal scales, consistent with the widely reported

tendency for the multimodel mean of the CMIP5 GCMs to be more closely aligned

to observations than most of the individual models (IPCC, 2013).

The comparison between models, the NARR and observations in reproducing the
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spatial pattern of SAT and GST separately, also shows a better performance in winter

than in summer (Table 2.2). The CMIP5 models and the NARR product display

larger correlation coefficients and smaller RMSE values with the observations for the

SAT analysis than for the GST. These results illustrate the difficulties of LSMs in

simulating soil temperatures, particularly in summer when the simulation of processes

related to soil moisture and vegetation cover may be affecting the evolution of soil

conditions. These findings are in agreement with previous studies that have identified

the simulation of soil temperatures as a factor to be improved within land surface

models (Koven et al., 2013; Lytle et al., 2016; Todd-Brown et al., 2013).

2.4.2 Effect of near-surface processes on air and ground tem-

perature relationships within the CMIP5 ensemble

From the insulating effect of snow reported in the literature (Goodrich, 1982; Pollack

et al., 2005; Smerdon et al., 2004, 2006; Sokratov et al., 2002), we expect large GST-

SAT values in DJF and at high latitudes, as seen in Subsection 2.4.1. Meanwhile,

vegetation cover and soil moisture are expected to shift part of the net radiation

absorbed by the soil from the sensible heat flux component to the latent heat flux

component, decreasing air-ground temperature differences (Bonan, 2002; Lin et al.,

2003; Pollack et al., 2005; Smerdon et al., 2006).

Examining the role of snow cover in the characterization of air and ground tem-

perature relationships, we find that the annual and DJF series of the absolute values

of the temperature difference appear significantly positively correlated to the series of

snow amounts on the surface, indicating larger GST-SAT differences with larger snow

amounts on the surface. Figure 2.6 shows significant positive correlation between

snow cover and the temperature difference in the DJF and annual analyses for all the
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Figure 2.6: Temporal correlation, point-to-point, between monthly snow amounts (SNW)
and the absolute values of the temperature differences for the annual mean (black), for
mean DJF (blue) and mean JJA (red) of each model for the period 1979-2001. (bottom)
Boxplots (75th and 25th spatial percentiles (boxes), medians (center line), maximums and
minimums (extremes of dashed lines)) of the correlation maps. Outliers (points located 1.5
times the interquartile range above the upper quartile and bellow the lower quartile) are not
included. Bars at the bottom of the boxplots indicate the percentages of land grid cells with
significant correlation at the 95% level using a phase-randomizing bootstrapping technique
with 1000 Monte Carlo runs (Ebisuzaki, 1997). (top) Maps correspond to the strongest
(MIROC5, top) and the weakest (GISS-E2-H, second-bottom) annual mean correlations,
the multimodel mean of the correlation maps (center) and the NARR product (bottom), for
the annual means (left), the DJF means (center) and the JJA means (right). Dots indicate
significant correlation at the 95% level and grey color indicates that the annual or seasonal
mean of snow amount on surface is null in at least one of the year of the 23-year period.
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models and the NARR product over most areas of the domain. The GISS models show

the weakest positive correlation, displaying significant negative correlation coefficients

over a large area of the domain for the annual mean (Figure 2.6), while the MIROC

models show the strongest positive correlation over almost the entire domain for the

annual and DJF means. The positive correlation coefficients of the ensemble attest

to the strong insulating effect of snow in DJF and annually, as represented in all of

the CMIP5 models and the NARR product, although not necessary represented with

the same strength and over the same areas. However, some models show grid cells

with significant negative correlation coefficients between the temperature difference

and snow cover, that is, the difference between air and ground temperature increases

when snow decreases and vice versa (Figures A.3-A.5). Over these areas, such mod-

els simulate SAT warmer than GST in opposition to the observations (Figures 2.2,

2.3 and 2.4), which means that an increase in the snow amount associated with a

decrease in SAT tends to reduce the difference between air and ground temperatures.

However, there are two models (the HADGEM2s) showing significant negative corre-

lation coefficients at some grid cells with GST warmer than SAT. Over these grid

cells, the simulated snow cover is thin and the air and ground temperatures are higher

than 0◦C. Thus, the model could be simulating the melting of snow, which leads to

an increase in soil moisture and the cooling of soil by enhancing evapotranspiration,

therefore rising the temperature differences at those grid cells. In JJA, few models

simulate grid cells with significant correlation between snow and GST-SAT. For those

models showing significant correlation between snow and the temperature difference

in JJA, the correlation is positive and negative depending on the grid cell, but the

snow amount at the surface is much smaller than in DJF, and the temperatures are

warmer. Therefore, snow may be melting at some of these grid cells, increasing soil

moisture and declining soil temperatures through evapotranspiration, reducing the
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GST-SAT difference. Meanwhile, snow may be insulating GST from SAT as in DJF

at some of the other grid cells at high altitude, increasing air-ground temperature

differences.

The annual and seasonal series of the temperature difference and the Leaf Area

Index variable are mostly inversely correlated for the majority of the CMIP5 simula-

tions (Figure 2.7). Results from the NARR product are not included in this analysis

because it does not include the LAI variable, while other variables associated with

vegetation cover such as vegetation fraction are prescribed with no change in time.

The correlation between vegetation cover and the absolute values of the temperature

differences is negative for most of the models, showing more disagreement among mod-

els than the analysis of the snow effect (Figures A.6-A.8). In DJF, models display

high spatial variability indicating few grid cells with significant positive and nega-

tive correlation coefficients without following a common pattern among models. The

percentages of grid cells with significant correlation are larger in JJA and at annual

scales for most of the models, although, with marked discrepancies among models.

Correlation coefficients at annual scales are negative for the majority of the models

over most of areas with significant correlation, which means that over these areas an

increase of LAI, associated with higher evapotranspiration, leads to lower soil temper-

atures, and thus to smaller air-ground temperature differences when GST is higher

than SAT, which occurs nearly over the whole domain for most of the models at an-

nual scales. In JJA, areas with significant positive correlation coefficients spread over

the eastern US for most of the models, but for the CANESM2 model, which shows

significant positive correlation coefficients throughout the western part of the domain

and significant negative correlation coefficients in the eastern part of the domain; the

MIROC-ESM models show positive correlation coefficients over most areas of the do-

main. Except for these three models, the CMIP5 models show positive correlation
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Figure 2.7: Temporal correlation, point-to-point, between monthly Leaf Area Indices
(LAIs) and the absolute values of the temperature differences for the annual mean (black),
for mean DJF (blue) and mean JJA (red) of each model for the period 1979-2001. (bottom)
Boxplots (75th and 25th spatial percentiles (boxes), medians (center line), maximums and
minimums (extremes of dashed lines)) of the correlation maps. Outliers (points located 1.5
times the interquartile range above the upper quartile and bellow the lower quartile) are
not included. Bars at the bottom of the boxplots indicate the percentages of land grid cells
with significant correlation at the 95% level using a phase-randomizing bootstrapping tech-
nique with 1000 Monte Carlo runs (Ebisuzaki, 1997). The capital letter next to each model
name indicates the information of the vegetation mode (prescribed (P) or dynamic (D))
employed for each simulation, which was retrieved from the Earth System Documentation
website (https://search.es-doc.org, access date 2018/03/18) as well as in the models’
documentation. (top) Maps correspond to the strongest (GFDL-CM3, top) and the weak-
est (MIROC5, second-bottom) annual mean correlations and the multimodel mean of the
correlation maps (center), for the annual means (left), the DJF means (center) and the JJA
means (right). Dots indicate significant correlation at the 95% level and grey color indicates
that the annual or seasonal mean of leaf area index is null in at least one of the year of the
23-year period.

https://search.es-doc.org


56 2.4. RESULTS

coefficients over areas with SAT warmer than GST (Figure 2.4). Thus, an increase in

LAI over these areas, associated with higher evapotranspiration and the induced cool-

ing of soil, leads to SAT much higher than GST and to larger differences between air

and ground temperatures. Although the CMIP5 ensemble includes models with pre-

scribed and dynamic vegetation, these results do not show any apparent relationship

with the vegetation mode employed in the simulations (Figure 2.7).

The effect of changes in soil moisture (in all phases) on the relationship between air

and ground temperatures is significant over most of the domain in JJA for the majority

of the models (Figure 2.8). In JJA, the significant correlation coefficients between

temperature differences and soil moisture are negative for most of the models with

significant positive correlation coefficients over fewer areas, in agreement with results

for vegetation cover. The correlation coefficients are significantly negative throughout

the western part of the domain for the models that showed large and positive GST-

SAT differences in JJA over the same areas (Figure 2.4) (models using the CLM4,

the MATSIRO, the LM3, the BCC, and the MOSES2 LSMs), which means that an

increase (decrease) in soil moisture, related to higher (lower) evapotranspiration and

the cooling (warming) of soil, reduces (increases) the gap between air and ground

temperatures. Results for the rest of the models show higher spatial variability with

significant positive and negative correlation coefficients over the domain (Figures A.9-

A.11). There are fewer areas with significant correlation for the DJF and annual

means, presenting more discrepancies among models in the correlation sign. In DJF,

models show wider areas with significant positive correlation coefficients than in JJA,

which may indicate the presence of freezing phenomena and the decrease of water

and energy exchanges between the atmosphere and the subsurface. Meanwhile, there

is a combination of significant positive and negative correlation coefficients over the

domain for the annual mean, with most of the models displaying negative correlation
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Figure 2.8: Temporal correlation, point-to-point, between monthly soil moisture in all
phases at the first 10 cm (SM) and the absolute values of the temperature differences for
the annual mean (black), for mean DJF (blue) and mean JJA (red) of each model for the
period 1979-2001. (bottom) Boxplots (75th and 25th spatial percentiles (boxes), medians
(center line), maximums and minimums (extremes of dashed lines)) of the correlation maps.
Outliers (points located 1.5 times the interquartile range above the upper quartile and bellow
the lower quartile) are not included. Bars at the bottom of the boxplots indicate the percent-
ages of land grid cells with significant correlation at the 95% level using a phase-randomizing
bootstrapping technique with 1000 Monte Carlo runs (Ebisuzaki, 1997). (top) Maps corre-
spond to the strongest (GFDL-ESM2G, top) and the weakest (MRI-ESM1, second-bottom)
annual mean correlations, the multimodel mean of the correlation maps (center) and the
NARR product (bottom), for the annual means (left), the DJF means (center) and the JJA
means (right). Dots indicate significant correlation at the 95% level and grey color indicates
that the annual or seasonal mean of soil moisture is null in at least one of the year of the
23-year period.
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coefficients at low latitudes. The NARR product exhibits fewer areas with significant

correlation than the majority of the models, indicating positive correlation in DJF

and a combination of positive correlation coefficients at high latitudes and negative

correlation coefficients at low latitude for the annual mean.

The evolution of soil moisture, vegetation and snow cover directly depends on the

simulation of precipitation rates (in all phases) at the surface. Within the CMIP5

models, precipitation rates are generally inversely correlated with the temperature dif-

ference, i. e. the larger the precipitation rates the smaller the differences between GST

and SAT. However, results show large spatial and model variability at annual and

seasonal scales (Figures 2.9 and A.12-A.14). In JJA, most of the models show signifi-

cant negative correlation coefficients in the western part of the domain, in agreement

with soil moisture and vegetation results, as well as a few grid cells with significant

positive correlation. The MPI models show the largest area with significant positive

correlation coefficients throughout the eastern part of the domain. For the annual

analysis, models show fewer areas with significant correlation coefficients, being nega-

tive for most of the models at low latitudes and positive at some sporadic grid cells. In

DJF, most of the models show areas with positive and negative correlation coefficients,

but the significant areas are reduced in comparison with results in JJA. The signif-

icant positive correlation coefficients cover the central area of the domain, east the

Rocky Mountains for most of the models, while the negative correlation coefficients

are shown in eastern Canada by the majority of the models. Although the areas with

significant positive correlation coefficients are in agreement with the snow analysis for

most of the models, the areas with significant negative correlation coefficients over

eastern Canada are similar to the soil moisture results for some of the models. The

NARR product estimates a weaker relationship between precipitation rates and the

GST-SAT metric than the CMIP5 models at annual and seasonal scales, reproducing
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Figure 2.9: Temporal correlation, point-to-point, between monthly precipitation rates in
all phases (PRs) and the absolute values of the temperature differences for the annual mean
(black), for mean DJF (blue) and mean JJA (red) of each model for the period 1979-2001.
(bottom) Boxplots (75th and 25th spatial percentiles (boxes), medians (center line), maxi-
mums and minimums (extremes of dashed lines)) of the correlation maps. Outliers (points
located 1.5 times the interquartile range above the upper quartile and bellow the lower
quartile) are not included. Bars at the bottom of the boxplots indicate the percentages of
land grid cells with significant correlation at the 95% level using a phase-randomizing boot-
strapping technique with 1000 Monte Carlo runs (Ebisuzaki, 1997). (top) Maps correspond
to the strongest (GFDL-ESM2G, top) and the weakest (CANESM2, second-bottom) annual
mean correlations, the multimodel mean of the correlation maps (center) and the NARR
product (bottom), for the annual means (left), the DJF means (center) and the JJA means
(right). Dots indicate significant correlation at the 95% level and grey color indicates that
the annual or seasonal mean of precipitation is null in at least one of the year of the 23-year
period.
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the seasonality observed within the models.

2.4.3 Temporal evolution of air and ground temperature re-

lationships

We evaluate the temporal stability of the annual relationships between GST and SAT

by computing the multimodel mean of the temperature difference and its zonal aver-

age over the historical and future projection intervals (Figure 2.10). There is a small

discontinuity at the end of the historical simulation, due to the annual variability

and the use of a different number of models in the historical ensemble and in each

RCP ensemble (See Table A.1 for a list of the ensemble members for each experi-

ment). Such discontinuity is within the range of climate variability, thus it does not

affect our results and conclusions. The multimodel mean of the annual temperature

difference is temporally stable during the Historical period (1861-2005) for the entire

domain, although it varies with latitude (Figure 2.10). The temperature difference is

higher at northern latitudes (Figure 2.10a) than at southern latitudes (Figure 2.10b),

mainly because of the insulating effect of snow cover on air and ground temperature

relationships in DJF as was shown in Figure 2.6. For the future simulations (RCP4.5

and RCP8.5), the value of the temperature difference is maintained at low latitudes,

while it decreases at high latitudes under both RCP scenarios, converging to the

low-latitude values.

The ensemble spread of the temperature difference is large, reaching about 3.0

K (two standard deviations) for the historical simulation at high and low latitudes

(Figure 2.10). At high latitudes and for the RCP4.5 and RCP8.5 simulations, the en-

semble spread decreases to about 1.5 K by 2100. Examining the temporal variability

of the projected temperature difference by each individual LSM reveals that not all the



2.4. RESULTS 61

1861 1901 1940 1980 2020 2059 2099
Year

−3

−2.1

−1.2

−0.3

0.6

1.6

2.5

3.4

4.3

5.2

G
ST

 a
t 1

0c
m

 −
 S

AT
 (K

)

Historical(32)
RCP45(28)
RCP85(29)

1861 1901 1940 1980 2020 2059 2099
Year

−3

−2.1

−1.2

−0.3

0.6

1.6

2.5

3.4

4.3

5.2

G
ST

 a
t 1

0c
m

 −
 S

AT
 (K

)

Historical(32)
RCP45(28)
RCP85(29)−140˚

−140˚

−120˚

−120˚

−100˚

−100˚

−80˚

−80˚

−60˚

−60˚

40˚ 40˚

−140˚

−140˚

−120˚

−120˚

−100˚

−100˚

−80˚

−80˚

−60˚

−60˚

40˚ 40˚

a) b)

Figure 2.10: Spatial multimodel mean and two standard deviations of the difference be-
tween GST and SAT, (a) at North American high latitudes from 40◦N to 55◦N, and (b)
at North American low latitudes from 25◦N to 40◦N. The number of models used in the
calculations is indicated in brackets.

LSMs yield a change in the air and ground temperature relationship within the RCP

simulations (Figures A.15 and A.16). For example, GCMs showing negative spatial

correlation coefficients in the comparison with observations (Table 2.2) (the models

using the JSBACH, and the ORCHIDEE LSMs, as well as the HADGEM2 models) do

not project a decrease in the temperature difference at high latitudes and do not simu-

late a different value for the GST-SAT metric at low and high latitudes. Although the

CMCC-CM model also shows a negative correlation coefficient with observations, this

model projects a change in the temperature difference at high and low latitudes with

very low spatial variability. While the CMCC-CMS model, which used the same LSM

with coarser resolution than the CMCC-CM model, is spatially positively correlated

with observations, but does not show a future change in the air-ground relationship

and non spatial variability. The correlation coefficients between the CANESM2 model

and the observations is almost zero, and this model does not include either spatial

or temporal variability in the behavior of the relationship between air and ground
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temperatures. The models using the LM3 LSM show similar results with a very

small change in the future temperature difference at high latitudes and very low spa-

tial variability, despite using different vertical resolutions, parameterizations (aerosols

and atmospheric chemistry) and ocean components (Appendix 9.A Flato et al., 2013).

The three models using the MATSIRO LSM coupled to different versions of the same

atmospheric model with different horizontal and vertical resolutions display similar

values and behavior of GST-SAT at high latitudes, while the MIROC5 GCM differs

from the other two GCMs during the first century of the historical simulation at low

latitudes. None of the models using the MATSIRO LSM shows a higher value of the

temperature difference at high latitudes than at low latitudes, in opposition to the ob-

servations and the multimodel mean. The models using the CLM4 LSM, which show

a slightly better performance in the comparison with observations than the models

using the previously mentioned LSMs, yield similar behavior for GST-SAT, despite

being coupled to different versions of atmospheric models (different parameterizations

of aerosols and atmospheric chemistry) with different grid resolutions. All of them

project a future change in the temperature difference and simulate a higher value

of GST-SAT at high latitudes than at low latitudes. Additionally, the models using

the BCC-AVIM1.0 LSM, which is based on a previous version of the CLM LSM (Wu

et al., 2013), present similar results to those of the CLM4 LSM. The two BCC models

show similar relationships between GST and SAT at high latitudes, but these rela-

tionships differ by about 1 K at low latitudes; with the coarsest model yielding the

lower temperature difference (Figure A.16). The INM model and the GISS models,

which are spatially highly correlated to observations but showing large RMSE values,

include the change in the GST-SAT parameter under the RCPs at high latitudes and

the spatial variability. However, these models shows negative temperature differences

averaged at low latitudes in contrast to the observations and the rest of the CMIP5
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models. The models using the HAL LSM, which show enhanced performance against

observations in comparison with the rest of the models, project a change in the tem-

perature difference as well as include the spatial variability. The models using the

HAL LSM do not show any difference in these results despite using different atmo-

spheric parameterizations (aerosols and atmospheric chemistry (Appendix 9.A Flato

et al., 2013).

As in Subsection 2.4.2, we evaluate the long-term influence of near-surface pro-

cesses on GST and SAT relationships within the CMIP5 simulations by computing

the point-to-point correlation coefficients between the annual absolute values of the

air-ground temperature difference and the annual means of the CMIP5 variables asso-

ciated with snow cover, vegetation cover, precipitation and soil moisture at each grid

cell for the historical, RCP4.5 and RCP8.5 simulations (Figures A.17-A.20). We find

high positive correlation coefficients between snow cover and the temperature differ-

ence at high latitudes for the Historical (1861-2005) and RCP experiments (2006-2099),

with the INM and the GISS models showing large areas with significant negative cor-

relation coefficients where SAT is higher than GST (Figure A.17). The correlation

coefficients are significant under both RCP scenarios over most areas for the CMIP5

models, indicating a strong effect of snow changes on the characterization of air and

ground temperatures in the future. The high correlation coefficients of the CMIP5

models at high latitudes are indicative of the covariance between the future decrease in

the temperature difference shown in Figure 2.10a and the expected decrease in snow

cover due to increased SAT projected at high latitudes (IPCC, 2013; Koven et al.,

2013). The relationship between vegetation cover and the temperature difference is

negative for most of the models within the CMIP5 historical and future simulations,

except for the MIROC5 model that shows positive correlation coefficients over a large

area under the RCP8.5 scenario (Figure A.18). For the historical period, most of the
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models show larger negative correlation coefficients at low latitudes and the eastern

US. Meanwhile, most of the models under RCP4.5 and RCP8.5 scenarios show larger

negative correlation coefficients at high latitudes and in the western US than those in

the historical simulation. The increased influence of vegetation on the characterization

of air and ground temperature relationships is likely related to the increasing area over

which vegetation becomes dominant over snow cover in the two future experiments

as well as to the increases in LAI simulated for most of the models as a response to

increasing Carbon Dioxide (CO2), regardless the vegetation model employed in the

simulations (Mahowald et al., 2016). The strong correlation between LAI and the tem-

perature difference shown by the majority of the models illustrates the important role

played by vegetation in controlling air and ground temperature relationships within

the historical and future simulations. The correlation results between precipitation

rates and the temperature differences are negative over most areas of the domain for

the majority of the models, indicating a future intensification of the precipitation ef-

fect on the characterization of air and ground temperature relationships in most of the

models (23 of the 29 CMIP5 models with RCP experiments), although each shows

a different increase in correlation depending on the climate scenario (Figure A.19).

The multimodel mean of the correlation maps shows the agreement among models in

the negative correlation between soil moisture and the temperature difference at low

latitudes, and the increased number of grid cells with positive correlation coefficients

at high latitudes under the RCP8.5 (Figure A.20).
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2.5 Discussion

2.5.1 Uncertainty in the comparison between simulations

and observations

We used the difference between SAT and GST to compare the characterization of air

and ground temperature relationships within the CMIP5 simulations and the NARR

product with observations. Although there are other useful variables to study air-

ground coupling, such as surface energy fluxes, we used temperature because it is

one of the variables with longer and broader observational data records. However, we

have found several difficulties in the search and treatment of air and ground temper-

ature measurements at US and Canadian stations. The employed observational data

cover most of the domain, except north eastern Canada, but some assumptions were

made to allow the comparison between models, reanalysis, and observations. These

considerations include the approximation of daily means of ground temperatures at

Canadian stations using soil measurements at 12 a.m. and 12 p.m., as well as the

representation of the period mean from 1979 to 2001 using data at grid cells with

more than 10 annual values. Even considering these caveats, the air-ground tempera-

ture difference from observations at US and Canadian stations is consistent with the

expected results, showing annual ground temperatures higher than annual surface air

temperatures and larger air-ground temperature differences at higher altitude and lat-

itude, where snow and soil freezing phenomena are active (Beltrami, 1996; Goodrich,

1982; Pollack et al., 2005; Smerdon et al., 2004, 2006; Sokratov et al., 2002).

Additionally, there are other inconsistencies in making a direct comparison be-

tween simulations and observations as station data show irregularities in terms of
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ground cover, elevation, soil type, station environment, instruments, observational

period and time of observations. All those factors, and land cover in particular, deter-

mine the magnitude of the difference between air and ground temperatures as we have

seen in Subsection 2.4.2, thus we assume that there are uncertainties in the presented

comparison between models and observations arising from these factors. Spatial and

temporal averages could reduce the data noise from these irregularities, hence several

studies employed averages to compare simulations and observations in many studies

(Robock et al., 1998, 2003; Srinivasan et al., 2000; Xia et al., 2013). We use the average

of the data at all the stations contained in a 1◦ ×1◦ grid cell (∼ 110 km × 90 km) and

the average from 1979 to 2001 to provide a more reliable comparison between simula-

tions and observations. Nevertheless, increasing soil temperature measurements and

enhancing the quality of observational data may provide more meaningful compar-

isons between simulations and observations, needed to improve the characterization

of air and ground temperature relationships and associated phenomena within climate

models and reanalyses.

The definition of air temperature at 2 m within the models can be another source

of uncertainty in the comparison between models and observations. Air temperature

at 2 m within models is defined using the displacement height as reference, which

places 2 m-air temperature at approximately 2 m above 2/3 of the obstacle height.

That is, in a 30 m height forest, the SAT variable would contain air temperatures

at approximately 22 m height. Results of models and observations shown in Figures

2.2, 2.3 and 2.4 reveal some models with similar patterns of temperature differences

to those of observations, despite using SAT at 2 m above the displacement height,

suggesting that the effect of using the model’s definition of SAT on our results is small.

Another approach to evaluate the uncertainties arising from the SAT definition in

climate models is to repeat the analysis using the differences between GST and Surface
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Temperature (ST). STs in a model correspond to air, soil or canopy temperatures of a

thin layer close to the surface, depending on the land cover. We obtain results similar

to those shown in Figure 2.2 when SAT is replaced by ST as the air temperature

variable (Figure A.21), reinforcing the use of SAT in this analysis.

2.5.2 Effect of near-surface processes on the characteriza-

tion of air and ground temperature relationships

Using a simple metric defined as the difference between air and soil temperatures, we

have been able to distinguish large differences among the CMIP5 models as well as

their discrepancies with observations. In this study, this metric also has been employed

to evaluate the influence of near-surface processes on the energy and water balances

at the surface within models and reanalysis. This analysis has shown seasonal differ-

ences in the effect of the near-surface processes on the temperature differences. Snow

cover has been shown to be the main driver in winter, increasing the temperature

differences over most areas of the domain and for the annual mean at high latitudes.

The high albedo of snow cover and its low thermal conductivity limit the net-radiation

absorbed by the soil and the energy exchanges between the lower atmosphere and the

surface. These properties lead to the insulating effect of snow cover yielding warmer

ground temperatures in winter and increasing the difference between air and ground

temperatures (e.g. Goodrich, 1982; Pollack et al., 2005; Smerdon et al., 2004, 2006;

Sokratov et al., 2002). The CMIP5 models and the NARR product reproduce the ef-

fect of snow cover on the temperature difference, being the main reason for the lower

model variability in DJF than in JJA, as well as for the better model performance

in reproducing the DJF observations. In JJA, other near-surface processes, such as

vegetation cover, soil moisture and precipitation rates, have been found to influence
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temperature differences within the models, resulting in larger spatial variability and

differences among models than during boreal winter. These processes are generally

inversely related to the temperature differences in JJA over the western domain, in-

dicating the influence of changes in vegetation cover, soil moisture and precipitation

on the energy and water balances over this area within the CMIP5 simulations. The

negative relationship between these processes and the GST-SAT metric is explained

by their effect on evapotranspiration (Bonan, 2002; Lin et al., 2003; Pollack et al.,

2005; Smerdon et al., 2006). When energy is not a limitation (summer), increases

in vegetation cover, soil moisture, and precipitation are associated with enhanced

evapotranspiration rates, which dissipate heat. Thus, the soil cools and the differ-

ence between ground and air temperatures decreases, when ground temperatures are

higher than air temperatures. At annual scales, the effect of these surface processes

is reduced, showing a significant effect only at low latitudes of the domain, where the

effect of snow cover is weaker. In DJF, soil moisture and precipitation rates are found

to be directly related to the temperature differences over some areas of the domain

for most of the models, with models indicating a weaker role of these processes in

the winter temperature differences than in JJA. The seasonal differences in the effect

of soil moisture and precipitation likely are associated with snow cover and freezing

phenomena in winter and increases in the energy and water exchanges at the surface

in summer.

2.5.3 Dependence on the LSM

The CMIP5 climate models are not independent (e.g. Knutti et al., 2013). Models

from different institutions may share model components or use different versions of

the same model component, such as LSMs or atmospheric models. However, the LSM-

dependency shown in our results appears to be robust, while the atmospheric models
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apparently play a secondary role in the simulation of the difference between air and

ground temperatures. To investigate this hypothesis, we calculate the Root Mean

Square Errors and the spatial correlation coefficients between each pair of GCMs in-

cluded in the CMIP5 ensemble, using the mean of the annual temperature difference

(GST-SAT) for the period of comparison with observations (1979-2001), as well as

the means of the annual GST and SAT variables separately (Figures 2.11, A.22 and

A.23). To allow the comparison of the simulated GST and SAT across models, the

annual temporal series of GST and SAT are normalized before estimating the period

mean, by subtracting the mean of the historical period (1861-2005) and dividing by

the standard deviation at each grid cell. Assuming that the GST variable is calcu-

lated by the LSM and the SAT variable is calculated by the atmospheric model (see

CMIP5 metadata requirements), we can study the main source of model variability

in the characterization of GST and SAT relationships. As expected, the correlation

coefficients for the GST-SAT parameter are large for models using the same LSM,

although there are three models (the HADCM3, the CMCC-CMS and the MIROC5)

yielding results different to their shared-LSM simulations. These simulations and their

shared-LSM simulations differ in the employed horizontal and vertical resolution, and

two of them (the HADCM3 and the MIROC5 simulations) also use a different version

of the atmosphere and ocean components than their shared-LSM simulations (Ap-

pendix 9.A Flato et al., 2013). The spatial correlation coefficients for the normalized

GST and SAT variables show positive and negative values across models without a

clear relationship between these results and the model components. Nevertheless, the

correlation coefficients for the SAT variable appear to be larger than those for the

GST variable. RSME results using the GST-SAT parameter show low values for mod-

els using the same LSM, with the rest of the RMSE values being classified according

to their LSM. RMSE values among the CMIP5 ensemble for the GST are slightly
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larger than those for the SAT, indicating that GCMs differs more in simulating GST

than SAT. This suggests that LSMs may contribute slightly more than atmospheric

components to the different representation of the GST-SAT parameter across models.

Our results show that the LSM contribution to the CMIP5 ensemble variability in

representing air-ground temperature relationships could be larger than those arising

from the use of different horizontal resolutions and atmospheric parameterizations.

Lytle et al., 2016 also found a LSM dependence in the analysis of surface fluxes and soil

conditions among reanalyses and offline land surface model simulations, reinforcing

our findings. The comparison of the reanalysis product and the models employed

in this study in reproducing observations has shown that the NARR product differs

more from observations than most of the CMIP5 models, due to its poor performance

in reproducing the spatial pattern of GST observations, and therefore due to the

employed LSM to generate the NARR final product. These results agree with previous

evaluations of the NARR reanalysis. For example, Kumar et al., 2011 compared the

performance of the NARR reanalysis and the CLM3.5 LSM, finding a large energy

balance closing error in the NARR product, and in summary a better characterization

of the surface energy and water fluxes by the LSM than by the NARR.

The LSM-dependency and the heterogeneity among results is also characteristic

of the temporal evolution of the temperature difference. The GST-SAT from the mul-

timodel mean projects a future change at high latitudes under RCP4.5 and RCP8.5

conditions. However, some CMIP5 model simulations yield very small changes in

GST-SAT difference in the future (Figures A.15 and A.16). Despite the statistical

significance of the change in the air-ground temperature relationship, the model dif-

ferences in the magnitude of these changes shown in our results may contribute to

model variability in the projection of processes tied to air-ground coupling, such as

weather extremes, carbon cycling and permafrost stability (Slater et al., 2013).
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2.6 Conclusions

Comparison between models and observations reveals that the relationship between

air and ground surface temperatures in the CMIP5 simulations displays a large range

of variability and inconsistencies across GCM simulations at annual and seasonal

scales. The wide range of the magnitudes of the temperature difference among GCMs,

particularly in boreal summer, reveals the complexity in modelling physical processes

at the land-surface boundary. Despite this large variability, the CMIP5 GCMs show

different but temporally stable relationships between air and ground temperatures

over the Historical simulations for North America. At low latitudes, the air-ground

temperature difference is stable for the Historical and future periods under the RCP4.5

and RCP8.5 scenarios. At high latitudes, the air-ground temperature relationship

changes in the future projections in response to the evolution of near-surface processes.

The differences in the simulation of the energy and water balances under the influence

of near-surface processes among the CMIP5 GCMs’ land surface model contribute

to the large variability among simulations in terms of air and ground temperature

relationships. This large variability and the LSM-dependency of the results highlight

the important role of LSMs in climate simulations and their possible contributions

to the model variability. The heterogeneity among GCM simulations also illustrates

the need to improve the treatment of the energy and water exchanges at the air-

ground interface to improve the long-term simulation of the subsurface thermal state

to properly assess the effect on the climate system of some potentially important

positive climate feedback mechanisms such as permafrost and soil carbon stability,

and high-impact phenomena like extreme events.
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Abstract

The representation and projection of extreme temperature and precipitation events

in regional and global climate models are of major importance for the study of cli-

mate change impacts. However, state-of-the-art global and regional climate model

simulations yield a broad inter-model range of intensity, duration and frequency of

these extremes. Here, we present a modeling experiment using the Weather Research

and Forecasting (WRF) model to determine the influence of the Land Surface Model

(LSM) component on uncertainties associated with extreme events. First, we analyze

land-atmosphere interactions within four simulations performed by the WRF model

from 1980 to 2012 over North America, using three different LSMs. Results show

LSM-dependent differences at regional scales in the frequency of occurrence of events

when surface conditions are altered by atmospheric forcing or land processes. The

inter-model range of extreme statistics across the WRF simulations is large, partic-

ularly for indices related to the intensity and duration of temperature and precipi-

tation extremes. Our results show that the WRF simulation of the climatology of

heat extremes can be 5oC warmer and 6 days longer depending on the employed LSM

component, and similarly for cold extremes and heavy precipitation events. Areas

showing large uncertainty in WRF simulated extreme events are also identified in a

model ensemble from three different Regional Climate Model (RCM) simulations par-

ticipating in the Coordinated Regional climate Downscaling Experiment (CORDEX)

project, revealing the implications of these results for other model ensembles. Thus,

studies based on multi-model ensembles and reanalyses should include a variety of

LSM configurations to account for the uncertainty arising from this model component

or to test the performance of the selected LSM component before running the whole

simulation. This study illustrates the importance of the LSM choice in climate sim-
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ulations, supporting the development of new modeling studies using different LSM

components to understand inter-model differences in simulating temperature and pre-

cipitation extreme events, which in turn will help to reduce uncertainties in climate

model projections.

3.1 Introduction

General Circulation Models (GCMs) and Regional Climate Models (RCMs) are cur-

rently the most useful tools for the study of processes affecting the frequency, duration

and intensity of extreme temperature and precipitation events, as well as projecting

their evolution under different emission scenarios at global, regional and local scales.

Both observational data and climate model simulations confirm that all of these statis-

tics respond to climate change (Jeong et al., 2016; Orlowsky et al., 2012; Seneviratne

et al., 2012). However, state-of-the-art global and regional climate models differ sub-

stantially in their representation of the climatology and response to warming of various

indices of temperature and precipitation extremes (Sillmann et al., 2013a,b). Climate

information provided by models is currently employed by public and private institu-

tions dedicated to the evaluation and management of risks from extreme events and

associated disasters (Arneth, 2019; IPCC, 2013). It is, therefore, essential that climate

models represent extreme events and their evolution as realistically as possible to aid

in the design of appropriate policies to mitigate climate change and build resilience.

In this study, we analyze the representation of a set of extreme indices, previously

included in international reports such as the IPCC, 2013 and Seneviratne et al., 2012,

as simulated by the Weather Research and Forecasting (WRF) model with different

Land Surface Model (LSM) components. We focused on the climatology of these

extreme indices, that is the mean of each index from 1980 to 2013.
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Soil conditions are coupled to near-surface atmospheric phenomena through energy

and water exchanges at the ground surface. The representation of the interactions

between the land surface and the near-surface atmosphere has been identified as a

key factor in the simulation of extreme events (e.g. Lorenz et al., 2016; Vogel et al.,

2017). For example, changes in soil moisture and soil properties may lead to vari-

ations in energy fluxes at the land surface affecting temperature and precipitation

evolution. Changes in latent heat flux affect surface temperatures in the following

way: a decrease in latent heat flux likely means an increase in the energy available

for sensible heat flux, which is directly related to the air-ground temperature gradi-

ent. The increase in sensible heat flux yields an increase in this temperature gradient,

which may lead to changes in air temperatures (Seneviratne et al., 2010). Meanwhile,

changes in latent heat flux also yield changes in the atmospheric water content, pos-

sibly affecting the formation of clouds and precipitation (Seneviratne et al., 2010).

Previous observational studies have shown the impact of soil moisture deficits on hot

extreme temperatures through changes in evapotranspiration over southeastern and

western Europe and Russia (Hauser et al., 2016; Hirschi et al., 2011; Miralles et al.,

2012). Additionally, soil moisture regimes have been found to alter the energy and

water exchanges at the surface, influencing inter-annual summer temperature variabil-

ity in central parts of North America (Donat et al., 2016), and precipitation events

in western North America (Diro et al., 2014). Land-Atmosphere interactions, and

consequently near-surface conditions, are influenced by vegetation and snow cover

(Diro et al., 2018; Stieglitz et al., 2007). For example, Diro et al., 2018 showed that

interactions between snow cover and atmospheric processes influence extreme events,

increasing the frequency of cold events over western North America and affecting the

variability in warm events over northeast Canada and the Rocky mountains.

Metrics built on the representation of land-atmosphere interactions have been
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employed as a basis for evaluating extreme temperature and precipitation events in

climate model simulations (Davin et al., 2016; García-García et al., 2019; Gevaert

et al., 2018; Knist et al., 2016; Lorenz et al., 2016; Sippel et al., 2017). For example,

Lorenz et al., 2016 evaluated outputs from six GCMs participating in the Global Land-

Atmosphere Coupling Experiment (GLACE) of the 5th phase of the Coupled Model

Intercomparison Project (CMIP5) (GLACE-CMIP5) and concluded that ranges of

intensity, frequency and duration of extreme events among climate projections are

strongly related to inter-model differences in the representation land-atmosphere in-

teractions. Gevaert et al., 2018 evaluated the representation of land-atmosphere in-

teractions within a set of offline LSM simulations, finding similar spatial patterns of

soil moisture-temperature coupling among LSM simulations, but large variability in

the degree and local patterns of land-atmosphere coupling. García-García et al., 2019

employed a simple metric derived from soil and air temperatures to evaluate outputs

from the CMIP5 models against observations over North America, suggesting a strong

dependency of the simulated land-atmosphere interactions on the LSM component em-

ployed. The model differences in the representation of land-atmosphere interactions

shown in these studies may be affecting the simulation of extreme events, and thus

contributing to the uncertainty in multi-model ensembles such as those formed by the

CMIP5 and the Coordinated Regional climate Downscaling Experiment (CORDEX)

simulations.

The choice and complexity of the LSM component may have implications for the

representation of land-atmosphere interactions in reanalysis products, since reanalysis

products have shown discrepancies in the representation of land-atmosphere coupling

with observations (Ferguson et al., 2012; García-García et al., 2019). However, in con-

trast with the variety of LSM components employed in the new generation of GCMs,

reanalyses use simplified versions of LSM components, typically included as part of the
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atmospheric model component. For example, all reanalysis products produced by the

European Centre for Medium-range Weather Forecasts (ECMWF) model (CERA-20C,

ERA-15, ERA20C, ERA-Interim, ERA-40, and ERA5 products) employed different

versions of the same LSM component included in the code of the ECMWF atmospheric

model (Hersbach et al., 2018). The two Modern-Era Retrospective analysis for Re-

search and Applications (MERRA and MERRA2) global products employed similar

versions of the GEOS-5 Catchment land surface model (Molod et al., 2015; Reichle et

al., 2011). The Japanese Reanalysis (JRA) products employed a modified version of

the Simple Biosphere (SiB) LSM (Onogi et al., 2007), while most of National Centers

for Environmental Prediction (NCEP) and National Center for Atmospheric Research

(NCAR) products employed the NOAH LSM (Tewari et al., 2004). The complexity

and variety of these LSM components are limited in order to reduce computational

costs, affecting the quality of the represented land surface processes. This has already

been noted by the scientific community, and some have attempted to address the issue

by incorporating updated versions of LSMs in new land reanalysis products through

offline LSM simulations forced by observational data products (LDAS, MERRA-land,

ERA-Iterim/Land, ERA5-land, Balsamo et al., 2015; Hersbach et al., 2018; Reichle

et al., 2011; Rodell et al., 2004). Although these new products can be useful for

LSM development and provide data about the soil states and fluxes (Balsamo et al.,

2015), the offline character of the new land products inhibits the representation of

land-atmosphere coupling and feedbacks.

Here, we perform a set of modeling experiments to examine for the first time

the influence of the LSM component on the simulation of key extreme indices and

land-atmosphere interactions within land-atmosphere coupled climate simulations at

continental scales. For this purpose, four regional simulations are performed over

North America (1979-2012) using the WRF model including three different LSM com-
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ponents widely employed in model simulations and reanalysis products, as described

in Section 3.2. To explore the influence of the LSM component on the simulation of

extreme events in multi-model ensembles, we compare the uncertainty in the repre-

sentation of extreme indices within our four WRF simulations with the uncertainty in

three simulations participating in the North American component of the CORDEX

project (NA-CORDEX). The methods for the analysis of land-atmosphere interac-

tions and the representation of extreme events are described in Section 3.3. Section

3.4 presents the examination of land-atmosphere interactions, the analysis of LSM

differences in the representation of temperature and precipitation extremes, and the

comparison between the WRF simulations and three CORDEX simulations. A discus-

sion about previous results and the main conclusions and implications of this study

are presented in Section 3.5 and 3.6, respectively.

3.2 Description of the modeling experiment

We performed four regional simulations over North America (NA) using the version

3.9 of the Advanced Research WRF (ARW-WRF) model (Michalakes et al., 2001;

Skamarock et al., 2008a) including three different land surface models: the NOAH

LSM (NOAH, Tewari et al., 2004), the NOAH LSM with multiparameterizations

options (NOAH-MP, Niu et al., 2011), and the Community Land Model version 4

LSM (CLM4, Oleson et al., 2010). Vegetation cover was prescribed in these three

simulations (NOAH, NOAH-MP and CLM4); an additional simulation was conducted

with dynamic vegetation cover in the NOAH-MP LSM (NOAH-MP-DV), allowing for

the evaluation of the influence of dynamic vegetation on extremes. The use of different

LSM configurations in a RCM permits the study of the influence of surface and soil

processes on the simulated climate system in contrast to LSM offline simulations
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(Laguë et al., 2019).

The LSM components employed have been previously included in climate model

studies or in reanalysis products. The CLM4 LSM component has been coupled to

several GCMs participating in the CMIP5 project (Collins et al., 2006; Vertenstein

et al., 2012). The NOAH LSM has been extensively used for reanalysis products, as

well as for RCM simulations such as those participating in the CORDEX project (Ka-

tragkou et al., 2015; Mesinger et al., 2006). The NOAH-MP LSM has been selected for

current studies using WRF (e.g. Liu et al., 2017). The NOAH LSM is a rather basic

LSM developed by the National Center for Atmospheric Research (NCAR) and the

National Centers for Environmental Prediction (NCEP), based on the Oregon State

University (OSU) LSM (Mitchell, 2005). This LSM component describes soils using

4 layers with thickness 10, 30, 60 and 100 cm, using a zero-flux bottom boundary

condition at a depth of 2 m. The NOAH LSM estimates soil moisture and tempera-

ture at the node of each soil layer, taking into account snow cover, canopy moisture,

and soil ice. The NOAH-MP LSM is based on the NOAH LSM, introducing rele-

vant improvements, such as a dynamic vegetation option; a new separated vegetation

canopy cover that improves the computation of energy, water and carbon fluxes at

the surface; a separate scheme for computing energy fluxes over vegetated surfaces

and bare soils; a new 3-layer snow model; a more permeable frozen soil; and an im-

proved description of runoff and soil moisture. Although the NOAH-MP LSM is the

updated version of the NOAH LSM and has been shown to improve the simulation of

surface processes in comparison to the NOAH LSM (e.g. Niu et al., 2011; Yang et al.,

2011), the NOAH-MP LSM has not yet been implemented in any reanalysis prod-

uct. The CLM4 represents one of the most advanced LSM components, incorporating

a detailed description of biogeophysics, hydrology and biogeochemistry. The CLM4

classifies vegetation cover using up to 16 different plant functional types, considering
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the physiology and structure of different plants. The soil vertical structure is divided

into a layer for the vegetation canopy, 5 layers for snow cover, and 10 soil layers,

placing the zero-flux bottom boundary condition at approximately 4.32 m. The main

characteristics of the employed LSM components are summarized in Table 3.1.

Beyond the structural differences among LSM components, the remaining options

and parameters are identical for the four WRF simulations. Boundary conditions

for the WRF experiments are provided by the North American Regional Reanalysis

(NARR) product, which is formed by the NCEP Eta atmospheric model, the NOAH

LSM and the Regional Data Assimilation System (RDAS); (Mesinger et al., 2006).

NARR data are provided with a 32 km grid and three-hourly temporal resolution,

available at the National Center for Environmental Information (NOAA) archive.

The domain set for the WRF simulations has 50 km horizontal resolution and 27

atmospheric levels, covering North America in a Lambert projection. The land use

categories employed for the four simulations (Figure B.1) are derived from the Moder-

ate Resolution Imaging Spectroradiometer (MODIS, Barlage et al., 2005). Sea surface

temperatures were prescribed using the NARR product. The four WRF simulations

start on January 1st 1979, which is the first year of the NARR product, and end on

December 31st 2012, using a time-step of 300 seconds for the model integrations. We

use the first year of each simulation as spin-up and the other 33 years for the analysis.

The selection of the first year as spin-up was done considering the initialization period

previously used in WRF climate experiments, such as those in Barlage et al. (2005),

Katragkou et al. (2015), and Wang et al. (2015). The comparison of the latent heat

flux and surface air temperature outputs from the WRF-CLM4 simulation starting

on January 1st, 1979 and a similar simulation starting on June 1st, 1979 indicates

that this period is enough to initialize the simulation (Figures B.21 and B.22). The

employed physics parameterizations include the WSM 6-class graupel scheme for the
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microphysics (Hong et al., 2006b), the Grell-Freitas ensemble scheme for cumulus

description (Grell et al., 2014), the Yonsei University scheme as planetary boundary

layer scheme (YSU, Hong et al., 2006a), the revised MM5 monin-Obukhov scheme for

the surface layer (Jiménez et al., 2012), and the CAM scheme for the integration of

radiation physics each 20 min intervals (Collins et al., 2004).

The gap in resolution from the employed boundary conditions (32 km) to the final

simulations (50 km) can be counter-intuitive for a RCM experiment. The computa-

tional resources saved with this coarse resolution allow us to perform simulations long

enough for the study of land-atmosphere interactions and extreme events at climato-

logical scales and yet similar horizontal resolution and domain to those employed in

the North American component of the CORDEX project (Giorgi et al., 2015) can be

attained. Thus, this decrease in resolution allows us to generate a set of four WRF

sensitivity experiments using different LSM configurations. Additionally, we do not

apply any nudging technique, ensuring that the RCM evolves freely according to each

LSM component and its representation of land-atmosphere interactions.

3.3 Methodology

Different metrics have been employed in the literature for the evaluation of land-

atmosphere interactions within climate model simulations and observations. Among

these metrics, we selected the Vegetation-Atmosphere Coupling (VAC) index (Zscheis-

chler et al., 2015) as our evaluation metric for the representation of land-atmosphere

interactions at monthly scales. This index has been previously employed in the lit-

erature to identify regions with episodes of strong land-atmosphere coupling within

climate model simulations and observational data (Gevaert et al., 2018; Li et al., 2017;

Philip et al., 2018; Sippel et al., 2017; Zscheischler et al., 2015). The VAC index is
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segregated in four categories based on the simultaneous occurrence of some given ex-

treme percentile rages of Surface Air Temperature (SAT) and Latent Heat flux (LH)

(Philip et al., 2018):

V ACa if SAT < 30thPctl. and LH < 30thPctl. → Atmos. Control

V ACb if SAT > 70thPctl. and LH > 70thPctl. → Atmos. Control

V ACc if SAT > 70thPctl. and LH < 30thPctl. → Land Control

V ACd if SAT < 30thPctl. and LH > 70thPctl. → Land Control

0 otherwise

(3.1)

Extremes of SAT and LH are defined as values exceeding (below) the 70th (30th)

percentile, relative to a 20-year period (1980-2000) (Eq. 3.1). We use the Vegetation-

Atmosphere Coupling (VAC) metric at monthly scales as in Sippel et al., 2017, since

this work proved the usefulness of the VAC metric at monthly time scales for the analy-

sis of the climatology of extreme indices. The VAC index classifies areas depending on

the soil moisture regime into energy-limited areas, where atmospheric conditions con-

trols land-atmosphere interactions (VACa and VACb), and into water-limited areas,

where soil moisture deficits control the water and energy exchanges at the air-ground

interface (VACc and VACd). As explained in Zscheischler et al., 2015, the VACa

category is associated with energy limitations (low SAT) caused by the presence of

clouds and precipitation, which leads to a decrease in the vegetation photosynthetic

activity and therefore an increase in soil moisture. The VACb category is frequent

in wet areas with high SAT, usually related to clear sky and high radiation, which is

associated with an increase in the vegetation photosynthetic activity inducing the de-

pletion of soil moisture. During VACc episodes, the combination of high SAT and soil

moisture deficits leads to diminished vegetation photosynthetic activity, followed by
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low precipitation and consequently low soil moisture and high SAT, promoting heat

waves and droughts. The VACd category is associated with high precipitation over

dry soils which stimulates vegetation photosynthetic activity, increasing soil moisture

and decreasing SAT. A no-coupling option also occurs when SAT and LH extremes

do not coincide in time.

We calculate the frequency of occurrence for each VAC category using deseasonal-

ized and detrended monthly SAT and LH time series following the methods employed

in Sippel et al., 2017 at each grid cell from 1980 to 2012, hereafter the analysis period.

The frequency of occurrence for each VAC category is calculated by counting the VAC

events for the analysis period seasonally; in boreal winter (December, January, and

February; DJF), in spring (March, April, and May; MAM), in summer (June, July,

and August; JJA), and in fall (September, October, and November; SON). The prob-

ability of each VAC category (Figures B.2-B.5) and the probability of the no-coupling

case sum 100% over the analysis period at each grid cell. The VAC probabilities of

occurrence for each category are considered significant when higher than the 95th per-

centile of the population obtained by 100 randomly sorted 34-year time series of SAT

and LH. For the study of land-atmosphere coupling within each simulation, we repre-

sent the averaged frequency of events under atmospheric control (VACa and VACb)

and under land control (VACc and VACd) at grid cells with significant frequency of

occurrence for at least one of the two VAC categories.

After the analysis of land-atmosphere interactions in our set of simulations, we

assess the representation of extreme events across the WRF simulations coupled to

different LSM components. There are several definitions of indices related to temper-

ature and precipitation extremes, mainly using thresholds based on absolute values

or statistical percentiles (e.g. Sillmann et al., 2013a). Studies based on statistical

percentiles improve the comparison among models but hamper the interpretation of



98 3.3. METHODOLOGY

T
able

3.2:
List

ofextrem
e

indices
used

in
this

study
defined

by
the

ET
C

C
D

I
(K

arlet
al.,1999).

Percentiles
are

calculated
over

the
period

1980-2000.Index
D

efinition
U

nit
C

old
E

vent
Intensity
T

X
x

D
JF

M
axim

um
value

ofdaily
m

axim
um

tem
perature

(hottest
day)

in
w

inter
◦C

T
N

n
D

JF
M

inim
um

value
ofdaily

m
inim

um
tem

perature
(coldest

nigth)
in

w
inter

◦C
Frequency

T
N

10p
Percentage

ofdays
in

a
year

w
hen

daily
m

inim
um

tem
perature

<
the

calendar
day

10th
percentile

centered
on

a
5-day

w
indow

%
T

X
10p

Percentage
ofdays

in
a

year
w

hen
daily

m
axim

um
tem

perature
<

the
calendar

day
10th

percentile
centered

on
a

5-day
w

indow
%

D
uration
C

SD
I

C
old

SpellD
uration

Index:
annualcount

ofdays
w

ith
at

least
6

consecutive
days

w
hen

daily
m

inim
um

tem
perature

<
the

calendar
day

10th
percentile

centred
on

a
5-day

w
indow

D
ays

W
arm

E
vent

Intensity
T

X
x

JJA
M

axim
um

value
ofdaily

m
axim

um
tem

perature
(hottest

day)
in

sum
m

er
◦C

T
N

n
JJA

M
inim

um
value

ofdaily
m

inim
um

tem
perature

(coldest
night)

in
sum

m
er

◦C
Frequency

T
N

90p
Percentage

ofdays
in

a
year

w
hen

daily
m

inim
um

tem
perature

>
the

calendar
day

90th
percentile

centered
on

a
5-day

w
indow

%
T

X
90p

Percentage
ofdays

in
a

year
w

hen
daily

m
axim

um
tem

perature
>

the
calendar

day
90th

percentile
centered

on
a

5-day
w

indow
%

D
uration
W

SD
I

W
arm

SpellD
uration

Index:
annualcount

ofdays
w

ith
at

least
6

consecutive
days

w
hen

daily
m

axim
um

tem
perature

>
the

calendar
day

90th
percentile

centred
on

a
5-day

w
indow

D
ays

P
recipitation

E
vent

Intensity
R

95p
A

nnualtotalprecipitation
w

hen
daily

accum
ulated

precipitation
on

a
wet

day
>

95th
percentile

ofprecipitation
on

wet
days

m
m

Frequency
R

10m
m

A
nnualcount

ofdays
w

hen
daily

accum
ulated

precipitation
≥

10m
m

D
ays

D
uration
C

D
D

M
axim

um
length

ofdry
spell:

m
axim

um
annualnum

ber
ofconsecutive

days
w

ith
daily

accum
ulated

precipitation
<

1m
m

D
ays

C
W

D
M

axim
um

length
ofwet

spell:
m

axim
um

annualnum
ber

ofconsecutive
days

w
ith

daily
accum

ulated
precipitation

≥
1m

m
D

ays



3.3. METHODOLOGY 99

results by losing the physical meaning of the variable (temperature or precipitation).

Although the use of extreme indices defined with absolute values facilitates the un-

derstanding of results by a general public, these indices could include model-specific

biases. These biases can be corrected by bias removal techniques, however, the advan-

tage of applying bias removal techniques is not clear for the study of future climate

trends and climate variability, since these techniques have been proven to modify the

spatiotemporal consistency of climate models as well as internal feedback mechanisms

and conservation terms (Cannon et al., 2015; Ehret et al., 2012). Additionally, the

simulation of absolute temperatures are of central importance for temperature de-

pendent processes that may have important consequences for society and ecosystems,

such as soil carbon processes (Hicks Pries et al., 2017). Since extreme indices based

on both absolute values and statistical thresholds present advantages and disadvan-

tages, we selected a set of indices including both categories from the list of 27 indices

recommended by the Expert Team on Climate Change Detection and Indices (ETC-

CDI, Karl et al., 1999, Table 3.2). The employed intensity indices of temperature

events are based on temperature values in the hottest day and coldest night in sum-

mer and winter for warm and cold events. The frequency indices of the same events

indicate the percentage of hot and cold days and nights in the year. The duration

of the temperature events is represented with the number of consecutive hot days

and cold nights. The intensity of heavy precipitation events is characterized by the

total annual precipitation in wet days, while the frequency of precipitation events is

studied using the number of very wet days per year. The duration of wet and dry

events is represented with the annual number of consecutive wet and dry days. For

more specific definitions of the indices employed in this study, please refer to Table

3.2. Since we are interested in the climatology of extreme events, temporal averages of

each annual index are computed for the analysis period at each grid cell for each WRF
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experiment. Then, we compute the inter-model range of each index across the WRF

simulations (i.e., the difference between the maximum and minimum values at each

grid cell considering the four WRF simulations), using it as metric for the uncertainty

in the WRF simulation of extreme events arising from the LSM component.

The effect of the LSM configuration on the simulation of extreme events can also

be relevant for multi-model ensembles, such as those participating in the CORDEX

project. Here, we compare the LSM effect on the WRF simulation of extreme temper-

ature and precipitation events with the representation of extreme events by three dif-

ferent RCMs participating in the North America CORDEX (NA CORDEX) program

(Mearns, 2017). For this purpose, we use the daily outputs from three NA-CORDEX

simulations forced by reanalysis data (Evaluation experiments, Table 3.3). These

CORDEX simulations were performed by the WRF model (Skamarock et al., 2008b),

the RCA4 model (Samuelsson et al., 2011), and the CRCM-UQAM model (Martynov

et al., 2013), using boundary conditions from the ERA-Interim reanalysis (Dee et al.,

2011). The remaining NA-CORDEX Evaluation simulations available in the Climate

Data Gateway at NCAR were not used because those simulations cover a significantly

shorter period of time than our simulations. The spatial domain and resolution of the

NA CORDEX simulations are similar to that of the WRF simulations, as indicated

in Section 3.2. Refer to Table B.1 for information about the availability of the data

employed in this work.

Table 3.3: Characteristics of the Evaluation simulations employed in this analysis from
three RCMs participating in the NA-CORDEX project. The boundary conditions for these
three simulations are from the ERA-Interim reanalysis.

CORDEX RCM LSM Vegetation Types Spectral Nudging Institution Reference
WRF NOAH 24 Yes NCAR Skamarock et al., 2008b
RCA4 RCA LSS 12 No SMHI Samuelsson et al., 2011

CRCM-UQAM CLASS3.5+ 4 No UQAM Martynov et al., 2013
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3.4 Results

3.4.1 Evaluation of land-atmosphere interactions in WRF

simulations

All WRF simulations with different LSM components display similar spatial patterns

for VAC categories, agreeing in seasonality and broadly in the regional classification of

energy and water limited areas (e.g. areas with high probability of episodes where at-

mospheric forcing or soil conditions control land-atmosphere interactions) (Figures 3.1

and 3.2). Atmospheric forcing controls surface processes at middle and high latitudes

in MAM, JJA and SON, moving southward in DJF (Figure 3.1). Areas frequently

driven by soil conditions are displayed over the western Mexican coast in DJF, spread-

ing across low and middle latitudes in MAM, JJA and SON (Figure 3.2). These spa-

tial similarities in the VAC coupling metric indicate that factors common in our four

simulations, such as land cover, topography, latitudinal differences or atmospheric pa-

rameterizations produce these spatial patterns. Despite the broad agreement between

LSM simulations in the spatial distribution of the VAC categories, there are regional

differences in their representation of land-atmosphere coupling. These regional differ-

ences allow us to identify the NOAH LSM as the one simulating the weakest annual

land control on processes at the surface, mainly due to a relatively weak land control

during MAM and JJA (Figure 3.2).

The areas where LSM simulations differ in the probability of episodes under atmo-

spheric control (VACa and VACb) vary with the season; for example the NOAH-MP

LSM simulates a large area under atmospheric control over the southeastern US in

DJF, while the CLM4 and NOAH LSMs identify atmospheric control areas below the

Great Lakes following a northwestern direction (Figure 3.1). These differences in at-
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Figure 3.1: Mean frequency of occurrence for VAC categories associated with atmospheric
control (VACa and VACb) for each simulation annually and seasonally; DJF, MAM, JJA
and SON. Black dots in the maps indicate VAC values lower than the 95th percentile of the
randomly generated series, and therefore areas with no significant probabilities.
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Figure 3.2: Mean frequency of occurrence for VAC categories associated with land control
(VACc and VACd) for each simulation annually and seasonally; DJF, MAM, JJA and SON.
Black dots in the maps indicate VAC values lower than the 95th percentile of the randomly
generated series, and therefore areas with no significant probabilities.
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mospheric control areas are caused by the different probability of extreme latent heat

flux simulated by each LSM in DJF (Figure B.6 and B.7). In MAM, the NOAH-MP

LSM represents higher probability of atmospheric control episodes over the northern

US in comparison with the CLM4 and NOAH simulations (Figure 3.1). The NOAH

simulation shows the strongest atmospheric control in JJA as compared with the re-

maining simulations, particularly over eastern and western regions of Hudson Bay, the

southeastern US and small areas in Mexico (Figure 3.1). This strong JJA atmospheric

control in the NOAH simulation is driven by the VACa category (Figure B.2), and

likely related to the high probability of cold temperatures over these areas in this

simulation (Figure B.9). During SON, the NOAH-MP LSM reaches the highest prob-

ability of episodes under atmospheric control at middle and high latitudes, caused by

the high probability of extreme latent heat flux in comparison with the rest of the

LSMs (Figure B.6 and B.7). The contribution of the VACa and VACb categories to

these episodes is broadly similar across LSMs, with slightly higher VACa in all seasons;

modest LSM-specific differences include a tendency for the NOAH simulation to show

slightly higher VACa probabilities across all seasons (but especially DJF) (Figures

B.2 and B.3).

Although the NOAH simulation displays the weakest land control for all seasons,

it shows regions under land control over northwestern North America in DJF also

indicated by the CLM4 simulation, but absent in the NOAH-MP and NOAH-MP-DV

simulations (Figure 3.2). The probability of land control episodes over the western

Mexican coast is higher in the CLM4 and NOAH-MP simulations than in the NOAH

and NOAH-MP-DV simulations in DJF. These LSM differences are associated with

the high probability of low latent heat flux over those regions in winter for the CLM4

and the NOAH-MP simulations in comparison with the remaining simulations (Figure

B.7). In JJA, however, the NOAH-MP-DV simulation presents a stronger land control
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at low and middle latitudes than the NOAH-MP simulation (Figure 3.2), mainly

caused by the VACd category and the high probability of cold temperatures (Figures

B.5 and B.9). There are also regional differences between LSM simulations in SON,

particularly over the southeastern US coast where the CLM4 shows the strongest

land control, followed by the NOAH-MP simulation (Figure 3.2). The NOAH-MP-DV

simulation do not show this strong land control at low latitudes in SON, due to the low

probability of high latent heat flux represented by the NOAH-MP LSM with dynamic

vegetation (Figure B.6). The weaker land control in the NOAH simulation, however, is

not explained by the probability of extreme temperature or latent heat flux, since these

probabilities are similar to those in the CLM4 simulation (Figures B.6-B.9). Thus,

it is associated with the absent of coincidences of extreme temperature and latent

heat flux simulated by the NOAH LSM. Exploring the contribution of VACc and

VACd separately, it is shown they present small differences; for example, the VACc

probability in DJF is slightly higher than the VACd probability for all simulations,

showing the opposite behavior in JJA for the NOAH-MP and the NOAH-MP-DV

simulations (Figures B.4 and B.5).

3.4.2 Climatologies of temperature and precipitation extremes

in WRF simulations

We continue this analysis comparing the representation of extreme events within the

four WRF simulations by calculating the range among these four simulations. But

first, we analyze the spatial features of the climatology of extreme temperature and

precipitation indices as simulated by the mean of the four WRF simulations with

different LSM configurations (hereafter WRF ensemble mean) and by each LSM sim-

ulation separately.

The climatologies of temperature and precipitation extreme indices as described
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in Table 3.2 and represented by the mean of each index for the analysis period, show

similar spatial patterns across all WRF simulations with different LSM configurations

(Figures B.10, B.11 and B.12). The similarities in the spatial pattern of extreme events

among our simulations indicate that other factors different from the LSM configura-

tion, such as land cover, topography, latitudinal differences and atmospheric param-

eterizations, are driven these spatial features. Figure 3.3 represents the simulated

climatologies of all extreme indices for the ensemble mean, formed by the four WRF

simulations. The WRF ensemble mean shows the most intense cold events at high

latitudes and high elevations, with cold events being more frequent and longer over

northwestern North America and over Mexico (Figure 3.3a). The simulation of warm

events is more intense in coastal areas of the US and Mexico and over the central US,

being more frequent and longer over southern North America with a high percentage

of hot nights over northeastern NA (Figure 3.3b). Precipitation events are heavier

and more frequent at higher elevations and over southeastern NA (Figure 3.3c). The

longest dry periods are simulated over the western Mexican and US coasts, reaching

more than 80 consecutive dry days, while the longest wet periods are represented over

the Rockies and the northwestern Mexican coast (Figure 3.3c)

Figure 3.4 summarizes the averaged climatology of each extreme index for each sim-

ulation. Averages are computed over six regions adapted from Giorgi et al., 2000: Cen-

tral America, CAM; Western North America, WNA; Central North America, CNA;

Eastern North America, ENA; Alaska, ALA; and Greenland, GRL. Although there

are differences between our regions and those defined in Giorgi et al., 2000, we kept

the same nomenclature for an easy comparison. That is, we label this region as GRL,

although our northeastern Canadian region does not include Greenland. Colors in

the figure correspond to the hottest (red) and coldest (blue) index values among the

WRF simulations for the representation of cold and warm temperature extremes, and
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Figure 3.3: Climatology of extreme indices associated with cold temperature events (a),
warm temperature events (b), and precipitation events (c) for the ensemble mean, formed
by the four WRF simulations (Table 3.2: TXx/TNn, maximum/minimum value of the
maximum/minimum daily temperatures; TN10p/TX10p, percentage of cold nights/days;
TN90p/TX90p, percentage of hot nights/days; CSDI/WSDI, cold/warm spell duration in-
dex; R95p, total annual precipitation in wet days; R10mm, number of wet days in a year;
CDD/CWD, consecutive dry/wet days). The climatology of each index is estimated as the
mean of each extreme index at each grid cell for the analysis period (1980-2012).
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Figure 3.4: Comparison of the simulated climatologies of temperature and precipitation
extreme indices included in Table 3.2 among the WRF simulations averaging over six land
North American regions adapted from Giorgi et al., 2000 (Central America, CAM; Western
North America, WNA; Central North America, CNA; Eastern North America, ENA; Alaska,
ALA; and Greenland, GRL). Colors correspond to the hottest (red) and coldest (blue)
index values among the WRF simulations for the representation of cold (a) and warm (b)
temperature extremes, and to the driest (brown) and wettest (green) index values for the
representation of precipitation extremes (c) over each region.
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to the driest (brown) and wettest (green) index values for the representation of pre-

cipitation extremes over each region. This approach helps us to identify the CLM4

simulation as that with the weakest and shortest cold extreme events, although simu-

lating more frequent cold events than the rest of the LSM components (Figure 3.4a).

Meanwhile, the NOAH-MP-DV simulation shows more intense cold extremes during

shorter periods over most of the regions (CAM, CNA, ENA and ALA) in compari-

son with the NOAH-MP simulation which uses prescribed vegetation (Figure 3.4a).

The CLM4 simulation also corresponds to the most intense representation of warm

extremes for the index based on maximum temperatures, while the intensity index

based on minimum temperatures shows higher values in the NOAH-MP simulation,

except for the CAM region (Figure 3.4b). The NOAH simulation is associated with

the weakest and shortest warm extremes over most areas, and the NOAH-MP and

NOAH-MP-DV simulations with the most frequent and longest events. The effect of

dynamic vegetation seems to weaken hot extremes at nights over all regions, making

them longer at middle and high latitudes (CNA, ENA, ALA and GRL), except in the

western US (Figure 3.4b). That is, the NOAH-MP-DV simulation yields warm events

longer but not as hot as using prescribed vegetation at most regions at middle and

high latitudes. For precipitation extreme events, the CLM4 simulation shows the most

intense and frequent precipitation events over most areas, while the NOAH simula-

tion shows the weakest and the least frequent precipitation events (Figure 3.4c). The

NOAH-MP simulation produces the longest dry periods over all regions except at high

latitudes, where the NOAH-MP-DV simulation yields a higher number of consecutive

dry days (Figure 3.4c). The simulation with dynamic vegetation yields wetter results

than the simulation with prescribed vegetation at middle and low latitudes, while at

high latitudes the NOAH-MP-DV simulation is generally drier than the NOAH-MP

simulation (Figure 3.4c).
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In summary from the results presented here and in the previous sections, we see

that the spatial patterns of land-atmosphere coupling and the climatology of extreme

indices are similar in our WRF simulations (Figures 3.1 and 3.2 and B.10-B.12), indi-

cating that the LSM configuration is not influencing these spatial structures. There-

fore, other factors common in our four WRF simulations, such as land cover, topog-

raphy, the latitudinal gradient or atmospheric parameterizations, generate the spatial

distribution of the coupling metrics and the extreme indices. Nonetheless, each LSM

configuration yields different degree of land-atmosphere coupling and different values

of temperature and precipitation extreme events at local scales. Thus, the CLM4

LSM is identified as the component yielding the strongest land control on surface con-

ditions and the highest temperatures during cold and warm events over most of North

America as well as the heaviest and most frequent precipitation extremes over most

locations (Figures 3.1, 3.2 and 3.4). That is, the simulation with more coincidences

of extreme high (low) LH and extreme low (high) SAT is also representing the most

intense temperature and precipitation extremes. This suggests that the simulation of

very low latent heat flux may be influencing the simulation of heat extremes by in-

ducing an increase in the energy available for sensible heat flux, and likely increasing

air temperatures. Meanwhile, the simulation of high latent heat flux may increase

the representation of atmospheric water content, inducing changes in the formation

of clouds and precipitation. Thus, the strong land control on the CLM4 simulation

seems to enhance the intensity of warm and heavy precipitation events comparing

with the rest of simulations, particularly in comparison with the NOAH simulation.

The NOAH LSM produces the weakest land control on surface conditions and one

of the lowest intensities for all temperature indices as well as the lowest intensity

and frequency of heavy precipitation events over all regions. The comparison of the

NOAH-MP simulations using prescribed and dynamic vegetation shows that the use
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of dynamic vegetation yields stronger land control at low and middle latitudes in

summer and more intense, frequent and longer heavy precipitation events over the

same regions (Figures 3.1, 3.2 and 3.4). Thus, this comparison also supports that the

simulation of strong land control leads to heavier precipitation events.

3.4.3 LSM uncertainty in the simulation of temperature and

precipitation extremes

Although all WRF simulations show similar spatial patterns for temperature and pre-

cipitation extreme indices (Figures B.10, B.11 and B.12), there are large uncertainties

in the climatology of each extreme index associated with the use of different LSM con-

figurations. For the simulation of the intensity of cold events, the multi-model range

across the WRF simulations for the hottest day in DJF (TXx DJF) shows large val-

ues over the boreal forest and the Rockies, where the index climatology is close to

0oC (Figures 3.3 and 3.5a). The representation of the coldest night in DJF (TNn

DJF) shows large LSM dependency, yielding ranges up to 12 ◦C over the US and a

spatial average of 4 ◦C, displaying large uncertainties over areas where the index cli-

matology approaches to 0oC (Figures 3.3 and 3.5a). The simulated intensity of warm

temperature events, measured by the temporal average of the hottest day in summer

(TXx JJA), differs up to 10 ◦C among simulations over eastern North America, with

a spatial average of 3.5 ◦C (Figure 3.5a). The simulation of the mean coldest night in

summer (TNn JJA) varies across simulations from 2 to 3 ◦C over the whole domain,

except in the Arctic where the range across simulations reaches approximately 15 ◦C

and the index value yields negative temperatures for some simulations (Figure 3.3 and

3.5a). The frequency of warm extreme temperature events varies among simulations;

the range for the number of hot days (TX90p, based on maximum temperatures) is

up to 4.2% over the US with a spatial average of 0.97% over the whole domain, and
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the range for the number of hot nights (TN90p, based on minimum temperatures)

reaches values up to 3.8% at low latitudes with a spatial average of approx. 0.7%

(Figure 3.5b). Large values of the multi-model range for the number of hot days

(TX90p) approximately coincide with the largest index values (Figures 3.3 and 3.5b).

Note that ranges of more than 2% in the number of hot days and nights correspond

to differences of more than 7 days per year in the index climatology simulated by

different LSMs. Ranges of indices related to the frequency of cold events show smaller

values than those for warm temperature events, displaying no clear spatial pattern

with averages of ∼ 0.5% (i.e. 1.8 days per year) for the number of cold days and

nights (TX10p and TN10p; Figure 3.5b). The duration of warm spells is greatly af-

fected by the choice of the LSM component, while its effect is weaker on the simulated

duration of cold events (Figure 3.5c). The range of the duration of warm spells across

simulations yields values of more than 10 days over Mexico and over broad areas of

the central and southern US, with a spatial average of 2.8 days (Figure 3.5c). Oth-

erwise, the LSM effect on the simulated duration of cold spells is weaker, reaching

differences of about 6 days among simulations in central Canada with a spatial aver-

age of 1.3 days (Figure 3.5c). For both indices, the LSM differences are larger where

the duration indices display larger values (Figure 3.3 and 3.5c).

The simulated climatology of the intensity of extreme precipitation events is also

strongly affected by the configuration of LSM, with the total annual precipitation in

wet days (R95p) reaching LSM differences larger than 100 mm at low latitudes and

over the eastern US with a spatial average of 39 mm (Figure 3.6a). The frequency

of heavy precipitation events varies among simulations by about 35 days per year at

some locations in Mexico and the US, with a spatially averaged range of 3.5 days per

year (Figure 3.6b). The areas with the largest inter-model range of the precipitation

frequency index across simulations are located in Mexico, the Rockies and at some
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Figure 3.5: Multi-model ranges across the WRF simulations (i.e., difference between the
highest value and the lowest value of the four WRF simulations at each grid cell) of extreme
indices associated with the intensity (a), frequency (b), and duration (c) of cold (left) and
warm (right) extreme temperature events (TXx/TNn, maximum/minimum value of the
maximum/minimum daily temperatures; TN10p/TX10p, percentage of cold nights/days;
TN90p/TX90p, percentage of hot nights/days; CSDI/WSDI, cold/warm spell duration in-
dex). The range among simulations is computed using the mean of each index from 1980 to
2012 for each simulation.
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Figure 3.6: As in Figure 3.5 but for extreme precipitation events (R95p, total annual
precipitation in wet days; R10mm, number of wet days in a year; CDD/CWD, consecutive
dry/wet days).
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grid cells over the eastern US coast (Figure 3.6b). The simulation of the number

of consecutive dry and wet days also depends on the choice of the LSM component,

presenting larger differences among simulations in the climatology of the consecutive

dry days index than in the climatology of the consecutive wet days index (Figure

3.6c). The inter-model range across LSM simulations reaches 37 days for the number

of consecutive dry days over central and southwestern North America, with a spatial

average of 4 days per year (Figure 3.6c). Meanwhile, the simulated number of consec-

utive wet days also shows LSM differences of more than 20 days at a few grid cells,

but lower values over most of the domain, yielding a spatial average of ∼ 1.2 days

(Figure 3.6c). Large inter-model ranges of precipitation indices across WRF simula-

tions coincide with areas where each index reaches the maximum values (Figure 3.3

and 3.6).

Results for the VAC metric present some similarities with the spatial pattern

of uncertainties in the WRF simulation of temperature and precipitation extreme

events, which suggest a relationship between these results. The areas showing large

uncertainty in the simulation of the intensity indices of cold extremes coincide with

areas where LSM simulations differ in the representation of DJF atmospheric control

VAC categories (VACa and VACb; Figures 3.1 and 3.5). Particularly, the uncertainty

in the hottest day in winter is larger over areas with evergreen needleleaf forest (Figure

3.5 and B.1). Thus, although all simulations include the same land use categories,

the differences in the representation of vegetation by each LSM (Figure B.13) from

the plant functional types used by the CLM4 LSM to the canopy cover simulated

by the NOAH LSM are likely related to the differences in the simulation of land-

atmosphere coupling and extreme indices. For the simulation of warm extremes, large

LSM differences in the intensity indices correspond to LSM differences in the JJA

VAC categories associated with the energy-limited areas (Figures 3.1 and 3.5). The
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areas with large uncertainty in the hottest day in summer also correspond with areas

showing a mix of vegetation from croplands to forests (Figure B.1). Thus, these results

also suggest that LSM differences in the representation of vegetation cover play a role

in the different representation of land-atmosphere interactions in energy-limited areas,

and consequently different climatologies of the hottest day among our simulations.

The uncertainty in the simulation of the coldest night in summer is larger in areas over

the mixed tundra category, where LSM configurations differ in the simulation of snow

cover in summer (Figures B.1 and B.13). Thus, LSM differences in the representation

of snow cover from the single snow layer simulated by the NOAH LSM to the five

layers simulated by the CLM4 LSM may also contribute to the uncertainty in the

intensity index of warm events. The uncertainty in the number of hot days and the

duration of warm spells is larger over regions under land control, particularly over open

shrub-lands, suggesting the possible influence of LSM differences in the simulation of

soil moisture (Figures 3.2 and B.1). The range of the intensity index of precipitation

extremes displays a large JJA component over areas under land control at low latitudes

and under atmospheric control at middle and high latitudes (Figures 3.1 and 3.2 and

S14a). For the intensity index of heavy precipitation events, our simulations show

large uncertainties in areas with mixed vegetation (Figure 3.6 and B.1), suggesting

the influence of LSM differences in the representation of vegetation cover on the

simulation of latent heat flux, thus leading to changes in the simulation of atmospheric

water content and precipitation. The uncertainty in the intensity, frequency and

duration of heavy precipitation events is high over the western Mexican coast, where

the model is representing the tropical forest and the NOAH simulation showed strong

atmospheric control in disagreement with the rest of our simulations (Figures 3.1

and 3.6 and B.1). These results suggest that LSM differences in the description of

vegetation and snow cover (e.g the number of snow layers and the description of
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the canopy) are also contributing to uncertainties in the simulations of precipitation

extremes. The differences in the VAC metric and in the extreme indices are larger

between different LSM components than those between simulations with prescribed

and dynamic vegetation (Figures 3.1, 3.2 and 3.4). The different representation of

land cover by each LSM configuration may yield different soil properties, such as

albedo, evaporative resistance, and surface roughness. These soil properties play a

key role in the computation of the energy and water fluxes at the land surface, and

therefore in the simulation of near-surface conditions (Laguë et al., 2019).

In order to address the LSM influence on the simulation of extreme events, we

compute the ranges among our four WRF simulations using the 95th percentile of

the analysis period for each extreme index. The uncertainty in the WRF simulations

due to the LSM component when using the 95th percentile for each extreme index

leads to similar conclusions (Figures B.14 and B.15). The LSM differences using

the 95th percentile of the analysis period are larger for all extreme temperature and

precipitation indices than using the period mean as expected, but the marked areas

are analogous (Figures 3.5, 3.6, B.14 and B.15). The agreement in the representation

of areas with large uncertainty in extreme indices between results using mean and

extreme climatologies suggests the LSM influence on extreme events at climatological

and shorter time scales.

3.4.4 Comparison between WRF simulations and three

CORDEX Evaluation simulations

The climatologies of temperature and precipitation extreme statistics as simulated by

the three RCMs participating in the NA-CORDEX project (Table 3.3) show similar

spatial patterns to our four WRF simulations (Figures B.10-B.12 and B.16-B.18).

These similarities in the spatial pattern of extreme indices represented by WRF and
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the CORDEX RCMs further support the hypothesis that the spatial features of these

maps are controlled by topography, land cover and the latitudinal gradient, since the

CORDEX RCMs employed atmospheric models and boundary conditions different to

our WRF simulations. Although the spatial patterns are similar in both ensembles,

the WRF simulations yield colder minimum temperatures in DJF (TNn DJF) and

less frequent cold nights (TX10p) than the CORDEX simulations (Figures B.10 and

B.16). The percentage of hot days, however, is higher and warm spells are longer in the

WRF simulations than in the CORDEX simulations, particularly over southwestern

NA (Figures B.11 and B.17). The intensity of heavy precipitation extremes is generally

higher within the WRF ensemble than in the CORDEX ensemble, while dry periods

are longer in the CORDEX simulations (Figures B.12 and B.18).

The uncertainties in the simulation of extreme statistics within the CORDEX

ensemble show some similarities with the WRF uncertainties which arise from the

LSM configuration. For example, the simulated climatology of DJF coldest night

(TNn DJF) shows large uncertainties over the US for both ensembles, particularly

over the eastern US (Figures 3.5a and 3.7a). The climatologies of DJF hottest day

(TXx DJF) display large inter-model range within the WRF ensemble over areas

where temperatures approximate to 0oC, expanding southward for the CORDEX

ensemble. The CORDEX inter-model ranges of the frequency indices for cold extremes

do not show a clear spatial pattern in agreement with the WRF ensemble. There is,

however, a region over the central US with slightly larger ranges among the CORDEX

simulations than among the WRF simulations (Figures 3.5b and 3.7b and B.19). The

duration of cold spells presents large uncertainties in the CORDEX ensemble over the

eastern US/Mexican border and over western Canada, coinciding with a small region

with large inter-model range among the WRF simulations (Figures 3.5c and 3.7c).

For the simulation of warm temperature extremes, the uncertainties in the intensity
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Figure 3.7: Inter-model range across three CORDEX simulations (i.e., difference between
the highest value and the lowest value of the three CORDEX simulations at each grid cell)
of extreme indices associated with intensity (a), frequency (b), and duration (c) of cold and
warm extreme temperature events (Table 3.2). The range across simulations is computed
using the mean of each index from 1980 to 2012 for each simulation.
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Figure 3.8: As in Figure 3.7 but for extreme precipitation events.
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indices among the CORDEX simulations show large ranges over the eastern US for

the JJA hottest day (TXx JJA) in agreement with the WRF simulations, and at high

latitudes for the coldest night (TNn JJA), including the eastern region of Hudson Bay

also marked by the WRF ensemble (Figures 3.5a and 3.7a). The frequency indices

of warm events show large inter-model range across the CORDEX simulations over

the central US, also shown in the WRF simulations for the TX90p index (Figures

3.5b and 3.7b). The uncertainty in the duration of warm spells among the CORDEX

simulations does not show large spatial differences, although the ranges are slightly

larger at low latitudes coinciding with regions marked by the WRF ensemble and at

very high latitudes (Figures 3.5c and 3.7c). The simulation of precipitation extreme

statistics is generally more uncertain across the CORDEX simulations than across the

WRF simulations (Figures 3.6, 3.8, and B.20). Interestingly, all regions with large

uncertainties in the simulation of precipitation extremes among the WRF simulations

are also identified as areas with large uncertainty across the CORDEX ensemble.

There are, however, additional areas with large uncertainty in the CORDEX ensemble,

particularly for the consecutive dry days index and the frequency index at middle and

high latitudes (Figures 3.6 and 3.8). The larger spread of the precipitation indices

within the CORDEX ensemble in comparison with the spread in our WRF simulations

(Figure B.20) was expected due to the use of different atmospheric models in the

CORDEX ensemble. Nonetheless, the agreement between the WRF and CORDEX

simulations in the placement of areas with large uncertainties suggests that results

from this study may be applicable to other modelling experiments, particularly for

the simulation of warm temperature and precipitation extremes.
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3.5 Discussion

3.5.1 Comparison of inter-model ranges across the WRF

and CORDEX ensembles

In order to provide context for the applicability of these results to other sets of simula-

tions, we compared the range across our WRF simulations with the inter-model range

across three CORDEX simulations in representing extreme events (Figures 3.5-3.8).

Since CORDEX simulations were performed by three structurally different RCMs (the

WRF, the RCA4, and the CRCM-UQAM models), we expected a broader inter-model

range of the simulated extreme indices across CORDEX simulations. Differences in

the representation of extreme events among the CORDEX simulations arise from sev-

eral factors, such as different atmospheric parameterizations, land surface model com-

ponents, the representation of land cover, treatment of boundary conditions, including

sea surface temperatures, and the application of nudging techniques. In addition to

all these factors, the sensitivity to initial conditions in models may be another im-

portant factor for the inter-model range of the simulated extreme events. The WRF

sensitivity to initial conditions may also affect the interpretation of the differences

among our four simulations with different LSM configurations. However, previous

analyses using the WRF model (Gallus et al., 2006; Liu et al., 2019) as well as other

climate models (Elía et al., 2008; Kharin et al., 2007; Sillmann et al., 2013a) have

showed that the spread of extreme events among ensemble members of an individual

model is generally small compared to inter-model spreads or the differences arising

from different physics configurations.

Although the CORDEX simulations were performed using boundary conditions

from the ERA reanalysis product, the comparison with the WRF simulations is possi-
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ble because we compute the ranges across simulations as a measure of the uncertainty

in each simulation ensemble. Thus, we compare the uncertainty in each set of sim-

ulations finding common areas with large ranges for the representation of cold and

warm temperature extremes and precipitation extremes, despite the fact that they

used different products as boundary conditions. The agreement in the placement

of areas with large uncertainties in the representation of extreme events within the

CORDEX ensemble and those within our WRF simulations suggests that the uncer-

tainties in these areas may arise from similar causes. Our WRF simulations only

differ in the configuration of the LSM component. Therefore, the differences between

LSM components can also be an important source of uncertainty in the simulation of

extreme events within the CORDEX simulations, through a different representation

of land-atmosphere interactions.

One of the simulations included in the CORDEX ensemble was performed by the

WRF model using the NOAH LSM component. The comparison of the extreme indices

between our WRF-NOAH simulation and the one included in the CORDEX ensemble

shows similar spatial patterns and regional differences in the value of each extreme

index (second column in Figures B.11-B.13 and third column in Figures B.16-B.18).

However, this comparison is not very different if we use another CORDEX simulation

performed by a different RCM. This suggests that the spatial pattern of the extreme

indices is driven by factors common in all simulations, such as land cover, topography

and the latitudinal gradient. The regional differences in the value of extreme indices

between our WRF-NOAH simulation and the WRF-NOAH CORDEX simulation are

likely caused by the use of nudging techniques to match the ERA-Interim product in

the CORDEX simulation.

Although there are more sources of uncertainty in the CORDEX simulations than

across the WRF simulations, the comparison between the uncertainty within each set
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of simulations (i.e. the difference between the range among the WRF simulations

and the range among the CORDEX simulations) displays larger ranges across the

WRF simulations than across the CORDEX ensemble over certain areas and for cer-

tain extreme indices (Figures B.19 and B.20). This suggests the possible existence

of bias compensation inside the CORDEX simulations. Moreover, each RCM may

have a different sensitivity to the employed LSM component as well as to other com-

ponents and parameterizations. Additional sensitivity studies using the WRF model

or another climate model with different settings and parameterizations may help to

discern other important sources of uncertainties in the simulation of extreme events,

such as horizontal resolution.

3.5.2 Climatology of extreme events as represented by the

WRF simulations and by the CMIP5 simulations

Sillmann et al., 2013a presented an evaluation of the CMIP5 models in simulating

some of the extreme indices defined by ETCCDI; this information was used in the

Intergovernmental Panel on Climate Change (IPCC) chapter on models’ evaluation

(Flato et al., 2013). The analysis period employed by Sillmann et al., 2013a, 1981-

2000, differs from the one used in this analysis, but a rough comparison can be done

between our results and theirs for some extreme indices. For example, the spatial

patterns of DJF coldest night and JJA hottest day are similar for the WRF and

CMIP5 ensemble means (Figure 3.3 and Figure 2 in Sillmann et al. 2013a). The

similarities in the spatial pattern of extreme indices between our WRF simulations,

the CMIP5 and the CORDEX ensembles suggest that the topography, land cover

and latitudinal gradient are driving these spatial features. Sillmann et al., 2013a also

provides regional averages over six NA regions, adapted from Giorgi et al., 2000. These

spatial averages allow identification of some regional differences between the WRF and
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the CMIP5 ensembles, for example over the eastern US coast (ENA region) where

the WRF simulations yield warmer JJA maximum temperatures than the CMIP5

ensemble (Figure 3.4 and Figure 3 in Sillmann et al. 2013a). The spatial patterns

of the WRF and CMIP5 ensembles for CSDI and WSDI indices are also similar,

although the WRF ensemble reaches longer cold and warm events (Figure 3.3 and

Figures B.6-B.7 in Sillmann et al. 2013a). The representation of the intensity index

for heavy precipitation events (R95p) also shows similar spatial patterns between

both ensemble means, although the WRF ensemble is generally more intense over

most regions (Figures 3.3 and 3.4, and Figures 6 and 7 in Sillmann et al. 2013a).

Similar results are found for the simulation of consecutive dry days, showing similar

spatial patterns with some regional differences especially at low latitudes (CAM region,

Figures 3.3 and 3.4, and Figures 6 and 7 in Sillmann et al. 2013a). The variability

across the CMIP5 ensemble for the simulation of precipitation indices seems to be

particularly large at low latitudes (CAM region) similar to WRF uncertainty in the

representation of precipitation extremes associated with the LSM component (Figure

3.6, and Figure 7 in Sillmann et al. 2013a). Although this is a rough comparison

between results presented in this article and in Sillmann et al., 2013a, this comparison

suggests that our conclusions could be also applicable to the CMIP5 ensemble as it

was the case for the CORDEX ensemble.

3.5.3 Implications of these results

Increases in heat-related events have been directly and robustly associated with in-

creases in mortality, for example in Europe during the heatwave of 2003 (Fischer et al.,

2007) or in India during the heatwave of 2015 (Pattanaik et al., 2017). Heavy pre-

cipitation events often lead to floods, which also are directly associated to economic

loss and death toll (Hu et al., 2018). All climate change projections point to a future
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increase in temperature and precipitation extreme events (Sillmann et al., 2013b),

thus developing mitigation strategies will become necessary to preserve human health.

Climate model simulations are our best source of information to mitigate climate

change impacts. However, the results presented here indicate that the simulation of

several extreme indices varies largely depending on the employed LSM component,

because of the different representation of land-atmosphere interactions. This means

that a climate model may simulate the climatology of heat extremes 5oC warmer and

6 days longer depending on the employed LSM component, and similarly for cold

extremes and heavy precipitation events. Therefore, studies based on multi-model

ensembles and reanalyses should include a variety of LSM configurations to account

for the uncertainty arising from this model component or to test the performance of

the selected LSM component before performing the whole simulation. The accuracy

of climate models and the management of uncertainties in simulating extreme events

will likely affect climate change policy, therefore having repercussions for society and

environment.

The indices employed here to study the climatology of extreme temperature events

were based on minimum and maximum temperature outputs. However, many studies

have proven that the study of compound events using indices based on multiple vari-

ables, such as temperature and moisture outputs, are more representative of thermal

stress in humans and ecosystems than standard indices (Zscheischler et al., 2018).

The large LSM influence on the climatology of extreme temperature and precipita-

tion events, suggests that the uncertainty arising from the LSM component could be

higher on extreme indices based on multiple variables. However, the analysis of the

LSM influence on compound events is beyond the scope of this work, and constitutes

an interesting line for future research.
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3.6 Conclusions

WRF simulations over North America coupled to different LSM components showed

similar spatial patterns of land-atmosphere interactions as measured by the VAC in-

dex. The use of this metric allows the classification of our results into: energy-limited

areas, where atmospheric conditions control land-atmosphere interactions (VACa and

VACb); and water-limited areas, where soil moisture deficits control the energy and

water exchanges between the land surface and the lower atmosphere (VACc and VACd

categories). Our results indicate atmospheric control over land-atmosphere interac-

tions at middle and high latitudes and land surface control over lower latitudes, partic-

ularly in JJA. However, the simulation of land-atmosphere coupling differs at regional

scales depending on the LSM choice in two directions; by altering land control on sur-

face processes (VACc and VACd categories) and by altering atmospheric conditions

and its influence on land-atmosphere interactions (VACa and VACb categories). Thus,

the NOAH LSM is associated with the weakest representation of land control on sur-

face conditions, while the CLM4 LSM simulates one of the strongest land effects on

surface conditions. The use of different LSM components leads to large ranges of

represented extreme temperature and precipitation events, affecting their simulation

in intensity, frequency and duration. The CLM4 LSM yields the weakest cold events,

the warmest hot days, and the heaviest precipitation events, while the NOAH simula-

tion yields the weakest warm temperature events and the weakest heavy precipitation

events. Meanwhile, the NOAH-MP LSM produces the driest simulation, yielding

slightly wetter conditions when using dynamic vegetation at middle and low latitudes.

Although the LSM differences in our results are more marked than differences between

the simulations with prescribed and dynamic vegetation, the use of dynamic vegeta-

tion yields stronger land control at low and middle latitudes in summer and more
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intense, frequent and longer heavy precipitation events and reduces the duration of

droughts over the same regions. Thus, our results suggest a relationship between the

degree of land control on surface conditions reached by each LSM configuration and

the intensity of extreme events, in agreement with the case study during the Russian

2010 heat wave (Zscheischler et al., 2015).

Previous studies using GCM simulations suggested a dependence of the simulated

land-atmosphere interactions on the employed LSM component with possible conse-

quences for the simulation of extreme events (García-García et al., 2019). Results

from four WRF simulations differing only in the LSM configuration support that

hypothesis, identifying LSM differences in the description of land cover as an im-

portant factor for the simulation of near-surface conditions. Additionally, areas with

large uncertainties in the simulation of temperature and precipitation extremes across

the WRF simulations due to different LSM components appear in the NA-CORDEX

model ensemble, which indicates the possible LSM influence on the simulation of ex-

treme events within other model ensembles. This work reinforces the important role

of the LSM component in climate simulations, supporting the urgency of on-going

research focused on improving this model component and their implementation in

regional and global climate models as well as in reanalysis products. The strong LSM

dependency of climate model simulation of extremes is also of special importance for

international reports focused on land, such as the IPCC Special Report on Climate

Change, Desertification, Land Degradation, Sustainable Land Management, Food Se-

curity, and Greenhouse gas fluxes in Terrestrial Ecosystems (Arneth, 2019). Future

sensitivity analyses to the LSM component using different regional and global climate

models would be useful to understand models’ differences in simulating temperature

and precipitation extremes, helping to narrow the inter-model range across reanalyses

and climate model projections in simulating extreme events.
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Chapter 4
Effect of horizontal resolution on

near-surface climate in the WRF

v3.9 model over North America

This chapter is based on the contents of the manuscript in preparation:

García-García, A. et al. (2020a). Effect of horizontal resolution on near-surface

climate in the WRF v3.9 model over North America. In preparation
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Abstract

Understanding the origin of differences between climate models in the simulation of

near-surface conditions is crucial for restricting the inter-model spread in future cli-

mate projections without losing important information. Here, we explore the effect of

changing horizontal resolution on the simulation of the energy balance at the land sur-

face and the climatology of near-surface conditions using the Weather Research and

Forecasting (WRF) model. We performed an ensemble of twelve simulations using

three different horizontal resolutions (25 km, 50 km and 100 km) and three different

Land Surface Model (LSM) components over North America from 1980 to 2013. Our

results show that increasing horizontal resolution alters the representation of short-

wave radiation, affecting near-surface temperatures and consequently the partition of

energy into sensible and latent heat fluxes. Thus, finer resolutions lead to higher net

shortwave radiation and temperature climatologies at high latitudes and to lower net

shortwave radiation and temperature climatologies at low latitudes. The use of finer

resolutions also leads to an intensification of the terms associated with the surface

water balance over coastal areas at low latitudes, generating higher climatologies of

latent heat flux, accumulated precipitation and soil moisture. The effect of the LSM

choice is larger than the effect of horizontal resolution on the representation of the sur-

face energy balance, and consequently on near-surface temperature climatologies. By

contrast, the effect of the LSM choice on the simulation of precipitation climatology

is weaker than the effect of horizontal resolution, showing larger differences among

LSM simulations in summer and over regions with high latent heat flux. Compari-

son between the Climatic Research Unit (CRU) observational data and the simulated

climatology of daily maximum and minimum temperatures and accumulated precipi-

tation indicates that enhancing horizontal resolution slightly improves the simulated
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climatology of minimum and maximum temperatures in summer, while it leads to

larger biases in accumulated precipitation. The larger biases in precipitation with

the use of finer horizontal resolutions are likely controlled by the effect of increasing

resolution on the atmospheric model component, since precipitation biases are similar

using different LSM components.

4.1 Introduction

The majority of studies on climate change impacts on ecosystems, economies and

communities are based on climate projections performed by Regional Climate Models

(RCMs) and/or Earth System Models (ESMs) (Arneth, 2019; IPCC, 2013). Climate

models are complex mathematical tools that lead to a range of possible future con-

ditions despite simulating climate dynamics similarly and using the same future sce-

narios. Exploring inter-model differences in representing present climate conditions is

necessary to understand the spread in future climate projections, and ultimately to

reduce the uncertainty in climate projections.

The representation of land-atmosphere interactions within climate models has re-

ceived considerable attention from the scientific community over the last decade due

to its influence on surface conditions (e.g. Lorenz et al., 2016; Vogel et al., 2017).

Energy and water exchanges between the lower atmosphere and the ground surface

have proven to alter surface conditions, particularly during weather extreme events in

summer (Hauser et al., 2016; Hirschi et al., 2011; Miralles et al., 2012; Seneviratne et

al., 2006). Due to the influence of land-atmosphere interactions on surface conditions,

several metrics defined in terms of surface energy fluxes and near-surface conditions

have been employed for evaluating climate model simulations (Dirmeyer et al., 2013;

García-García et al., 2019; Koven et al., 2013; Sippel et al., 2017). The representation
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of land-atmosphere interactions in a climate model depends on the lower atmospheric

and soil conditions as simulated by the atmospheric and soil model components re-

spectively, and on the degree of coupling between both components implemented in

the climate model (Koster et al., 2006). The simulation of energy fluxes at the surface

is computed by the LSM component considering air and soil surface conditions (e.g.

Oleson et al., 2010). Consequently, it is reasonable to expect an important role of

the LSM component in the representation of land-atmosphere interactions (Gevaert

et al., 2018). Each LSM component represents soil processes differently, generating a

range of values for surface properties that yields a range of energy and water fluxes

at the surface. For example, each LSM representation of surface albedo, evaporative

resistance and aerodynamic roughness alters the simulation of the energy balance at

the land surface and consequently affects the evolution of surface conditions (Laguë

et al., 2019).

Previous studies focused on model evaluations have shown a dependence of the

represented land-atmosphere interactions on the LSM component employed in both i)

global climate model simulations from the Coupled Model Intercomparison Project,

Phase 5 (García-García et al., 2019), and ii) regional climate model simulations per-

formed with the WRF model (García-García et al., 2020b; Pei et al., 2014). Other

studies have explored the LSM influence on the simulation of land-atmosphere inter-

actions evaluating the surface energy fluxes over areas located in the US (Chen et al.,

2014; Van Den Broeke et al., 2018), in Italy (Zhuo et al., 2019), in the Tibetan Plateau

(Liu et al., 2019) and over areas of continental Europe (Davin et al., 2012; Mooney et

al., 2013). Studies using the WRF model with different LSM components confirmed

the dominant influence of the LSM component on the simulation of temperature and

precipitation extreme events, due to the LSM influence on the representation of land-

atmosphere interactions (García-García et al., 2020b; Pei et al., 2014). García-García
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et al., 2020b also showed that the spread induced by different LSMs is similar or

even larger than the inter-model spread using three RCM simulations from the North

American component of the Coordinated Regional climate Downscaling Experiment

(CORDEX) project (Giorgi et al., 2015).

Horizontal resolution used in General Circulation Models (GCMs) varies from

approximately 250 to 100 km depending on the available computational resources

(e.g. 5th phase of the Coupled Model Intercomparison Project (CMIP5) models,

Taylor et al., 2012), while RCMs allow the use of much finer resolutions, ranging

from ∼ 50 to 4 km. The range of horizontal resolutions employed in RCMs for

climate studies is usually limited to approximately 25-50 km (e.g. CORDEX models,

Giorgi et al., 2015), because of the duration of the simulation and the required

computational resources. This reduced range of resolutions limits the RCM ability

to reproduce observations of precipitation at daily time scales, which can be greatly

improved by using resolutions of ∼ 4 km and convection resolving RCMs (Sun et

al., 2016). In the last decades, more and more studies focus on the evaluation of

regional climate simulations performed including the explicit solution of convection

processes in RCMs. These studies have shown some improvements in the simulation of

precipitation at local and regional scales with possible implications for the simulation

climate dynamics (Ban et al., 2014; Gómez-Navarro et al., 2015; Messmer et al., 2017).

Still, the contrast between resolutions employed in RCMs and GCMs is expected to

enhance the representation of land-atmosphere interactions in RCMs through a more

adequate discretization of equations, as well as through an improved representation

of small-scale processes and topographical features (Rummukainen, 2016; Xue et al.,

2014). Small scale weather phenomena such as sea breezes, snowstorms induced by

the presence of lakes, local winds, tropical cyclones, and mesoscale convective systems

can be better represented in RCM simulations than in GCM simulations (Wehner et



142 4.1. INTRODUCTION

al., 2010). Some studies have also suggested a resolution-induced improvement in

the representation of interactions between small and large scale dynamical processes,

ultimately leading to better large-scale atmospheric flow (Lucas-Picher et al., 2017).

The enhanced representation of land-atmosphere interactions associated with finer

resolutions is also expected to induce an improvement in the simulation of near-surface

conditions, especially in the simulation of extreme events (Di Luca et al., 2015; Prein et

al., 2013; Rummukainen, 2016). For example, the resolution impact on precipitation

has been examined with an atmospheric general circulation model (Demory et al.,

2014).

Although the literature on the impact of the LSM choice and changes in resolution

on model simulations is extensive, most literature to date has focused on small do-

mains and meteorological events, providing little information at climatological scales.

Here, we evaluate and compare the influence of both factors, the LSM choice and

horizontal resolution, on the representation of land-atmosphere interactions and con-

sequently on the simulation of near-surface conditions over North America for the

period 1980-2013. We explore three questions: i) how does the use of fine horizontal

resolution in WRF affect the simulation of land-atmosphere interactions and near-

surface conditions over North America? ii) what causes the differences between LSM

components in representing land-atmosphere interactions and climatologies of near-

surface conditions? finally, iii) how do the LSM choice and horizontal resolution affect

the WRF ability to reproduce observations of North America climatology?

An ensemble of twelve simulations was generated to explore those points. These

simulations were performed with the WRF model using different LSM components

and resolutions over a pan-continental domain similar to that used by the North Amer-

ican component of the CORDEX project. The descriptions of the WRF experiments

and the methodology applied for the analysis are included in Section 4.2 and 4.3,
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respectively. Section 4.4 presents the results of the analysis, which are discussed in

Section 4.5. The conclusions and importance of this work are summarized in Section

4.6.

4.2 Description of the modelling experiment

We performed three sets of regional simulations over North America from 1979 to 2013

using the version 3.9 of the Advanced Research WRF model (Michalakes et al., 2001)

with initial and boundary conditions from the North American Regional Reanalysis

(NARR) product (Mesinger et al., 2006). The NARR product was generated by the

NCEP Eta atmospheric model, the NOAH LSM component and the Regional Data

Assimilation System (RDAS) (Mesinger et al., 2006). The NARR data is available

at the National Center for Environmental Information (NOAA) archive (https://

nomads.ncdc.noaa.gov/data/narr/, accessed in August, 2017) and provides data

over a 32 km grid with a three-hourly temporal resolution. The first year of all

simulations performed in this study was used as spin up to minimize the effect of

initial conditions on our simulations. No nudging techniques were applied to ensure

the free evolution of the WRF model.

The three sets of simulations were performed using a lambert conformal projection

with resolution of 25 km × 25 km, 50 km × 50 km, and 100 km × 100 km. Each

set includes four simulations using three different LSM components; the NOAH LSM

(NOAH, Tewari et al., 2004), the NOAH LSM with multiparameterizations options

(NOAH-MP, Niu et al., 2011), and the Community Land Model version 4 LSM (CLM4,

Oleson et al., 2010). The fourth simulation included in each set was performed using

the NOAH-MP LSM with dynamic vegetation (NOAH-MP-DV), while vegetation

was prescribed for the other simulations. The rest of WRF options remained the

https://nomads.ncdc.noaa.gov/data/narr/ 
https://nomads.ncdc.noaa.gov/data/narr/ 
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Table 4.1: Summary of the regional simulations performed in this analysis and their dif-
ferences.

NAME LSM Resolution Vegetation Mode Simulation Time Step Radiation Time Step
NOAH 25 km 25 km Prescribed 2.5 min 6 min
NOAH 50 km NOAH 50 km Prescribed 5.0 min 20 min
NOAH 100 km 100 km Prescribed 10 min 30 min

NOAH-MP 25 km 25 km Prescribed 2.5 min 6 min
NOAH-MP 50 km NOAH-MP 50 km Prescribed 5 min 20 min
NOAH-MP 100 km 100 km Prescribed 10 min 30 min

NOAH-MP-DV 25 km 25 km Dynamic 2.5 min 6 min
NOAH-MP-DV 50 km NOAH-MP 50 km Dynamic 5.0 min 20 min
NOAH-MP-DV 100 km 100 km Dynamic 10 min 30 min

CLM4 25 km 25 km Prescribed 2.5 min 6 min
CLM4 50 km CLM4 50 km Prescribed 5.0 min 20 min
CLM4 100 km 100 km Prescribed 10 min 20 min

same for all simulations, employing land categories from the Moderate Resolution

Imaging Spectroradiometer (MODIS, Barlage et al., 2005), the WRF Single Moment

(WSM) 6-class graupel scheme for the microphysics (Hong et al., 2006b), the Grell-

Freitas ensemble scheme (Grell et al., 2014), the Yonsei University scheme for the

description of the planetary boundary layer (YSU, Hong et al., 2006a), the revised

MM5 monin-Obukhov scheme (Jiménez et al., 2012), and the Community Atmosphere

Model (CAM) scheme (Collins et al., 2004) for simulating atmospheric processes.

The use of different horizontal resolutions requires the use of different time steps

for performing our WRF simulations, as well as different time intervals for computing

radiation physics (radt option in WRF namelist). Table 4.1 summarizes the differences

between all simulations employed in this analysis. Note that the CLM4 100 km

simulation employed a time step of 20 min for the radiation physics resolution in

contrast to the other LSM simulations with the same horizontal resolution. This is

due to model instability when using longer time steps in the CLM4 experiment. The

use of different time intervals for the computation of radiation physics in the CLM4

simulation seems not to affect our results, because all LSM simulations show a similar

response to increasing resolution.
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4.3 Methodology

We evaluate the impact of changing horizontal resolution on the climatology of sur-

face energy fluxes and near-surface conditions as simulated by the WRF model us-

ing different LSM components. For this purpose, we estimate the climatologies of

surface energy fluxes as the temporal average of the analysis period (1980-2013)

using the following energy components: Net Shortwave radiation (SNET - W/m2),

Net Longwave radiation (LNET - W/m2), Net Radiation (RNET - W/m2) absorbed

by the soil, Latent Heat flux (LH - W/m2), Sensible Heat flux (HFX - W/m2) and

Ground Heat Flux (GHF - W/m2). The climatologies of near-surface conditions are

estimated using outputs of: Surface Air Temperature (SAT - ◦C), daily maximum

SAT (TASMAX - ◦C), daily minimum SAT (TASMIN - ◦C), Ground Surface Tem-

perature at 1m depth (GST 1 m - ◦C), accumulated precipitation (PRE - mm/day)

at the surface and Soil Moisture (SM) contained in the first soil meter (SM 1m -

m3/m3). All climatology values are computed using the annual and seasonal (bo-

real winter, December, January and February (DJF); spring, March, April and May

(MAM); summer, June, July and August (JJA); and fall, September, October and

November (SON)) averages over the 34-year period (1980-2013) after discarding the

first year of the simulation (1979) as spin up. Outputs of all WRF experiments were

interpolated to a common grid with the coarsest resolution of our WRF simulations

(100 km) to allow the comparison between simulations (e.g. Volosciuk et al., 2015).

We also interpolate outputs from all simulations to a common grid with the finest res-

olution (25 km) to investigate the role of the interpolation step in our analysis. The

interpolation approach is based on a bilinear algorithm included among the Climate

Data Operators tools (CDO, Schulzweida et al., 2006). After the interpolation, we

make sure that the same number of grid-cells are considered for all simulations to
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Figure 4.1: Example of the linear regression analysis performed for evaluating the impact
of horizontal resolution on near-surface variables. This example represents the boxplots
(75th and 25th spatial percentiles (boxes), medians (center lines), maximums and minimums
(extremes of dashed lines), and outliers (points located 1.5 times the interquartile range
above the upper quartile and bellow the lower quartile) for near-surface variables at one grid
cell. Outputs from the 25, 50 and 100 km NOAH-MP-DV simulations were interpolated to
a common 100 km grid for the analysis. The variables and grid cells indicated in the figures
were selected in order to represent an example of each possible result.

avoid different results arising from coastal and lake areas.

We perform a linear regression analysis for each LSM set of simulations between the

values of each variable and the employed horizontal resolution at each grid cell in order

to assess the relationship between spatial discretization and simulated climatologies.

The linear fit for each variable and each LSM simulation contains 34 points, one

annual or seasonal value per year, for each resolution experiment (see Figure 4.1 as

example). We represent the slope of the regression analysis (W/m2 per 10 km) only

at grid cells presenting significant values at the 95% confidence level after applying a

t-test to the slope of the linear regression analysis.

Mean annual and seasonal climatologies of three near-surface variables (maximum

and minimum air temperature and accumulated precipitation) are evaluated com-

paring with two observational data products, the CRU Time-Series product version

4.03 (Harris et al., 2020) and the Daily Surface Weather Data (DAYMET) version 3

(Thornton et al., 2016). The CRU product provides data of maximum and minimum
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Figure 4.2: Subregions employed for the bias analysis. These regions were adapted from
Giorgi et al., 2000: Central America, CAM; Western North America, WNA; Central North
America, CNA; Eastern North America, ENA; Alaska, ALA; and Greenland, GRL.

air temperature and accumulated precipitation at monthly time scale over gridded

fields with a resolution of 50 km. These data are based on the interpolation of monthly

observational data calculated from daily or sub-daily observations obtained from Na-

tional Meteorological Services and other external agents (Harris et al., 2020). The

DAYMET product provides data for the same variables at daily time scale and over

1 km gridded fields. This data product is also based on the spatial interpolation of

ground observations of daily maximum and minimum temperature and precipitation

obtained from the NOAA National Centers and other agencies (Thornton et al., 2016).

We calculate the bias in the climatology of each variable as represented by each sim-

ulation and the DAYMET product relative to the climatology of the CRU data. The

estimate of the bias in the DAYMET product relative to the CRU data allows the

evaluation of inconsistencies between both observational products, which is particu-

larly important for the analysis of model simulations with different resolutions (e.g.

Iles et al., 2019). The bias metric requires a grid-cell by grid-cell comparison between

the WRF experiments, the DAYMET product and the CRU data; consequently, an in-

terpolation of the experiments and data products to a common grid is required. Prior

to any calculations, we interpolate all WRF experiments and observational databases

to a common grid with the coarsest resolution (100 km). As done for the analysis
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of the resolution impact, we also interpolate all variables to a common grid with the

finest resolution (25 km) to assess the role of the interpolation step in our results.

Additionally, we calculate the bias in the simulated climatologies averaging over six

subregions in North America (NA) adapted from Giorgi et al., 2000: Central America,

CAM; Western North America, WNA; Central North America, CNA; Eastern North

America, ENA; Alaska, ALA; and Greenland, GRL (Figure 4.2).

4.4 Results

4.4.1 LSM differences in the climatologies of surface energy

fluxes and near-surface conditions

The net radiation absorbed by the ground surface may enhance turbulent fluxes at

the surface (latent and sensible heat fluxes) and/or warm the soil surface, which leads

to an increase in the emitted longwave radiation (Bonan, 2002). The relationship

between these variables is shown by the ensemble mean of LSM simulations, indicat-

ing similar latitudinal patterns in the climatologies of net radiation, turbulent fluxes

and near-surface temperatures with higher fluxes and temperatures at lower latitudes

(see Figure 4.3 as example for the LSMensemble mean of the 50 km experiments).

Net radiation absorbed by soil results from adding net shortwave radiation and net

longwave radiation, whose climatologies have similar spatial distributions but with

opposite sign (Figure 4.3). Net shortwave radiation climatology is positive, which

means that more shortwave radiation reaches the land surface than is reflected due

to surface albedo. While net longwave radiation climatology is negative (Figure 4.3),

meaning that the energy emitted from the soil due to surface temperature is higher

than the longwave radiation reaching the soil surface. The energy proportion of net
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radiation that is propagated through the soil is much smaller than the rest of surface

energy fluxes (GHF in Figure 4.3). Areas with high latent heat flux climatology co-

incide with areas with high precipitation climatology, while soil moisture climatology

is similar to the precipitation climatology at low latitudes except over the eastern

US coast (Figure 4.3). The similarities and differences between precipitation and soil

moisture climatologies illustrate the complex relationship between these two variables,

which depends on the energy and water availability (Dirmeyer et al., 2009).

The relationship of surface energy fluxes with temperature and water availability

at the surface is well established in the literature (e.g. Bonan, 2002), as well as the

impact of land cover and soil properties on the simulation of the surface energy and

water balance (e.g. Laguë et al., 2019). The use of a different LSM component in

WRF affects the representation of soil properties and land cover in the simulation

reaching different surface energy fluxes (Figure 4.4). In agreement with the litera-

ture (Bonan, 2002; Laguë et al., 2019), LSM differences in the WRF simulation of

shortwave and longwave net radiation are related to LSM differences in temperature

climatologies (Figures 4.4 and 4.5), while LSM differences in the energy partition into

latent and sensible heat fluxes seems to be related to LSM differences in precipitation

and soil moisture climatologies (Figures 4.4 and 4.6). That is, LSM differences in

the climatology of shortwave radiation are similar to LSM differences in temperature

climatologies, as well as LSM differences in latent heat flux climatology are similar

to LSM differences in precipitation climatologies (Figures 4.4, 4.5 and 4.6). These

results are consistent with the findings of García-García et al. (2020b) that also re-

ported a LSM-dependency in the WRF simulation of land-atmosphere interactions,

using a different metric.

LSM differences in the simulation of near-surface climatologies are consistent

among the three sets of simulations with different resolutions (Figures 4.4, 4.5, 4.6,
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Figure 4.3: Climatology of surface energy balance terms and conditions (net shortwave
radiation SNET; net longwave radiation LNET; soil net radiation RNET; latent heat flux LH;
sensible heat flux HFX; ground heat flux GHF; maximum temperature TASMAX; minimum
temperature TASMIN; surface air temperature SAT; soil temperature at 1m depth GST 1m;
accumulated precipitation PRE; and soil moisture contained in the first soil meter SM 1m)
for the WRF ensemble mean. Climatologies are estimated as the temporal average for the
period 1980-2013 using simulations performed with 50 km resolution.
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Figure 4.4: Climatology of energy fluxes at the surface (net shortwave radiation SNET;
net longwave radiation LNET; soil net radiation RNET; latent heat flux LH; sensible heat
flux HFX; and ground heat flux GHF) for each LSM simulation relative to the multi-model
mean. Climatologies are estimated as the temporal average for the period 1980-2013 using
simulations performed with 50 km resolution.
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C.1, C.2 and C.3). For example, based on the differences between each LSM sim-

ulation with 50 km resolution and the 50 km ensemble mean (Figure 4.3), we can

identify the CLM4 as the LSM component simulating the highest net shortwave radi-

ation over most of North America. Meanwhile, the NOAH-MP-DV simulation reaches

the lowest net shortwave radiation over the same areas (Figure 4.4). At high latitudes

and over the southwestern NA coast, however, the NOAH-MP-DV simulation yields

the highest net shortwave radiation and the CLM4 component simulates one of the

lowest radiation values (Figure 4.4). The WRF simulation of net longwave radiation

reaches negative climatologies (Figure 4.3) with the maximum values simulated by the

NOAH LSM and the minimum values simulated by the CLM4 LSM (Figure 4.4). The

upward (negative) component of the net longwave radiation is based on surface tem-

peratures, following the Stefan-Boltzmann equation (L ↑ ∝ σT 4
s , where Ts is surface

temperature and σ is the Stefan-Boltzmann constant). Thus, the CLM4 simulation

generates the lowest values of net longwave radiation, that correspond with the high-

est values of upward longwave radiation (Figure C.4), and therefore with the highest

temperature climatology at the surface (Figures 4.4 and 4.5). The opposite behaviour

is observed in the NOAH LSM, yielding the highest net longwave radiation absorbed

by soil, the lowest upward longwave radiation (Figure C.4), and one of the coldest

temperature climatologies relative to the ensemble mean (Figures 4.4 and 4.5). The

relationship between the simulation of net longwave radiation and minimum temper-

atures is strong, while maximum temperatures are more influenced by net shortwave

radiation, particularly over the boreal forest (Figures 4.4 and 4.5). Over the boreal

forest, the CLM4 LSM generates the highest net shortwave radiation and the warmest

maximum temperatures, while the NOAH and NOAH-MP-DV simulations reach the

lowest net shortwave radiation values and the coldest maximum temperatures (Fig-

ures 4.4 and 4.5). The total radiation absorbed by soil yields the highest values in
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the NOAH simulation and the lowest values in the NOAH-MP-DV simulation at most

locations, except at very high latitudes and over the southwestern NA coast (Figure

4.4).

The CLM4 simulation reaches the highest latent heat flux climatology, particu-

larly over southwestern NA, followed by the NOAH-MP-DV simulation, while the

NOAH and NOAH-MP simulations provide the lowest latent heat flux climatology

over southwestern NA (Figures 4.4). Over southwestern NA, the CLM4 simulation

also generates the highest values of accumulated precipitation, while the NOAH simu-

lation displays the lowest precipitation values (Figure 4.6), indicating the relationship

between climatologies of latent heat flux and precipitation over water limited areas

in agreement with the literature (e.g. Mueller et al., 2014). At mid- and high lat-

itudes, the CLM4 LSM reaches one of the highest climatologies of latent heat flux

among LSM simulations and the driest soil moisture climatology (Figures 4.4 and

4.6). The NOAH-MP-DV simulation shows higher latent heat flux climatology than

the NOAH-MP simulation at low latitudes, also yielding higher values of accumulated

precipitation and lower values of soil moisture than the NOAH-MP simulation (Fig-

ures 4.4 and 4.6). The simulated climatology of sensible heat flux reaches the highest

values using the CLM4 LSM over the boreal forest, while the NOAH and NOAH-MP-

DV simulations reach the lowest sensible heat flux climatologies in agreement with

results for the net shortwave radiation and daily maximum temperatures (Figures

4.4 and 4.5). LSM differences in the ground heat flux climatology are smaller than

for the rest of the energy fluxes due to the small magnitude of the GHF climatology

in comparison with the rest of energy components (Figure 4.3). The NOAH LSM

reaches the lowest ground heat flux climatology and the coldest soil temperatures

over most of the domain except over the southwestern NA coast, where the NOAH-

MP-DV simulation yields the lowest ground heat flux and the coldest climatology of
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Figure 4.5: Climatology of near-surface temperature conditions (daily maximum temper-
ature TASMAX; daily minimum temperature TASMIN; surface air temperature SAT; and
soil temperature at 1m depth GST 1m) for each LSM simulation relative to the multi-model
mean. Climatologies are estimated as the temporal average for the period 1980-2013 using
simulations performed with 50 km resolution.
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Figure 4.6: Climatology of variables involved in the surface water balance (accumulated
precipitation PRE; and soil moisture contained in the first soil meter SM 1m) for each LSM
simulation relative to the multi-model mean. Climatologies are estimated as the temporal
average for the period 1980-2013 using simulations performed with 50 km resolution.

soil temperatures. LSM differences are larger for the simulation of soil temperatures

than for the simulation of air temperatures especially at high latitudes where LSM

differs largely in the simulation of shortwave net radiation climatology, probably due

to different estimates of surface albedo (Figures 4.3 and 4.5).

4.4.2 Resolution impact on the climatologies of surface en-

ergy fluxes and near-surface conditions

The analysis of the resolution influence on the simulation of energy fluxes and near-

surface conditions requires the interpolation of all simulations (25 km, 50 km and

100 km) to a common grid in order to be compared. Results from model outputs

interpolated to the 25 and 100 km grids yield small differences, showing slightly larger

areas with significant response of the energy fluxes and near-surface conditions to the
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reduction in resolution interpolating into a 25 km grid than into a 100 km grid,

especially for soil moisture outputs (Figures 4.8, 4.7 and 4.9, C.8, C.9 and C.10).

However conclusions drawn from outputs mapped onto a 25 or 100 km grid are similar.

This suggests that the changes in surface energy fluxes and near-surface conditions

arising from increasing horizontal resolutions result from the ability of the WRF

model to represent physical properties and processes rather than from the grid cell

averaging (i.e. not an artifact of the mapping). Additionally, the effect of horizontal

resolution on the WRF simulation of annual surface climatologies is similar for all LSM

components, displaying a large seasonality (Figures 4.8, 4.7, 4.9, C.5, C.6 and C.7).

This section includes results derived from the NOAH-MP-DV outputs interpolated to

the common 100 km grid, since the resolution impact on simulations with different

LSM components is similar and in order to reduce the number of figures included in

the manuscript.

The response of surface energy fluxes to horizontal resolution varies considerably

with the season (Figure 4.7). In DJF, changing resolution alters the climatology of

surface energy fluxes mainly over regions of complex topography and coastal areas,

while in JJA the simulation of energy fluxes is affected by resolution over the whole

domain except over a region in the central US and northern areas of Hudson Bay

(Figure 4.7). Overall, the use of coarser horizontal resolutions induces a decrease in

the net radiation absorbed by soil over high latitudes, mainly caused by a decrease in

net shortwave radiation (Figure 4.7). The decrease in net radiation induced by coarser

resolutions limits the energy available for turbulent energy fluxes at high latitudes.

Thus, climatologies of latent and sensible heat fluxes also decrease with the use of

coarser resolutions at high latitudes. At low latitudes, however, coarser resolutions

lead to higher shortwave radiation values that is mostly dissipated by larger negative

values of longwave radiation (Figure 4.7). The use of coarser resolutions also induces
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Figure 4.7: Seasonal mean change in surface energy fluxes for a reduction of 10 km in
horizontal resolution, using the NOAH-MP-DV simulations for the period 1980-2013. Only
grid cells where the response to changing resolution is significant at the 95% level are plotted.
All outputs from the 25, 50 and 100 km simulations were mapped to a common 100 km grid.
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higher sensible heat flux at low latitudes, which is balanced by lower latent heat flux

in all seasons (Figure 4.7).

The solar energy absorbed by soil during daytime (shortwave) is employed in warm-

ing the land surface until reaching daily maximum temperatures, while at night soil

surface temperature decreases due to longwave radiative cooling and the absence of

shortwave radiation (Wang et al., 2013). Thus, we expect a relationship between the

resolution impact on the two radiative components and daily minimum and maximum

temperature climatologies. Consistent with the literature (e.g. Wang et al., 2013)

and the effect of LSM differences on near-surface conditions (Section 4.4.1), the spatial

pattern of the resolution impact on net shortwave radiation is similar to the resolution-

induced changes in daily maximum temperatures (Figure 4.8). The response of min-

imum temperature climatology to reducing resolution is, however, smaller than for

maximum temperatures, contrary to the effect on shortwave and longwave radiation.

Over eastern North America, JJA minimum temperature climatology increases with

the use of coarser resolutions, while it decreases over western North America (Figure

4.8). The response of mean temperature climatology to resolution is mainly driven

by the resolution impact on maximum temperatures, since both variables show simi-

lar spatial patterns (Figure 4.8). Air and soil temperatures are similarly affected by

changing resolution in summer, yielding different responses to resolution in MAM and

SON at high latitudes and in DJF over most locations (Figure 4.8). The resolution

impact on soil temperature climatology is stronger than on air temperature climatol-

ogy in JJA and SON, while soil temperature response to resolution is weaker than

the air temperature response in DJF and MAM (Figure 4.8). This indicates that

soil temperatures are more sensitive to JJA and SON changes in the energy budget

induced by reducing resolution, while in DJF and MAM soil temperature climatology

remains insulated from resolution-induced changes in surface conditions.
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Figure 4.8: Seasonal mean change in near-surface temperature conditions for a reduction
of 10 km in horizontal resolution, using the NOAH-MP-DV simulations for the period 1980-
2013. Only grid cells where the response to changing resolution changing resolution is
significant at the 95% level are plotted. All outputs from the 25, 50 and 100 km simulations
were mapped to a common 100 km grid.
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The response of precipitation to reducing horizontal resolution is similar to the

response of latent heat flux climatology, particularly in summer (Figures 4.7 and

4.9). The use of coarser resolutions leads to a marked reduction in JJA precipitation

and latent heat flux climatologies over southern NA coastal areas, generating smaller

changes in these variables at higher latitudes (Figures 4.7 and 4.9). Soil moisture

climatology also decreases with the use of coarser resolutions at low latitudes, par-

ticularly in summer (Figure 4.9). At mid-latitudes, however, the use of larger grid

cells leads to an increase in soil moisture climatology during the year (Figure 4.9).

Results on the response of soil moisture climatology to reducing horizontal resolution

are more dependent on the LSM component than the rest of analyzed outputs, while

the effect of including dynamic vegetation (NOAH-MP-DV) or prescribed vegetation

(NOAAH-MP) in the simulation is small (Figure C.7). The NOAH simulation reaches

the strongest response of soil moisture to changing resolution, in opposition to results

of latent heat flux, for which the NOAH simulation generates the weakest response

of LH to resolution in comparison with the other LSM simulations (Figures C.5 and

C.7). The weakest soil moisture response to resolution is performed by the CLM4

LSM, differing from the rest of simulations particularly at mid- and high latitudes

(Figure C.7).

At low latitudes, the climatologies of the three variables associated with the sur-

face water balance (LH, PRE and SM 1m) decrease with the use of coarser horizontal

resolutions (Figures 4.7 and 4.9). This is probably related to the resolution-induced in-

crease in net shortwave radiation and temperature, and its effect on the surface energy

partition into sensible and latent heat flux. Due to the relationship between surface

temperatures and sensible heat flux (Bonan, 2002), the resolution-induced increase in

temperature is probably related to the increase in sensible heat flux climatology, re-

ducing the available energy for latent heat flux and leading to a decrease in latent heat
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Figure 4.9: Seasonal mean change in accumulated precipitation and soil moisture for a
reduction of 10 km in horizontal resolution, using the NOAH-MP-DV simulations for the
period 1980-2013. Only grid cells where the response to changing resolution is significant at
the 95% level are plotted. All outputs from the 25, 50 and 100 km simulations were mapped
to a common 100 km grid.
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flux climatology with the use of coarser resolutions at low latitudes (Figures 4.7, 4.8

and 4.9). At mid- and high latitudes, there are differences in the response of the water

balance variables to the use of coarser resolutions. For example focusing on the JJA

results, soil moisture climatology increases with coarser resolutions over a large area

at mid-latitudes, while precipitation climatology increases just over a few grid cells,

decreasing over most western areas (Figure 4.9). Latent heat flux decreases with the

use of coarser resolutions over most regions at high and mid-latitudes, increasing just

over a few grid cells at mid-latitudes (Figure 4.7). This decrease in latent heat flux

climatology at mid- and high latitudes is driven by the resolution-induced decrease

in net radiation absorbed by soil, which also leads to a decrease in sensible heat flux

at these latitudes (Figure 4.7). The differences in the spatial patterns of the response

of the water balance variables to reducing resolution seems to be interrelated. For

example, the resolution-induced decrease in latent heat flux climatology over central

NA can be caused by the increase in soil moisture (Figures 4.7 and 4.9).

4.4.3 Evaluation of temperature and precipitation climatolo-

gies against observations

For the comparison of the effect of changing the LSM component and horizontal res-

olution on climate simulations, we estimate the bias in all WRF simulations and the

DAYMET product relative to the CRU observational product (Harris et al., 2014).

The comparison of model outputs and observational databases requires the interpola-

tion of all outputs to a common grid. The comparison between our WRF simulations,

DAYMET product and the CRU data interpolating to a common grid with 25 or 100

km resolution yields similar results for minimum and maximum temperatures (Fig-

ures 4.10, 4.11, C.13 and C.14) and for the precipitation climatology (Figures 4.12

and C.16). As a measure of the possible uncertainties in the CRU product, we also
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Figure 4.10: Mean annual and seasonal bias in maximum temperature climatology (oC)
for all experiments and the DAYMET data product relative to the CRU database from
1980 to 2013. All experiments and databases are interpolated to a 100 km grid before any
calculation. Biases are estimated over six subregions (Figure 1) adapted from Giorgi et
al., 2000: Central America, CAM; Western North America, WNA; Central North America,
CNA; Eastern North America, ENA; Alaska, ALA; and Greenland, GRL.

estimate the bias in the DAYMET product relative to the CRU data. The inconsis-

tencies between both observational data are noticeably smaller than the biases in the

WRF experiments for all variables in all regions except for minimum temperatures

in the CAM region and for precipitation in the ALA region (Figures 4.10, 4.11 and

4.12).

The WRF model underestimates annual climatologies of daily maximum temper-

atures over most of North America at all resolutions, comparing grid-cell by grid-cell

(Figure C.11) and on average over subdomains (Figure 4.10). These biases are gener-

ally less pronounced for the experiments using the CLM4 LSM at most locations and

in all seasons. The impact of horizontal resolution on these climatologies is weaker

than the LSM-dependency over the whole domain and in all seasons, showing a larger
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Figure 4.11: Mean annual and seasonal bias in minimum temperature climatology (oC)
for all experiments and the DAYMET data product relative to the CRU database from
1980 to 2013. All experiments and databases are interpolated to a 100 km grid before any
calculation. Biases are estimated over six subregions (Figure 1) adapted from Giorgi et
al., 2000: Central America, CAM; Western North America, WNA; Central North America,
CNA; Eastern North America, ENA; Alaska, ALA; and Greenland, GRL.

resolution impact on maximum temperatures in summer over western North America

and at high latitudes ( WNA, ALA and GRL in Figure 4.10). Over these areas, finer

horizontal resolutions are associated with warmer JJA maximum temperatures, re-

ducing the bias relative to the CRU dataset except in northeastern NA (GRL). In the

GRL region, the WRF model with the CLM4 and the NOAH-MP LSM components

overestimates JJA maximum temperatures, increasing the bias in these simulations

with the use of finer resolution (Figure 4.10).

The performance of the WRF model in reproducing the climatology of daily min-

imum temperatures from the CRU observations is generally better than reproducing

the maximum temperature climatology at mid- and low latitudes, but it is worse

at high latitudes especially in DJF (Figures 4.10 and 4.11). Experiments using the
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CLM4 LSM yield a warmer climatology over most areas and for all seasons than the

experiments with the other LSM components, implying smaller biases in the CLM4

simulations for most of regions (Figure 4.11). The WRF bias in minimum temperature

climatology is large in winter over the central and eastern areas of North America and

at mid- and high latitudes (subdomains ALA, GRL, CNA and ENA in Figure 4.11).

Enhancing horizontal resolution generally reduces the bias in minimum temperatures

at high latitudes in JJA, except for the NOAH simulations, but these improvements

are small relative to the impact of the LSM choice. Finer resolutions are associated

with larger biases in minimum temperatures at mid- and high latitudes in DJF (Figure

4.11).

The effect of horizontal resolution on the temperature biases in our simulations is

similar using different LSM components and vegetation mode (Figures 4.10 and 4.11),

in agreement with results presented in subsection 4.4.2. Thus, LSM differences in max-

imum and minimum temperature biases remain the same for the different resolution

experiments. The effect of dynamic vegetation on temperature biases also remains

constant with resolution, reaching larger biases and colder temperature climatologies

with dynamic vegetation than with prescribed vegetation (Figures 4.10 and 4.11). The

vegetation mode affects temperature biases particularly in spring (Figures 4.10 and

4.11) and over the boreal forest (Figures C.11 and C.12).

The WRF model simulates large positive biases in daily accumulated precipita-

tion over most of North America during all seasons, with larger biases in summer

(Figures 4.12 and C.15). A negative bias is also present in all experiments over the

southeastern US and the eastern coast of North America for all seasons (Figure C.15).

Dry biases are reduced when using finer horizontal resolutions, while wet biases are

larger when using smaller scales, because of the increase in precipitation induced by

finer resolutions (Figure 4.12). The impact of resolution on the climatology of sur-
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Figure 4.12: Mean annual and seasonal bias in precipitation climatology (mm/day) for
all experiments and the DAYMET data product relative to the CRU database from 1980
to 2013. All experiments and databases are interpolated to a 100 km grid before any
calculation. Biases are estimated over six subregions (Figure 1) adapted from Giorgi et
al., 2000: Central America, CAM; Western North America, WNA; Central North America,
CNA; Eastern North America, ENA; Alaska, ALA; and Greenland, GRL.
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face precipitation is stronger than the effect of the LSM component, which affects

precipitation climatology mainly in summer at low and mid-latitudes (Figure 4.12).

The impact of horizontal resolution is expected to be larger on the simulation of

extreme events than on surface climatologies (Di Luca et al., 2015; Prein et al., 2013;

Rummukainen, 2016). We examined this by repeating figures included in Section 4.4.3

using the 5th and 95th percentiles of daily temperature and precipitation outputs for

the analysis period. For the evaluation of extremes, we compare all simulations with

the DAYMET product, because it provides daily data (Figure C.17, C.18 and C.19).

The values of the bias relative to the DAYMET dataset are larger when using the

5th and 95th percentiles of the analysis period than when using mean climatologies

(Figures 4.10, 4.11, 4.12, C.17, C.18 and C.19). However, results from extreme and

mean climatologies yield similar conclusions; the influence of the LSM component is

stronger for extreme temperatures than for extreme precipitation, while the simulation

of precipitation extremes is greatly affected by changes in resolution.

In summary, the LSM impact on temperature climatologies is larger than the

resolution effect (Figures 4.10 and 4.11), while the opposite is true for precipitation

climatologies (Figure 4.12). The influence of both the LSM choice and resolution

intensifies in summer comparing with the rest of seasons, probably because of the

intensification of land-atmosphere coupling in summer (Mei et al., 2012; Zhang et

al., 2008). The CLM4 LSM generates the smallest biases in the WRF simulation of

maximum and minimum temperature climatologies. Nonetheless, the NOAH LSM

yields slightly smaller biases in JJA precipitation climatologies in comparison with

the rest of LSM components. The use of finer resolutions leads to slightly larger or

smaller biases in the simulation of maximum and minimum temperatures depending

on the LSM component. For the WRF simulation of precipitation climatology, the

increase in resolution implies larger precipitation biases at low and mid-latitudes for all
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LSM components, particularly in summer. Biases in the WRF simulation of extreme

temperature and precipitation behave similar to biases in mean climatologies.

4.5 Discussion

The effect of horizontal resolution on the WRF simulation of near-surface climate

is similar for all LSM components. All LSM simulations yielded a larger effect of

horizontal resolution in summer than in the remaining seasons, as well as at low lat-

itudes, over complex terrain and coastal areas (Figures 4.7, 4.8 and 4.9). Although

the increase in resolution greatly affects the performance of the atmospheric model

component and therefore precipitation outputs, our results also suggest a relation-

ship between the effect of changing resolution on climatologies of precipitation and

surface energy fluxes. For example at low latitudes, the resolution-induced increase

in shortwave radiation may lead to higher surface temperatures and sensible heat

flux, resulting in lower energy available for latent heat flux, and therefore leading to

a decrease in precipitation at coarser resolutions. At high latitudes, the resolution-

induced decrease in precipitation climatology probably is associated with the decrease

in latent heat flux climatology driven by the decrease in the net radiation absorbed

by soil. The relationship between precipitation climatology and shortwave radiation

is in agreement with results from the HadGEM atmospheric GCM (Demory et al.,

2014), that showed high values of the variables associated with the hydrological cycle

resulting from excess surface shortwave radiation. However, they did not find an effect

of resolution on shortwave radiation, probably due to the tuning of GCMs to balance

top-of-the atmosphere radiation (Demory et al., 2014).

The shown dependence of climate simulations on the LSM component agrees with

conclusions drawn from previous analyses at different temporal and spatial scales
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(Chen et al., 2014; Davin et al., 2012; García-García et al., 2020b; Laguë et al., 2019;

Liu et al., 2019; Mooney et al., 2013; Van Den Broeke et al., 2018; Zhuo et al., 2019).

For example, using the Consortium for Small-scale Modeling (COSMO) and WRF

RCMs, Davin et al. (2012) and Mooney et al. (2013) identified a LSM sensitivity of

temperature and precipitation conditions over Europe, which intensifies in summer.

Additionally, our analysis has shown that the impact of the LSM choice on the WRF

simulation of precipitation climatology is weaker than its impact on temperature

climatology in agreement with studies over a small region in Italy (Zhuo et al., 2019),

over Europe (Mooney et al., 2013) and over the western and central US at seasonal

scales (Chen et al., 2014; Jin et al., 2010; Van Den Broeke et al., 2018).

Previous evaluations of LSM components over different domains reached the con-

clusion that the most complex LSM components, that is, the LSM components rep-

resenting more physical phenomena, outperform others (Chen et al., 2014; Liu et al.,

2019; Van Den Broeke et al., 2018). Over North America, our results indicate that the

WRF simulation of temperature climatology using the CLM4 LSM outperforms the

simulations generated by the NOAH and NOAH-MP LSMs (Figures 4.10 and 4.11).

The simulation of precipitation climatology in summer is, however, slightly better

represented by the NOAH LSM than by the other LSM components (Figure 4.12).

Nonetheless, all our WRF simulations overestimate precipitation over most of North

America in agreement with other studies using WRF over the western US (Chen et al.,

2014; Jin et al., 2010) and over Europe (Pieri et al., 2015). Atmospheric parameteriza-

tions were not tested in this study; however, other WRF sensitivity experiments using

several microphysics schemes over Europe found a positive bias in precipitation for all

simulations, which was considerably reduced in summer within a convective permit-

ting simulation (Pieri et al., 2015). That is, the positive bias in precipitation has been

reported in WRF simulations over different domains using several LSM components,
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horizontal resolutions, microphysics parameterizations, and reanalysis products as ini-

tial and boundary conditions (Figures 4.12 in this manuscript, Chen et al., 2014; Jin

et al., 2010; Pieri et al., 2015). Therefore, the results included in this study together

with the results reported in the literature suggest that the use of finer resolutions may

raise precipitation biases in WRF simulations over North America, without using the

proper atmospheric configuration or resolutions finer enough to simulate convective

processes explicitly.

Although the positive bias in precipitation shown in these results agrees with the

literature (e.g. Chen et al., 2014; Jin et al., 2010; Pieri et al., 2015), uncertainties in ob-

servational data products may be affecting our results. The accuracy of precipitation

over mountain areas is strongly reduced. Strong wind conditions at meteorological

stations affect the measurement of gauges with documented under-catch of precipita-

tion of up to 40% (Frei et al., 1998, 2003). Thus, the bias in our simulations over the

Rocky mountains may arise from uncertainties in observations. Improving the accu-

racy of precipitation data is crucial for the evaluation of climate model simulations

and sensitivity tests.

4.6 Conclusions

This study has showed the effect of horizontal resolution and LSM choice on the

climatology of surface energy fluxes and near-surface conditions, which intensifies in

summer. Enhancing horizontal resolution leads to higher precipitation climatologies

at low latitudes, mainly due to an increase in latent heat flux, which is driven by

resolution-induced changes in net shortwave radiation absorbed by soil. Our results

highlights the important role of the LSM component in the WRF representation of the

energy partition at the surface, which mainly affects the simulation of temperature
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climatologies over North America.

The evaluation of the WRF simulations against observations supports the use of

the CLM4 LSM as the best choice within the options available for WRF simulations

over North America. The use of finer resolutions slightly improves the representation

of temperature climatologies within WRF. Nonetheless, the use of finer resolutions

should be implemented with caution since it may increase the WRF bias in precipita-

tion. These results are similar for the mean and extreme climatologies of maximum

and minimum temperatures and accumulated precipitation. However, the use of other

atmospheric parameterizations or resolutions fine enough for convective-permitting

simulations may reach other conclusions about the final outcome of increasing reso-

lution. Further studies using WRF with different resolutions are required to identify

the best atmospheric configuration for downscaling climate simulations over North

America.

Information provided by downscaling studies are used for building climate change

policies, thus understanding and restricting uncertainties and inaccuracies in climate

simulations may have direct benefits to society and environment. The results pre-

sented here should be considered for downscaling studies over North America aimed

at projecting future conditions and informing policy-makers.
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Chapter 5
Summary and Global Conclusions

5.1 Global Conclusions

The three studies included in Chapter 2, 3 and 4 have contributed to the research

goal of this thesis, providing information on the research questions presented in Chap-

ter 1. Thus, these articles provide information about how climate models simulate

land-atmosphere interactions, identifying the factors leading to inter-model differences.

This research also addressed questions about the consequences of the different rep-

resentation of land-atmosphere interactions in climate models for the simulation of

near-surface conditions, especially for the simulation of temperature and precipitation

extremes.

Chapter 2 addressed the first research question raised in the Introduction of this

dissertation; are land-atmosphere interactions properly represented within the global

climate models used by the fifth assessment report of the Intergovernmental Panel on

Climate Change (IPCC)? The IPCC report is the most comprehensive report to date

about climate change and its impact on society and ecosystems at global scales. Hence,

the importance of evaluating one of its sources of climate information, that is the 5th

phase of the Coupled Model Intercomparison Project (CMIP5) General Circulation
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Model (GCM) simulations. The evaluation of climate simulations requires observa-

tions; however, measuring land-atmosphere interactions can be challenging because

of the need for observations of both air and soil. In this study, my co-authors and I

proposed the use of a simple metric based on soil and air temperatures to overcome

the scarcity of observations of land-atmosphere interactions, since temperature is the

most frequent variable measured in meteorological stations. This study concluded

that most of the CMIP5 GCMs are not able to reproduce observations of the ther-

mal component of land-atmosphere interactions, and suggests that the Land Surface

Model (LSM) component is primarily responsible for inter-model differences in the

representation of these interactions. In this article, we were also able to identify the

simulation of land cover as one of the main processes affecting the thermal compo-

nent of land-atmosphere interactions. Most notably, snow cover was found to control

the relationship between air and ground temperatures in winter due to its insulating

effect. Thus, the different representation of land cover by each LSM may result in a

different simulation of the surface energy balance, and then a different representation

of the thermal component of land-atmosphere interactions.

Results presented in the first article suggest the LSM component as as impor-

tant factor for the simulation of land-atmosphere interactions. Thus, these results

also contribute to address the second research question of this thesis; what factors

lead to model differences in the representation of land-atmosphere interactions? Are

they also contributing to uncertainties in near-surface conditions? However, this first

study employed climate simulations from GCMs composed by several model com-

ponents, which share parts of the code. Therefore, the attribution of inter-model

differences in representing land-atmosphere interactions to the LSM component can

only be hypothesized using these results. In the second article included in this thesis,

I designed a modeling experiment using a regional climate model to perform a set of
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simulations which only differ in the LSM component, allowing this hypothesis to be

explored further. Using this set of regional climate simulations, my co-authors and

I confirm that the LSM component plays a key role in simulating land-atmosphere

interactions, as well as the LSM contribution to model uncertainty in the simulation

of temperature and precipitation extremes. This study also explored the implications

of these results for other sets of regional simulations, using three regional simulations

from different Regional Climate Models (RCMs), participating in the North American

component of the Coordinated Regional climate Downscaling Experiment (CORDEX)

program. These RCM simulations differ in several aspects beyond the use of different

LSM components, however the comparison between the uncertainty in the simulation

of extreme events within the CORDEX ensemble and in our set of simulations showed

similar spatial patterns. The agreement between both model ensembles indicates that

the LSM component can be an important source of uncertainty in the simulation of

extreme events within other model ensembles.

The last of the research questions posed in the Introduction was undertaken in

Chapter 4; how does horizontal resolution affect the representation of land-atmosphere

interactions within climate models? Are land-atmosphere interactions better repre-

sented within RCMs than within GCMs due to the use of finer horizontal resolution?

This third study presents results on the influence of horizontal resolution on the repre-

sentation of land-atmosphere interactions, by evaluating the simulation of the energy

partition at the air-ground interface. For this purpose, I designed another modeling

experiment consisting of a larger set of simulations, using different LSM components

and different horizontal resolutions. The analysis of this set of simulations provided

information to understand LSM differences in the representation of land-atmosphere

interactions as well as information on how a more detailed description of topography

affects the simulation of soil properties and consequently the surface energy and water
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balance. The effect of horizontal resolution on the surface energy balance and near-

surface conditions in simulations with different LSM components is similar. However,

simulations using different LSM components showed large discrepancies in the repre-

sentation of surface energy fluxes. Thus, the effect of the LSM choice was found to

be primarily determinant for the representation of temperature climatologies, while

horizontal resolution was found to affect the simulation of precipitation climatology.

The comparison of the simulated climatologies with observations of near-surface condi-

tions also yielded interesting results; an increase in horizontal resolution may increase

the bias in the simulation of precipitation climatology. However, these results should

be interpreted with caution, since model tuning (the adjustment of parameter in each

climate model to fit observations) may be influencing our conclusions and the use of

different atmospheric parameterizations in our simulations may yield contradictory

results.

Although the three studies included in this dissertation provide information about

the representation of land-atmosphere interactions in RCMs and GCMs, the compari-

son of results from regional and global climate simulations presents some challenges. In

the second and third manuscripts, I was able to evaluate the impact of the LSM choice

and horizontal resolution on the simulation of land-atmosphere interactions because

I performed my own simulations using the Weather Research and Forecasting (WRF)

model. However, I was not able to determine the effect of the LSM choice and horizon-

tal resolution on the representation of land-atmosphere interactions within the GCM

simulations employed in Chapter 2, because of several differences between GCMs be-

yond the LSM component. Nonetheless, results from the three manuscripts support

the dependence of land-atmosphere interactions on the LSM component within GCM

and RCM simulations. The effect of horizontal resolution on land-atmosphere interac-

tions, meanwhile, was not apparent in the analysis of GCM simulations (Chapter 2)



5.2. SIGNIFICANCE OF THE RESEARCH 185

and was found to be weaker than the effect of the LSM choice on the WRF simulation

of the surface energy balance (Chapter 4). Therefore, it cannot be determined from

these results whether land-atmosphere interactions are better represented in RCMs

than in GCMs, although they suggest that the representation of land-atmosphere

interactions in both regional and global climate models is mainly influenced by the

choice of LSM component. In order to continue exploring this question, a comparison

between GCM and RCM simulations should be pursued using various metrics and

observations of land-atmosphere interactions. Additionally, a sensitivity study to hor-

izontal resolution using GCMs could shed light on the impact of increasing resolution

on the representation of land-atmosphere interactions in climate simulations.

5.2 Significance of the Research

Although LSM components have received little attention by the modeling community

in comparison with the rest of model components, this thesis highlights the role of

the LSM component in climate simulations performed by GCMs and RCMs. These

results are particularly relevant for RCM simulations and reanalysis products, which

include very simple LSM components in order to save computational resources to

improve the performance of the atmospheric model component. Due to the large

effect of the LSM component on the simulation of near-surface conditions shown in

this dissertation, the use of simple version of LSM component in RCMs and reanalyses

can be an important limitation in regional simulations and reanalysis products. Thus,

this research supports the ongoing work on developing LSM components as well as

the implementation of new versions of these components in current and future RCMs

and reanalyses in order to improve the models’ representation of land-atmosphere

interactions and therefore near-surface conditions.



186 5.2. SIGNIFICANCE OF THE RESEARCH

This work also provides information about the role of horizontal resolution on the

simulation of land-atmosphere interactions, showing the intensification of the variables

related to the water cycle with the use of finer resolutions at low latitudes of North

America. These results, however, raise doubts about the benefit of increasing resolu-

tion to the WRF simulation of land-atmosphere interactions, since the LSM choice

was shown to be the determinant factor for the simulation of the surface energy bal-

ance. Additionally, the use of finer resolution in our WRF simulations was associated

with larger biases in precipitation climatology. However, this result should be tested

using different atmospheric parameterizations and convective-permitting simulations

in order to clarify the impact of increasing resolution on WRF climate simulations over

North America. Thus, this thesis emphasizes the importance of selecting the model

configuration, particularly the LSM component, that best works for North America,

before performing a dynamical downscaling simulation. Also, scientists interested in

downscaling experiments over North America using the WRF model should consider

the use of the Community Land Model version 4 (CLM4) LSM over the rest of LSM

components available to improve the simulation of temperature climatologies.

Inter-model differences in representing land-atmosphere interactions due to the

employed LSM component have also been shown to affect the representation of statis-

tics of temperature and precipitation extremes, thus likely contributing to model

uncertainties in the projection of extreme indices. The information provided in this

dissertation has helped to understand these inter-model differences in representing

land-atmosphere interactions, which in turn may help to restrict uncertainties in cli-

mate model simulations, particularly those associated with the simulation of temper-

ature and precipitation extremes. This is very important for the wellbeing and sus-

tainability of society and environment, since reducing uncertainties in climate model

simulations will improve climate information employed for developing climate change
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adaptation and mitigation measures. The implementation of more adequate adapta-

tion and mitigation strategies may reduce economic and biodiversity losses and death

toll.

5.3 Future Directions

There are several lines of future work arising from this thesis that are of scientific

interest. One of these lines is to perform and analyze a set of WRF simulations

with different atmospheric parameterizations, maintaining the same LSM component.

Although there are many studies analyzing the sensitivity of the WRF model to at-

mospheric parameterizations (e.g. Sun et al., 2020), the use of different atmospheric

parameterizations with the configuration used for our simulations would allow the

comparison of the effect of the LSM choice, horizontal resolution and atmospheric

parameterizations on the WRF simulation of land-atmosphere interactions and near-

surface conditions. Furthermore, performing an additional simulation with much finer

horizontal resolution (4 km) would allow the simulation of convective-permitting pro-

cesses and its comparison with the rest of our simulations, providing information of

the WRF configuration best suited to North America.

As discussed in Chapter 3, the consequences of compound extreme events for so-

ciety and environment are much more dangerous than consequences of temperature

or precipitation extremes separately. This thesis has demonstrated the impact of

the LSM choice and increasing resolution on the simulation of land-atmosphere in-

teractions and consequently on the representation of extreme events; however, the

LSM component and horizontal resolution may also affect the simulation of com-

pound extreme events. Although the large LSM differences in the representation of

near-surface conditions suggest a large LSM influence on the simulation of compound
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extreme events, the uncertainties in temperature and precipitation arising from the

LSM component are interrelated in the simulation. Thus, a future study evaluating

the LSM and resolution impact on the uncertainty in the simulation of compound

extreme events (e.g. events with concurrent drought and heat waves) would be of

major interest.

Another interesting line for continuing this research is the analysis of the impact

of the LSM choice and horizontal resolution on the simulation of temporal anoma-

lies of land-atmosphere interactions and near-surface conditions, in contrast to the

climatologies examined in this dissertation. However, the temporal analysis of these

impacts would require longer simulations, likely including future climate projections,

which require large amounts of computational resources and time. Nevertheless, this

constitutes a very interesting line of work since, theoretically, the different represen-

tation of climatologies due to the LSM component should affect the simulation of

temperature-dependent processes, such as carbon and permafrost stabilities, which

are positive climate feedbacks and therefore should affect the climate simulation pro-

gressively. This progressive effect of the LSM component can be small in RCMs

because RCMs do not represent the global carbon cycle. Thus, the study of the LSM

impact on temperature-dependent processes and consequently on climate evolution

should probably be accomplished using a Earth System Model.

A new generation of GCMs is currently being used for updated simulations to

inform the sixth assessment report of the IPCC. Outputs from this new set of mod-

els will be available soon, allowing the evaluation of land-atmosphere interactions in

this generation of models, as well as comparison with their predecessors. Thus, the

proposed inter-model comparison might provide information on the improvement in

the new generation of models associated with the representation of land-atmosphere

interactions. This comparison would benefit from including new observations of land-
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atmosphere interactions in the evaluation of climate models. As mentioned in this

thesis, measuring land-atmosphere interactions presents some difficulties, but there

are a few projects providing observational data of surface energy fluxes, such as the

FluxNet project (Baldocchi et al., 2001). However, the temporal and spatial cover-

age of this database is still insufficient for model evaluations at climatological scales.

Nonetheless, the use of the FluxNet database might also be interesting for the evalu-

ation of the surface energy balance in WRF simulations at shorter time scales.
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Table A.1: List of ensemble members for each experiment, and variables employed in this
article.

GCM Experiments Variables
Historical RCP4.5 RCP8.5 SNW LAI SM PR

CCSM4 r1i1p1 r1i1p1 r1i1p1 √ √ √ √

CESM1-BGC r1i1p1 r1i1p1 r1i1p1 √ √ √ √

CESM1-CAM5 r1i1p1 r1i1p1 r1i1p1 √ √ √ √

CESM1-FASTCHEM r1i1p1 – – √ √ √ √

CESM1-WACCM r1i1p1 r2i1p1 r2i1p1 √ √ √ √

NORESM1-M r1i1p1 r1i1p1 r1i1p1 √ √ √ √

NORESM1-ME r1i1p1 r1i1p1 r1i1p1 √ √ √ √

INM-CM4 r1i1p1 r1i1p1 r1i1p1 √ √ √ √
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Figure A.1: Annual mean difference, DJF mean difference, and JJA mean difference
between GST at 10 cm and SAT from 1979 to 2001 for the observations. Observational
data are interpolated using the nearest neighbor algorithm of GMT with a search radius
of 4◦. Black dots show the locations of the data on a 1◦ × 1◦ grid and grey color indicates
missing data.
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Figure A.2: Annual mean difference between GST at the layer containing the depth of
10cm and SAT from 1979 to 2001 for the CMIP5 GCMs, the multimodel mean and the
NARR.
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Figure A.3: Temporal correlation, point to point, between the annual mean of snow
amounts (SNW) and the absolute values of the annual temperature difference of each model,
GST-SAT. Dots indicate significant correlation at the 95% level.
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Figure A.4: Temporal correlation, point to point, between the DJF mean of snow amounts
(SNW) and the absolute values of the winter temperature difference of each model, GST-
SAT. Dots indicate significant correlation at the 95% level.
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Figure A.5: Temporal correlation, point to point, between the JJA mean of snow amounts
(SNW) and the absolute values of the summer temperature difference of each model, GST-
SAT. Dots indicate significant correlation at the 95% level.
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Figure A.6: Temporal correlation, point to point, between the annual mean of Leaf Area
Index values (LAI) and the absolute values of the annual temperature difference of each
model, GST-SAT. Dots indicate significant correlation at the 95% level.
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Figure A.7: Temporal correlation, point to point, between the DJF mean of Leaf Area
Index values (LAI) and the absolute values of the winter temperature difference of each
model, GST-SAT. Dots indicate significant correlation at the 95% level.
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Figure A.8: Temporal correlation, point to point, between the JJA mean of Leaf Area
Index values (LAI) and the absolute values of the summer temperature difference of each
model, GST-SAT. Dots indicate significant correlation at the 95% level.
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Figure A.9: Temporal correlation, point to point, between the annual mean of Soil Mois-
ture values (SM) and the absolute values of the annual temperature difference of each model,
GST-SAT. Dots indicate significant correlation at the 95% level.
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Figure A.10: Temporal correlation, point to point, between the DJF mean of Soil Moisture
values (SM) and the absolute values of the winter temperature difference of each model,
GST-SAT. Dots indicate significant correlation at the 95% level.
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Figure A.11: Temporal correlation, point to point, between the JJA mean of Soil Moisture
values (SM) and the absolute values of the summer temperature difference of each model,
GST-SAT. Dots indicate significant correlation at the 95% level.
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1Figure A.12: Temporal correlation, point to point, between the annual mean of Precipita-
tion Rates (PR) and the absolute values of the annual temperature difference of each model,
GST-SAT. Dots indicate significant correlation at the 95% level.
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1Figure A.13: Temporal correlation, point to point, between the DJF mean of Precipitation
Rates (PR) and the absolute values of the winter temperature difference of each model, GST-
SAT. Dots indicate significant correlation at the 95% level.
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1Figure A.14: Temporal correlation, point to point, between the JJA mean of Precipitation
Rates (PR) and the absolute values of the summer temperature difference of each model,
GST-SAT. Dots indicate significant correlation at the 95% level.
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Figure A.15: Temporal evolution of the annual difference between GST and SAT for each
LSM at North American high latitudes from 40◦N to 55◦N (left column), and at North
American low latitudes from 25◦N to 40◦N (right column). The numbers in bracket indicate
the number of GCMs employing each LSM.
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Figure A.16: As in Fig. A.15, for the rest of the LSMs.
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Figure A.17: Temporal correlation, point to point, between the annual mean of monthly
snow amounts (SNW) and the absolute values of the annual temperature difference of each
model, GST-SAT. (bottom) Boxplots (75th and 25th spatial percentiles (boxes), medians
(center line), maximums and minimums (extremes of dashed lines)) of the correlation maps,
using Historical (1860-2005) (black), RCP4.5 (blue) and RCP8.5 (2006-2099) (red) simula-
tions. Outliers (points located 1.5 times the interquartile range above the upper quartile
and bellow the lower quartile) are not included. Bars at the bottom of the boxplots indicate
the percentages of grid-cells with significant correlation at the 95% level using a phase-
randomizing bootstrapping technique with 1000 Monte Carlo runs (Ebisuzaki, 1997). (top)
Maps correspond to the strongest (MIROC5, top) and the weakest (GISS-E2-H, bottom)
mean correlations and the multimodel mean of the correlation coefficients (center), for the
Historical simulation (left), the RCP4.5 (center) and the RCP8.5 (right). Dots indicate
significant correlation at the 95% level.



240

Figure A.18: Temporal correlation, point to point, between the annual mean of monthly
Leaf Area Index (LAI) and the absolute values of the annual temperature difference of
each model, GST-SAT. (bottom) Boxplots (75th and 25th spatial percentiles (boxes), medi-
ans (center line), maximums and minimums (extremes of dashed lines)) of the correlation
maps, using Historical (1860-2005) (black), RCP4.5 (blue) and RCP8.5 (2006-2099) (red)
simulations. Outliers (points located 1.5 times the interquartile range above the upper
quartile and bellow the lower quartile) are not included. Bars at the bottom of the box-
plots indicate the percentages of grid-cells with significant correlation at the 95% level us-
ing a phase-randomizing bootstrapping technique with 1000 Monte Carlo runs (Ebisuzaki,
1997). The capital letter next to each model name indicates the information of the veg-
etation mode (prescribed (P) or dynamic (D)) employed for each simulation, which was
retrieved from the Earth System Documentation website (https://search.es-doc.org,
access date 2018/03/18) as well as in the models’ documentation. (top) Maps correspond
to the strongest (GFDL-ESM2G, top) and the weakest (CANESM2, bottom) mean corre-
lations and the multimodel mean of the correlation coefficients (center), for the Historical
simulation (left), the RCP4.5 (center) and the RCP8.5 (right). Dots indicate significant
correlation at the 95% level.

https://search.es-doc.org
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Figure A.19: Temporal correlation, point to point, between the annual mean of monthly
precipitation rates at the surface (PR) and the absolute values of the annual temperature
difference of each model, GST-SAT. (bottom) Boxplots (75th and 25th spatial percentiles
(boxes), medians (center line), maximums and minimums (extremes of dashed lines)) of the
correlation maps, using Historical (1860-2005) (black), RCP4.5 (blue) and RCP8.5 (2006-
2099) (red) simulations. Outliers (points located 1.5 times the interquartile range above the
upper quartile and bellow the lower quartile) are not included. Bars at the bottom of the
boxplots indicate the percentages of grid-cells with significant correlation at the 95% level
using a phase-randomizing bootstrapping technique with 1000 Monte Carlo runs (Ebisuzaki,
1997). (top) Maps correspond to the strongest (GFDL-ESM2G, top) and the weakest (MRI-
CGCM3, bottom) mean correlations and the multimodel mean of the correlation coefficients
(center), for the Historical simulation (left), the RCP4.5 (center) and the RCP8.5 (right).
Dots indicate significant correlation at the 95% level.
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Figure A.20: Temporal correlation, point to point, between the annual mean of monthly
soil moisture at the first 10 cm (SM) and the absolute values of the annual temperature
difference of each model, GST-SAT. (bottom) Boxplots (75th and 25th spatial percentiles
(boxes), medians (center line), maximums and minimums (extremes of dashed lines)) of the
correlation maps, using Historical (1860-2005) (black), RCP4.5 (blue) and RCP8.5 (2006-
2099) (red) simulations. Outliers (values located 1.5 times the interquartile range above the
upper quartile and bellow the lower quartile) are not included. Bars at the bottom of the
boxplots indicate the percentages of grid-cells with significant correlation at the 95% level
using a phase-randomizing bootstrapping technique with 1000 Monte Carlo runs (Ebisuzaki,
1997). (top) Maps correspond to the strongest (INM-CM4, top) and the weakest (MIROC5,
bottom) mean correlations and the multimodel mean of the correlation coefficients (center),
for the Historical simulation (left), the RCP4.5 (center) and the RCP8.5 (right). Dots
indicate significant correlation at the 95% level.
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Figure A.22: Spatial correlation coefficients and RMSE values of the annual normalized
GST 10cm for each pair of models within the CMIP5 ensemble for the period 1979-2001.
The LSM employed by each model is indicated using a different color next to the models’
name.
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Figure A.23: Spatial correlation coefficients and RMSE values of the annual normalized
SAT for each pair of models within the CMIP5 ensemble for the period 1979-2001. The
atmospheric model employed by each model is indicated using a different color next to the
models’ name.
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Table B.1: Information on the visited websites for retrieving data or detailed information.

Product Website Date of access
ETCCDI https://www.climdex.org/learn/indices/ December, 2018

NA-CORDEX https://www.earthsystemgrid.org/search/cordexsearch.html December, 2018
NARR https://nomads.ncdc.noaa.gov/data/narr/ August, 2017

ARW-WRF Version 3.9 http://www2.mmm.ucar.edu/wrf/users/download/get_source.html August, 2017

https://www.climdex.org/learn/indices/
https://www.earthsystemgrid.org/search/cordexsearch.html
https://nomads.ncdc.noaa.gov/data/narr/ 
http://www2.mmm.ucar.edu/wrf/users/download/get_source.html
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Figure B.1: Land use categories used in all our four simulations with different LSM
configurations. These land use categories are derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS, Barlage et al., 2005).
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Figure B.2: Frequency of occurrence for the VACa category associated with atmospheric
control events for each simulation annually and seasonally; DJF, MAM, JJA and SON.
Black dots in the maps indicate VAC values lower than the 95th percentile of the randomly
generated series, and therefore areas with no significant probabilities.
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Figure B.3: As in Figure B.2 but for the VACb category.
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Figure B.4: As in Figure B.2 but for the VACc category.
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Figure B.5: As in Figure B.2 but for the VACd category.
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Figure B.6: Frequency of occurrence for the extreme high latent heat flux for each simu-
lation annually and seasonally; DJF, MAM, JJA and SON. Extreme high latent heat flux
events are defined as values higher than the 70th percentile of the latent heat flux time series
from 1980 to 2000 at each grid cell.
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Figure B.7: Frequency of occurrence for the extreme low latent heat flux for each simu-
lation annually and seasonally; DJF, MAM, JJA and SON. Extreme high latent heat flux
events are defined as values lower than the 30th percentile of the latent heat flux time series
from 1980 to 2000 at each grid cell.
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Figure B.8: As in Figure B.6 but for Surface Air Temperature (SAT.)
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Figure B.9: As in Figure B.7 but for Surface Air Temperature (SAT.)
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Figure B.10: Climatologies of extreme indices associated with intensity, frequency, and
duration of cold extreme temperature events for each simulation separately (Table 3.2). The
indices are computed using the mean of each index from 1980 to 2012 for each simulation.
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Figure B.11: As in Figure B.10 but for warm extreme temperature events.
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Figure B.12: As in Figure B.10 but for extreme precipitation events.
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Figure B.13: Ranges across the WRF simulations (i.e., difference between the highest
value and the lowest value of the simulation ensemble at each grid cell) of Leaf Area Index
(LAI, m2/m2) and snow water equivalent (kgm2) annually and for each season. The range
among simulations is computed using the mean of each index from 1980 to 2012 for each
simulation.
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Figure B.14: Ranges across the WRF simulations (i.e., difference between the highest
value and the lowest value of the simulation ensemble at each grid cell) of extreme indices
associated with the intensity (a), frequency (b), and duration (c) of cold (left) and warm
(right) extreme temperature events (Table 3.2). The range among simulations is computed
using the 95th percentile of each index from 1980 to 2012 for each simulation, except for
the TNnDJF and TNnJJA index for which the 5th percentile of the period was employed.
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Figure B.15: Multi-model ranges across the WRF simulations (i.e., difference between
the highest value and the lowest value of the simulation ensemble at each grid cell) of
extreme indices associated with the intensity (a), frequency (b), and duration (c) of extreme
precipitation events (Table 3.2). The range among simulations is computed using the 95th
percentile of each index from 1980 to 2012 for each simulation.
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Figure B.16: Climatologies of extreme indices associated with intensity, frequency, and
duration of cold extreme temperature events for each CORDEX simulation separately (Table
3.2). The indices are computed using the mean of each index from 1980 to 2012 for each
simulation.
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Figure B.17: As in Figure B.16 but for warm temperature extremes.
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Figure B.18: As in Figure B.16 but for precipitation extremes.
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Figure B.19: Differences between the range among the WRF simulations and the range
among three CORDEX simulations in representing extreme indices related to intensity (a),
frequency (b), and duration (b) of cold (left two columns) and warm (right two columns)
extreme temperature events (Table 3.2). Ranges across each simulation ensemble are com-
puted using the mean of each index from 1980 to 2012 for each simulation. Red color means
larger rages among the WRF simulations than among the CORDEX simulations, white color
means comparable values for ranges among the WRF simulations and the CORDEX sim-
ulations and blue color means larger ranges among the CORDEX simulations than among
the WRF simulations.
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Figure B.20: As in Figure B.19 but for precipitation extremes.
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Figure B.21: Monthly latent heat (LH) flux from 1980 to 1981 averaged over North
America (NA) and the subdomains included in this analysis. The black line represents the
outputs from the WRF-CLM4 simulation with initial conditions on January 1st, 1979. The
red line represents the outputs from a WRF-CLM4 simulation with initial conditions on
June 1st, 1979.



272

Figure B.22: As in Figure B.21 but for monthly Surface Air Temperature (SAT).
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Figure C.1: Climatology of energy terms at the surface (net shortwave radiation SNET;
net longwave radiation LNET; soil net radiation RNET; latent heat flux LH; sensible heat
flux HFX; and ground heat flux GHF) for each LSM simulation relative to the multi-model
mean for each energy term. Climatologies are estimated as the temporal average for the
period 1980-2013 using simulations performed with 25 km resolution (left) and 100 km
resolution (right).
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Figure C.2: Climatology of near-surface temperature conditions (maximum temperature
TASMAX; minimum temperature TASMIN; surface air temperature SAT; and soil temper-
ature at 1m depth GST 1m) for each LSM simulation relative to the multi-model mean
for each energy term. Climatologies are estimated as the temporal average for the period
1980-2013 using simulations performed with 25 km resolution (left) and 100 km resolution
(right).
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Figure C.3: Climatology of near-surface humid conditions (accumulated precipitation
at the surface PRE; and soil moisture contained in the first soil meter SM 1m) for each
LSM simulation relative to the multi-model mean for each energy term. Climatologies are
estimated as the temporal average for the period 1980-2013 using simulations performed
with 25 km resolution (left) and 100 km resolution (right).

Figure C.4: Upward component of the longwave radiation climatology at the ground
surface for each LSM simulation. Climatologies are estimated as the temporal average for
the period 1980-2013 using simulations performed with 50 km resolution.
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Figure C.5: Annual mean change in surface energy fluxes per 10 km reduction in horizontal
resolution (coarser resolutions) for each LSM set of simulations for the analysis period 1980-
2013. Only grid cells where the response is significant at the 95% level are plotted.
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Figure C.6: Annual mean change in near-surface conditions per 10 km reduction in hori-
zontal resolution (coarser resolutions) for each LSM set of simulations for the analysis period
1980-2013. Only grid cells where the response is significant at the 95% level are plotted.
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Figure C.7: Annual mean change in accumulated precipitation at the surface and soil
moisture per 10 km reduction in horizontal resolution (coarser resolutions) for each LSM
set of simulations for the analysis period 1980-2013. Only grid cells where the response is
significant at the 95% level are plotted.
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Figure C.8: Seasonal mean change in surface energy fluxes per 10 km reduction in hori-
zontal resolution (coarser resolutions), using the NOAH-MP-DV simulations for the period
1980-2013 previously interpolated to the 25 km grid. Only grid cells where the response is
significant at the 95% level are plotted.
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Figure C.9: Seasonal mean change in near-surface temperature conditions per 10 km re-
duction in horizontal resolution (coarser resolutions), using the NOAH-MP-DV simulations
for the period 1980-2013 previously interpolated to the 25 km grid. Only grid cells where
the response is significant at the 95% level are plotted.
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Figure C.10: Seasonal mean change in accumulated precipitation at the surface and soil
moisture per 10 km reduction in horizontal resolution (coarser resolutions), using the NOAH-
MP-DV simulations for the period 1980-2013 previously interpolated to the 25 km grid. Only
grid cells where the response is significant at the 95% level are plotted.
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Figure C.11: Annual bias in maximum temperature climatology (oC) for all experiments
and the DAYMET data product relative to the CRU database from 1980 to 2013.
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Figure C.12: Annual bias in minimum temperature climatology (oC) for all experiments
and the DAYMET data product relative to the CRU database from 1980 to 2013.



287

Mean Bias Max. SAT 100km

B
ia

s
M

ax
.

Te
m

pe
ra

tu
re

(K
) WNA

−6
−5
−4
−3
−2
−1
0
1

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

ALA
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

GRL
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

CAM

Annual DJF MAM JJA SON
−6
−5
−4
−3
−2
−1
0
1

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

CNA

Annual DJF MAM JJA SON

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

ENA

Annual DJF MAM JJA SON

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●DAYMET CLM4 25km CLM4 50km CLM4 100km NOAH−MP 25km NOAH−MP 50km NOAH−MP 100km
● ●NOAH 25km NOAH 50km NOAH 100km NOAH−MP−DV 25km NOAH−MP−DV 50km NOAH−MP−DV 100km

Mean Bias Max. SAT 25km

B
ia

s
M

ax
.

Te
m

pe
ra

tu
re

(K
) WNA

−6
−5
−4
−3
−2
−1
0
1

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

ALA
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

GRL
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

CAM

Annual DJF MAM JJA SON
−6
−5
−4
−3
−2
−1
0
1

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

CNA

Annual DJF MAM JJA SON

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

ENA

Annual DJF MAM JJA SON

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●DAYMET CLM4 25km CLM4 50km CLM4 100km NOAH−MP 25km NOAH−MP 50km NOAH−MP 100km
● ●NOAH 25km NOAH 50km NOAH 100km NOAH−MP−DV 25km NOAH−MP−DV 50km NOAH−MP−DV 100km

1

Figure C.13: Mean annual and seasonal bias in maximum temperature climatology (oC)
for all experiments and the DAYMET data product relative to the CRU database from
1980 to 2013. All experiments and databases are interpolated to a 25 km grid before any
calculation. Biases are estimated over six subregions (Figure 4.2) adapted from Giorgi et
al., 2000: Central America, CAM; Western North America, WNA; Central North America,
CNA; Eastern North America, ENA; Alaska, ALA; and Greenland, GRL.
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Figure C.14: Mean annual and seasonal bias in minimum temperature climatology (oC)
for all experiments and the DAYMET data product relative to the CRU database from
1980 to 2013. All experiments and databases are interpolated to a 25 km grid before any
calculation. Biases are estimated over six subregions (Figure 4.2) adapted from Giorgi et
al., 2000: Central America, CAM; Western North America, WNA; Central North America,
CNA; Eastern North America, ENA; Alaska, ALA; and Greenland, GRL.
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Figure C.15: Annual bias in precipitation climatology (mm/Day) for all experiments and
the DAYMET data product relative to the CRU database from 1980 to 2013.
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5

Figure C.16: Mean annual and seasonal bias in precipitation climatology (mm/day) for
all experiments and the DAYMET data product relative to the CRU database from 1980 to
2013. All experiments and databases are interpolated to a 25 km grid before any calculation.
Biases are estimated over six subregions (Figure 4.2) adapted from Giorgi et al., 2000:
Central America, CAM; Western North America, WNA; Central North America, CNA;
Eastern North America, ENA; Alaska, ALA; and Greenland, GRL.
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Figure C.17: Mean annual and seasonal bias in the 95th (top panels) and 5th (bottom pan-
els) percentile of daily maximum temperatures (oC) for all experiments and the DAYMET
data product relative to the DAYMET database from 1980 to 2013. All experiments and
databases are interpolated to a 100 km grid before any calculation. Biases are estimated over
six subregions (Figure 4.2) adapted from Giorgi et al., 2000: Central America, CAM; West-
ern North America, WNA; Central North America, CNA; Eastern North America, ENA;
Alaska, ALA; and Greenland, GRL.
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Figure C.18: Mean annual and seasonal bias in the 95th (top panels) and 5th (bottom pan-
els) percentile of minimum daily temperatures (oC) for all experiments and the DAYMET
data product relative to the DAYMET database from 1980 to 2013. All experiments and
databases are interpolated to a 100 km grid before any calculation. Biases are estimated over
six subregions (Figure 4.2) adapted from Giorgi et al., 2000: Central America, CAM; West-
ern North America, WNA; Central North America, CNA; Eastern North America, ENA;
Alaska, ALA; and Greenland, GRL.
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Figure C.19: Mean annual and seasonal bias in the 95th percentile of daily accumulated
precipitation (mm/day) for all experiments and the DAYMET data product relative to the
DAYMET database from 1980 to 2013. All experiments and databases are interpolated to
a 100 km grid before any calculation. Biases are estimated over six subregions (Figure 4.2)
adapted from Giorgi et al., 2000: Central America, CAM; Western North America, WNA;
Central North America, CNA; Eastern North America, ENA; Alaska, ALA; and Greenland,
GRL.
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