33-rd Midwest Symposium on Circuits and Systems (MSCAS’90). Calgary, Canada, 12-14 August 1990, pp.774-778.
Copyright © 1990 IEEE (DOI 10.1109/MWSCAS.1990.140836).

TRANSFORMATIONS OF TIMED PETRI NETS
AND PERFORMANCE ANALYSIS

W.M. Zuberek and M.S. Zuberek

Department of Computer Science, Memorial University
St.John’s, NL, Canada A1C-5S7

Abstract

There are two basic approaches to analysis of timed Petri
net models, the so called reachability analysis and structural
analysis. Reachability analysis is based of the space of reach-
able states while structural analysis derives properties of mod-
els from properties of model components and component in-
terconnections. This paper discusses several simple transfor-
mations of timed nets that significantly simplify performance
analysis preserving all important performance properties of
the original model. In particular, they can convert a model
that can be analyzed by the reachability approach only into
an equivalent one (with respect to performance) that can be
analyzed by structural methods.

1. INTRODUCTION

The increasing availability of inexpensive processors as well
as computer networks results in a trend to distribute func-
tions of information processing systems into different processes
and processors. This, however, implies a significant growth
in complexity of coordination in such systems, which is par-
ticularly acute for the interactions or protocols that specify
how distributed processes or processors are synchronized and
how they communicate with one another. Formal methods
are gradually being developed to describe such interactions
[Boch,Dan,ZWCB]|, and Petri nets [Pet,Reis] proved to be a
convenient example of such formalisms [CAA,Dan].

Petri nets have been successfully used in mod-
elling [Diaz,MeFa], validation [BeTe,Dan] and analysis
[CAA Diaz,Raz| of systems of events in which it is possible
for some events to occur concurrently, but there are con-
straints on the occurrence, precedence, or frequency of these
Basic Petri nets, however, are not complete
enough for the performance studies since no assumption is
made on the duration of systems events. Timed Petri nets
have been introduced by Ramchandani [Ram] by assigning
firing times to the transitions of Petri nets (t—timed nets),
and by Sifakis [Sif] by assigning time to places of a net
(p—timed nets). Merlin and Farber [MeFa] discussed timed
Petri nets where a time threshold and maximum delay were
assigned to each transition of a net to allow the incorporation
of timeouts into protocol models. Berthomieu and Menasche
[BeMe] used “state classes” to obtain finite representation
of behavior of nets defined by Merlin and Farber; their
description is sufficient for validation and verification studies,
but it requires further refinements for performance analysis
since no distribution of firing times is assumed. Razouk [Raz]
and Razouk and Phelps [RaPh] discussed an interesting class

occurrences.

of timed Petri nets with enabling as well as firing times (p
& t—timed nets), and derived performance expressions for
simple communication protocols.

This paper describes timed Petri nets augmented by “inter-
rupt” arcs which can “cancel” initialized firings of transitions,
as required in strict modelling of timeouts. Similarly as in
[Ram,Z85,Z87], constant (or deterministic) firing times are as-
signed to transitions of a Petri net, and then the “state space”
of a net is a discrete—space discrete—time homogeneous semi—
Markov process. Standard techniques derived for analysis of
Markov chains can thus be used to derive many performance
measures such as utilization of systems components, average
waiting times and turnaround times or average throughput
rates.

In many cases the original modelling nets can be simplified
by net transformations which do not change the behavior, i.e.,
state space, of the original net. It is shown that even a small
number of such transformations may convert a modelling net
to a very simple net with well-known properties, for example
to a net covered by invariants [Reis], and then many properties
(such as liveness and boundedness) can be determined without
studying the space of reachable states.

The paper is organized in 4 main sections. Sections 2 and
3 recall some definitions of basic concepts for (extended) free—
choice ordinary and D-timed Petri nets, respectively (more
details can be found in [Z87]). Equivalent net transformations
are introduced in section 4, while section 5 shows application
of net transformation to modelling and analysis of a simple
communication protocol.

2. MARKED PETRI NETS
An inhibitor Petri net N is a quadruple N=(P, T, A, B) where:

P is a finite, nonempty set of places,
T is a finite, nonempty set of transitions,

A is a set of directed arcs which connect places with transi-
tions and transitions with places such that for each tran-
sition there is at least one place connected with it,

B is a (possibly empty) set of inhibitor arcs which connect
places with transitions, B C P x T; A and B are disjoint
sets.

A marked Petri net M is a pair M=(IN, mo) where:
N is an inhibitor Petri net, N=(P, T, A, B),

mo is an initial marking function which assigns a nonnegative
integer number of so called tokens to each place of the
net, mo : P — {0,1,...}.

Transformations of timed Petri nets and performance analysis

Let any function m : P — {0, 1, ...} be called a marking in
anet N=(P,T, A, B).

A transition t is enabled by a marking m iff every input
place of this transition contains at least one token and ev-
ery inhibitor place of ¢ contains zero tokens. The set of all
transitions enabled by a marking m is denoted by En(m).

A place p is shared iff it is an input place for more than one
transition. In inhibitor nets, a shared place p is guarded iff for
each two different transitions ¢; and t; sharing p there exists
another place pr such that px is in the input set of one and
in the inhibitor set of the other of these two transitions, i.e.,
no two transitions from the output set of p can be enabled by
the same marking.

A shared place p is free—choice (or extended free—choice) iff
the input sets and inhibitor sets of all transitions sharing p are
identical. An inhibitor net is free—choice iff all its shared places
are either free—choice or guarded. Only free—choice nets are
considered in this paper since in most cases free—choice nets are
sufficient for modelling of random events, e.g., random faults
in communication networks or random services with discrete
distributions (another class of timed Petri nets is used for
random events with continuous distributions [AMCB,Z86]).

Since the relation of sharing a free—choice place is an equiv-
alence relation in T, it determines a partition of T into a
set of free—choice equivalence classes denoted by Free(T) =
{T1, T2, ..., Ty }.

Every transition enabled by a marking m can fire. When
a transition fires, a token is removed from each of its input
places (but not inhibitor places) and a token is added to each
of its output places. This determines a new marking in a net,
a new set of enabled transitions, and so on.

A set M (M) of reachable markings of a marked Petri net
M=(N, my) is the set of all markings which are reachable from
the initial marking mg.

In analysis of timed nets it appears very convenient to have
a concise notation that indicates all possibilities of firing tran-
sitions for a given marking m. A selection function g of a
marking m in a net N is any function g : ' — {0, 1, ...} which
indicates (by nonzero values) all those transitions which can
simultaneously initiate their firings (and some transitions may
initiate their firings “several times”). The set of all selection
functions of a marking m is denoted by Sel(m).

Example. The Petri net shown in Fig.1 (as usual, places are
represented by circles, transitions by bars, inhibitor arcs by
arcs with small circles instead of arrowheads, and the initial
marking function is indicated by dots inside places) contains
one inhibitor arc (ps,ts), one free—choice place ps, and one
guarded place ps. It should be observed that the set M (M) is
infinite since the sequence of firing transitions (¢1, ts, t1, s, ...)
can be continued “for ever” creating consecutive markings
(m1, ms, m7,...) with increasing number of tokens in p2. Sim-
ilarly, the cyclic sequence of firing transitions (¢1, t2, ta,t1,...)
increases the number of tokens in ps. Consequently, the net is
unbounded. O

3. D-TIMED PETRI NETS

In timed Petri nets each transition takes a “real time” to
fire, i.e., there is a “firing time* associated with each transition

775

L:; ’/7 “/"
o~ .
4 — %,
AN \
i \ ty
Py \//\‘)\ N \)J) ;r;t |<4<i> p P P3
A
)Ps
\\\ ki 1 I 4
g " B 7

\‘\
- A

Fig.1. Inhibitor Petri net M;. Fig.2. D-timed Petri net T;.

of a net. The firing times can be defined in several ways. In
D-timed Petri nets [Z85,Z88] they are deterministic (or con-
stant), i.e., there is a nonnegative number assigned to each
transition of a net which determines the duration of transi-
tion’s firings. In M—timed Petri nets [Z86] (or stochastic Petri
nets [AMCB]), the firing times are exponentially distributed
random variables, and the corresponding firing rates are as-
signed to transitions of a net.

Since in timed Petri nets the firings of transitions are not in-
stantaneous events, the concept of inhibitor arcs can be gener-
alized to cover the timed behavior of transitions. The “proper”
inhibitor arcs affect the transitions only at the beginning of
their firings because they participate in enabling of transitions.
The generalized inhibitor arcs, called interrupt arcs, affect a
transition not only at the beginning of firing, but also during
its firing; they can “interrupt” firing transitions and preempt
the “resources” acquired at the beginning of firing. Interrupt
arcs are necessary to model preempting scheduling disciplines,
to represent properly timeout mechanisms, or to model unre-
liable processors which can “fail” during processing of user
jobs. In some cases such interrupts and preemptions can be
represented by inhibitor nets [Zb85], but usually such models
and their behavior become unnecessarily complicated.

An extended D—timed free—choice Petri net T is a triple
T=(M,c¢, f) where:

M is an extended free—choice marked Petri net, M=(N, my),
N=(P,T,A, B,C), and C is a set of interrupt arcs, C C
B,

¢ is a choice function which assigns a “free—choice” proba-
bility to each transition ¢ of the net in such a way that
for each free—choice equivalence class the sum of these
probabilities is equal to 1,

f is a firing time function which assigns a nonnegative real
number f(t) to each transition t of the net, f : T — R®
and R® denotes the set of nonnegative real numbers.

In ordinary nets (i.e., nets without time), interrupt arcs
are equivalent to inhibitor arcs since the firings of enabled
transitions are instantaneous events. In extended timed Petri
nets, the firing of a transition may be “discontinued” by any
one of interrupt arcs associated with this transition. If, during
a firing period of a transition ¢, one of places connected with ¢
by interrupt arcs becomes nonempty (i.e., it receives at least
one token), the firing of ¢ ceases and the tokens removed from
t’s input places at the beginning of firing are “returned” to
their original places.

Transformations of timed Petri nets and performance analysis

Moreover, an extended Petri net is simple if the input sets of
transitions with nonempty interrupting sets are disjoint with
interrupting sets of other transitions. Simple nets eliminate
“propagation” of interrupts when one interrupted transition,
through its input set, interrupts another transition. In order
to simplify the description of net behavior, only simple nets
are considered in this paper.

The behavior of an extended D—timed Petri net can be rep-
resented by a sequence of “states” where each “state” describes
the current marking as well as the firing transitions of a net.
Each termination of a transition firing changes the state of a
net.

A state s of an extended D—timed Petri net T is a triple s =
(m,n,r) where:

m is a marking function, m : P — {0,1, ...},

n is a firing—rank function which indicates the number of
active irings (i.e., the number of firings which have been
initiated but are not yet terminated) for each transition
of the net, n: T + {0, 1,...},

r is a remaining—firing—time function which assigns the re-
maining firing time to each independent firing (if any)
of a transition, i.e., if the firing rank of a transition t is
equal to k, n(t) = k, the remaining—firing—time function
r(t) is a vector of k nonnegative nondecreasing real num-
bers denoted by r(¢)[1], r(¢)[2], ..., (t)[k]; is a partial
function and it is undefined for all those transitions ¢ for
which n(t) = 0.

An initial state s; of a net T is a triple s;=(m;, ni, r;) where
n; is a selection function from the set Sel(mg), n; € Sel(my),
the remaining—firing-time function is equal to the firing times
f(¢) for all those transitions ¢ for which n; > 0, and the mark-
ing m; describes only those tokens that do not participate in
firings of transitions described by n;. An extended free—choice
D—timed net T may have several different initial states.

A direct reachability relation can be defined for states
[Z85,287] similarly to the reachability relation for markings.
A state s; = (mj,n;,r;) which is directly reachable (or gp—
reachable) from a state s; = (m;,ni,r;) is obtained by the
termination of the “next” firings (i.e., those firings for which
the remaining firing time is the smallest one; this time is de-
noted by h(s;) and is called the holding time or the sojourn
time of the state s;), updating the marking of a net, checking
if updated interrupting sets discontinue any active firing and
performing required modifications to create an intermediate
marking m;;, and then initiating new firings (if any) which
correspond to the selection function gy from the set Sel(m;;).

Also, a state s; is (generally) reachable from a state s; if
there is a sequence of directly reachable states from the state
s; to the state sj. A set S(T) of reachable states is defined as
the set of all states of a net T which are reachable from the
initial states of the net T.

A state graph G of a D-timed Petri net T is a labeled
directed graph G(T) = (V, D, h,b) where:
V is a set of vertices which is equal to the set of reachable
states of the net T, V = S(T),

D is a set of directed arcs, D C V' x V, such that (s;,s;) is
in D iff s; is directly reachable from s;,

776

h is a vertex labeling function which assigns the holding time
h(s;) of the state s; to each state s; € S(T), h: V — R¥,

b is an arc labeling function which assigns the probability of
transitions from s; to s; to each arc (s;,s;) in the set D,
b: D —[0,1] [Z87].

It should be observed that the state graph of a free—choice
D-timed Petri net is a discrete—state discrete-time semi—
Markov process [Klei]. Stationary probabilities z(s) of the
states s € S(T), can thus be obtained by standard methods
from the embedded stationary probabilities.

Example. The D—timed Petri net shown in Fig.2 (the in-
terrupt arcs have small dots instead of arrowheads and the
firing time function as well as the choice function are given as
additional descriptions of transitions) is a refinement of the
net from Fig.1; it contains one interrupt arc (ps, t5), one free—
choice place p3, and one guarded place ps. The derivation of
the set S(T) of reachable states is given in Tab.1, which also
shows the stationary probabilities of the states x(s;). o

m; N4
i | x(si) | 12345123456 | hi |4 | b(si,sy)
11019 | 00000 | 100000 | 1.0 | 2 1.00
210392 100000}(010010 12013 0.90
4 0.10
31033 (00000000110 2015 1.00
410000 | 00000|0010101|00]6 1.00
510000 00000100001 |00 |1 1.00
610059 | 00000000010 |30 |1 1.00

Tab.1l. The set of reachable states for T;.

4. NET TRANSFORMATIONS

It can easily be shown that different D-timed nets may
have isomorphic state graphs, which means that the behavior
of such nets is “equivalent” in the sense of stationary probabil-
ities of states and performance properties that can be derived
from these stationary probabilities. Fig.3 shows a D-timed
net which is much simpler than the net from Fig.2, and which
is equivalent to the net T;. Tab.2 shows the derivations of the
state space S(T2). T2 can be further simplified by aggregating
the transitions which form simple paths in a net, e.g., t; and
t2, and removing transitions with firing times equal to zero
(ts and tg) since they are insignificant for “timed” behavior
of the net (the stationary probabilities of states corresponding
to firing such transitions are equal to zero, and they can be
eliminated without any effect on the performance properties
of the model).

m; iz
i | x(s;) | 12345123456 | h | J | b(ss,s5)
11019 {00000 | 100000 | 1.0 | 2 1.00
210392|00000(010000|20]3 0.90
4 0.10
3/10353|/00000|000100|20]5 1.00
410000 | 00000|001000|00|6 1.00
510000 |00000|000001 |00 |1 1.00
6 |0059 | 00000000010 | 301 1.00

Tab.2. The set of reachable states for Ts.

Transformations of timed Petri nets and performance analysis

/ " . \ ~
N -

“1\\?{—’!‘4'L/‘4’! —»v P3 | 1

\))

1 t. g -y
/ T /
§ 4 v v (
; \\Q_/ - '
Pq

o |<
-
(k)
- ﬂ<
O

N
N

Fig.3. D-timed net T2. Fig.4. Delayed split transformation.

The net T2 is live and bounded (in fact, it is safe) since it is
covered by live and bounded subnets (or S-invariants [Reis]);
verification of protocol properties using T2 is thus a trivial
task.

The net T2 can be derived from the net T; by applying a
number of simple net transformations.

(a) Delayed split: Since the transitions initiate their firings
in the same time instances in which they become enabled,
a pair of transitions that initiate their firings simultane-
ously can be replaced by a single transitions with the
firing time equal to the smaller one of the original firing
times, as shown in Fig.4. Delayed split applied to t2 and
ts in Fig.2 results in the net T3 shown in Fig.5 (it should
be noticed that the “unmarked” place ps is critical for
this application).

(b) Shifted choice: Actually this is a variation of the pre-
vious transformation when one of the output places of a
split transition is a free—choice place p; in such situation
the delayed split is “moved” to all free—choice transitions
of p, as shown in Fig.6. This transformation applied to t2,
ts and t4 in Fig.5 results in the net T4 shown in Fig.7. It
can be observed that T4 contains places and transitions
which can be removed without any significant effect on
the behavior of the net.

Fig.5. D-timed net T3.

(c¢) Removal of redundant arcs: It should be noticed that
firing t3 in T4 disables t4, and therefore the subsequent
firing of ¢t5 cannot be interrupted; consequently, the in-
terrupt arc (ps, t5) is redundant and can be removed, and
similarly the arc (pa,ts). Moreover, the firing of t4 will
deposit tokens in ps as well as in ps, after which ts fires
removing the deposited tokens from ps and ps; the arcs
(ta,ps) and (pa,te) are clearly redundant and can be re-
moved (however, the firing of t¢ should be maintained to

Fig.6. Shifted choice transformation.

T

preserve the state space). The net T4 after this modifi-
cations is shown in Fig.8.

Fig.7. D-timed Petri net T4. Fig.8. D-timed Petri net T’s.

Since the firing time of ¢¢ is equal to zero, the delayed split
transformation applied to it inserts t¢ in series with ¢4 which
results in T2 from Fig.3.

5. PROTOCOL MODELLING AND ANALYSIS

The D—-timed net shown in Fig.2 is a model of a very simple
protocol in which messages are exchanged between a sender
(place p1) and a receiver (place p3), and each received message
is confirmed by an acknowledgement sent back to the sender
(in the loop p1,t1, p2,t2,p3,ta,p1). There is a nonzero prob-
ability that the system can lose (or distort) a message or an
acknowledgement; the place ps is a free—choice place, and the
transition ¢3 models a message/acknowledgement “sink”; the
probability associated with t3, c(¢3), represents thus the prob-
ability of losing a message or an acknowledgement (or shortly
a “token”) in the system. A “timeout” is used to recover
from lost “tokens”. It works in the following way. An event of
“sending a message” is modelled by the transition ¢;. When it
fires, single tokens are deposited in p2 (a “message”) and in p4
(a “timeout”). A token in ps immediately starts a firing of the
“timeout” transition ts (since ps is empty). The firing time
associated with ¢5 is large enough to allow the transfer of a
message and an acknowledgement. If there is no loss of tokens,
i.e., if ¢4 is selected for firing (according to its probability), the
transition ¢4 will finish its firing before 5, and then a token in
the place ps interrupts and cancels the timeout (i.e., the firing
of t5), the “timeout” token is returned to pa, and then t¢ fires
and removes the tokens from ps and ps (te is another token
“sink”). If, however, a message or acknowledgement has been
lost (i.e., if t3 has been selected for firing instead of t4), the
timeout t5 ends its firing without interruption, and regener-
ates the “lost” token in pi, i.e., the message is retransmitted
to the receiver.

The throughput of this protocol can be obtained from sta-
tionary probabilities of the states (Tab.1). Since each correct
transfer corresponds to a single firing of ¢4 (i.e., to receiving
an acknowledgement), and ¢4 fires in the state s3 only (Tab.1,
n3(t4) > 0) with firing time f(t4) = 2, the throughput is equal
to z(s3)/f(ta) which is 0.353/2=0.176 messages per time unit.

This simple communication protocol (Fig.2) may be ad-
equate for short distances, but is very inefficient for long
distance communication since to send another message, the

Transformations of timed Petri nets and performance analysis 778

sender must wait the whole delay of the message as well as
acknowledgement. For long distance communication, a more
efficient method is to allow the sender to transmit several con-
secutive messages without waiting for an acknowledgement;
since the transmitted messages may be lost or damaged in
transit, the sender must store them in a buffer for possible re-
transmission. The concept of a “window” is used to denote the
messages stored in the buffer, and “window size” determines
the maximum number of outstanding unacknowledged mes-
sages. When the sender eventually receives acknowledgement
for a buffered message, it releases the corresponding space in
the buffer and transmits another message storing it in the
released buffer space (the protocol’s window “slides” by one
message). Such “sliding window” protocols can be modelled
and analyzed in a way very similar to the presented example.

6. CONCLUDING REMARKS

Interrupt arcs (which are “special” inhibitor arcs) provide
a simple mechanism to discontinue the firing of transitions,
which can be used for strict modelling of timeouts in com-
munication protocols. Consequently, D—timed protocol mod-
els are rather simple (in fact, they are simpler than in many
other approaches), and their parameters correspond in a very
natural way to components or activities of modelled systems
(e.g., the numbers of messages, timeout signals, etc.).

It should be noticed that the state space can easily be gen-
erated from model specifications (for example by appropriate
computer programs), and since the states of the modelling net
directly correspond to the states of the modelled system, a ver-
ification step is provided which is not available in simulation
or analytical modelling. Moreover, a number of simple net
transformation have been presented which simplify the struc-
ture of nets but which preserve the behavior of the original
modelling net. Systematic applications of such transforma-
tions can convert a modelling net with many extensions into
an equivalent simple “standard” net with well-known or easily
verifiable properties. The described transformations (as well
as many other ones, some of which may be quite difficult to
check) can be implemented within more general systems for
computer—aided design and analysis of protocols; their appli-
cation can be either interactive, or fully “automated”, in which
case a more general strategy for net conversions is needed.

The class of timed Petri nets discussed in the paper is re-
stricted in several ways (simple free—choice nets), some of the
restrictions, however, can be removed by rather straightfor-
ward extensions of the formalism.

Acknowledgement

The Natural Sciences and Engineering Research Council of
Canada partially supported this research through Operating
Grant A8222.

References

[AMCB] M. Ajmone Marsan, G. Conte, G. Balbo, “A class
of generalized stochastic Petri nets for the performance
evaluation of multiprocessor systems”; ACM Trans. on
Computer Systems, vol.2, no.2, pp.93-122, 1984.

[BeTe] G. Berthelot, R. Terrat, “Petri net theory for the cor-
rectness of protocols”; IEEE Trans. on Communications,
vol.30, no.12, pp.2497-2505, 1982.

[BeMe] B. Berthomieu, M. Menasche, “An enumerative ap-
proach for analyzing time Petri nets”; Information Pro-
cessing 83, R.E.A. Mason (ed.), pp.41-45, IFIP 1983.

[Boch] G.V. Bochmann, “A general transition model for pro-
tocols and communication services”; IEEE Trans. on
Communications, vol.28, no.4, pp.643-650, 1980.

[CAA] J.P. Courtiat, J.M. Ayache, B. Algayres, “Petri nets
are good for protocols”; Computer Communication Re-
view, vol.14, no.2, pp.66-74, 1984.

[Dan] A. Danthine, “Protocol representation with finite-state
models”; IEEE Trans. on Communications, vol.28, no.4,
pp.632-643, 1980.

[Diaz] M. Diaz, “Modeling and analysis of communication
and cooperation protocols using Petri net based models”;
Computer Networks, vol.6, no.6, pp.419-441, 1982.

[Klei] L. Kleinrock, “Queueing systems”, vol.1: “Theory”,
vol.2: “Computer applications”; J. Wiley & Sons 1975,
1976.

[MeFa] P.M. Merlin, D.J. Farber, “Recoverability of commu-
nication protocols — implications of a theoretical study”;
IEEE Trans. on Communications, vol.24, no.9, pp.1036—
1049, 1976.

[Pet] J.L. Peterson, “Petri net theory and the modeling of
systems”, Prentice—Hall 1981.

[Ram] C. Ramchandani, “Analysis of asynchronous concur-
rent systems by timed Petri nets”; Project MAC Tech-
nical Report MAC-TR~-120, Massachusetts Institute of
Technology, Cambridge MA, 1974.

[Raz] R.R. Razouk, “The derivation of performance ex-
pressions for communication protocols from timed Petri
nets”; Computer Communication Review, vol.14, no.2,
pp.210-217, 1984.

[RaPh] R.R. Razouk, C.V. Phelps, “Performance analysis
using timed Petri nets”; Proc. Int. Conf. on Parallel
Processing, Columbus OH, pp.126-128, 1984.

[Reis] W. Reisig, “Petri nets — an introduction”; Springer
Verlag 1985.

[Sifa] J. Sifakis, “Use of Petri nets for performance evalu-
ation”; in: “Measuring, modelling and evaluating com-
puter systems”, pp.75—93, North—Holland 1977.

[ZWCB] P. Zafiropulo, C.H. West, D.D. Cowan, D. Brand,
“Towards analyzing and synthesizing protocols”; IEEE
Trans. on Communications, vol.28, no.4, pp.651-661,
1980.

[285] W.M. Zuberek, “Extended D—timed Petri nets, time-
outs, and analysis of communication protocols”, Proc.
ACM Annual Conference, Denver CO, 1985, pp.10-15.

[Z86] W.M. Zuberek, “M-timed Petri nets, priorities, pre-
emptions, and performance evaluation of systems”; in:
“Advances in Petri Nets 1985” (Lecture Notes in Com-
puter Science 222), G. Rozenberg (ed.), pp.478-498,
Springer Verlag 1986.

[Z87] W.M. Zuberek, “D-timed Petri nets and modelling of
timeouts and protocols”; Trans. of the Society for Com-
puter Simulation, vol.4, no.4, pp.331-357, 1987.

