
Int. Symp. on Circuits and Systems (ISCAS’89), Portland, OR, May 9–11, 1989, pp.709-712.

Copyright c© 1989 IEEE (DOI 10.1109/ISCAS.1989.100449).

DISTRIBUTED TRANSIMISSION LINES AND TIME-DOMAIN ANALYSIS

IN SPICE-LIKE CIRCUIT SIMULATORS

W.M. Zuberek†, A. Konczykowska‡, H. Wang‡

† Department of Computer Science ‡Laboratoire de Bagneux

Memorial University Centre National d’Etude des Telecommunications

St. John’s, NL, Canada A1C-5S7 196 rue Ravera, 92220 Bagneux, France

Abstract

Several problems arising in the SPICE implementation of the
time-domain analysis of circuits with distributed transmission
lines are indicated, and it is shown that some simple modifi-
cations of the original handling of transmission lines can signifi-
cantly reduce both memory requirements and CPU time needed
for this analysis. The modifications allow to “trade” simulation
time for accuracy of results. In effect, results more accurate than
the original SPICE ones can be obtained with much smaller com-
putational effort. An example of microwave oscillator is used as
an illustration of proposed improvements.

1. INTRODUCTION

Circuit simulation, or computer-aided circuit analysis, is one
of those computer-aided design applications that have become
well established and widely accepted in the design of electronic
circuits. Using circuit simulators, the designers can easily de-
termine the functionality and performance of circuits before the
expensive and time-consuming fabrication takes place.

One of the most useful but computationally most complex
tasks of circuit simulation is the time-domain analysis of dy-
namical circuits, i.e., circuits containing capacitors and inductors
[4,5,6]. It requires a (numerical) solution of a set of (nonlinear)
ordinary differential equations describing the circuit. The de-
tailed algorithm depends upon the integration method used, but
- generally - the simulation interval is divided into (usually vari-
able) timesteps (sometimes called internal timesteps), and at each
timepoint the solution is obtained using the information from pre-
vious timepoints. SPICE-class simulators use iterative “implicit”
[1,6] integration methods which provide much “better” stability
regions than simpler but not so reliable “explicit” methods. The
two most popular “implicit” methods are the trapezoidal rule and
variable order backward differentiation (or Gear’s) method, the
second designed specifically to deal with stiff differential equa-
tions [3].

The time-domain analysis in SPICE-like simulation programs
is controlled by two mechanisms [1], the variable timestep used
to minimize integration errors, and the breakpoint table which
contains all those time instances in which “special” changes of
voltages and/or currents occur (all boundary points of PWL time-
dependent source functions are good examples of “breakpoints”).

It appears that the implementation of transmission lines in
SPICE-like simulators may result in excessive memory and sim-
ulation time requirements for time-domain analysis of even quite
simple circuits. This is due to very large numbers of breakpoints
that can be generated by transmission lines, and which increase
both the memory requirements and simulation time needed for
the analysis. A number of improvements are proposed to re-
duce these requirements, and their effects are compared with the
original SPICE simulation of transmission lines. Significant re-
ductions in required memory as well as computational effort are
obtained.

The proposed modifications have been implemented in SPICE-
PAC [8], a simulation package that is upward compatible with the

SPICE-2G6 simulators. This means that SPICE-PAC accepts the
same circuit descriptions (with several minor exceptions) and it
provides the same set of circuit analyses as SPICE, but it also
contains a number of extensions which are not available in the
SPICE programs, for example (static and dynamic) circuit vari-
ables, parameterized subcircuits, or enhanced circuit elements
and analyses. However, the main difference between SPICE and
SPICE-PAC is in their structure; SPICE is a “closed” program
with a fixed set of circuit elements and circuit analyses while
SPICE-PAC is an“open” package that can easily be combined
with other CAD tools, for example, optimization methods, sym-
bolic and statistical simulators, circuit extractors and so on.

The paper starts with a brief outline of time-domain analysis,
as implemented in SPICE-like simulators. This outline, given
in section 2, emphasizes coordination of variable timesteps with
the breakpoint table, two basic mechanisms used in this analysis.
Section 3 describes the original implementation of transmission
lines; it also contains a critique of this implementation. The mod-
ified implementation of transmission lines is presented in section
4, while section 5 illustrates these modifications with results ob-
tained for a microwave oscillator. Section 6 contains concluding
remarks.

2. AN OUTLINE OF TIME-DOMAIN ANALYSIS

In SPICE-like programs, the time-domain (or “transient”)
analysis is performed in two consecutive steps, the so called “Ini-
tial Transient” analysis and the proper “Transient” analysis [1].
The initial transient analysis finds the “initial” solution (i.e., the
solution of circuit equations for the time equal to zero) with de-
fault or user-specified initial conditions. The proper transient
analysis integrates the differential (nonlinear) circuit equations
from one timepoint to another, using either the trapezoidal rule
(default) or backward differentiation (or Gear) method.

The proper transient analysis is controlled by the variable
timestep as well as the so called “breakpoint table” (BPT). The
variable timestep is controlled by iteration count and an esti-
mated truncation error [1]. The iteration count uses the number
of Newton-Raphson iterations required to converge at a given
timepoint; if this number is less than the parameter (or “OP-
TION”) ITL3, the timestep is doubled provided it does not ex-
ceed the value of Tstepmax. Tstepmax is either specified by users
(TMAX in [7]), or (by default) is equal to

Tstepmax = (Tstop - Tstart)/50

where “Tstop” and “Tstart” are parameters of transient anal-
ysis (TSTOP and TSTART in [7]). Moreover, if the number of
Newton-Raphson iterations is greater than the limit ITL4, the it-
eration is terminated as nonconvergent, the “Timestep” is divided
by 8, and the iterative solution begins for a new timepoint (de-
termined by this new Timestep) provided the reduced timestep
is greater than the minimum timestep

Tstepmin = 10−9*Tstepmax



Distributed transmission lines and time-domain analysis in SPICE-like ... 710

(otherwise the message “internal timestep too small” is reported
and the analysis terminates [1]).

The coordination of (variable) timesteps with the breakpoints
stored in BPT is done within the following framework of time-
domain analysis [1] (the following “high-level” code uses “if-then-
endif”, “for-do-endfor” and “while-do-endwhile” control struc-
tures):

Time:=0;
create_breakpoint_table(BPT);
Nbpt:=length(BPT);
set_time_dependent_source_functions(Time);
Initial_Transient:
Ibpt:=1; (* the first breakpoint is always zero *)
Break:=true;
Timestep:=Tstepmax;
Laststep:=Timestep;

storeresults:
store_the_solution;
if Time > Tstop then

interpolate_output_results_and_return
else if Break then

Ibpt:=Ibpt+1;
Newstep:=0.1*min(Laststep,BPT[Ibpt]-Time);
Timestep:=min(Timestep,Newstep);
if Ibpt = 2 then Timestep:=0.1*Timestep endif;
Break:=false

else if Time+Timestep > BPT[Ibpt] then
Laststep:=Timestep;
Timestep:=BPT[Ibpt]-Time;
Break:=true

endif;
newtimepoint:

Time:=Time+Timestep;
set_time_dependent_source_functions(Time);
solve_the_system_of_circuit_equations;
if converged then

Oldstep:=Timestep;
estimate_integration_error_and_adjust(Timestep);
if integration_error_is_acceptable then

go to storeresults endif
Time:=Time-Oldstep

else
Time:=Time-Timestep;
Timestep:=Timestep/8

endif;
if Timestep > Tstepmin then go to newtimepoint endif;
stop_analysis("timestep too small");

“Time” is the simulated time, “BPT” is the breakpoint table
of size “Nbpt”, “Ibpt” is an index in BPT, “Break” is a logical
flag that indicates when a breakpoint (from BPT) has been used,
and then the timestep is reduced at least 10 times (and it is
reduced once more 10 times for the initial step) in anticipation of
some “extra” changes at the breakpoint. Consequently, if there
are many breakpoints, the (internal) timestep is kept small not
because of integration errors, but because of expected voltage
and/or current changes at breakpoints. This obviously increases
the number of integration steps and slows down the simulation.

3. ORIGINAL TRANSMISSION LINES

There are two basic aspects of handling transmission lines in
circuit simulators; one is to implement the line delay, and the
second is to perform circuit analyses in those instants of time in
which some voltages and/or currents change. The delay is usually
implemented by a local “history” (associated with a transmission
line) which stores all line outputs evaluated within the last time
interval that is equal to the line delay (it is thus a “temporal
window” associated with the element). The actual “delayed”

information that is needed in formulation of circuit equations,
is obtained by an interpolation of “history” (and after each new
solution, the “history” is updated by storing new results and
deleting the data that are “older” than the delay).

The second aspect is implemented through the breakpoint ta-
ble which contains all circuit’s “characteristic” time instants. The
effect of transmission line delays is introduced in this table by
adding new breakpoints which are obtained from existing ones
by adding the delay values.

The breakpoint table is thus created in two phases. The
first phase analyzes all independent voltage and current sources,
and collects the information extracted from the time-dependent
source functions:

set_empty(BPT);
append(BPT,0);
append(BPT,Tstop);
for each independent_voltage_and_current_source do

case (time_dependent_function_of_the_source) of
"PULSE" : time:=0;

while (time < Tstop) do
append(BPT,time+start_of_rise);
append(BPT,time+end_of_rise);
append(BPT,time+start_of_fall);
append(BPT,time+end_of_fall);
time:=time+pulse_period

endwhile;
"SINE" : append(BPT,delay_time);
"EXP" : append(BPT,start_of_rise);

append(BPT,start_of_fall);
"PWL" : for each point do

if (time_coordinate < Tstop) then
append(BPT,time_coordinate)

endif
endfor

endcase
endfor;

where “append(BPT,x)” increases the size of BPT by one element
and stores the value “x” at the end of BPT.

The second phase introduces the contributions of transmission
lines:

Tol:=0.01*Tstepmax;
for each transmission_line do

Tdel:=time_delay_of_the_transmission_line;
Nbpt:=length(BPT);
for j:=1 to Nbpt do

time:=BPT[j]+Tdel;
while time < Tstop do

append(BPT,time);
time:=time+Tdel

endwhile;
sort(BPT);
compress(BPT,Tol)

endfor
endfor;

where “sort(BPT)” rearranges the elements of BPT in the as-
cending order, and “compress(BPT,Tol)” removes all those ele-
ments of BPT which differ from the preceding element by less
than “Tol” (and contracts the size of BPT accordingly).

It can be observed that this scheme has a number of disadvan-
tages:

• the number of generated breakpoints depends upon order-
ing of transmission lines in the circuit description; since
any “next” line generates new breakpoints starting from all
“previous” breakpoints, i.e., also breakpoints introduced by
“previous” transmission lines, there is an “asymmetry” of



Distributed transmission lines and time-domain analysis in SPICE-like ... 711

contributions which can change the number of generated
breakpoints (and the results of analysis) when the circuit
elements are reordered,

• for circuits with more than one transmission line and with
several different line delays which are not trivially dependent
(e.g., one delay is twice as large as the other), the number
of generated breakpoints grows nonlinearly with the length
of the analysis interval, and this nonlinearity increases with
the number of transmission lines (with different delays) in
the circuit,

• the total number of generated breakpoints can easily be-
come excessive (for the example in section 5, the number
of “compressed” breakpoints for the 10 ns simulation inter-
val and for the default Tstepmax, is equal to 20,964 while
the maximum number of breakpoints before compression is
equal to 255,513; for Tstepmax=Tstep=10 ps the number
of “compressed” breakpoints increases to 67,284),

• the large number of generated breakpoints rapidly increases
the number of (internal) timepoints and slows down the sim-
ulation; in fact, in situations when the number of break-
points is large, it is more reasonable to perform the time-
domain analysis with a reduced (internal) timestep (and no
breakpoints) rather than with very many breakpoints that
systematically “disturb” the integration process,

• the large number of (internal) timepoints increases the mem-
ory requirements since all intermediate solutions are stored
for the final interpolation of results.

The last point appears to be the easiest one to deal with. An
improvement (proposed some time ago by Durbin and Haussy [2],
although in a different context) reduces the workspace required
for intermediate solutions. Since the final (linear) interpolation of
results needs only two intermediate points which “bracket” each
of the (external) equidistant points determined by the “Tstep”
parameter, all other solutions are redundant and can be removed
from the workspace.

4. MODIFIED TRANSMISSION LINES

In the modified handling of transmission lines, the number of
generated breakpoints is radically reduced by disregarding the
“secondary” breakpoints, i.e., all those breakpoints that are gen-
erated as a result of other breakpoints generated by transmission
lines. Consequently, the number of modified contributions to the
breakpoint table is linearly dependent upon the length of the
analysis interval, and this number does not depend upon the or-
dering of circuit elements.

Moreover, the total number of breakpoints contributed by
transmission lines is limited by a value proportional to the num-
ber of “nominal” timesteps (and also the length of the analysis in-
terval). If the number of generated breakpoints exceeds this limit,
all contributions are deleted and instead the time-domain anal-
ysis is performed with the reduced maximum internal timestep
“Tstepmax”:

Tol:=0.01*Tstepmax;
Nbpt:=length(BPT);
Limit:=P1*(Tstop/Tstepmax);
Count:=0;
for each transmission_line do

Tdel:=time_delay_of_the_transmission_line;
for j:=1 to Nbpt do

time:=BPT[j]+Tdel;
while time < Tstop do

append(BPT,time);
time:=time+Tdel;
Count:=Count+1;
if P1 > 0 and Count > Limit then

contract(BPT,Nbpt);

Tstepmax:=Tstepmax/P2;
go to continue

endif
endwhile

endfor
endfor;

continue:
sort(BPT);
compress(BPT,Tol)

where “contract(BPT,Nbpt)” contracts “BPT” to “Nbpt” ele-
ments, i.e., it removes all breakpoints contributed by transmission
lines; “P1” and “P2” are (new) parameters defined by OPTIONS
(with default values equal to 2 and 5, respectively).

Several new options have been added to the input language
(or circuit description language) in order to provide more flexible
handling of transmission lines:

NOTLBP - to disregard breakpoints generated by transmission
lines,

TLPAR1=p1 - to define the value of parameter “P1” (this def-
inition overrides the NOTLBP option),

NOTLTS - to ignore the reduction of the timestep in the case
of too many generated breakpoints,

TLPAR2=p2 - to define the value of parameter “P2” (this def-
inition overrides the NOTLTS option),

TLINES - to return to the original, SPICE handling of trans-
mission lines.

5. EXAMPLE

A Heterojunction Bipolar Transistor (HBT) oscillator is used
as an illustration of improvements obtained by the modifications
proposed in this paper. It is composed of one HBT, three lumped
R, L and C elements, and three transmission lines with delays
from 70 to 170 ps, as shown in Fig.1. Transient analysis is per-
formed over time interval of 10 ns with the step of 10 ps:

Fig.1. The HBT oscillator.

* HBT microwave oscillator -- CNET-Bagneux
.OPT ITL5=0 LIMPTS=1001
.TRAN 10PS 10NS
.PRINT TRAN V(8)
IC 4 0 PULSE(0,0.02,0,0.1N,0.1N,0.1N)
QH 4 2 0 HBT
T1 2 0 1 0 Z0=50 TD=78.3PS
VB 1 0 DC 1.4523
T2 4 0 5 0 Z0=50 TD=170.3PS
T3 5 0 6 0 Z0=50 TD=127PS
L 5 7 10N
VC 7 0 DC 2.5



Distributed transmission lines and time-domain analysis in SPICE-like ... 712

C 8 0.1N
R 8 0 50
.MODEL HBT NPN(... a list of parameters ...)
.END

The original TRANSIENT analysis (as shown above) per-
formed by a SPICE-like simulator required 281 min of a VAX-
11/780 computer (running 4.3 BSD-UNIX) and approximately
4MB of workspace (for creation of the breakpoint table; it needed
only 2MB of workspace for the analysis). The breakpoint table
contained 20,964 entries, generation of which required almost 10.0
min of CPU time.

In order to indicate the influence of the breakpoint table, two
series of analyses were performed for the modified transmission
lines; one with (modified) contributions of transmission lines (as
described in section 4; with P1=100 to avoid the limitation ef-
fects), and the second without these contributions (i.e., with the
NOTLBP option). The analyses were performed with Tstep=10
ps, Tstop=10 ns, and Tstepmax set to 10 ps, 5 ps and 2 ps.
The results are compared in Fig.2 in which the curves for Tstep-
max=5 ps are “shifted” by 0.2 ns, and those for Tstepmax=2 ps
are “shifted” by 0.4 ns. It can be observed that for Tstepmax=5
ps the two curves are practically identical (indicating that the
breakpoints introduced by transmission lines are insignificant),
while for Tstepmax=2 ps the two corresponding curves overlap
almost everywhere. The simulation times (in minutes) and the
total numbers of evaluated timepoints are summarized in the fol-
lowing table:

Tstepmax: 10 ps 5 ps 2 ps

with TL contributions time: 3.2 4.6 9.0
points: 2,417 3,435 6,624

without TL contributions time: 1.5 3.0 7.0
points: 1,016 2,016 5,016

Fig.2. Oscillator’s outputs with and without BPT.

These results clearly indicate that for small values of Tstepmax
the influence of BPT is quite negligible as far as accuracy of re-
sults is concerned, but it is quite significant in terms of increased
simulation time. Since in this case there were 506 breakpoints,
the differences between the total numbers of timepoints for cor-
responding analyses indicate that, on average, each breakpoint
introduces 3 timepoints (extending the total simulation time cor-
respondingly).

Fig.3 illustrates the influence of the Tstepmax parameter; it
shows a family of five curves, the “standard” SPICE results de-
noted by “STD”, and results of (modified) time-domain analysis
(without generation of TL breakpoints) for Tstepmax equal to 5
ps, 2 ps, 1 ps, and 0.5 ps, obtained in 3.0 min, 6.3 min, 13.6 min
and 32.0 min, respectively. It can be observed that the results
for Tstepmax=0.5 ps are very close to the STD ones, but they
are obtained almost seven times faster. For less accurate results
the “speed up” can be even two orders of magnitude.

All results for modified transmission lines were obtained with
100KB of workspace.

Fig.3. Original and modified oscillator’s outputs.

6. CONCLUDING REMARKS

It has been shown that the original SPICE implementation of
the time-domain analysis of circuits with transmission lines can
result in excessive memory and simulation time requirements for
even very simple circuits. Such requirements are due to very large
numbers of breakpoints which are generated when the analyzed
circuit contains several transmission lines with different delays,
and the delays are much smaller than the analysis interval.

These excessive requirements can be substantially reduced by
relatively straightforward modifications of contributions which
transmission lines introduce in the breakpoint table. Further-
more, due to modified handling of transmission lines, approxi-
mate results of time-domain analysis can be obtained with enor-
mous reductions of the simulation time. More accurate results
are available at the expense of simulation time with almost lin-
ear relationship between the simulation time and the maximum
(internal) timestep.

The modifications presented in this paper have been imple-
mented in the SPICE-PAC version 2G6c:89.01 and beyond.

Acknowledgement
The Natural Sciences and Engineering Research Council of
Canada partially supported this research through Operating
Grant A8222, and Northern Telecom through Memorial Univer-
sity Interaction Program.

References

[1] E. Cohen, “Program reference for SPICE 2”; Memorandum
UCB/ERL M592, University of California, Berkeley, CA
94720, 1976.

[2] F. Durbin, J. Haussy: “SPICE-PAC and SPICE-PAC PLUS
- corrections and improvements”; Internal Documentation
(unpublished).

[3] C.W. Gear, “Simultaneous numerical solution of differential-
algebraic equations”; IEEE Trans. on Circuit Theory,
vol.18, no.1, pp.89-95, 1971.

[4] W.J. McCalla, “Fundamentals of computer-aided circuit sim-
ulation”; Kluwer Academic Publ. 1988.

[5] D.O. Pederson, “Computer aids in integrated circuit de-
sign”; in: “Computer Design Aids for VLSI Circuits”, P.
Antognetti, D.O. Pederson, H. de Man (eds), Sijthoff and
Noordhoff 1981.

[6] J. Vlach, K. Singhal, “Computer methods for circuit analysis
and design”; Van Nostrand Reinhold 1983.

[7] A. Vladimirescu, K. Zhang, A.R. Newton, D.O. Pederson,
A.L. Sangiovanni-Vincentelli, “SPICE Version 2G - User’s
Guide (10 Aug. 1981)”; Department of Electrical Engineer-
ing and Computer Sciences, University of California, Berke-
ley, CA 94720, 1981.

[8] W.M. Zuberek, “SPICE-PAC, a package of subroutines
for interactive simulation and circuit optimization”; Proc.
IEEE Int. Conf. on Computer Design (ICCD-84), Port
Chester, NY, pp.492-496, 1984.


