
First Int. Conf. on Computer Technology, Systems and Applications; Hamburg, Germany, May 11-15, 1987, pp.229-232.

Copyright c© 1987 IEEE (DOI 10.10-7/08186-07734).

CIRCUIT DECOMPILATION IN THE SPICE-PAC PACKAGE

OF SIMULATION SUBROUTINES

W.M. Zuberek

Department of Computer Science, Memorial University
St. John’s, NL, Canada A1C–5S7

Abstract

SPICE-PAC is a package of simulation subroutines ob-
tained by redesigning the popular SPICE circuit simulator
from University of California at Berkeley. The package is
compatible with the SPICE program but also provides sev-
eral extensions, e.g., it supports circuit variables, contains an
interface to hierarchical libraries of QstandardU designs, etc.
Recently, the package has been extended by Qdecompilation
U procedures to provide symbolic description of circuits re-
fined during interactive analyses, or modified by circuit op-
timization programs.

1. INTRODUCTION

Computer-aided circuit analysis or circuit simulation is
a widely accepted tool in the area of integrated circuit de-
sign. By using this method, circuit designers can easily ex-
plore the effects of different designs on circuit performance.
The SPICE program [2,7,8] developed at the University of
California at Berkeley has become one of the most popular
”second-generation” circuit simulators.
”Second-generation” simulation programs are usually

batch-oriented, which means that they require a new, in-
dependent run for each modification of the analyzed circuit.
This is too restrictive in application based on repeated cir-
cuit simulations, for example interactive simulation or cir-
cuit optimization [1,3,4,5]. Therefore a more flexible struc-
ture for circuit simulators is needed in which different anal-
yses can be performed selectively, and which provides access
to the internal representation of circuit elements in order to
modify their values. The simulators should have the struc-
ture of a set (or a package) of subroutines rather than a pro-
gram with one, fixed sequence of operations. SPICE-PAC
[9,10] is such a package of simulation subroutines, derived
from the SPICE-2G.6 circuit simulator.
SPICE-PAC accepts circuit descriptions in the same form

as the original SPICE-2G.6 program with only a few minor
exceptions. The package provides [9,11,12]:

• all the analyses available in the SPICE 2G programs,

• a hierarchical naming scheme for (nested) subcircuits;

• access to circuit variables as required in interactive sim-
ulation and circuit optimization;

• dynamic definitions of parameters and declarations of
outputs for all analyses,

• parameterized subcircuit invocations; during subcircuit
expansion, subcircuits can be adjusted to the actual
needs by substituting subcircuit element values indi-
cated in a parameter-list,

• an interface to hierarchical libraries of standard mod-
ules (or ”building blocks”); library modules correspond
to standard SPICE subcircuits stored in individual files
within a file system, and included into a circuit by (pa-
rameterized) module invocations,

• an extended circuit description which can contain pre-
definitions of parameters, outputs and variables used in
circuit analyses.

SPICE-PAC contains 26 main subroutines (and approxi-
mately 250 internal subroutines and functions), but it does
not provide the main program which must be supplied by the
user to ”drive” the subroutines, i.e., to call the subroutines
which read and process (source) circuit descriptions, define
circuit variables, perform analyses, etc., as required by a
particular application (simple interactive drivers are usually
distributed with the package). The user can also supply his
own versions of selected subroutines [11] and replace the cor-
responding SPICE algorithms enhancing the original SPICE
(and SPICE-PAC) facilities.
One of recent extensions of the package is an interface to

decompilation procedures which convert SPICE-PAC inter-
nal representation of circuits (a multilevel list structure with
expanded subcircuits, library modules, etc.) into a symbolic
description used as input by SPICE (and SPICE-PAC). This
provides a simple way to obtain a familiar source description
of circuits modified during interactive analyses or refined by
optimization programs. Moreover, since the source descrip-
tion is usually much more compact than the corresponding
(expanded) internal representation, it is more convenient for
storing (in files or databases). Decompilation facilities can
also be used in migration of circuit descriptions from one
design system to another, when a conversion of source de-
scriptions is required because of different input languages.

The paper briefly describes the original list-structured in-
ternal representation of circuit descriptions in SPICE-like
programs, indicates the modifications of the original struc-
tures required by decompilation routines, and outlines the
decompilation process. A simple example of circuit descrip-
tion compiled and decompiled by SPICE-PAC is included as
an illustration of described capabilities.

2. INTERNAL CIRCUIT REPRESENTATION

During processing of the source circuit description, the in-
put module of SPICE-like programs organizes all circuit ele-
ments of the same class (resistors, capacitors, etc.) into list
structures composed of element descriptors (Fig.1). The de-
scriptors store all attributes (numerical, e.g., the resistance
of a resistor and its temperature coefficients, and textual,
e.g., the name of an element) associated with a single circuit
element. They also contain internal pointers to related data
stored in other descriptors, auxiliary tables, etc.
There are four types of circuit element descriptors used in

internal representation of circuits (Fig.1):

simple descriptors (e.g., resistors, transmission lines, mod-
els of semiconductor devices); all attributes and related
information are organized in a single descriptor (how-
ever descriptors for different classes of circuit elements
may have different sizes),

Circuit decompilation in the SPICE-PAC package of simulation subroutines 230

extended descriptors (e.g., nonlinear capacitors or induc-
tors, independent and dependent voltage and current
sources, subcircuit invocations); some attributes are
stored in auxiliary tables which are indicated by cor-
responding pointers; the size of these tables may vary
from element to element (e.g., polynomials describing
nonlinear capacitances of different capacitors may have
different degrees, i.e., different numbers of coefficients
stored in a table); extended descriptors may indicate
several auxiliary tables (e.g., dependent voltage and
current sources use one auxiliary table to indicate con-
secutive (variable) sources, and another table to store
coefficients of the dependency polynomial),

linked descriptors (e.g., semiconductor devices and their
models, subcircuit invocations and corresponding sub-
circuit definitions); each device descriptor indicates the
descriptor of a model associated with this device; model
descriptors are rather complex and contain numerous
parameters [2] but usually several devices are associated
with the same model and consequently model parame-
ters need to be specified just once,

list descriptors (e.g., subcircuit definitions); there is a list
of internal simple or extended descriptors (subcircuit
elements) associated with a basic descriptor (subcircuit
definition); subcircuit elements do not belong to the
list structure representing the circuit, however, during
processing of source descriptions, subcircuit definitions
corresponding to subcircuit invocations are expanded
by copying and inserting definition lists into the main
linked element lists; at the same time the definition node
numbers are converted into unique circuit node num-
bers, and subcircuit parameter substitutions are per-
formed.

Headers of list structures for all classes of circuit elements
are organized into a vector of pointers (CELists in Fig.1)
which is stored in one of global areas, i.e., areas available to
many routines and modules of SPICE-like programs. Initial
elements of this vector correspond to:

1 R resistors
2 C capacitors
3 L inductors
4 M mutual inductors
5 G voltage controlled current sources
6 E voltage controlled voltage sources
7 F current controlled current sources
8 H current controlled voltage sources
9 V independent voltage sources
10 I independent current sources
11 D semiconductor diodes
12 Q bipolar junction transistors
13 J junction-field-effect transistors
14 M MOS field-effect transistors
17 T transmission lines
19 X subcircuit invocations
20 * subcircuit definitions
21 * diode models
22 * BJT models
23 * JFET models
24 * MOSFET models

There is an additional pointer in each descriptor which
indicates whether t he descriptor belongs to an element at

the main (or top) level of circuit description (the pointer
is ”nil”), or it has been created as a result of subcircuit
expansion, and then the pointer indicates the corresponding
descriptor in the list of subcircuit invocations (CEList[19]).
By searching lists of circuit elements (CEList), it is thus
possible to trace all circuit elements which correspond to a
particular subcircuit invocation and expansion (and there
may be many different invocations of the same subcircuit
definition).
List structures provide a very simple access to all circuit

elements of the same class which is quite important for effi-
cient organization of subsequent numerical evaluations.

3. HIERARCHICAL SUBCIRCUITS

SPICE-like programs support hierarchical subcircuits
which means that subcircuit definitions may contain invo-
cations of (other) subcircuits. In the SPICE-PAC package,
subcircuit invocations may contain lists of (subcircuit) pa-
rameters which are sequences of simple substitutions of the
form attributename = value, used to replace the original
subcircuit element attributes by the values indicated in pa-
rameter lists. Attributes indicated in parameter lists may
refer to nested subcircuits by using qualified names, where
qualifiers (separated by dots ”.”) are pseudoelement names
of subsequent nested subcircuit invocations. For example,
”XX.X2.R1” denotes the resistance of the element R1 in the
subcircuit (invoked by) X2 of the subcircuit (invoked by)
XX.
The expansion of subcircuits is performed in a top-down

manner which can be described by the following iteration:

pointer1 := CEList[19];
while pointer1 6= nil do
begin find corresponding subcircuit definition using

the list of subcircuit definitions CEList[20];
pointer2 := list of subcircuit elements;
while pointer2 6= nil do
begin using pointer2 copy the element into CEList;

perform node mapping;
perform subcircuit parameter substitutions;
move pointer2 to the next element end;

move pointer1 to the next element end;

It should be noticed that subcircuit invocations within
subcircuit definitions are appended to the list CEList[19];
the iteration process must thus be dynamic since CEList[19]
may extend during its processing. Moreover, subcircuit pa-
rameters indicating nested subcircuits are (temporarily) at-
tached to the corresponding subcircuit invocations identified
by the first (or top) qualifiers, and these top qualifiers are re-
moved. Hierarchical subcircuit expansion is thus associated
with passing (qualified) parameters to consecutive levels of
nested subcircuits.

4. CIRCUIT DECOMPILATION

One of main design objectives for decompilation proce-
dures was to generate the symbolic descriptions in a form
as similar to the original description as possible. This re-
quired, however, a number of modifications in the internal
SPICE representation if circuits in order to preserve some
additional source information:

• the lists of nodes in subcircuit definitions and subcircuit
invocations must be saved for decompilation process,

Circuit decompilation in the SPICE-PAC package of simulation subroutines 231

Fig.1. list structures for internal representation of circuits.

• the lists of original subcircuit parameters must be
stored,

• the original values of preprocessed element attributes
must be preserved for possible references; this is espe-
cially important in the case of device models since many
model parameters are preprocessed irreversibly.

The decompilation is performed in a bottom-up way, i.e.,
it starts with subcircuit definitions (if there are any);

pointer1 := CEList[20];
while pointer1 6= nil do
begin pointer2 := list of subcircuit elements;

while pointer2 6= nil do
begin output the element indicated by pointer2;

move pointer2 to the next element end;
move pointer1 to the next element end;

Then follows the main circuit:

for i:=1 to 24 do

if i 6= 20 then

begin pointer1 := CEList[i];
while pointer1 6= nil do
begin if pointer1 indicates a main level element then

begin output the element indicated by pointer1;
if i = 19 then

begin checker(pointer1);
output subcircuit parameters end

end

end;
move pointer1 to the next element end;

and the recursive procedure ”checker” compares subcircuit
definitions with corresponding expanded elements, and gen-
erates (additional) subcircuit parameters for all detected dif-
ferences; recursive invocations of ”checker” correspond to
nested subcircuit invocations:

procedure checker(pointer1);
begin find subcircuit definition for the invocation

indicated by pointer1;
pointer2 := list of subcircuit elements;
while pointer2 6= nil do
begin using CEList find the element obtained

during subcircuit expansion from the element
indicated by pointer2, and indicate it by pointer3;
if pointer2 indicates subcircuit invocation then

checker(pointer3)
else compare attributes of elements indicated

by pointer2 and pointer3, and generate
subcircuit parameters for all attributes
that are different end;

move pointer2 to the next element end
end (* checker *);

As an example, a simple resistive voltage divider (Fig.2)
is described as a circuit composed of nested subcircuits:

*** EXAMPLE - voltage divider

** subcircuit definitions

.SUBCKT DIV1 1,2,3

R1 1,2 1K

R2 2,3 1K

.ENDS

.SUBCKT DIV3 1,2,3

Circuit decompilation in the SPICE-PAC package of simulation subroutines 232

Fig.2. Circuit with nested subcircuits.

X1 1,4,3 DIV1

X2 4,5,3 DIV1

X3 5,2,3 DIV1

.ENDS

** main circuit

VV 1,0 5

XX 1,2,0 DIV3 (X3.R1=500)

RL 2,0 2K

.DC (VV,-5,+5,1)

.PRINT DC V(1),V(2)

.END

If this circuit is modified (for example interactively) in
such a way that the values of two resistors, XX.X1.R2 and
XX.X3.R1 (Fig.2), are replaced by 500 and 2000, respec-
tively, the output created by decompilation procedures is as
follows:

**** SPICE-PAC 2G6d.87.01 (MUN:X) DATE : 15 JAN 87

** subcircuit definitions

.SUBCKT DIV1 1,2,3

R1 1,2 +1E+3

R2 2,3 +1E+3

.ENDS

.SUBCKT DIV3 1,2,3

X1 1,4,3 DIV1

X2 4,5,3 DIV1

X3 5,2,3 DIV1

.ENDS

** main circuit description

VV 1,0 +5

XX 1,2,0 DIV3 (X1.R2=+500,X3.R1=+2E+3)

RL 2,0 +2E+3

.DC (VV,-5,+5,+1)

.PRINT DC V(1),V(2)

.END

in which the modified values are represented by subcircuit
parameters associated with the subcircuit invocation at the
top level of circuit description.

5. CONCLUDING REMARKS

An implementation of decompilation capabilities (i.e.,
conversion of internal representation of circuits to its origi-
nal source or symbolic form) in the SPICE-PAC package has
been described. This provides a simple mechanism to obtain
a refined original (symbolic) description of a circuit that has
been subjected to modification during interactive analyses,
or QtunedU by an optimization procedure. Decompilation
facilities can also be used in conversions of different (source)
circuit representations, i.e., conversions between input lan-
guages of different design and/or analysis systems.

It should be noticed that the description of internal struc-
tures used for representation of circuits is simplified and
there are many other details and technicalities which have
been neglected [2,9] since they do not influence the general
ideas presented in this paper. Also, similar data structures
are used in SPICE-3, the new version of SPICE, recently
released by the University of California at Berkeley [6]. At
the present time it is not quite clear if it will be feasible
to transfer the SPICE-PAC enhancements to the SPICE-3
framework, but such a projects is being considered recently.

Decompilation capabilities described in this paper are im-
plemented in the SPICE-PAC package versions 2G6d and
beyond.

Acknowledgement
medskip The Natural Sciences and Engineering Research

Council of Canada partially supported this research through
Operating Grant A8222.

REFERENCES

[1] R.K. Brayton, G.D. Hachtel, A.L. Sangiovanni-
Vincentelli, A survey of optimization techniques for
integrated-circuit design; Proc. of the IEEE, vol.69,
no.10, pp.1334-1362, 1981.

[2] E. Cohen, Program reference for SPICE-2; ERL Mem-
orandum M520, Electronics Research Laboratory, Uni-
versity of California, Berkeley CA, 1976.

[3] J.K. Fidler, C. Nightingale, Computer aided circuit
design; J. Wiley & Sons 1978.

[4] A.R. Newton, D.O. Pederson, A.L. Sangiovanni-
Vincentelli, C.H. Sequin, Design aids for VLSI - The
Berkeley perspective; IEEE Trans. Circuit and Sys-
tems, vol.28, no.7, pp.666-680, 1981.

[5] W.T. Nye, A.L. Tits, An enhanced methodology for
interactive optimal design; Proc. IEEE International
Symp. on Circuits and Systems, Newport Beach CA,
1983.

[6] T. Quarles, A.R. Newton, D.O. Pederson, A.
Sangiovanni-Vincentelli, SPICE 3A7 User’s Guide;
Dept. of Electrical Engineering and Computer Science,
University of California, Barkeley, CA 94720, 1986.

[7] D.O. Pederson, A historical review of circuit simulation;
IEEE Trans. Circuits and Systems, vol.31, no.1, pp.103-
111, 1984.

[8] A. Vladimirescu, K. Zhang, A.R. Newton, D.O. Peder-
son, A.L. Sangiovanni-Vincentelli, SPICE Version 2G -
User’s Guide (10 Aug. 1981); Department of Electri-
cal Engineering and Computer Sciences, University of
California, Berkeley CA 94720, 1981.

[9] W.M. Zuberek, SPICE-PAC 2G6a.84.05 - User’s Guide;
Department of Computer Science, Memorial University
of Newfoundland, St. John’s, Canada A1C 5S7, Tech-
nical Report 8404, 1984.

[10] W.M. Zuberek, SPICE-PAC, a package of subroutines
for interactive simulation and optimization of circuits;
Proc. IEEE Int. Conf. on Computer Design, Port
Chester NY, pp.492-496, 1984.

[11] W.M. Zuberek, P. Gillard, Enhanced circuit simula-
tion using the SPICE-PAC package; Proc. 28 Midwest
Symp. on Circuit and Systems, Louisville KY, pp.182-
185, 1985.

[12] W.M. Zuberek, P. Gillard, Implementation of dynamic
circuit variables in the SPICE-PAC package of simula-
tion subroutines; Proc. 29 Midwest Symp. on Circuit
and Systems, Lincoln NE, 1986.

