
1987 Canadian Conference on Very Large Scale Intergration; Winnipeg, Manitoba, October 25–27, 1987, pp.117-120.

Copyright c© 1987 IEEE (DOI 10.1007/08186-07734).

PARAMETERIZED SUBCIRCUITS IN THE SPICE-PAC PACKAGE

OF SIMULATION SUBROUTINES

W.M. Zuberek

Department of Computer Science, Memorial University
St. John’s, NL, Canada A1C–5S7

Abstract

SPICE-PAC is a package of simulation subroutines
which is upward compatible with the popular SPICE-
2G circuit simulator, i.e., SPICE-PAC accepts SPICE
data files and performs the same analyses, but also
provides a number of extensions, for example, it sup-
ports circuit variables, contains an interface to libraries
of standard designs, and allows to enhance the pack-
age capabilities by user defined procedures. Param-
eterized subcircuits generalize the original concept of
subcircuits; each parameterized invocation contains a
list of substitutions performed during subcircuit ex-
pansion. The original requirement of strictly identical
subcircuits is thus relaxed to subcircuits with identical
topology.

1. INTRODUCTION

Computer-aided circuit analysis or circuit simula-
tion has become a widely accepted tool in the area of
integrated circuit design. Using this method circuit
designers can easily explore and compare the effects of
different designs [1,4]. The SPICE-2 program devel-
oped at the University of California at Berkeley [6,7],
has become one of the most popular second-generation
circuit simulators.
Second generation circuit simulators are usually

batch-oriented programs with ”closed” sets of oper-
ations, and with static definitions of analyses and pa-
rameters [2,9]. This is too restrictive in applications
that require repeated circuit simulations, for example
interactive simulation or circuit optimization [3,4,10].
In such cases a more flexible structure of the circuit
simulator is needed, in which different analyses (for the
same circuit) can be performed on demand, and which
provides an access to internal representation of circuit
elements and parameters in order to modify their val-
ues. The simulator should thus have a ”cloose” struc-
ture of a set (or a package) of subroutines rather than
a program with one, fixed sequence of operations.
SPICE-PAC is a package of simulation subroutines

obtained by redesigning the SPICE-2G.6 simulation
program. The package provides:

(a) the same circuit descriptions as for the SPICE-
2G programs (in fact, there are a few minor dif-
ferences but still the SPICE input language is ac-
cepted by the SPICE-PAC package),

(b) all analyses available in the SPICE-2G programs;
since the analyses are performed on demand by
calling appropriate subroutines of the package,
there is no restriction on the ordering or number
of analyses performed within a single simulation
session,

(c) a hierarchical naming scheme for (nested) sub-
circuits; subcircuit elements and outputs are de-
noted by unique qualified names where quali-
fiers are the path-names of consecutive subcircuits
starting from the main circuit level,

(d) access to circuit variables as required in interac-
tive simulation and circuit optimization (there are
two types of circuit variables, static and dynamic
ones; static variables must be declared within cir-
cuit description in order to avoid repeated trans-
lations during subsequent analyses; dynamic vari-
ables do not require declarations since all refer-
ences are translated at run time; circuit optimiza-
tion is a typical application of static variables,
while more flexible dynamic variables are required
in interactive simulations),

(e) dynamic declarations of parameters and outputs
for all analyses,

(f) an interface to libraries of standard modules; stan-
dard modules are in the form of subcircuits stored
in individual files within a file system.

SPICE-PAC contains 26 interfacing subroutines
which control the main operations of the package
(and more than 200 internal subroutines and functions
which implement these operations). A simple call (or
invocation) of an interfacing subroutine (with appro-
priate parameters) can thus read a circuit description,
perform an analysis, modify the circuit, repeat the
analysis, etc., as required by a particular application.

Users can also supply their own versions of selected
subroutines which replace the corresponding standard
SPICE routines, and enhance the original SPICE fa-
cilities [11].

One of recent extensions of the package is parame-
terization of (hierarchical) subcircuits.

Parameterized subcircuits in the SPICE-PAC package of simulation subroutines 118

2. PARAMETERIZED SUBCIRCUITS

SPICE-like programs support hierarchical subcir-
cuits which means that subcircuit definitions may con-
tain invocations of (other) subcircuits, however, all
subcircuit invocations correspond to exact replications
of indicated definitions (with appropriate substitutions
of node numbers). This may be convenient for digital
circuits when the basic ”cells” are replicated without
any modification (e.g., registers or memories), but in
many applications which include analog circuits, even
the same subcircuits used in different ”environments”
usually require adjustments of some element values.
In such cases the strict mechanism of SPICE subcir-
cuits is unsatisfactory since it requires repeated defi-
nitions for almost identical subcircuits. Parameteriza-
tion of subcircuits is a generalization of the subcircuit
concept that provides the required flexibility (subcir-
cuits without and with parameters may be compared
to procedures without and with parameters; if the side
effects are not allowed, different invocations of pro-
cedures without parameters produce identical results,
while invocations of parameterized procedures usually
produce results that are different for different invoca-
tions).
Another motivation for parameterized (hierarchical)

subcircuits is due to decompilation facilities recently
added to SPICE-PAC [12] (circuit decompilation con-
verts internal representation of a circuit into its sym-
bolic or source form). Decompilation of circuits mod-
ified during interactive simulations or refined by an
optimization program, requires a flexible parameteri-
zation mechanism which preserves the original (sub-
circuit) structure of circuits, but which allows to in-
dicate changes of element attributes at any level of
(expanded) structures. Parameterized subcircuits are
quite satisfactory for this purpose.
Also, a flexible mechanism of subcircuits may be

very helpful in accelerating circuit simulation when
users indicate the boundaries of partitioning of large
circuits for parallel simulation on multiprocessor or
distributed systems [8].

The syntax of subcircuit invocations in the SPICE
program (”X-type” pseudoelements [9]) is as follows:

Xname nodelist subcktname

In the SPICE-PAC package, parameterized subcir-
cuit invocations may also contain lists of substitutions:

Xname nodelist subcktname substitution_list

where the ”substitution list” is a sequence of ”sub-
stitutions” separated by commas, and each ”substi-
tution” is in the form ”attribute=value”. Attribute
names are either names of simple subcircuit elements
(for those elements which have one attribute only; usu-
ally it is the ”value” of the element, e.g., the resistance
of a resistor), or extended names which are used for

multi-attribute elements to indicate polynomial coef-
ficients of nonlinear capacitors and inductors, poly-
nomial coefficients of dependent voltage and current
sources, DC, AC and time dependent parameters of
independent voltage and current sources, parameters
of semiconductor devices, parameters of device models,
and also (qualified) parameters of (nested) subcircuit
invocations.

During processing of the symbolic circuit descrip-
tion, the input module of SPICE-like programs or-
ganizes all circuit elements of the same class (resis-
tors, capacitors, etc.) into list structures composed
of element descriptors. The descriptors store all at-
tributes associated with a single circuit element (nu-
merical, e.g., the resistance of a resistor, and textual,
e.g., the name of an element). They also contain inter-
nal pointers to related data stored in other descriptors,
auxiliary tables, etc. Headers of list structures for all
classes of circuit elements are organized into a vector
of pointers (CEList in Fig.1) which is stored in one
of global memory areas, i.e., areas available to many
routines and modules of SPICE-PAC. The list of sub-
circuit invocations corresponds to the 19-th element of
CEList, and the list of all subcircuit definitions to its
20-th element (Fig.1).

Fig.1 shows that each invocation descriptor (in the
CEList[19] structure) indicates (possibly empty) ta-
bles of original and internal node numbers, and a two-
column table of ”attribute,value” pairs describing the
invocation substitutions. Each invocation descriptor
also indicates a descriptor in the CEList[20] structure
which corresponds to the invoked subcircuit. Each
subcircuit definition descriptor contains a pointer to
a table of input/output node numbers, and a pointer
to an element list which constitutes the subcircuit
”body”.

It should be noticed that nested invocations (i.e.,
invocations in subcircuit definitions) initially are not
inserted into CEList[19] structure (e.g., XX descriptor
in Fig.1); they are appended to this list during sub-
circuit expansion. This means that after subcircuit
expansion there may be several circuit elements with
identical (local) element names. In fact, all elements
generated during subcircuit expansion are associated
with their original definitions and therefore they can
be uniquely identified by qualified names which are se-
quences of consecutive invocation names (or X-names).

3. PARAMETER SUBSTITUTION

The substitutions indicated in parameterized invo-
cations are performed during expansion of subcircuits.
The expansion is performed top-down, i.e., it begins at
the main circuit level (the CEList[19] from Fig.1 ini-
tially contains only main level invocations) and contin-
ues through consecutive levels of subcircuit invocations
which, during subcircuit expansion, are appended to
the CEList[19]:

Parameterized subcircuits in the SPICE-PAC package of simulation subroutines 119

Fig.1. List representation of subcircuit invocations and subcircuit definitions.

pointer1 := CEList[19];
while pointer1 6= nil do
begin

pointer2 := definition list of subcircuit descriptor
indicated by pointer1;

while pointer2 6= nil do
begin

set pointer3 to a copy of the element
indicated by pointer2 and append the
new desciptor to the corresponding list
of circuit elements;

perform node mapping;
perform parameter substitutions;
move pointer2 to the next element

end;
move pointer1 to the next invocation

end;

It should be noticed that the iteration process must
be dynamic since the list of subcircuit invocations
may extend during processing. Moreover, parame-
ter substitutions ”perform parameter substitutions”
section) which refer to nested invocations migrate to
subsequent invocations and are merged with the cor-
responding invocation parameters after removing the
first (or top) qualifiers. Parameter substitution per-
formed within the descriptor indicated by pointer3
(and identified by ”element name”) is controlled by

the parameter table indicated by ”pointer1”:

name := element name indicated by pointer3;
n := length(parameter table indicated by pointer1);
for i:=1 to n do

if head(parameter table[i,attribute]) = name then

if name in X-class then
begin

m := length(parameter table indicated by pointer3);
ident := tail(parameter table[i,attribute])
new := true;
j := 1;
while new and j < m do

begin

if ident = parameter table[j,attribute] then
begin

parameter table[j,value] :=
parameter table[i,value];

new := false
end;
j := j+1

end;
if new then append (parameter table[i,attribute];

parameter table[i,value]) to parameter table
indicated by pointer3

else store parameter table[i,value] as indicated
by parameter table[i,attribute];

end;

Parameterized subcircuits in the SPICE-PAC package of simulation subroutines 120

where ”head” and ”tail” operations applied to a se-
quence (of qualified names) return the first element
and the remaining part of the sequence, respectively.

4. EXAMPLE

As an example, a two-stage amplifier with a second-
collector to first-emitter feedback [5,p.433] is shown as
a circuit composed of parameterized subcircuits:

** subcircuit definition
.SUBCKT STAGE 1,2,3,4
C1 1,5 5U
R3 4,5 150K
R4 5,0 47K
RC 4,2 10K
RE 6,3 4.7K
C3 6,3 50U
Q 2,5,6 QMOD
.MODEL QMOD NPN(BF=50,RB=100)
.ENDS
** main circuit
VS 1,0 AC(1)
R1 4,0 100
R2 6,4 4.7K
C6 3,6 5U
C5 3,10 10U
RL 10,0 25K
X1 1,2,4,5 STAGE
X2 2,3,0,5 STAGE R3=47K,R4=33K,RC=4.7K
VV 5,0 25V
* analyses parameters are irrelevant here
.END

Fig.2. A two-stage amplifier.

5. CONCLUDING REMARKS

The paper describes modification of the original
SPICE representation of circuits required for imple-
mentation of parameterized subcircuits, and discusses
the migration of parameters through consecutive levels
of nested subcircuits during subcircuit expansion. It
should be noticed that the description is simplified and
there are many other details and technicalities which
have been neglected since they do not influence the
general idea presented in this paper.

Parameterization described in this paper is imple-
mented in the SPICE-PAC package version 2G6c and
beyond.

Acknowledgement

The Natural Sciences and Engineering Research
Council of Canada partially supported this research
through Operating Grant A8222.

References

[1] P.E. Allen, D.R. Holberg, CMOS analog circuit

design; Holt, Reinehart and Winston 1987.

[2] E. Cohen, Program reference for SPICE-2; ERL
Memorandum M520, Electronics Research Lab-
oratory, University of California, Berkeley CA,
1976.

[3] J.K. Fidler, C. Nightingale, Computer aided

circuit design; J. Wiley & Sons 1978.

[4] W. Fichtner, M. Morf, VLSI CAD tools and

applications; Kluwer Academic Publishers 1987.

[5] J. Millman, Microelectronics - digital and

analog circuits and systems; McGraw-Hill
1979.

[6] A.R. Newton, D.O. Pederson, A.L. Sangiovanni-
Vincentelli, C.H. Sequin, Design aids for VLSI -
The Berkeley perspective; IEEE Trans. Circuit
and Systems, vol.28, no.7, pp.666-680, 1981.

[7] D.O. Pederson, A historical review of circuit simu-
lation; IEEE Trans. Circuits and Systems, vol.31,
no.1, pp.103-111, 1984.

[8] L.T. Smith, D.A. Gross, Preparing large networks
for a simulation accelerator; Proc. Int. Symp. on
Circuits and Systems, Kyoto, Japan, pp.233-236,
1985.

[9] A. Vladimirescu, K. Zhang, A.R. Newton, D.O.
Pederson, A.L. Sangiovanni-Vincentelli, SPICE
Version 2G - User’s Guide (10 Aug. 1981); De-
partment of Electrical Engineering and Computer
Sciences, University of California, Berkeley CA
94720, 1981.

[10] W.M. Zuberek, SPICE-PAC, a package of sub-
routines for interactive simulation and optimiza-
tion of circuits; Proc. IEEE Int. Conf. on Com-
puter Design, Port Chester NY, pp.492-496, 1984.

[11] W.M. Zuberek, P. Gillard, Enhanced circuit
simulation using the SPICE-PAC package; Proc.
28 Midwest Symp. on Circuit and Systems,
Louisville KY, pp.182-185, 1985.

[12] W.M. Zuberek, Circuit decompilation in the
SPICE-PAC package of simulation subroutines;
Proc. COMPEURO’87 Conf. on VLSI and Com-
puters, Hamburg, West Germany, pp.229-232,
1987.

