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Abstract

Graphene oxide (GO) has drawn a great deal of attention, in a laboratory setting,

due to its ability to stay suspended in water more easily for solution processing of

graphene. In an outdoor setting, it is possible that GO is formed as graphite degrades

over time in charred carbon-rich materials such as archaeological charcoal. This GO

could be used as a valuable source for radiocarbon dating because its carbon would

have the same age as the graphitic carbon that is traditionally extracted for dating.

Before radiocarbon dating, graphitic samples are cleaned using a series of strong acid

and base treatments to remove contaminants. However, this cleaning procedure can

break down some graphite-based samples, leaving no graphite for 14C dating. In those

situations, we suspect that GO is cleaned away along with the unwanted contaminants.

Our studies are the first to consider whether GO exists in archaeological charcoal and

if it can be separated effectively from carbon-containing contaminants. These findings

will be particularly useful for chemists and environmental scientists who work with

natural sources of graphite in which oxidized graphenic materials may be present.

Here, we show that a mixture of oxidized graphenic material with different degrees

of oxidation, and fluorescent carbon-based materials, can be present in archaeological

charcoal. We also develop a straightforward protocol that separates a simple test

case of a lab-prepared mixture of these components. Our results help to explain

why a significant amount of archaeological charcoal is sometimes lost during aqueous
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cleaning treatments at different pH values.

The fluorescent carbon-based materials described above could originate from ei-

ther the original graphite (in the form of highly oxidized pieces, called oxidative debris

(OD)) or from contaminants (such as humic acid (HA)). The fluorescent materials stay

suspended in alkaline aqueous solutions. Although UV-Vis data of base-treated ar-

chaeological charcoal shows evidence of oxidized carbon, it is not informative enough

to study a mixture of oxidized graphite, OD, and HA. Therefore, we monitor UV

absorption at specific wavelengths as a function of retention time using size exclu-

sion chromatography (SEC). Our results demonstrate that distinguishing oxidized

graphite, OD, and HA from each other is very challenging. Based on SEC results,

we identify materials in archaeological charcoal that have similar UV excitation re-

sponses and similar retention time (size) to a common HA standard, as well as other

components with similar UV excitation responses at longer retention times (smaller

sizes).
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Chapter 1

Introduction

Graphite, in charred organic materials, is broadly used for radiocarbon dating because

graphite is a form of carbon that is widely believed to remain stable over time [1–3].

In fact, it is certainly more stable than other organic materials like cellulose and

lignin. However, graphite can degrade in the environment. Earlier work proposes

that graphite in archaeological charcoal may undergo oxidation [2]. Chemists prove

that oxidized graphite degrades in water forming oxidized graphenic materials like

graphene oxide (GO) and oxidative debris (OD) [4,5].

Since these oxidized graphenic carbon materials would originate from graphitic

carbon, it is essential to characterize and separate them for 14C dating. This is

even more important for poorly preserved samples where sometimes no solid remains

after radiocarbon cleaning procedures [2]. To date, no studies have investigated the

presence and separation of oxidized graphenic materials in environmentally altered

graphite-like archaeological charcoal.

I, as a chemist, take advantage of the well-established chemistry of these materials

to characterize and salvage GO and OD from archaeological charcoal that can be used

as valuable sources for radiocarbon dating measurement. However, I should note that
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we do not do any 14C dating analyses in this work.

In this introductory chapter, I will discuss what is known about the structures

and compositions of graphenic carbon materials, especially in their oxidized forms.

I describe archaeological sources of graphite, their contaminants, and their common

cleaning procedures. I also describe the synergy between the chemistry of graphite

cleaning (used for radiocarbon dating) and GO synthesis strategies (used by material

chemists). In this thesis, I will use these two bodies of knowledge to overcome existing

challenges with well-known graphite cleaning protocols.

1.1 Graphenic carbon materials

In this thesis, I use word conventions that were introduced by an international editorial

team for graphenic materials [6]. Graphite, graphene, graphene oxide (GO), and

oxidative debris (OD) are the different types of graphenic carbon materials on which

I will focus.

1.1.1 Graphite

Graphite is a well-known form of sp2 bonded carbon that contains hexagonal planes

(Figure. 1.1) [7,8]. Since carbon has four valence electrons and each atom in graphite

is bonded to three other atoms, it leaves one spare electron per carbon that is delo-

calized in conjugated π orbitals. Because of this, electrons can travel easily through

the hexagonal plane, making graphite an electrically conductive material. On the

other hand, graphite shows poor electrical conductivity in the out-of-plane direction

because electrons cannot move easily between graphite layers. This is because the

layers are held together by van der Waals forces.

Graphite is formed both in nature and in labs. Naturally occurring graphite
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can be formed through graphitization of carbon materials like coal at temperatures

near 2500 ◦C in the absence of oxygen [9]. Graphite can also be found in charcoal.

Charcoal is produced by slow pyrolysis of wood. During this process, wood is heated

in the absence of oxygen. Pyrolysis removes water, CO, and CO2, leaving graphite.

Graphitization can also occur in nature when woods are buried in the ground over

time under high pressure and temperature. The carbon content is then transformed

into the crystalline structure under high temperature and pressure [10].

Figure 1.1: A schematic representation of the graphite structure [11]. This figure is
reused with the permission of The Royal Society of Chemistry.

1.1.2 Graphene

A single layer within graphite is called graphene [12]. Graphene has drawn a great

deal of attention because of its thermal, electronic, and optical properties [13, 14].

Graphene absorbs very little visible light due to its one-atom-thick structure. It

contains conjugated π bonds that result in many physical properties [15]. Graphene

has various potential applications in medicine (for targeted drug delivery) [16] and in
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electronics (as transistors) [17].

Graphene is produced by different methods such as the mechanical exfoliation of

highly oriented pyrolytic graphite (HOPG) [18], the epitaxial growth of graphene on

a silicon carbide (SiC) [19], chemical vapor deposition (CVD) [20], and chemically-

modified graphene (CMG) [5, 21], where the chemically-synthesized GO is reduced

using different reducing agents, including NaBH4 and N2H4, to obtain graphene-like

materials [22].

The first three methods produce highly ordered graphene with high thermal and

electrical conductivity, but they are not appropriate for applications wherein a large

amount of sample is required. The fourth procedure is helpful in producing graphene

in bulk at a low cost.

1.1.3 Graphene Oxide (GO)

GO is graphene that is modified by different oxygen functional groups. It contains a

mixture of sp2 and sp3 bonded carbon along with some oxygenated functional groups

such as epoxides, carbonyls, alcohols, and carboxylic acids (Figure. 1.2). GO absorbs

even less visible light than graphene due to the presence of oxygen functional groups

in graphene structure. These groups disrupt the long-range π conjugation system

and increase the energy gap between π∗ ← π electronic states for GO. This leads to

absorbing less visible light by GO.

A unique chemical structure for graphene oxide can never be defined. Two main

factors that affect the chemical formula of GO are the density of pre-existing defects

(initial source of graphite) and the quality of the subsequent degree of oxidation

(influenced by the oxidation procedure). A typical range of C:O for GO is from 1.8 to

2.5 [23]. As an example, Brodie et al. reported a chemical formula of C2.19H0.80O1.00

for oxidized graphite [24]. Although oxygen functional groups create defects and make
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GO electrically and thermally insulating, they also allow GO to be suspended in water

or other aqueous solutions. This makes it useful for biological, energy storage, and

water purification applications [25]. For example, GO is used to make supercapacitor

devices [26], and it is used in glucose, protein, or DNA biosensor platforms [27,28].

Different graphite oxidation methods have been introduced since 1855 to synthesize

GO [29–32]. Here, I discuss several different protocols and their differences.

Figure 1.2: A schematic representation of one possible graphene oxide structure.

Hummer’s method

The most popular graphite oxidation protocol is Hummer’s method [29], in which a

mixture of concentrated H2SO4, NaNO3, and KMnO4 is held near 0 ◦C for 1 hour to

oxidize graphite flakes. Then, the oxidized graphite is exfoliated in water and hydrogen

peroxide to yield GO. However, Hummer’s method has some drawbacks, including a

relatively low degree of graphene oxidation, and the generation of hazardous gases

such as NO2 and N2O4.
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Modified Hummer’s method

Kovtyukhova proposed a modified Hummer’s method in 1999 [33]. The pretreat-

ment process involves mixing graphite flakes with a concentrated mixture of H2SO4,

K2S2O8, and P2O5 at 80 ◦C for several hours to improve the oxidation degree of

graphite [23,30].

Tour’s method

Tour’s method was introduced to maximize the oxidation degree of GO and to reduce

the generation of toxic gases such as NO2 and N2O4 [31]. In this method, NaNO3 was

replaced with extra KMnO4, and a combination of H2SO4 and H3PO4 (9:1 ratio) was

used to improve the degree of oxidation. The final product yields a higher fraction of

well-oxidized hydrophilic sites than the Hummer’s method.

1.1.4 Oxidative debris (OD)

Recently, researchers found that the product of chemical-based graphite oxidation

(as-prepared oxidized graphite (aOG)) is made of a mixture of poorly and highly

oxidized graphene sheets (Figure 1.3) [5, 34, 35]. The poorly oxidized graphene is the

one described in Section 1.1.3 as GO, and the more oxidized portion is called oxidative

debris (OD) [5, 34, 35]. The latter constitutes almost one-third of aOG mass, and it

is responsible for the water solubility and fluorescence properties of aOG. Rourke et

al. show that the C:O ratio of aOG is 2:1, but this ratio changes to 4:1 for GO after

removing the OD from aOG [35]. Researchers calculated formulas for OD (ranging

from C12H17O3 to C20H31O3) based on mass spectroscopy information [35]. However,

like GO, the exact size and chemical structure of OD is not fixed.

Studies suggest that OD is quite small in size and is made up of approximately ten
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aromatic rings along with oxygen functional groups such as carboxyl and epoxide. Its

molecular weight is between 200 and 800 Da, similar to that of fulvic acids [36–38].

In aOG, the OD adheres to GO by hydrogen bonding, π−π bonds, or van der Waals

interactions [35,39]. Chemists found that OD can be separated from GO by base (1M

NaOH), leaving a mixture of black residue (GO) and colourless suspension [5,35]. The

colourless suspension can then be transformed into a white powder solid by adding

1M HCl, followed by drying. The black GO sediment is not capable of being re-

suspended in water either using strong sonication or stirring [35]. This means that

the more highly oxidized OD is what gives aOG the ability to remain suspended in

water.

Figure 1.3: A schematic representation of as-prepared oxidized graphite, including
oxidative debris (OD) ovals [35]. This figure is reused with the permission of The
Royal Society of Chemistry.

1.2 Radiocarbon dating (14C)

Carbon dating is a technique to analyze the age of organic materials through the

determination of 14C and 12C contents ratio. Carbon has three isotopes 12C, 13C, and
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14C (relative proportions of 98.9 : 1.1 : 1×10−12). The first two isotopes are stable,

and the last one is not.

1.2.1 14C production and decay

14C is formed naturally due to cosmic ray bombardment of atmospheric nitrogen

[40,41]. Since 14C undergoes oxidation and forms radioactive carbon dioxide (14CO2),

it is then distributed on the Earth and consumed by living species. When a living

species dies, it stops exchanging 14CO2 from the surrounding environment and loses

the 14C as it decays back to 14N through negative beta decay. Since 14C is evenly

distributed in the atmosphere, a global calibration method can be used to determine

the age of an organic sample [42].

The age of a dead organic sample can be obtained by the determination of 14C

concentration in the sample. The half-life of 14C isotope is 5,730 years. It means that

the amount of 14C decreases to half of its initial amount after 5,730 years. Therefore,

the older a sample, the less 14C is present. If we imagine 1 mg of a sample is from the

present time, less than 5×107 atoms are 14C compared with 5×1019 12C. In a 5,730

year old sample, however, the amount of 14C is halved due to its decay to 14N. This

means that in a 45,000 year old sample, for instance, around 0.4 percent of the 5×107

of 14C atoms remain. Therefore, it is crucial to properly prepare an old sample before

radiocarbon dating; even a tiny amount of contaminants, either younger or older than

the sample, makes the dating results unreliable.

1.2.2 14C measurement

Two methods are used to measure the concentration of 14C in a sample: radiometric

dating and accelerator mass spectrometer (AMS) [43]. The AMS method is not only

more precise than radiometric dating, but it also needs less sample than radiometric
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dating [44].

In the radiometric method, 14C atoms are measured by the quantification of beta

particles that are emitted from 14C radioactive decay. In AMS, the ratio of carbon

isotopes (12C, 13C, and 14C) in a sample is measured [43]. In this method, the carbon

in the sample is converted to graphite through a catalytic process. The graphitic

carbon is negatively ionized by a Cs ion beam, followed by a stripping process by

which positively charged carbon ions are produced. The positively charged ions are

accelerated using a magnetic field. Then, they are deflected to different angles based

on their masses, and are then detected separately.

1.3 Radiocarbon samples

Samples rich in carbon content such as wood, charcoal, bone, and textile are good

for radiocarbon dating. Charcoal and other sources of graphite-like charred seeds are

especially valuable sources for 14C radiocarbon dating because the crystalline graphite

is more stable in the environment over time.

Archaeological charcoal is composed of various carbonaceous materials, including

graphite, humic substances (HS), carbonate minerals, and wood derivatives. Charcoal

is generally made by pyrolysis of wood materials in an open-air fire. In this process, a

pile of wood, covered with clay or soil, is combusted. The graphite part originates from

charred cellulose and lignin, while HS comes from the surrounding soil and sediments.

However, wood derivatives like lignin or cellulose can remain in poorly-charred wood.

Non-graphitic carbonaceous materials are considered to be contaminants and need

to be removed. The contaminants may have carbon formed at a different time com-

pared with the time the charcoal was produced. Contaminants could adhere to or

penetrate into the charcoal.
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1.3.1 Carbonaceous contaminants

Humic substances (HS)

Humic substances (HS) are naturally occurring carbonaceous materials that result

from the breakdown of plant (lignin) and animal detritus [45]. HS reacts with other

components in the environment, such as trace metals, thereby playing a critical role

in the chemistry of soil [46]. HS are categorized based on their molecular weight,

exchange acidity, solubility, and the content of carbon and oxygen. Humic substances

like humic acid and fulvic acid are made of a mixture sp2 and sp3 carbon atoms

along with different oxygen functional groups such as alcohol, carboxyl, epoxide, and

carbonyl.

Humins (HN) are the largest molecules among HS with the highest content of

aliphatic carbon that are not soluble in any pH [47]. The molecular weight of HN

is higher than 300,000 Da. Humic acid (HA) is smaller than HN with a molecular

weight of 2,000-200,000 Da. HA is not soluble in low or neutral pH. The smallest

component of HS is fulvic acid (FA), which contains the highest content of aromatic

carbon with MW of 600-1,000 Da. FA is soluble at any pH [45].

Carbonate minerals

Carbonate minerals are another source of carbonaceous contaminant that might exist

in archaeological charcoal. Carbonate minerals like CaCO3 and MgCO3 can be formed

due to the reaction of atmospheric CO2 with water in the presence of ions like Ca2+

and Mg2+. These compounds are soluble in acidic solutions. Metal carbonates react

with acid (HCl) and form metal chloride, water, and carbon dioxide.

10



1.3.2 Graphite sample cleaning for radiocarbon dating

Archaeological charcoal buried under the ground has been in contact with HS and

other carbon-containing substances over a long period of time in changing environ-

mental conditions. Therefore, contaminants must be removed before radiocarbon

dating to obtain a reliable sample age.

Graphite cleaning procedures

Before radiocarbon dating graphitic carbon, one must separate contaminants from it.

Acid-base-acid (ABA) cleaning is the most common method to clean and separate

graphite from other carbonaceous contaminants [3, 48]. This method contains three

consecutive steps: (1) acid wash (1M HCl), (2) base wash (1M NaOH), and (3) acid

wash (1M HCl). Water is used between each step to rinse and wash the samples until

they reach neutral pH. The second step is typically repeated until the supernatant

obtained after this step is colourless.

Researchers use variations on the ABA aqueous cleaning strategies such as base-

acid (BA), water-acid-base-acid (WABA), water-base-acid (WBA), and acid-base-

oxidation (ABOx) [1, 3, 48, 49]. One step that is common to all aqueous cleaning

methods is a base rinse. The concentrated base wash removes humic substances

[1, 3, 48]. The OH– ions, in strong alkaline conditions, cause C-C cleavage and form

CO2 and smaller HS molecules with carboxyl groups; this occurs through nucleophilic

attacks on carbonyl groups [4].

For ABA, previous studies have demonstrated that the first concentrated acid

rinse removes carbonate and intercalated counter ions [3, 48, 50]. For example, when

hydrochloric acid (HCl) reacts with calcium carbonate (CaCO3), calcium (Ca2+) and

chloride (Cl– ) ions form in solution and carbon dioxide (CO2) gas is released. The

last concentrated acid wash removes surface-adsorbed CO2 [3, 48]. Dissolved car-
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bon dioxide forms carbonic acid (H2CO3), which dissociates to hydrogen carbonate

(HCO –
3 ) and then carbonate (CO 2–

3 ). This carbonate reacts with hydrochloric acid

and produces CO2 gas and water, thereby removing it from the graphite surface.

Problems with cleaning procedures

The ABA cleaning treatment works very well [3, 48, 51]. However, acid and base

can cause significant damage to graphite, especially when some oxidized portion is

present. Others have found that ABA can break down poorly preserved fossil charcoal,

sometimes leaving no solid material for dating [3]. They showed this by obtaining

statistically similar dates for the soluble portion of archaeological charcoal, and the

solid remained after cleaning procedure (HCl and NaOH 1M) [52]. This suggests that

the cleaning procedures can sometimes destroy graphenic carbon materials that are

original to the specimen to be dated.

As a simple model for archaeological charcoal, three main carbon-based compo-

nents might be present: graphite, GO, and HS. Here, I discuss the effects of acid and

base with each of these separate components.

Problems with acid treatments

Researchers have shown that both concentrated and diluted HCl form defects in

graphene sheets [53, 54]. Reports by material scientists have shown that an acid

treatment (1M HCl) enhances graphite intercalation and oxidation [50]. An acid

wash (1M HCl) also damages crystalline graphite even in well preserved modern char-

coal, resulting in sample loss [2, 3]. An acid wash protonates carboxylate (RCOO– )

groups to form carboxylic acids (RCOOH). This causes RCOO– groups not to form

complexes with counter-ions. These complexes make a salt-bridge between molecules

that are assumed to help fossil charcoal structure stay more stable with respect to
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time [3].

Problems with alkaline treatments

Studies have also demonstrated the negative effects of alkaline treatment on graphenic

carbon materials. One report demonstrates that sonication of graphite in alkaline

conditions (pH=11) exfoliates a small portion of graphite layers [55]. Others proposed

a model in which sodium and oxygen ions make a complex on the carbon lattice and

weaken the C-C bonds, providing appropriate conditions for oxygen attack on the

graphite lattice [56]. These observations are consistent with the loss of archaeological

charcoal after a base treatment, where 80 weight percent of the sample is removed [2,3].

Chemists have also reported that deoxygenation and decarboxylation occur after mild

and strong base treatment of GO, respectively. Both of these phenomena create

defects in the GO structure by breaking C-C bonds [4]. A base treatment is also

known to remove oxidative debris (OD) from less oxidized graphite [5, 34,35].

Other cleaning treatments

Due to the adverse effects of acid treatment on graphite, radiocarbon scientists tried

to modify sample cleaning procedures by eliminating the first step in the ABA method

or substituting it with a simple water wash [3]. Bird et al. developed another method

called ABOx (acid-base-oxidation), which provides as reliable dates as the ABA

method does for old samples [57, 58]. However, the last oxidation step is harsh and

results in considerable sample loss. Researchers showed that typically more than 100

mg of well-preserved samples are required for ABOx cleaning procedures [59].

Hydropyrolysis (hypy) is another cleaning strategy in which neither acid nor base

treatments are used to remove contaminants. In this method, pyrolysis is done in

the presence of a molybdenum sulphide catalyst under high hydrogen pressure [60].
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Ascough et al. isolated and dated charcoal from the Holocene age (the last 11,700 years

of the Earth’s history) using this method. The result obtained from hypy was similar

to those obtained from the ABA and ABOx standard treatments [61]. However, hypy

is not widely used by radiocarbon scientists. This might be due to its complicated

pre-treatment method compared with the simpler ABA treatment. It is also likely

that graphenic carbon materials are removed along with the chemically-similar carbon

contaminants, thereby reducing the amount of datable materials.

1.4 Thesis objectives

I propose that GO could be used as a material for radiocarbon dating. Since it

is possible that GO is formed as graphite degrades over time in charred carbon-

rich materials, GO could contain carbon with a 14C signature that is identical to its

graphite counterparts. To date, no studies have investigated whether GO exists in

archaeological charcoal, or if it can be separated from other graphite materials and

contaminants.

In this thesis, I describe how I met three important goals: (1) to develop a sepa-

ration protocol to isolate GO from other graphitic materials; (2) to isolate GO from

archaeological charcoal; and (3) to identify a strategy that could help distinguish

between GO and chemically-similar contaminants such as HA.

In Chapter 2, I describe the different types of graphenic carbon materials that

I used in my experiments. I also give detailed information regarding the different

chemical treatments I performed using these materials. The reasons behind why

we use each combination of material, experiment, and characterization technique is

discussed. I explain what phases of graphenic materials, including solid, liquid, and

suspension, are characterized with which techniques.

14



In Chapter 3, I address my first goal of developing a protocol to isolate GO from

other graphitic materials. I show synergies between the chemistry involved in re-

moving GO and OD from oxidized graphenic carbon materials, and the chemistry

involved in a common cleaning procedure for radiocarbon dating. Then, I describe

our separation protocol that draws on those synergies, using a simple test case of a

lab-prepared mixture of graphite, GO, and OD.

In Chapter 4, I discuss my second goal of characterizing and separating oxidized

graphenic materials, especially GO, in archaeological charcoal. We study the spectro-

scopic, chemical, and physical properties of an archaeological charcoal sample, without

any pre-treatment, and then compare the results with a lab synthesized GO, which

we prepared in our laboratory using a standard method. We also apply our devel-

oped separation protocol on archaeological charcoal to separate moderately oxidized

(GO-like) and highly oxidized (OD-like) materials.

In Chapter 5, I address my third goal of distinguishing oxidized graphenic materials

from contaminants like HA in the base soluble portion of archaeological charcoal.

We treat archaeological charcoal with acid and base to simulate a common cleaning

strategy (ABA) for radiocarbon dating. We analyze the supernatants obtained after

each step using UV-Vis spectroscopy to monitor the removal of oxidized graphenic

components. Since UV-Vis results do not allow us to distinguish among a complex

mixture of carbonaceous materials, we also use size exclusion chromatography coupled

with a UV detector to study UV absorption at specific wavelengths as a function of

molecular size.
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1.5 Copyright and authorship statement

This thesis contains a series of manuscript-style chapters, one of which has already

been published in a peer-reviewed journal (Chapter 3). It is reprinted by permission of

the Royal Society of Chemistry (Amir Joorab Doozha and Kristin M. Poduska, Anal.

Methods. 11, 2880-2887, 2019.). For the other chapters, I performed all experimental

analysis and data collection and wrote them. My supervisor, Dr. Kristin Poduska,

provided me with comments. For Chapter 5, I did the size exclusion chromatography

measurements in collaboration with Dr. Cora Young.

Figures 1.1 and 1.3 were reused with the permission of the Royal Society of Chem-

istry and Wiley, respectively. All others are my own.
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Chapter 2

Materials and Methods

In this chapter, I describe graphenic carbon materials, including oxidized versions,

that are relevant for my archaeological charcoal studies. I describe separation pro-

tocols that are widely used by chemists and radiocarbon scientists. Then, I provide

information about sample preparations and characterization methods that I used to

analyze carbon graphenic materials in solid, liquid, and suspension forms.

2.1 Materials

In this thesis, I use a combination of reference and environmentally-altered sources

of graphite. Graphite flakes are not only used as a reference sample, but they also

are used as a precursor to synthesize oxidized graphenic materials for reference: as-

prepared oxidized graphite (aOG), graphene oxide (GO), and oxidative debris (OD).

Carbonaceous Suwannee River Humic Acid (SRHA) is a helpful reference for liquid

phase suspensions of humic acid (HA).
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2.1.1 Graphite flakes

Graphite flakes with 99.8% purity and 325 mesh size (44 µm) were purchased from

Alfa Aesar. The flakes are used as a precursor to synthesize GO and OD.

2.1.2 As-prepared oxidized graphite (aOG)

In this work, the improved Hummer’s method is used to oxidize graphite flakes and

modern charcoal [1]. Detailed information for the synthesis of aOG is provided in

Chapter 3 (Section 3.2.1). In summary, graphite flakes and charcoal are oxidized

using a mixture of H2SO4 and KMnO4 under stirring and low-temperature (0-4 ◦C)

conditions. The thick mixture of graphite source and oxidizing agents are heated up

to 90 ◦C within 2 hours, and then 200 mL of nanopure water and 6 mL of H2O2

(30% w/w) are added under constant stirring conditions, respectively. The oxidized

products are cooled down, centrifuged, and washed with nanopure water three times,

followed by drying overnight at 50 ◦C.

2.1.3 Modern charcoal

I use modern charcoal as a reference sample to compare with archaeological charcoal,

following earlier studies [2]. We obtained the lab-synthesized modern charcoal from

Dr. Robert J. Helleur (MUN Chemistry), who pyrolyzed a mixture of fir and pine

wood, and heated it in a nitrogen atmosphere from 30 ◦C to 480 ◦C over 1 hour, then

held at 480 ◦C for 20 min.

2.1.4 Archaeological charcoal

Archaeological charcoal was obtained from Dr. Lisa Rankin (MUN Archaeology). The

samples were excavated in Labrador, near Rigolet at the Double Mer Point site that
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had been inhabited by 18th century Inuit (Sample reference: GbBO-2, H2, N1014,

E971, NE 1/4, L2, S25, E60, D2:43, JB) on September 8, 2014. The archaeological

sample was a mixture of charcoal, sand, soil, and dry leaf that was pulled out from a

campfire. I physically separated the charcoal from the other parts and ground it with

a mortar and pestle to make a fine powder.

2.1.5 Coal

Coal is another type of environmentally altered source of graphite. A coal sample

was sourced from Dr. Graham Layne (MUN Earth Science) with unknown origin.

The lab-synthesized modern charcoal and coal samples were ground using mortar and

pestle to obtain uniform powder before any chemical treatments.

2.1.6 Humic acid (HA)

Suwannee River Humic Acid (SRHA), as a reference source of HA, was obtained from

the International Humic Substances Society, Denver, CO. SRHA is commonly used

for qualitative analysis of humic materials like humic acid in different samples like

soil, compost, peat, and surface water [3–5].

2.2 Sample separation methods

Chemical and physical separations are often necessary to remove contaminants from

archaeological charcoal before radiocarbon dating to obtain a reliable age. The lat-

ter is essential because contaminants penetrate the sample and mix with graphenic

materials under different environmental conditions over time. Chemical separation is

also necessary to separate oxidized graphenic materials from aOG, so that helps to

study the signature of these materials in archaeological charcoal.
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2.2.1 Separation of GO and OD from aOG

I provided detailed information about the separation of GO and OD from aOG in

Chapter 3 (Section 3.2.2). As a summary, a black precipitate of GO and clear colour-

less suspension of OD are obtained after the strong base (1M NaOH) treatment of

aOG at a relatively high temperature. The OD suspension is then transformed into

OD sediment after the addition of strong acid (1M HCl) followed by oven-drying at

60 ◦C overnight.

2.2.2 ABA treatment

Acid, base, acid (ABA) is the most common method used for removing contaminants

from graphite present in archaeological charcoal samples before radiocarbon dating [6].

In the first step, 0.5 g of archaeological charcoal was added to 20 mL acid (1M HCl),

and the solution stirred at 800 rpm for 1 hour. The suspension was then centrifuged,

and the residue was neutralized using nanopure water until it reached a pH of around

6. The supernatant was collected and stored at room temperature in a dark place for

further analysis, and the residue was dried overnight at 70 ◦C and used for the next

steps. The residue obtained from the first acid treatment was treated with 20 mL of

base (1M NaOH), and then with 20 mL of acid (1M HCl) under the same stirring

condition for 1 hour. At the end of each step, the residual solid is separated from

the supernatant and washed with nanopure water. The first supernatant obtained

from the first acid treatment of archaeological charcoal contains carbonate ions from

minerals like CaCO3 and MgCO3, while the first residual solid contains charcoal and

humic materials. After the base treatment, we end up with humic materials in the

supernatant and graphite-like materials in the residual solid. After the last acid

treatment, we obtain CO2 dissolved in the supernatant and graphite-like materials in
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the residual solid. A small portion of the supernatants, obtained from each step, were

filtered by syringe filter (0.2 µm), and subsequently stored in a dark and cool place

(refrigerator).

2.2.3 Water-Sonication-Base-Acid (WSBA)

We develop this protocol to separate a mixture of graphite and oxidized graphite

taking advantage of the water treatment and sonication process near neutral pH, and

the procedure of GO separation method [7]. The summary of this method is shown

in Chapter 3 (Table 3.1).

0.02 g of graphite flakes and aOG were added and mixed into 10 mL nanopure

water, followed by 60 min sonication. The mixture was centrifuged at 8500 rpm for 15

min and then filtered with 8 µm filter paper (Whatman). The residual solid was dried

in an oven for 8 to 12 hours at 50 ◦C. The filtrate was treated with 20 mL base (1M

NaOH) at 100 ◦C under reflux condition for 1 hour. The mixture was centrifuged at

8500 rpm for 15 min and washed with nanopure water until a pH near 6 was obtained.

The residue was dried in an oven at 50 ◦C for 8 to 12 hours. Then, 20 mL of 1M HCl

was added to the supernatant and was then dried in an oven at 80 ◦C for 12 hours.

The resultant white powder was ground using mortar and pestle to obtain a uniform

powder. The same protocol was used to separate oxidized graphenic materials in

archaeological charcoal.

2.3 Characterization methods

The characterization of graphenic carbon materials in solid, liquid, and suspension

helps us understand more about the structure, relative solubility, optical properties,

and the sizes of these materials. In this thesis, I use indirect data to infer structure
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changes after chemical reactions.

In this project, a combination of methods is used to characterize the presence of GO

and OD in archaeological charcoal. This combination is essential because each of them

alone is not effective. Raman spectroscopy, for example, helps us to monitor carbon-

carbon vibrations and the geometry of graphenic carbon materials in the sample,

while IR spectroscopy assists us in characterizing various oxygen functional groups.

2.3.1 Raman spectroscopy

Raman helps to characterize the geometry of graphenic structures, distinguishing

between sp2 and sp3 bonded carbon atoms. Raman is a light scattering technique [8].

Raman peaks occur when monochromatic electromagnetic radiation of visible or near-

infrared light irradiates a sample. Upon irradiation, samples can absorb or scatter

light. There are three types of scattering processes: Stokes, anti-Stokes, and Rayleigh

scattering. The last one, which is also called elastic scattering, involves no energy

changes between the initial and scattered radiation. However, Stokes and anti-Stokes

scattering are inelastic processes that have lower and higher energies compared to

the incoming light, respectively. Raman scattering (anti-Stokes and Stokes) is much

weaker than Rayleigh scattering, by a ratio of 1:106. The peak intensity in Raman

shows the number of scattered photons that reach the detector. Every Raman peak

corresponds to a specific vibrational mode in a solid. In Raman spectroscopy, the

polarizability of a chemical moiety has to change during the specific vibration modes

to make a vibration Raman active.

We used a Renishaw spectrometer (632 nm excitation, 20X objective, 11 mW

power, exposure time 30 s) to do the Raman measurements. Spectra were obtained

in the range of 100-3000 cm−1. Each sample was transferred and pressed on a glass

slide using a spatula.
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Figure 2.1: Representative Raman spectra of graphite flakes before and after oxida-
tion: (black) graphite flakes, (orange) as-prepared oxidized graphite (aOG), (blue)
graphene oxide (GO), (red) oxidative debris (OD).

Characteristic peaks for graphenic carbon materials

Raman spectroscopy has been widely used to analyze graphite-related structures such

as graphite, graphene oxide, and graphene [9]. In a typical Raman spectrum of

graphenic carbon materials, two main peaks are observed [10]: G and D (Figure

2.1). The G peak, near 1600 cm−1, is assigned to the in-plane stretching vibration

of sp2 C=C bonds in graphite materials. The D peak, near 1300 cm−1, is associated

with the vibration of sp3 C-C bonds and breathing modes of benzene rings in the

hexagonal geometry of graphenic structures [11].

The D peak appears when the polarizability is affected due to changes in the

hexagonal geometry of the graphite structure. The G peak for as-prepared oxidized

graphite (aOG) and GO shifts to higher energy and becomes broad, suggesting a

disruption to the sp2 carbon arrangement of graphite. When the arrangement of

C=C bonds is distorted due to oxygen functional groups, the conjugation of π bonds

32



is disrupted, thereby higher energy is required to change the polarizability of sp2 C=C

in graphite lattice [12–15].

Others have shown that D to G intensity ratio increases after the chemical oxi-

dation of graphite flakes due to the formation of defects and the addition of oxygen

functional groups [12–14,16,17]. OD shows no G or D peaks compared with graphite,

aOG, and GO. Since OD is highly fluorescent with small sp2 regions, we only observe

a broad Raman spectrum with high background intensity [18].

2.3.2 IR spectroscopy

Infrared (IR) spectroscopy helps to characterize graphene oxide and its functional

groups in both lab-prepared GO and archaeological charcoal [1, 19]. When a solid is

irradiated with infrared light, bonds absorb energy if the frequency of the incident

light is the same as the frequency of a specific vibrational mode. In IR spectroscopy,

the dipole moment of a molecule has to change during the specific vibration modes

to make a vibration IR active [20].

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra were

recorded using a Bruker Alpha II spectrometer (diamond crystal, 36 scans, 4 cm−1

resolution). The solid phase of our samples (less than 0.001 g) was transferred to the

ATR crystal with a spatula. In the IR spectra of graphenic carbon materials like as-

prepared oxidized graphite (aOG), we see vibration modes of many different functional

groups. This includes C-O, C-OH, C-O-C, COO– between 1400 and 1000 cm−1,

stretching vibration modes of O-H from 2400 to 3800 cm−1, vibration of carbonyl

groups near 1700 cm−1, and symmetric or asymmetric vibrations of CH2 at 2800

and 2900 cm−1 (Figure 2.2) [1, 10, 21, 22]. Peaks near 1700 cm−1 (carbonyl groups

vibration) and 1619 cm−1 (O-H bending vibration) are the important vibration bands

to study GO. Other peaks in the fingerprint region, between 1000 and 1400 cm−1, are
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graphene oxide (GO), (red) oxidative debris (OD).
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challenging to interpret due to many overlapping peaks from different oxygen-based

functional groups.

2.3.3 pH measurements

A pH measurement determines the activity of H+ ions showing the acidity or alka-

linity of solutions. GO decreases the pH of water due to the generation of hydrogen

ions in the solution through an acidification process [23]. In this process, protons are

generated through the ionization of alcohol, followed by the cleavage of C-C bonds

and the formation of vinylogous carboxylic acids. We take advantage of this charac-

teristic property to monitor GO in environmentally altered sources of graphite-like

archaeological charcoal.

0.001 g of aOG, obtained from graphite flakes, and archaeological charcoal were

transferred to separate vials, and 20 mL of nanopure water was added to each one.

Both suspensions were stirred for 30 min at 800 rpm. Then, the pH of the solutions

was measured using a calibrated pH meter. The calibration was done using three

different buffers that came with the pH meter. The pH of the buffers was 4, 7, and

10. The buffer with a pH of 4 was made of C8H5O4K. The one with the pH of 7 was

composed of a combination of Na2HPO4, KH2PO4, and C4H6BrNO4. The one with a

pH of 10 was made of a combination of Na2CO3 and NaHCO3.

2.3.4 UV-Vis spectroscopy

A UV-Vis spectrum measures the intensity of transmitted light as a function of wave-

length. The peak intensity indicates the concentration (c) of absorbing species, which

is calculated by Beer’s law: A= -logI/I0=εbc. A is absorbance, I and I0 are the in-

tensity of passed and incident light, ε is a constant known as the molar absorptivity,

and b is the path length over which absorption occurs. I should note that we do not
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calculate concentration in my work.

Figure 2.3: Representative UV-Vis spectrum of as-prepared graphite (aOG). The
peak near 230 nm is associated with the π∗ ← π electronic transitions of conjugated
systems, while the one around 300 nm is assigned to π∗ ← n electronic transitions [22].

UV-Vis spectroscopy is helpful in analyzing both humic substances and graphene

oxide. In a typical spectrum of graphene oxide, there are two main absorption peaks at

around 230 and 300 nm, which are related to π∗ ← π and π∗ ← n electron transitions

of sp2 and sp3 domains, respectively [22] (Figure 2.3). The more oxygenated functional

groups in highly oxidized graphene lead to more lone pair electrons in the molecule,

which eventually lead to higher absorption intensity near 300 nm.

The bulk UV-Vis spectra were acquired with a Varian Cary 6000 spectrometer

with 0.1 second average time, 1 nm resolution, and 600 nm/min scan rate. As an

example to show how a sample was prepared for UV-Vis analysis, we added 0.5 g of

graphenic carbon sample to 20 mL of liquid and stirred the suspension at 800 rpm

for 1 hour. The suspension was centrifuged to obtain the supernatant for the UV-Vis

measurement.
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2.3.5 Size exclusion chromatography (SEC)

Size exclusion chromatography is one type of liquid chromatography in which a mix-

ture of chemical compounds is separated based on their molecular sizes [24]. In this

technique, larger molecules pass through the stationary phase quicker than the smaller

ones. The small pores of the stationary phase exclude large molecules but not small

ones. Large molecules elute without entering the pores, while small ones penetrate

the pores and spend more time on the column.

Size Exclusion Chromatography coupled with UV (SEC-UV) measurements is used

to study the UV absorption of chemical compounds at a specific wavelength as a

function of size.
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Figure 2.4: Representative chromatogram of Suwannee River Humic Acid (SRHA)
obtained at 300 nm. The unit of intensity on the Y-axis is mAu, which stands for
milli-Absorbance unit. The peak around 9 min is associated with the elution of large
molecules, whereas the one near 10 min represents elution of smaller molecules.

The SEC-UV measurements are conducted with a High Performance Liquid Chro-

matograph (HPLC) (1260 Infinity, Agilent Technologies, Santa Clara, CA, USA) cou-
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pled to a diode array detector (1260, Agilent Technologies, Santa Clara, CA, USA).

An aqueous gel filtration column (molecular weight range: 250 – 75,000 Da, Polysep

GFC P-3000, Phenomenex, Torrance, CA, USA) was used in this project.

The chromatography conditions are detailed below. The mobile phase composition

contained 50:50 methanol and ammonium acetate with a concentration of 25 mM.

Measurements were performed under an isocratic condition at a flow rate of 1 mL/min

with an injection volume of 100 µL. The UV wavelengths were 230, 250, and 300

nm. The SEC-UV measurements were performed using the same chromatography

conditions as Di Lorenzo and Young [5].

Around 0.2 g of acid-treated archaeological charcoal was added into 20 mL of 0.1M

NaOH, followed by stirring at 800 rpm at 40 ◦C for 1 hour. The suspension was then

centrifuged at 8,500 rpm for 15 min to separate the supernatant from the residual

solid. The supernatant was then filtered by a syringe filter (0.2 µm) and stored in a

dark place.

Figure 2.4 shows a representative chromatogram of Suwannee River Humic Acid

(SRHA) obtained at 300 nm using the chromatography conditions explained above.

The chromatogram depicts two main peaks around 9 and 10 min [5]. The main peak

at 9 min corresponds to larger molecules that were eluted first from the column. A

typical SEC-UV chromatogram depicts absorption intensity at a specific wavelength

as a function of retention time, which is related to molecular size.

To analyze the liquid phase of oxidized graphite, humic acid, and base treated

archaeological charcoal, we use a combination of bulk UV-Vis spectroscopy and SEC-

UV. Bulk UV-Vis analysis helps to study an analyte across the full UV-Vis region,

whereas SEC-UV can measure a mixture of analyte at a few user-specified wavelength

as a function of retention time/molecular size, separately.
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2.3.6 Optical microscopy

In Chapter 3, we show that sonication can break down aOG particles more easily than

graphite. To prove that, representative particle sizes for graphite and as-prepared

oxidized graphite before and after sonication were extracted from optical microscopy

images (Leica, 5X and 20X NPLAN objectives). The images were analyzed using Fiji

particle analysis routines [25].

Particles must be uniformly dispersed on a glass slide to obtain well-separated

particles that do not overlap. To do this, I used 0.001 g of graphite and aOG that

were separately transferred into two 20 mL vials, and 10 mL ethanol was added to

each batch. For non-sonicated samples, one droplet of each suspension was drawn

by a disposable pipette and transferred on a glass slide. Ethanol evaporated after

a few seconds and left the samples behind. For sonicated samples, the suspensions

were sonicated in a water bath for one hour and then the same method was applied

to prepare the samples for imaging. Figure 2.5 shows an image of aOG, dispersed in

ethanol and obtained using 20X magnification.
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Figure 2.5: Representative optical microscope image of sonicated as-prepared oxidized
graphite (aOG) taken with 20X magnification.
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Chapter 3

Graphite oxidation chemistry is

relevant for designing cleaning

strategies for radiocarbon dating

samples∗

We demonstrate that mixtures of graphite and lab-oxidized graphenic carbon materi-

als can be separated into three individual components (graphite, graphene/graphite

oxide (GO) and oxidative debris (OD)) by a series of aqueous treatments. Our re-

sults show that a key part of this separation procedure involves water treatment and

sonication near neutral pH in order to separate GO from OD. We show that the rel-

ative proportions of OD and GO – independent of any humic substances – can affect

the ability of oxidized graphite to be suspended in water, which can influence the

efficiency of the separation procedures we describe. We compare and contrast our

protocol with others that are widely used for cleaning archaeological charcoal prior
∗This chapter is used with the permission of the Royal Society of Chemistry (Amir Joorab Doozha

and Kristin M. Poduska, Anal. Methods. 11, 2880-2887, 2019.).
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to radiocarbon dating. Our protocol has potential applications for tailored cleaning

procedures for graphenic carbon materials, including the possibility of separating GO

from both OD and graphite, for radiocarbon dating purposes.

3.1 Introduction

Graphenic carbon material from archaeological samples is widely used for radiocarbon

(14C) dating. [1–3] However, datable material must be cleaned to remove carbonaceous

contaminants that contribute to specimen radiocarbon levels. Because different forms

of carbon-containing materials have very different chemistry, there are specialized

decontamination procedures for minerals (such as bone), organic materials (such as

collagen), and graphenic materials (such as charcoal). An extremely effective cleaning

method – that applies uniquely to graphenic carbon materials – involves a successive

acid-base-acid (ABA) treatment, [4], as shown schematically in Figure 3.1a. Previous

studies have concluded that the first concentrated acid rinse expands the spacing

between graphitic layers to remove intercalated counterions [5, 6] and mineralized

carbonates, [2] washing with concentrated base remove humic substances, [1, 2, 4],

and the last concentrated acid wash removes surface-adsorbed CO2. [2] Samples are

exposed to water between each step to rinse and neutralize pH. Although the ABA

cleaning method is used routinely in radiocarbon laboratories throughout the world,

poorly preserved specimens can be completely broken down during the water and base

rinses, thereby leaving no solid material for dating. To address this problem, it is an

ongoing area of research to investigate modifications and alternatives to the ABA

cleaning treatment that can be tailored for poorly preserved specimens. [2, 3, 7, 8]

The radiocarbon ABA treatment steps resemble the series of base and acid treat-

ments that are typically involved in producing graphene oxide from graphite. Graphite
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Figure 3.1: Schematic comparisons between (a) typical acid-base-acid (ABA) cleaning
for radiocarbon samples and (b) steps to separate graphene oxide (GO) and oxidative
debris (OD) from as-prepared oxidized graphite (aOG). All HCl and NaOH treatments
are at 1M.
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oxidation has drawn a great deal of attention from chemists since it improves the

ability to suspend graphenic carbon materials in water. [9,10] However, the oxidation

processes tend to yield graphenic particles with a range of different lateral dimen-

sions, thicknesses, oxidation levels, and surface terminations. [11, 12] For clarity, in

this work, we adopt nomenclature for different kinds of graphenic carbon particles

that was put forward by others. [13]

One of the most efficient ways to oxidize graphite is by chemical methods, [14,

15] as shown schematically in Figure 3.1b. As-prepared oxidized graphite (aOG)

is readily suspended in water, and it has been shown to consist of a combination

of graphene oxide (GO) along with highly oxidized, low molecular weight oxidative

debris (OD). [16, 17] In order to separate GO from OD, the as-prepared product can

be treated with concentrated base causing the GO to sediment while the OD remains

in the supernatant. [10, 17] OD can then be precipitated from the supernatant using

concentrated acid. [10,17]

Despite the similarities between the radiocarbon ABA cleaning procedure and

the GO isolation procedure, there is virtually no overlap between these two fields

in the literature. It is well documented that the ABA protocol separates humic

substances, which are highly oxidized carbonaceous species, from graphite. [1, 2, 4]

Previous radiocarbon-related literature shows evidence that oxidized graphite exists

in archaeological charcoal. [18] GO-related literature is more recent, and some reports

equate OD with humic substances. [10,19] However, no studies have investigated how

graphenic carbon material that is intentionally oxidized is affected during different

steps of the ABA cleaning procedure.

In this work, we show that there are synergies between (1) the chemistry involved in

removing OD and GO from aOG and (2) the chemistry involved in the ABA cleaning

of graphenic carbon materials used for radiocarbon dating. First, we show that a
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different cleaning sequence of water/sonication-base-acid (WSBA) helps to separate

oxidized graphite from graphite and oxidative debris. Next, we use existing knowledge

of OD chemistry to explain why water and base rinses could diminish the quantity

of graphenic carbon material that can be recovered after a standard ABA treatment.

Finally, we demonstrate that the relative proportions of OD and aOG – independent

of any humic substances – can affect the ability of oxidized graphite to be suspended

in water, which can affect the efficiency of such separation procedures.

3.2 Experimental

3.2.1 Oxidation of graphenic carbon materials

Starting materials were graphite flakes (Alfa Aesar, 99.8% purity, 325 mesh) or py-

rolyzed charcoal (mixture of fir and pine, heated in a nitrogen atmosphere from 30 ◦C

to 480 ◦C over 1 hour, then held at 480 ◦C for 20 min). All purchased chemicals were

ACS reagent grade: KMnO4 (99%), NaOH (97%), and H2O2 (30%) from ACP, with

HCl (38%) from Caledon, and H2SO4 (98%) from Merck. All reactions used ultrapure

water (Barnstead Nanopure Diamond, 18.2 MΩ·cm).

Our graphite oxidization protocol followed an improved Hummer’s method. [20,21]

Powdered graphite or charcoal (1 g) was stirred in 50 mL H2SO4 for 1 hour while

immersed in an ice bath to hold the temperature at 0 ◦C. Then, 3 g of KMnO4 was

added very slowly over 1 hour while keeping the temperature between 0 and 5 ◦C.

The mixtures were then removed from the ice bath and warmed to room temperature

during continuous stirring. After an hour, the mixtures became very thick and difficult

to stir. They were then heated to 40 ◦C and left for 1 hour under automatic stirring

(800 rpm). 80 mL of nanopure water was then added to the mixtures over a span

of 5 min, after which the temperature was increased to 90 ◦C, followed by stirring
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for another hour. Afterwards, 6 mL H2O2 was added to the mixtures along with 200

mL water, followed by 1 hour of stirring. At this point, the product from graphite

flakes transformed into a golden suspension, while the product from charcoal became

an opaque dark brown suspension. The mixtures were centrifuged at 8500 rpm for 10

min to separate the sediment from the supernatant. The sediments were washed three

times with nanopure water, yielding either a brown jelly (when derived from graphite

flakes) or a dark brown sludge (when derived from charcoal). Sediments were dried

in an oven overnight at 50 ◦C. In the remainder of this work, we refer to these dried

sediments as either as-prepared oxidized flake graphite (aOG) or as-prepared oxidized

charcoal (aOC).

3.2.2 Isolating GO and OD from oxidized graphenic carbon

materials

Sequential base and acid treatments facilitated separation of graphite/graphene oxide

(GO) and oxidative debris (OD) from aOG and aOC. [10,17]

0.05 g of brown aOG solid (or black aOC solid) was dispersed in 250 mL of 1M

NaOH and stirred for 1 hour under reflux conditions at 90 ◦C. Immediately after

adding the base, the aOG mixture became dark and opaque; the aOC became trans-

parent light brown. After the coagulants cooled to room temperature, centrifugation

separated the black solid residuals from the supernatants. The supernatant from aOG

was clear and colourless, while the aOC supernatant was transparent light brown.

The solid residuals were dispersed in water and centrifuged; after five such rinses, the

supernatant had neutral pH. The resulting sediment was GO, and the supernatant

contained OD in suspension.

250 mL of 1M HCl was added to the OD-containing supernatants obtained after

both base washing and neutralization, followed by 30 min of stirring and oven-drying
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at 60 ◦C overnight. The powder that remained was OD (white from the aOG precur-

sor, and pale yellow from the aOC precursor).

3.2.3 Specimen characterization

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra were

recorded using a Bruker Alpha II spectrometer (diamond crystal, 36 scans, 4 cm−1

resolution). UV-VIS spectra were acquired with a Varian Cary 6000 spectrometer

with 0.1 second average time, 1 nm resolution, and 600 nm/min scan rate. Repre-

sentative particle sizes were assessed from optical microscopy images (Leica, 5X and

20X NPLAN objectives) that were analyzed using Fiji particle analysis routines. [22]

3.3 Results and discussion

3.3.1 Separating mixtures with WSBA

In an archaeological charcoal sample, one might expect to find a mixture of graphite,

GO, and OD, along with other foreign material. As a simpler test case, we outline

a protocol to separate a mixture of graphite, aOG, and OD. This water/sonication-

base-acid (WSBA) procedure is shown schematically in Figure 3.2, and summarized

in Table 3.1.

Infrared spectroscopy allowed us to track structural changes in individual com-

ponents, and also provided a qualitative way to monitor the efficacy and range of

product variability at each separation step. Figure 3.3 compares ATR-FTIR spectra

for each component at different stages of the WSBA procedure, displaying represen-

tative spectra from three different separation experiments using the same starting

materials. These spectra are discussed below in the context of each stage of the

separation protocol.
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Action Description
0. Starting mixture graphite (0.02 g) + aOG (0.02 g)

+ nanopure water (10 mL)
1. Sonication 60 min
2. Filtration 8 µm pore size paper (Whatman)
3. Dry solid (1), retain 8-12 hours at 50 ◦C
4. Base treat the filtrate 1M NaOH (pH=13, 20 mL) for

1 hour at 100 ◦C
5. Filtration 8 µm filter paper (Whatman)
6. Dry solid (2), retain 8-12 hours at 40 ◦C
7. Acidify the filtrate 1M HCl (pH=2, 20 mL)
8. Dry solid (3), retain 12 hours at 80 ◦C

Table 3.1: A summary of the water/sonication-base-acid separation protocol. This
produces three different solids: (1) as-prepared oxidized graphite (aOG), (2)
graphite/graphene oxide (GO), and (3) oxidative debris (OD).

sonication
GO

(sediment 2)

OD
(suspension)

HCl
OD

(sediment 3)

graphite

+

aOG

H2O

graphite
(sediment 1 )

aOG
(suspension)

NaOH

Figure 3.2: Water/sonication-base-acid (WSBA) protocol for separating GO (sedi-
ment 2) from graphite (sediment 1) and OD (sediment 3).

The first step in our WSBA protocol is sonication in water. Others report that,

during sonication, aOG breaks into smaller pieces more easily than graphite breaks.

[23,24] There is a strong precedent in the literature for using sonication to alter the size

of oxidized graphenic carbon. [25–27] We exploit this to separate the larger graphite

pieces from the smaller aOG pieces by filtration (Step 2 in Table 3.1).

Our IR data suggest that this combination of sonication and filtration works very

well to extract graphite. Reports by others [28, 29] show that graphite flakes do not

exhibit many distinguishable IR peaks, and our data (Figure 3.3a) is consistent with

this. Weak absorption bands at 3400 and 1600 cm−1 are due to O-H stretches and
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to the extracted component after the noted WSBA step. The plot legends indicate
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to (b) and (c).
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C=C vibrations, respectively. [29] Figure 3.3a shows that there is no change in the IR

peak positions between the starting graphite flakes (blue spectra) and the graphite

after sonication (red spectra). Furthermore, the sonicated, large-size-filtered solid

(orange spectra) does not show any additional peaks in the IR spectrum.

Unlike graphite, the aOG that exists in the filtrate (Step 2 in Table 3.1) shows very

distinctive IR peaks (Figure 3.3b) due to the formation of oxygen-related functional

groups such as carboxyl, alcohol, epoxide, and carbonyl. The peak positions for our

aOG specimens are consistent with results from others. [17, 20, 21, 30] The peaks at

2800 and 2900 cm−1 are due to CH2 symmetric and asymmetric stretching modes,

respectively. The peak at 1600 cm−1 is associated with water bending, while the

1300 cm−1 peak results from C-O stretches. The broad band from 2400 to 3800 cm−1

is related to O-H stretching modes, the sharp peak near 1700 cm−1 is associated

with carbonyl groups, and the peak near 1030 cm−1 is related to C-O bonds in ester

and carboxylic acid. Others have shown that size of GO flakes, and thus changes

to the edge-to-area ratio, will affect the relative proportion of edge-groups (COOH)

and in-sheet defects (C-O), which contributes to variations in relative FTIR peak

intensities. [26, 27] Indeed, we observed changes in FTIR relative peak intensities

before and after sonication. We note that we cannot rule out the possibility that

some smaller graphite pieces exist and remain mixed with the aOG in the Step 2

filtrate. Similarly, it is possible that a small amount of aOG remains attached to the

filter paper.

Once the graphite solid is removed, the filtrate is then treated with a strong base

(Step 4 in Table 3.1) to dissociate GO (which is larger and less hydrophilic) from

OD (which is smaller and tends to remain in suspension). [10, 17, 31] We note that

these experimental conditions (NaOH at pH 11 and 25 ◦C) are not strong enough

to trigger any reduction processes, and merely serves to decouple aOG into its two
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components: GO and OD. Figure 3.3c shows that GO obtained after base treatment,

filtration, and drying (Steps 4, 5, 6 in Table 3.1) has similar IR peak positions and

relative intensities whether with or without exposure to sonication. The peak intensity

variations that occur in the fingerprint region between 1000 and 1300 cm−1 vary

from work to work and from sample to sample, regardless of exposure to sonication.

[12,16,17,20] The vibrational modes that contribute to peaks in this region are difficult

to identify definitively because different oxygen-based functional groups contribute to

many overlapping peaks. However, a typical FTIR spectrum for GO shows a broad

peak near 3400-3700 cm−1 for O-H stretching, a peak near 1720 cm−1 due to carbonyl

vibrations, another peak near 1600 cm−1 for water bending modes, and a peak near

1040 cm−1 for C-O. We note that peaks at 2800 and 2900 cm−1 are associated with

symmetric and asymmetric stretching modes [32] of CH2 and have been reported in

GO samples, [33–35] but could be influenced by sonication. [36]

To extract the remaining solid component (OD), the filtrate is acidified and dried

(Steps 7, 8 in Table 3.1) by using chemistry that is well documented in the literature.

[10, 17, 31] Figure 3.3d shows that the IR spectra of OD are similar with or without

exposure to sonication. Oxidized functional groups (C-OH and O-H) can cause the

sharp peaks at 1100 and 3200 cm−1 for OD. [10,37]

We note that filter paper alone is not sufficient to separate GO from OD; both

will pass through filter paper. OD (like GO) has a variable chemical composition and

size. It is well documented in the literature that the main difference between them is

that OD is smaller and more highly oxidized than GO. It is also well established that

in neutral and alkaline solutions, OD complexes with GO. When aOG is added to a

highly alkaline solution, it dissociates into its two constituents: the GO sediments,

while the OD remains suspended.

As an overall comparison of the WSBA protocol, Figure 3.4a compares IR spectra
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for the starting mixture (Step 0) with spectra for the three extracted solids: graphite,

GO, and OD (from Steps 3, 6, and 8, respectively). It is noteworthy that the sum

of the three spectra for the extracted solids would not be identical to spectra for

the starting mixture. One of the most obvious discrepancies occurs in the range of

1500-1700 cm−1 (Figure 3.4a), where a definitive GO peak does not align with any

spectral features from the starting mixture. There are several contributing factors to

these discrepancies.

First, the pH history of GO affects its IR spectrum. Figure 3.4b shows that there

are many changes to peak positions and relative intensities after GO is exposed to

different pH conditions (while in aqueous suspension) and then dried. After exposure

to 1M NaOH, GO peaks near 1600 and 1400 cm−1 increase, while spectral features

near 1700 cm−1 decrease. The relative peak intensities reverse after exposure to

1M HCl. Such pH-dependent changes have been noted by others who monitored

the IR spectra of charcoal after ABA treatments, [2] and also by others investigating

water-GO interactions. [12] Interpreting these pH-dependent peak intensity changes is

surprisingly complex. For graphenic carbon materials, IR peaks have been attributed

to carbonyl vibrations [12] (near 1700 cm−1), C=C vibrations [29, 38, 39] (near 1600

cm−1), and stretching modes of COO– or C-OH (near 1400 and 1200 cm−1). [2, 39]

However, a bending mode of water also occurs in this region [11,12,40] (1609 cm−1), as

do S=O stretching modes. [30] In our case, it is possible that sulfates were introduced

at epoxide groups [30] while in the presence of H2SO4 during the initial preparation

of the oxidized graphite starting material.

If one naively assumes that changes in relative IR peak intensities near 1600 cm−1

are affected solely by the relative number of these different chemical moieties, then one

might conclude from Figure 3.4b that a pH increase removes carbonyl groups and in-

creases water, COO– , C-OH, or S=O groups. However, detailed studies by others [12]
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that correlated IR spectra with NMR in isotopically-altered samples suggest that such

changes are likely caused by IR absorbance differences of water due to a reorientation

in the presence of Na+. Thus, even though the changes in relative IR peak intensities

are consistent across different specimens and are clearly correlated with the sample’s

pH history, it is not appropriate to infer detailed structural information from IR peak

intensity changes alone.

3.3.2 Interactions between GO and OD in water

Since the WSBA separation procedure relies on separating components by sedimenta-

tion, there is the potential to fine tune the separation procedure if one can change the

amount or stability of the material in suspension. We show that the relative quantity

of OD plays an important role in the ability of aOG to remain suspended in water

over time.

For context, previous studies have shown that chemical oxidization produces GO

and OD in 2:1 ratio, and that OD adheres to GO by hydrogen bonding to making

the as-prepared complex easy to suspend in water. [10] Because both OD and GO

react readily with water and can exist in a range of sizes, there is no fixed chemical

structure or composition for either OD or GO. [16]

In our experiments with enriched OD levels, 0.03 g of aOG was dispersed in 50

mL of nanopure water, then divided into 15 mL aliquots, with 0.5 g of OD added

(extracted from either aOG or aOC). These mixtures, along with a control sample

containing only aOG, were stirred at 400 rpm for 15 min and then left standing for

one day.

Figure 3.5 shows different time-dependent sedimentation behavior with and with-

out enriched OD levels. After one day, an aOG suspension (Figure 3.5a) shows a dark

opaque sediment that is clearly separated from a translucent brown supernatant.
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Under the same conditions, the presence of additional OD (Figure 3.5b) causes a

uniformly coloured translucent suspension with no visible sediment. Based on these

results, it is tempting to assume that additional OD makes aOG more soluble in water.

However, lengthening the sedimentation time to 7 days (Figure 3.5c,d) demonstrates

that OD does not dissolve aOG, but instead helps it to aggregate and precipitate out

over time. To help support this conclusion, representative UV-Vis spectra for these

different supernatants are compared in Figure 3.5e. The aOG (solid black curve) has

a distinctive peak near 220 nm and a shoulder near 300 nm, which others have at-

tributed to different electronic transitions within graphenic carbon materials. [15,20]

These characteristic spectral features appear in supernatants from unenriched aOG

after 1 day (solid blue curve) and 7 days (dashed blue curve), as well as in OD-enriched

mixtures after 1 day (solid red curve). However, supernatant from OD-enriched mix-

tures after 7 days (dashed red curve) have no distinctive UV-Vis features, which is

consistent with the absence of aOG in the supernatant. [31]

This simple enrichment experiment is important for several reasons. First, our

results demonstrate that the relative proportions of OD and aOG – independent of

any humic substances – can affect how readily oxidized graphite stays in suspension

over time. This means that time and OD enrichment protocols could – in principle –

be developed to help separate graphite from OD and GO.

3.3.3 Comparing WSBA to radiocarbon sample cleaning pro-

tocols

In this work, we apply a water/sonication-base-acid (WSBA) treatment, which in-

cludes sonication during the water treatment, in order to separate a mixture of

graphite, GO, and OD. This mixture is a simplistic model system that mimics the

types of graphenic carbon materials that could be present in fossilized charcoal. This
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and seven days (c,d). Plot (e) compares representative UV-Vis spectra of fresh aOG
suspension (black curve) with supernatants of aOG (blue curves) and OD-enriched
aOG (red curves), after sitting for 1 day (solid curves) or 7 days (dashed curves).

is the first time that graphenic carbon chemistry [10, 17] been applied rationally to

the separation of graphite-based materials related to radiocarbon dating applications.

We are not the first to use water treatments to separate charcoal from other

carbonaceous material. In an earlier study, others found that significant weight loss

can occur after water treatment of fossil charcoal. [2] They attributed the weight

loss to the removal of poorly preserved (oxidized) graphite, citing earlier work that

suggested that fossil charcoal can be oxidized during weathering to produce carboxyl

groups. [1, 18] These earlier studies also suggested the possibility of OD formation

in archaeological samples, proposed in terms of "self-humification." [18] These studies
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from the radiocarbon literature [1,2,18] pre-date much of the GO and OD separation

literature that informs our WSBA protocol. [10, 12,17]

In a broader context, the reason that our experiments, and an explicit link between

GO/OD literature and ABA literature, are important, is that they introduce informed

strategies to capture and separate GO and OD from graphite. We are the first to

propose this. This is significant because it opens the door for new experiments that

could test the viability of using GO or OD as a material for radiocarbon dating. In

principle, the oxidation processes that produce GO and OD from graphitic materials

would not alter a specimen’s original (datable) carbon. However, this idea has not

been broached in the radiocarbon dating literature. The current norm is that oxidized

graphite should be removed before dating. For example, one modification of the ABA

procedure is ABOx, wherein an oxidation process (based on K2Cr2O7 and H2SO4)

replaces the last acid (HCl) treatment in the usual ABA protocol, in order to remove

oxidizable carbon before dating. [3, 7]

Although it is logical that graphite would remain the preferred material for ra-

diocarbon dating, some samples disintegrate dramatically after base (NaOH) washes

during the standard ABA treatment. [2] For such poorly preserved samples wherein

severe graphite oxidation is suspected, our WSBA protocol could be helpful for cap-

turing additional graphenic carbon material, in the form of GO and/or OD. A sub-

stantial number of future experiments would be necessary to explore the conditions

under which our WSBA treatment could help extract graphite-based materials that

produce reliable radiocarbon dates.

One of the main operational differences between our WSBA separation procedure

and other ABA-based cleaning procedures for datable radiocarbon materials is our

use of sonication (Step 1 in Table 1). We explored a range of different experimental

conditions to determine that filtration of suspensions (pH 5-8) and/or centrifugation
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(2000-8500 rpm, 1-15 min) on their own are not effective for separating graphite flakes

from aOG. We found that the most effective method was to centrifuge (8500 rpm for 10

min) when the aqueous solution was strongly alkaline (pH= 11), followed by filtering

(8 µm pore size).

As described above, sonication is known to break aOG into smaller pieces more

easily than graphite. [23–27] Optical microscopy images of our samples before and

after sonication confirm that this holds true in our experiments (Figure 3.6). We

note that these representative images do not give truly comprehensive information

about the distribution of sizes within the full sample, but they do provide evidence

that sonication reduces the particle sizes of aOG well below the pore size of our

filter paper (8 µm diameter, ∼60 µm2 cross-sectional area). For example, statistical

analyses of particle sizes shown in Figure 3.6 indicate that sonication reduces the

median particle area of graphite from ∼110 µm2 to ∼80 µm2, and reduces the median

particle area of aOG from ∼110 µm2 to ∼10 µm2. This illustrates why it is feasible

to separate the larger graphite pieces from the smaller aOG pieces using filtration.

Based on our FTIR data (Figure 3.2), filtration-based size separation is very effective

on our simplistic test mixture.

However, applying this method successfully to archaeological samples would likely

be much more challenging. Factors such as oxidation method, reaction time, oxidants,

pH, and sonication are known to affect the sizes of aOG particles [41–45], ranging from

less than 1 µm to greater than 200 µm. [26,38,46,47] The stability and dispersibility

of aOG in water are strongly associated with the lateral size of aOG and C-O content,

and some studies have correlated zeta potential (effective surface charge) data with the

suspension behaviours of aOG. [27] Thus, since any oxidation within an archaeological

charcoal sample will undoubtedly occur in a very different manner from the harsh

chemical oxidation that we used in our simplistic test model, the sonication step
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(c) sonicated graphite

(a) graphite (b) aOG

(d) sonicated aOG

Figure 3.6: Representative optical microscopy images of (a) graphite, (b) aOG, (c)
sonicated graphite, and (d) sonicated aOG. The opaque graphite particles (a,c) show
greater contrast than the optically transparent aOG (b,d). Scale bars represent 100
µm in all images; in (d), the image is magnified to show particle outlines more clearly.

would likely have different effects on any given archaeological sample.

It is also worth noting that cleaning procedures for radiocarbon dating samples

must be designed to avoid introducing different sources of carbon into the specimen.

For example, samples are never handled with bare hands, and all stages of the cleaning

involve aqueous treatments (to avoid contact with organic solvents). In the case of

the WSBA procedure outlined here, we use carbon-based filter paper at two different

stages (Steps 2 and 5 in Table 3.1). If future studies indicate a need to avoid contact

with filter paper, we note that others have used a range of methods to isolate aOG

particles based on size differences, including centrifugation, magnetic stirring, density

gradient ultracentrifugation, and electrophoresis. [47–49]

3.4 Conclusions

In this work, we show synergies between (1) the chemistry involved in removing

graphenic oxide (GO) and oxidative debris (OD) from oxidized graphenic carbon

63



materials, and (2) the chemistry involved in ABA cleaning of graphenic carbon ma-

terials used for radiocarbon dating. Drawing on literature from the subfields of

GO chemistry and radiocarbon dating, we introduce a different cleaning sequence

of water/sonication-base-acid (WSBA) that is designed to separate graphite from GO

and OD. Furthermore, we demonstrate that the relative proportions of OD and aOG

– independent of any humic substances – can affect the ability of oxidized graphite to

be suspended in water, which can effect the efficiency of the separation procedures we

describe. In principle, this could be used to fine tune separation procedures during

sample cleaning for radiocarbon sample preparation. Finally, we use the chemistry of

OD to explain why WSBA could be more advantageous than traditional ABA clean-

ing procedures in some situations, such as the case when water and base treatments

diminish the quantity of poorly preserved (oxidized) graphite that could be recov-

ered after a standard ABA cleaning treatment. Looking forward, it is interesting to

speculate whether GO and OD could be viable materials for radiocarbon dating, if

extracted from archaeological charcoal samples.
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Chapter 4

Identifying and Extracting

Oxidized Graphenic Materials from

Environmentally Altered Sources

of Graphite

Oxidized graphenic materials like graphene oxide (GO) and oxidative debris (OD) in

archaeological charcoal, if formed as graphite oxidizes over time, could be valuable

sources for radiocarbon dating because their 14C levels would be the same as the

parent graphite. However, no studies have investigated whether GO and OD exist

in archaeological charcoal. Here, we try to identify and separate oxidized graphenic

materials from archaeological charcoal. This result is important because it is the first

step toward a method to extract oxidized graphenic materials from archaeological

charcoal for radiocarbon dating analyses.
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4.1 Introduction

Earlier studies found that graphite, humic acid (HA), and minerals are present in

archaeological charcoal, but only the graphite portion is cleaned and used for radio-

carbon dating [1–3]. However, we propose that oxidized graphenic carbon could also

be used because the 14C levels in these materials would be the same as the graphite

from which it was derived. To date, no studies have explicitly investigated the pres-

ence of GO and OD in archaeological charcoal. We do so in this chapter.

In Chapter 3, we used chemistry from the literature to show that moderately

oxidized (GO) and highly oxidized (OD) graphenic carbon materials can be separated

using a sequential base and acid treatments. We also developed a method to separate

different graphenic carbon materials from a standard mixture of graphite and as-

prepared oxidized graphite (aOG). Our results confirm an acceptable separation for

this test mixture. However, we want to see whether this method works for a naturally

occurring mixture of carbon-based materials in archaeological charcoal. An important

challenge regarding the preparation of uncleaned archaeological charcoal is removing

contaminants like soil, sand, and roots from the sample. Sand and tree roots can

be physically removed from the sample, while minerals and humic materials, which

can penetrate between graphite layers, need chemical treatments. Others have used

aqueous solutions at different pH values to eliminate minerals and humic materials

[1, 2, 4]. The chemical separation, however, is harder and more challenging than the

physical one since acidic and alkaline treatments affect the charcoal adversely [2].

In this part of the research, we use Raman and IR spectroscopy along with pH data

to look for the presence of oxidized graphenic materials in archaeological charcoal.

We use our water-sonication-base-acid (WSBA) method (described in Chapter 3)

to extract oxidized graphenic materials from the archaeological charcoal. Since the

composition of oxidized graphenic carbon is unclear in archaeological charcoal, we will

74



classify the WSBA products as follows: (1) least oxidized, (2) moderately oxidized,

and (3) highly oxidized.

4.2 Experimental

4.2.1 Materials

In this chapter, we study two different sources of graphenic carbon materials: (1)

reference and (2) environmentally-altered sources. Graphite and GO are the repre-

sentatives of the first group, while archaeological charcoal and coal are examples of

the second one. Graphite flakes came from Alfa Aesar, 99.8 percent purity, 325 mesh.

GO was prepared from graphite flakes using a modified Hummer’s method [5, 6] as I

described in Chapter 2. The SRHA was obtained from the International Humic Sub-

stances Society, Denver, CO (USA) and Sigma Aldrich HA was from St. Louis, MO

(USA). Archaeological charcoal was obtained from Dr. Lisa Rankin (MUN Archaeol-

ogy), Labrador, Canada (as described in Chapter 2). The archaeological sample was

a mixture of charcoal, sand, soil, and dry leaf, which was pulled out from a campfire.

The black part, which we identified as charcoal, was physically separated from the

other parts and was ground by mortar and pestle to obtain a fine powder.

4.2.2 Separation of oxidized materials using WSBA

We used our water, sonication, base, acid (WSBA) protocol, which was described in

Chapter 3, to isolate highly oxidized materials from less oxidized ones in our archae-

ological sample. This procedure is summarized in Table 4.1. 0.20 g of charcoal was

crushed using a mortar and pestle and added to 20 mL of nanopure water followed

by sonication for 60 min. The black-dark brown suspension was filtered by 8 µm pore

size Whatman filter paper, leaving solid 1 and a light brown filtrate. The filtered
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Action Description
0. Starting mixture Archaeological charcoal (0.2 g)

+ nanopure water (20 mL)
1. Sonication 60 min
2. Filtration 8 µm pore size paper
3. Dry solid 1, retain 8-12 hours at 40 ◦C
4. Base treatment of the filtrate 1M NaOH (pH=13, 100 mL) for

1 hour at 100 ◦C
5. Filtration 8 µm pore size paper
6. Dry solid 2, retain 8-12 hours at 40 ◦C
7. Acidify the filtrate 1M HCl (pH=2, 100 mL)
8. Dry solid 3, retain 12 hours at 80 ◦C

Table 4.1: A summary of water/sonication-base-acid separation protocol on archaeo-
logical charcoal. This produces three different solids: (1) least oxidized, (2) moder-
ately oxidized, and (3) highly oxidized materials.

residual was dried in an oven overnight at 40 ◦C. The light brown filtrate was treated

with 100 mL of 1M NaOH at 100 ◦C for one hour. After the base treatment, the

mixture was filtered using the filter paper, and solid 2 was dried overnight at 40 ◦C.

Then, the filtrate was acidified with 100 mL of 1M HCl followed by stirring at 800 rpm

for 30 min. The solution was dried at 80 ◦C for 12 hours to yield solid 3. Data pre-

sented here are based on two different WSBA separations on the same archaeological

charcoal sample.

4.2.3 Characterization methods

Raman measurements used a Renishaw spectrometer (632 nm excitation, 20X ob-

jective, 11 mW power, exposure time 30 s). Spectra were collected in the range of

100-3000 cm−1. Attenuated total reflectance Fourier transform infrared (ATR-FTIR)

spectra were recorded using a Bruker Alpha II spectrometer with a diamond crystal,

36 scans, and 4 cm−1 resolution in the range of 4000-400 cm−1. The pH measurements

were done using Schott Instruments Lab 860 pH meter calibrated by three buffers at
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pH 4, 7, and 11.

4.3 Results and discussion

In this section, we first look for the presence of oxidized graphenic materials in un-

cleaned archaeological charcoal. In principle, carbonaceous contaminants like HA

should also exist in archaeological charcoal. Archaeologists have used base treatment

to remove HA from graphenic materials in different archaeological charcoal samples

before radiocarbon measurement [2, 4]. We analyze the uncleaned sample because

the aqueous cleaning treatments at different pH also remove the oxidized graphenic

carbon that we want to characterize. Then, we try to separate graphenic materials,

with different levels of oxidation, from the archaeological charcoal.

4.3.1 Uncleaned archaeological charcoal suspension

Oxidized graphite suspensions have properties that can be easily identified by visual

observation and pH analysis. We use them to check if oxidized graphite exists in

archaeological charcoal.

Figure 4.1 compares suspensions of aOG, as a reference for oxidized graphite,

with an archaeological charcoal sample. A typical suspension of aOG is brown and

translucent. The aOG suspensions settle out after one day, forming darker opaque

sediment and translucent brown supernatant. The suspensions of graphite flakes

are black and opaque, and they settle out quickly in one hour, resulting in a clear,

colourless supernatant.

Visual observations suggest that archaeological charcoal in water behaves more

like graphite than aOG because the suspension of archaeological charcoal is black and

opaque, and settles out quickly like graphite suspension.
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Figure 4.1: Images of (left) lab-synthesized aOG and (right) archaeological charcoal
suspensions taken immediately after they were made.

Table 4.2: The pH variations of as-prepared oxidized graphite (aOG), humic acid
(HA), and archaeological charcoal suspensions in nanopure water. The second row
shows data from this project, while the third one shows data from the literature.

Samples water water+aOG water+HA water+charcoal
pH (my data) 6.5±0.3 3.3±0.1 7.2±0.2 4.6±0.1
pH (literature) 6.6±0.1 [7] 3.7±0.2 [8] 6.8±0.2 [9] 4.5±0.5 [4]

pH measurements on these suspensions indicate that oxidized graphite might be

present because the uncleaned archaeological charcoal suspension decreases the pH of

water. Table 4.2 shows that the pH of nanopure water (6.5) decreases to 3.3 and 4.6

after adding aOG and archaeological charcoal, respectively. Since humic acid (HA)

could also be present in archaeological charcoal, we decided to measure the pH of two

different references of HA (Suwannee River and Sigma Aldrich) to see how it affects

the pH of nanopure water. Unlike aOG, HA references increase the pH of nanopure

water to 7.2 and 7.3. pH measurements were repeated twice with the same samples.

Our assessments of the pH analyses on these suspensions suggest that oxidized

graphite might be present in the uncleaned archaeological charcoal since it reduced

the pH of water like the aOG even though the magnitude of the decrease is smaller
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than aOG. aOG degrades in water generating H+ ions, resulting in the reduction of

pH [8]. We speculate this could be due to a mixture of HA with oxidized graphite in

our sample.

4.3.2 Uncleaned archaeological charcoal (Raman analysis)

Next, we compared the Raman spectra of archaeological charcoal with the spectra of

reference graphenic carbon materials to look for signatures of oxidized graphenic ma-

terials. Figure 4.2 (top) compares Raman spectra of graphite flakes, lab-synthesized

GO, and the archaeological sample. If we zoom in the region between 1100 and 1800

cm−1, very broad D and G peaks are observed for the archaeological charcoal sample,

which encompass both graphite flakes and GO peaks (Figure 4.2 (bottom)). The

origins of these peaks for graphenic carbon materials and information about their

positions and relative intensity are provided in Chapter 2 (Section 2.3.2).

The high background intensity in the archaeological charcoal spectrum indicates

the presence of fluorescent material in the sample [1]. Figure 4.2 (top) depicts a

Raman spectrum of OD, obtained from aOG, that only shows a high background

intensity with no graphite related peaks (i.e. D and G peaks). Since the Raman

spectrum of HA also shows high background intensity [1], we are unsure if we have

HA or OD, or a mixture of both, in the uncleaned archaeological charcoal.

Our assessments of these solid phase analyses by Raman suggest that a mixture of

graphenic materials (with different levels of oxidation) along with fluorescent materials

are present in the uncleaned archaeological charcoal. This result is consistent with pH

analysis, where we suggested a mixture of HA and oxidized graphenic carbon might

exist in the sample.
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Figure 4.2: (top) Representative Raman spectra of (black) graphite flakes, (orange)
archaeological charcoal, (blue) lab-synthesized GO, and (red) lab-synthesized OD in
region between 400-3000 cm−1. (bottom) Normalized spectra of the samples in the
region from 1100 to 1800 cm−1. Black lines show D and G peaks for graphite at 1330
and 1570 cm−1, respectively.
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Figure 4.3: The ATR-FTIR spectra of (red) lab-synthesized OD and (blue) GO, and
(black) archaeological charcoal.

4.3.3 Uncleaned archaeological charcoal (IR analysis)

In this section, we compare the ATR-FTIR spectra of reference oxidized graphenic

materials with archaeological charcoal to monitor the presence of GO and OD in

archaeological charcoal (Figure 4.3). Detailed information about IR peak positions

for graphenic carbon materials is provided in Chapter 2 (Section 2.3.3).

ATR-FTIR spectra of archaeological charcoal show peaks at 3400 (O-H vibra-

tion), 2800 and 2900 (C-H vibration), and 1619 (C=C vibration) cm−1 similar to lab-

synthesized GO. The vibrational modes that contribute to the peaks in the fingerprint

region between 1000 and 1400 cm−1 for archaeological charcoal and lab-synthesized

GO do not match very well. It is also surprising that our most oxidized material shows

virtually no evidence of O-H related IR peaks. In Chapter 3, however, we showed that

the relative peak intensity and peak position in this region are difficult to interpret,

and they are different from sample to sample because there are a series of overlapping

bands and oxygen functional groups. Here, we discuss another important challenge
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to interpret IR data of graphenic carbon materials after acid and base treatments.

Acid and base are used to separate GO and OD from oxidized graphite in our refer-

ence samples. High and low pH also causes reversible changes to the IR signatures of

oxidized graphenic carbon materials.

Figure 4.4 (top) shows the ATR spectra of archaeological charcoal after sequential

acid-base-acid (ABA) treatments. Our results demonstrate that the peak positions

and intensities did not change after the first acid (1M HCl) treatment, while the peaks

near 1600 and 1400 cm−1 increase after exposure to 1M NaOH, and the one near 1700

cm−1 decreases. However, when the sample is treated with 1M HCl after the base

treatment, spectral features near 1600 and 1400 cm−1 decrease and the peak at 1700

cm−1 increases. The relative peak intensity fluctuations near 1400, 1600, and 1700

cm−1 are more obvious than in other regions of spectrum.

We also observe a pH dependency on the IR spectral features of graphite. Fig-

ure 4.4 (bottom) depicts IR spectra of graphite after ABA treatment. Our results

demonstrate that a peak near 1400 cm−1 appears after the base treatment and then

disappears after the subsequent acid wash. This peak is assigned to the vibration

of COO– groups, but the reason why this peak appears reversibly is unclear. We

assume that the COO– peak is dominant due to stronger molecular dipole moment

of NaCOO compared with HCOOH.

Both archaeologists and chemists demonstrate that IR peaks for reference and

environmentally-altered sources of graphenic carbon materials change at different pH,

and this behaviour occurs indefinitely if the sample is treated with acid and base

sequentially [2, 8, 10]. It might be first assumed that changes in relative IR peak

intensities near 1700, 1600, and 1400 cm−1 are due to changes in the structure of

graphenic materials. However, earlier studies by Dimiev et al. suggested that such

changes are likely caused by different IR absorbance of water due to a reorientation in
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Figure 4.4: Representative attenuated total reflectance (ATR) infrared spectra of
(top) archaeological charcoal and (bottom) graphite flakes after acid-base-acid (ABA)
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1600, and 1380 cm−1 for archaeological charcoal, and near 1420 cm−1 for graphite
flakes, changes at different pH.
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the presence of Na+ [8]. Therefore, the interpretation of IR data would be unreliable

if there is no information about the pH history of the sample.

Despite challenges in the interpretation of IR relative peak intensities for graphenic

materials, our assessments of these solid phase analyses suggest that oxidized carbon

materials exist in the uncleaned archaeological charcoal. Our pH and Raman analyses

suggest that at least a portion of the oxidized carbon is oxidized graphenic material.

However, we cannot rule out the possibility that carbonaceous contaminants like HA

are also present.

4.3.4 WSBA on archaeological charcoal

In Chapter 3, we demonstrated that the WSBA treatment can separate a mixture

of graphite and lab-prepared oxidized graphite into three individual components

(graphite, GO, and OD). Here, we show that three groups of oxidized graphenic

components are also obtained using WSBA on archaeological charcoal. Figure 4.5

compares the ATR spectra of reference graphite, GO, and OD with the least, mod-

erately, and highly oxidized graphenic materials isolated from archaeological charcoal

using our WSBA technique.

Solid 1 (Table 4.1) is the least oxidized graphenic materials, the most like graphite

(Figure 4.5a). The least oxidized graphenic materials show peaks near 2800 and 2900

cm−1 (symmetric and asymmetric vibrations), 1619 cm−1 (O-H bending vibration),

and a broad peak between 1000 and 1300 cm−1 (C-O, C-OH, C-O-C vibrations). The

least oxidized graphenic materials stayed in the filter paper. The moderately oxi-

dized graphenic materials obtained from archaeological charcoal (Figure 4.5b) shows

peaks at 3400 (O-H vibration), 2800 and 2900 (C-H vibration), 1619 (C=C vibra-

tion), and 1400 (COO− vibration) cm−1 similar to lab-synthesized GO. Highly oxi-

dized graphenic materials extracted from archaeological charcoal are similar to lab-
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Figure 4.5: (a) Representative ATR-FTIR spectra for (black) graphite flakes and (red)
least oxidized graphenic materials obtained from WSBA on archaeological charcoal.
(b) Representative ATR-FTIR spectra for (black) lab-synthesized GO and (red) mod-
erately oxidized graphenic materials obtained from WSBA on archaeological charcoal.
(c) Representative ATR-FTIR spectra for (black) lab-synthesized OD and (red) highly
oxidized graphenic materials extracted from archaeological charcoal.
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synthesized OD (Figure 4.5c). Peaks appear at 3400, 1400, and 1100 cm−1 for highly

oxidized graphenic materials. Again, it is puzzling that O-H related IR peaks are

diminished in the most oxidized samples. Our results confirm that oxidized graphenic

materials with three different levels of oxidation can be extracted from our archaeo-

logical charcoal using our WSBA protocol.

As I mentioned earlier, we also suspect that HA is in archaeological charcoal. In

the first step of the WSBA protocol, archaeological charcoal is mixed with nanopure

water (pH=6.5) and sonicated. HA is not soluble in neutral or low pH [4]. Thus,

we suggest that HA could remain in solid 1 (Figure 4.51) obtained from WSBA on

archaeological charcoal, along with least oxidized graphenic materials. If we assume

that some portions of HA are dissolved in water after the sonication process, the

subsequent strong base and acid treatments will keep the HA in the liquid phase.

Then HA would end up in the OD suspension.

Figure 4.6 shows the IR spectra of two different reference HAs (EAS5-AAA and

Soil Masmiya) [11], and our oxidized materials obtained from WSBA on archaeolog-

ical charcoal. Despite similarity in the peaks that appear at 2900 and 2800 cm−1

(CH2 symmetric and asymmetric vibrations), there are extremely different features

near 3400 (O-H vibration), 1700 (carbonyl groups vibration), and 1619 cm−1 (O-H

bending vibration) between oxidized graphenic materials and HA (Figure 4.6a, b, and

c). It is important to note that the HA standards are measured via transmission IR

spectroscopy, while our data are collected in ATR geometry. These different geome-

tries cause small peak shifts along with changes in peak widths and shapes. These

differences originate from the different indices of refraction between the diamond ATR

crystal and the sample. Nevertheless, our IR results demonstrate that either HA is

not present in our archaeological sample, or there is not enough HA in the mixture

to be detected by IR spectroscopy.
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Figure 4.6: Representative ATR data is in red for least (a), moderate (b), and highest
(c) oxidized materials obtained from WSBA on archaeological charcoal. We compare
these with transmission IR spectra of humic acids (black) from two different sources
from the Infrared Spectra Library of the Kimmel Center for Archaeological Science
Infrared Standards Library, Weizmann Institute of Science [11] (HA reference 1 is
EAS5-AAA and HA reference 2 is Soil Masmiya).
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4.4 Conclusions

In this chapter, we used vibrational spectroscopy on solids and pH analysis on suspen-

sions to see what kinds of oxidized carbon materials, if any, exist in an archaeological

charcoal sample. pH analyses suggest that oxidized graphenic material is present in

our archaeological charcoal. Although infrared and Raman spectra suggest that a

mixture of oxidized carbon materials are present in archaeological charcoal, they do

not provide enough information to confirm if HA also exists in the sample. From our

archaeological charcoal sample, we separated materials with three different oxidation

levels: the least, moderate, and the highest. IR analyses suggest that the separated

materials are primarily composed of oxidized graphenic materials, but they cannot

rule out the possibility that a small amount of HA is also present.
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Chapter 5

Attempts to Differentiate Oxidized

Graphenic Materials from Humic

Acid in the Liquid Phase

In this chapter, we focus on the analysis of humic acid (HA) and oxidized graphenic

carbon in the liquid phase. Oxidized graphenic materials and HA can both be sus-

pended in 0.1M NaOH (pH=11). Here, we use UV-Vis spectroscopy and size exclusion

chromatography (SEC) to see if there are distinguishing characteristics between HA

and as-prepared oxidized graphite (aOG), which is made of graphene oxide (GO) and

oxidative debris (OD).

5.1 Introduction

In Chapter 4, we confirmed that three groups of oxidized graphenic materials can be

separated from archaeological charcoal through a series of aqueous treatments under

different pH conditions. Both oxidized graphenic materials and HA are composed of
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sp2 and sp3 carbon bonds along with many oxygen functional groups. These structural

similarities make their chemistry similar. Researchers have confirmed that HA is

dissolved in alkaline solutions [1]. Similarly, chemists confirmed that concentrated

base (pH=13) treatment (1M NaOH) removes highly oxidized graphenic materials

called oxidative debris (OD) from oxidized graphite [2, 3]. Since HA and OD can be

suspended in aqueous solution in the same alkaline pH range, we are likely to remove

both from archaeological charcoal during radiocarbon cleaning protocols. Hence, if

one wants to isolate oxidized graphenic materials for radiocarbon dating applications,

then it is important to separate them from HA in the liquid base wash. We take

the first step toward this and try to find a method to distinguish HA from oxidized

graphenic carbon.

UV-vis spectroscopy is commonly used to identify conjugated systems like oxi-

dized graphenic materials and HA [4, 5]. Figure 5.1 shows UV-Vis spectra of aOG

and Suwannee River Humic Acid (SRHA). Both samples absorb visible light at wave-

lengths below 600 nm. The aOG spectrum indicates a peak at 230 nm and a shoulder

around 300 nm, while SRHA only shows a shoulder near 280 nm. Since the spectral

features of these two samples are not very different, UV-Vis data alone will not be

informative enough to differentiate a mixture of oxidized graphite and HA.

Oxidized graphenic materials and HA vary in molecular weight. Therefore, size

exclusion chromatography coupled with a UV detector (SEC-UV) could be an appro-

priate technique to distinguish between them.

In general, liquid chromatography is a powerful method in analytical chemistry to

separate chemical compounds in a mixture due to their differential retention on the

stationary phase by a mobile phase [6]. The mobile phase that contains liquid solvent

and analyte passes through the stationary phase, using high pressure, which is packed

in a column. Liquid chromatography is classified based on the stationary phase or
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Figure 5.1: UV-Vis spectra of (black) as-prepared oxidized graphite (aOG) and (red)
Suwannee River Humic Acid (SRHA).

separation mechanism. Liquid-liquid chromatography, liquid-solid chromatography,

ion chromatography, and size exclusion chromatography are different kinds of liquid

chromatography.

Common liquid chromatography is an effective method to isolate low molecular

weight compounds, but this is an inappropriate technique for the separation of a

mixture with large molecular weight components since they are quickly eluted from

the column and provide indiscernible resolution. Size exclusion chromatography is one

type of liquid chromatography in which a mixture of chemical compounds is separated

based on their molecular size [7]. SEC with larger column pore sizes ranging from

50 to 100,000 angstroms can be used to separate large molecular components such as

HA and aOG because it gives them more interaction with stationary phase.

The SEC column contains uniform porous silica or polymer particles into which

liquid solvent and solute can penetrate. As the mobile phase passes through the pores

in the column, chemical components are trapped and released. The retention time

of components depends on their size. Small molecules are retained longer than large

93



ones because small molecules penetrate the pores and can be trapped for longer times.

Large molecules do not penetrate the pores and elute the column at a longer retention

time. Size exclusion chromatography coupled to a UV detector is a powerful technique

not only for the separation of large and small particles but also for comparing the

optical properties of separated compounds [6].

Researchers did SEC-UV measurements on SRHA and compared them with Brown

Carbon (BrC) in aerosol samples [8]. BrC is made of carbonaceous particles that

contain a large fraction of organic species with the ability to absorb visible light.

These carbon particles can be dissolved in nanopure water, and they are called BrC

because they are brown when in suspension. They found similar absorption intensity

between BrC and SRHA as a function of wavelength and molecular weight, but with

different composition/average size. The molecular weight of chemical compounds can

be estimated from a negative log-linear relationship between molecular weight and

retention time in SEC columns.

In our experiment, aOG and HA are similar in structure and appear brown. There-

fore, we expect that these earlier BrC studies are an appropriate comparison to aOG

and HA. Here, we analyze SRHA using the same experimental setup, used in studies

by others [8]. Once we find similar SEC-UV pattern for SRHA, we measure the dilute

base (pH=11) soluble portion of archaeological charcoal to compare the terrestrial

BrC (aOG and HA) in our sample with the atmospheric BrC described by Ref [8].

In this chapter, we try to link the bulk UV-Vis data with the SEC-UV to character-

ize and distinguish the optical absorbance properties of oxidized graphenic materials

and HA in an archaeological charcoal sample. UV-Vis spectra show the intensity

of light for the entire sample as a function of wavelength. However, SEC-UV chro-

matograms depict absorbance as a function of retention time (molecular size) at a

specific wavelength.
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Data obtained from these two techniques can be correlated. We can take integrals

of different chromatograms, for one sample, at different wavelengths to obtain the

overall intensity absorbed by an analyte, then compare the results with the bulk

UV-Vis data. Data from the bulk UV-Vis analysis can help to select reasonable

wavelengths for further SEC-UV measurements. However, linking these two sets of

data might be challenging. An important challenge with the bulk UV-Vis spectroscopy

is the effect of solvent choice on the spectra of suspended particles. For instance, aOG

is best suspended for bulk UV-Vis spectroscopy near pH 3.5, but it is analyzed around

pH 7 with SEC-UV due to the requirement of using buffer during the separation.

5.2 Experimental

5.2.1 Materials

Suwannee River Humic Acid (SRHA), as reference material, was obtained from Alfa

Aesar. A reference sample of aOG was synthesized in our lab using the improved

Hummer’s method [9]. I provided detailed information about the preparation of aOG

in Chapter 3 (Section 3.2.1).

Archaeological charcoal analyzed here is the same described in Chapter 4 (Section

4.2.1). Before measurements, contaminants like sand and roots were removed from

the sample. Then, it was crushed using a mortar and pestle to make a fine powder.

0.5 g was added into 20 mL of 1M HCl, followed by stirring at 800 rpm at 40 ◦C for

one hour. The suspension was centrifuged at 8500 rpm to separate the supernatant

from the residual. The residual was divided equally into two portions. One portion

was treated in 20 mL of 0.1M NaOH, and the other half was treated with 1M NaOH.

The supernatants obtained after each treatment were filtered by a 0.2 µm syringe

filter. Then, they were stored in a dark and cool place. These supernatants were the
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materials used for subsequent UV-Vis and SEC-UV measurements.

5.2.2 Methods

The bulk UV-VIS spectra were acquired from both original and diluted supernatants,

with a Varian Cary 6000 spectrometer with 0.1 second average time, 1 nm resolution,

and a 600 nm/min scan rate. To dilute the supernatants, I transferred two droplets

of an original sample, using a disposable pipette, into a vial, and then added 10 mL

of nanopure water.

Size Exclusion Chromatography coupled with a UV detector (SEC-UV) was ex-

ecuted exactly like those repeated by Lorenzo et al. [8], and were done with direct

guidance from Dr. Cora Young (MUN Chemistry). The HPLC system (1260 Infinity,

Agilent Technologies, Santa Clara, CA, USA) was coupled to a diode array detector

(1260, Agilent Technologies, Santa Clara, CA, USA). An aqueous gel filtration col-

umn (molecular weight range = 250 – 75,000 Da, Polysep GFC P-3000, Phenomenex,

Torrance, CA, USA) was used.

For SEC experiments, 1 mL of dilute base (pH=11) supernatant of archaeological

charcoal was mixed with 1 mL of methanol. Then, 100 µL of this mixture was

injected into the column with the mobile phase flow rate of 1 mL/min for 20 min.

The mobile phase composition contained 50:50 methanol and ammonium acetate with

a concentration of 25 mM. Isocratic elutions were performed at a flow rate of 1 mL/min

with an injection volume of 100 µM. The wavelengths of UV detection were selected

to be 230, 250, and 300 nm. Each sample was run only one time.
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Figure 5.2: UV-Vis spectra of (red) concentrated (1M) HCl and (blue) concentrated
(1M) NaOH.

5.3 Results

5.3.1 Effects of pH and solvent on bulk UV-Vis data

In this chapter, we study graphenic carbon materials that are soluble in acid or base.

We find that different pH and solvents can change UV-Vis spectra considerably.

Blanks

First, we see how acid and base blanks affect UV-Vis spectra. Figure 5.2 shows UV-

Vis spectra of 1M HCl and 1M NaOH. Clear colourless concentrated acid and base

solutions depict no absorption in the visible region. However, the base (1M NaOH)

starts absorbing light at 230 nm, while the threshold for acid (1M HCl) is around 210

nm. This difference was consistent each time we analyzed these blanks. The reason

for this behaviour has not been reported.
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Figure 5.3: UV spectra of Suwannee River Humic Acid (SRHA) dissolved in 1:1
volume ratio of (black) water/methanol, (blue) 25mM ammonium acetate/methanol,
and (red) 25mM potassium phosphate/methanol.

Effects of solvent on SRHA spectra

The chemical composition of the mobile phase and solvent is an important factor to

consider before SEC-UV measurements because it affects both the UV-Vis spectrum

and separation results. It is known that 100 percent water damages the packing mate-

rials in the chromatography column. On the other hand, 100 percent organic solvents

cannot be used since a buffer is required to stabilize the conditions of separation

throughout the column. Therefore, we use a mixture of organic solvent and buffer for

the separation of carbonaceous materials in both reference samples and base soluble

portions of archaeological charcoal. In this research, we use the same mobile phase

compositions described in reference [8]. This allows us to make direct comparisons

with the earlier data.

Figure 5.3 compares the UV-Vis spectra of SRHA in different liquids. We should

note that there is no residual or precipitant in the supernatants that we measured.

The result shows that different solvents change the spectral features of SRHA. For

example, SRHA in water/methanol shows two peaks at 210 and 260 nm, while SRHA
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in ammonium acetate/methanol depicts a sharp peak at 210 nm. SRHA dissolved

in potassium phosphate/methanol shows a shoulder near 210 nm. SRHA shows two

peaks near 210 and 270 nm when it is dissolved in water/methanol, compared with

only a shoulder near 210 nm in the presence of buffer. It seems buffer changes SRHA

in a way that UV features are affected.

It is known that changes in the polarity of solvents affect the energy levels between

π∗ ← π and π∗ ← n [10]. The more polar solvent, the lower the energy between

π∗ ← π, which causes redshift in the UV spectrum. In contrast, polar solvents increase

the energy between π∗ ← n electron transitions and cause a blue shift. Surprisingly,

peak shape changes in our data rather than showing a peak shift.

5.3.2 aOG in acid and base

Figure 5.4 (top) shows photos of aOG suspensions before and after dilute (pH=11)

and concentrated (pH=13) base treatments. They help to show what happens to

aOG after each treatment and to illustrate what portion we measure in our UV-Vis

data. aOG stays suspended after dilute base (pH=11) treatment with a little colour

change from light to dark brown, while it reacts with a concentrated base (pH=13)

and separates into two phases: GO residual and OD clear colourless suspension. We

analyzed the uniform suspensions of the aOG (samples on the left and middle), and

only the clear colourless portion of the concentrated base (pH=13) treated sample on

the right.

Figure 5.4 (bottom) depicts UV-Vis spectra corresponding to each sample shown

in the photo. We observe a peak at 230 nm and a shoulder near 300 nm for aOG

after dilute base (pH=11) treatment. Unlike aOG and dilute base (pH=11) treated

aOG suspensions, the clear colourless suspension of the concentrated base (pH=13)

treated aOG does not show any peaks in the UV-Vis region. This is surprising because
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this clear colourless suspension contains low molecular weight and highly oxidized

materials that are responsible for the fluorescence of aOG [2,3]. It suggests that either

there is not enough OD present in the sample or OD is trapped in the black residual. A

threshold near 220 nm is also observed for both dilute and concentrated base (pH=11

and 13) treatments that is consistent with what we saw in the UV spectrum of the

alkaline blank (Figure 5.2). Our results suggest that the most relevant pH for the

analysis of oxidized graphenic materials using SEC-UV is approximately 11 because

they are all suspended in this condition.

5.3.3 Archaeological charcoal in acid and base

Figure 5.5 (top) shows the supernatants of archaeological charcoal treated in concen-

trated acid, and dilute and concentrated base (pH=11 and 13). The suspensions of

concentrated acid, and dilute and concentrated base (pH=11 and 13) treated archae-

ological charcoal are not able to stay suspended in the solution, like aOG, and they

settle out quickly. Therefore, we decided to filter the suspensions and then do the

UV-Vis measurements. Unlike the concentrated base (pH=13) treated aOG, archae-

ological charcoal did not separate into two phases (black residual and clear colourless

suspension) after concentrated base (pH=13) treatment. If we imagine clear colour-

less OD came off the sample, it will not be observable due to strong brown colour of

the suspension.

Figure 5.5 (bottom) compares the UV-Vis spectra of corresponding to each sample

shown in the photo. All three supernatants show an absorption band near 500 nm.

The higher the pH for the base treatment, the more brown materials come off, which

results in higher absorption in the visible region. Among these supernatants, only

dilute base (pH=11) treated archaeological charcoal shows a distinctive peak at 230

nm. This peak is known for π∗ ← π electron transitions of oxidized graphite. This
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Figure 5.5: (top) Representative images of supernatants obtained from (left) acid
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peak is consistent with what we saw for the UV-Vis spectrum of the dilute base

(pH=11) treated aOG suspension.

Our assessments on these liquid phase analyses by UV-Vis suggest that pH and

solvent change the UV-Vis spectra of our analytes considerably. Our UV-Vis results

also suggest that oxidized carbon materials exist in the supernatant of the dilute base

(pH=11) treated archaeological charcoal. Hence, we try to use SEC-UV to separate

these materials and differentiate the optical properties of oxidized graphenic materials

and HA by looking at their UV responses, at specific wavelengths, as a function of

retention time.

5.3.4 SEC Blank analysis

In liquid chromatography, a blank is injected before analyte to eliminate the effect

of the blank from the chromatogram of the analyte. In this method, the blank chro-

matogram is commonly subtracted from the analyte. Figure 5.6 shows SEC-UV chro-

matograms of the blanks that were used to analyze reference and real samples at

three wavelengths. Ammonium acetate/methanol is used as a blank for the analysis

of SRHA and aOG, while a combination of NaOH/MeOH is measured to analyze

dilute base treated (pH=11) archaeological charcoal. It is worth noting that we only

did one run for each blank.

Before the analysis of blanks, we should note that the chromatograms shown

in Figures 5.7 and 5.8, obtained from our analytes, have not been subtracted from

their blanks due to different positive and negative peaks along with fluctuations in

our blanks data. This is also because we are unsure what blanks work best for

our samples, especially for lab synthesized aOG and dilute base (pH=11) treated

archaeological charcoal. Therefore, we only try to ignore peaks observed in blanks to

analyze our analytes.
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There are some features in these blanks that concern us. Downward slopes at 230

and 250 nm are seen for acetate/methanol. The slow drift of the optics can happen in

these systems, and the sloping baseline may reflect unstable power to the bulb. This

type of baseline drift is common in liquid chromatography.

A negative peak for the chromatograms of ammonium acetate/methanol, just

below 11 min at three wavelengths, and NaOH/methanol at 230 nm is observed. There

are many reasons for getting a negative peak in liquid chromatography, including the

wrong polarity of solvent and air bubbles through the system. Also, it might be due

to the lower optical density of the sample compared with the mobile phase. In other

words, this problem happens when the injection solvent elutes from the column even

if the mobile phase and solvent compositions are similar.

The positive peaks just above 11 min obtained from both blanks, and the one at

13 min at 230 and 250 nm for NaOH/MeOH, can be due to the impurity of solvent

or contaminant in the column. The analysis of blank before each measurement helps

us to identify problems such as downward or upward slopes and negative or positive

peaks in the real data.

Our further SEC-UV data show that many of these problems (sloping and wavy

baselines) are not present. Thus, we decided to present uncorrected SEC-UV data of

our analytes.

5.3.5 SEC-UV comparison

Figure 5.7 (top) shows the absorption intensity as a function of retention time for

SRHA at three different wavelengths. All three chromatograms depict two main peaks

near 9 and 10 min. The peak at 9 min, which corresponds to the elution of larger

molecules, increases as wavelength decreases. The SEC-UV results for SRHA is vali-

dated by the bulk UV-Vis data where the overall absorbance decreases as wavelength
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Figure 5.7: Representative (uncorrected) SEC-UV chromatograms of (top) Suwannee
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increases.

The SRHA chromatogram for 230 nm shows a negative peak near 11 min, which

was already seen in the blank. Therefore, we can disregard this peak for the SRHA

chromatogram. The peaks observed near 13 min can be associated with the elution

of other species with smaller particle size in SRHA.

The SRHA chromatogram obtained at 300 nm looks comparable to the one re-

ported by Di Lorenzo et al. [8]. They used 300, 365, and 405 nm as detection wave-

lengths for the analysis of SRHA. Their results demonstrate that the lower wavelength

results in higher absorption for SEC-UV analysis of SRHA. This result is consistent

with what we observe in our analysis.

Figure 5.7 (middle) shows the chromatograms of aOG at different wavelengths.

Unlike SRHA, aOG chromatograms show only one peak near 2 min. A negative peak

just below 10 min is observed for aOG at 230 nm. We are still unsure if this negative

peak is due to the effect of blank or analyte itself.

Figure 5.7 (bottom) shows the chromatograms of the dilute base (pH=11) treated

archaeological charcoal at 230, 250, and 300 nm. The three chromatograms show two

peaks around 9.5 and 13.5 min. The negative peak near 11 min at 230 nm and small

positive peaks around 11.5 min originate from the blank (NaOH (pH=11)/MeOH).

Our results suggest that aOG particles are bigger than the ones in SRHA and the

dilute base (pH=11) soluble portion of archaeological charcoal. Our data also suggest

that the particle size of species in the base soluble portion of archaeological charcoal

is approximately similar to SRHA due to the same peaks near 9 min.

5.3.6 SEC-UV on archaeological charcoal

As a qualitative analysis, we compare UV-Vis spectra of the aOG, dilute base (pH=11)

treated archaeological charcoal, and SRHA, which was dissolved in ammonium ac-
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etate and methanol (1:1), to compare their optical absorbance properties (Figure. 5.8

(top)). All three spectra start absorbing light near 450 nm. aOG shows two main ab-

sorption peaks at around 230 and 300 nm, which were described in Chapter 2 (Section

2.3.4). A featureless absorption spectrum with a shoulder around 270 nm is observed

for SRHA. Although the SRHA spectrum does not show a distinct peak at 230 nm

like aOG, the overall absorption spectra look similar. The UV spectrum of dilute base

(pH=11) soluble portion of archaeological charcoal shows the same peak near 225 nm

compared with aOG.

These results suggest that oxidized graphite might exist in the dilute base (pH=11)

treated archaeological charcoal. However, the differences in the UV results are not

big enough to differentiate oxidized graphenic materials and HA, if any, in the base

soluble portion of archaeological charcoal.

Figure 5.8 (bottom) compares SEC-UV chromatograms of aOG and SRHA (dis-

solved in ammonium acetate/methanol) with the base soluble portion of archaeolog-

ical charcoal at 250 nm. aOG chromatogram shows a peak near 2 min. The other

two chromatograms have characteristic peaks near 9 and 9.5 min. Our results show

that either there is no oxidized graphite in the base soluble portion of archaeological

charcoal or it is likely that these molecules are smaller than HA, and they elute at

higher retention time like the peak at 13 min. It is assumed that the interactions

between the column and analytes are negligible, but it has not been proved for our

samples. If this assumption is not reliable, oxidized graphite in base soluble portion of

archaeological charcoal will interact with column and elute at higher retention time.

The interaction of HA and oxidized graphenic materials with each other should be

studied since it might affect the retention time.

Recall that, aOG is made of highly oxidized low molecular weight compounds

called OD and larger GO sheets. Results showed that water degrades aOG, breaking
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Figure 5.8: Representative UV-Vis spectra of (black) as-prepared oxidized graphite
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it into smaller pieces through C-C bonds cleavage followed by an acidification process

[11]. Therefore, we can also suggest that the peak at 13 min might be associated

with the elution of OD. To confirm if this is true, one could do SEC-UV on the lab-

prepared OD, and OD obtained fromWSBA on archaeological charcoal, then compare

the retention time and optical absorbance properties with the one we obtained here.

Our SEC-UV result for dilute base (pH=11) treated archaeological charcoal shows

at least four separate components (Figure 5.8 bottom), while SEC-UV obtained from

BrC depicts three components [8]. The absorption intensity of both BrC and dilute

base (pH=11) treated archaeological charcoal increases as detection wavelength de-

creases. SEC-UV result for the dilute base (pH=11) treated archaeological charcoal

depicts a front absorption starting near 8.5 min with the maximum absorption near 10

min (Figure 5.8 bottom). However, the SEC-UV result for BrC demonstrates absorb-

ing species in which the absorption starts around 6 min with a maximum absorption

peak approximately at 7 min [8]. It shows that atmospheric BrC particles are larger

than terrestrial BrC in the dilute base (pH=11) treated archaeological charcoal.

5.4 UV analysis of graphenic materials

As explained in Chapter 1 (Section 1.3.2), acid and base (mild and strong pH) treat-

ments cause significant damages to both reference and environmentally-altered sources

of graphenic carbon materials. The acid and base treatments might cause these ma-

terials to come off the liquid supernatants. In this chapter, we also demonstrated

that oxidized carbon might come off from archaeological charcoal after dilute alkaline

(pH=11) treatment. Therefore, we decided to analyze liquid phases of graphite flakes

and modern charcoal (as reference graphenic materials) along with coal and another

fossil charcoal (as other environmentally altered graphenic sources) after acid (1M
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Figure 5.9: Representative UV-Vis spectra of (top) diluted and (bottom) non-diluted
supernatants of acid treated graphite, modern charcoal, coal, and two different sources
of archaeological charcoal.

HCl) and base (0.1 and 1M NaOH) treatments to monitor the effect of pH on UV-Vis

spectroscopic features.

In this set of experiments, 0.4 g of graphite, modern charcoal, coal, and two

different sources of archaeological charcoal were separately treated with 1M HCl at

40 ◦C for 1 hour under stirring condition (800 rpm). The suspensions were then

centrifuged at 8,500 rpm for 15 min. The acidic supernatants were used for UV

measurement, and the residuals were neutralized and prepared for the subsequent

base treatments. The residual solid for each sample was divided into two portions.
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The first portion was treated with 0.1M NaOH, while the second one was treated

with 1M NaOH at 40 ◦C for 1 hour under stirring condition (800 rpm). The residuals

and supernatants, for each portion, were separated by centrifuge at 8,500 rpm for

15 min. The dilute and concentrated alkaline (pH=11 and 13) supernatants were

also analyzed by UV spectroscopy. It is worth noting that all the supernatants were

diluted in nanopure water and then analyzed by UV.

Figures 5.9, 5.10, and 5.11 (bottom) show the original supernatants obtained after

each treatment. This will help us to see a better resolution for weaker peaks and the

difference in the starting absorption band of each analyte.

Figure 5.9 (top) shows UV-Vis results collected from the diluted acidic super-

natants of graphite, modern charcoal, coal, and two different sources of archaeological

charcoal. These spectra show no distinguishable peaks. UV-Vis spectra of two ar-

chaeological charcoal samples show absorption starting from 300 and 350 nm. This

could be due to the removal of fulvic acid (FA) from the samples [5], but we have

not attempted a direct spectral comparison. However, the concentrated supernatants

of all samples demonstrate a peak around 330 nm except archaeological charcoal and

modern charcoal (Figure 5.9 (bottom)). Researchers found that environmentally al-

tered source of graphite-like coal is reacted with even diluted HNO3 or H2SO4 that

form carbon nanoparticles [12, 13]. These carbon-based nanostructures, with lateral

dimensions less than 10 nm, are used to study photoluminescence property of carbon

materials [14,15]. Vinci et al. analyzed a mixture of carbon nanoparticles (CNPs) and

proposed that Peaks below 300 nm could be assigned to π∗ ← π electron transitions,

whereas the bands above 300 nm are associated with π∗ ← n of C=O bonding in a

mixture of CNPs [16]. Although it is not clear whether the reaction of our samples

with HCl can yield CNPs or GQDs, it shows that acid treatment removes materials

that cause UV absorption.
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Figure 5.10: Representative UV-Vis spectra of (top) diluted and (bottom) non-diluted
supernatants of base (0.1M) treated graphite, modern charcoal, coal, and two different
sources of archaeological charcoal.
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Additionally, we analyzed the dilute and concentrated base (pH=11 and 13) treated

acid-washed samples by UV spectroscopy to monitor the impacts of mild and strong

pH conditions on graphenic materials and see whether these conditions cause the re-

moval of GO. Figure 5.11 (top) compares UV-Vis spectra of the base (0.1M) treated

acid-washed archaeological charcoal we analyzed earlier with another fossil charcoal

and sources of graphenic materials. Here, we observe that the coal and the second

source of fossil charcoal show no peaks in the UV region, unlike the first archaeological

charcoal sample. Figure 5.11 (bottom) demonstrates no absorption in UV-Vis regions

for non-diluted graphite flakes and modern charcoal, while environmentally altered

sources of graphite show absorption band starting from 450 nm due to the removal of

fluorescent materials like humic substances [5].

On the other hand, the UV-Vis analysis of all base (1M) treated acid-washed

graphenic materials do not show any distinguishable peaks (Figure 5.10 (top)), ex-

cept strong absorption bands for environmentally-altered sources of graphite includ-

ing coal and two sources of archaeological charcoal starting from 750 nm (Figure 5.10

(bottom)). Others have shown that concentrated alkaline (pH=13) solution removes

humic substances from archaeological charcoal, leaving a dark brown supernatant

behind [17].

Our results demonstrate that acid (1M HCl) treatment removes materials from

both reference and environmentally altered sources of graphite. It also shows the

emergence of oxidized carbon materials after dilute alkaline (pH=11) treatment of an

archaeological charcoal sample.
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Figure 5.11: Representative UV spectra of (top) diluted and (bottom) non-diluted
supernatants of base (1M) treated graphite, modern charcoal, coal, and two different
sources of archaeological charcoal.
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5.5 Conclusions

In this chapter, we show how pH (acidic or basic) affects the ability of aOG to stay

suspended in the solution. We show that concentrated base (pH=13) separates aOG

into a clear colourless suspension and dark brown residuals. Researchers believe that

the clear colourless suspension contains lower molecular weight materials compared

with the residual [3]. Thus, we expect pH adjustment has important implications for

using SEC-UV to assess the size of suspended materials.

We also show that solvent composition can change the UV-Vis features of HA.

Our SEC-UV results show that the dilute base (pH=11) soluble portion of archae-

ological charcoal has slightly shorter retention time (size) relative to a common HA

standard and atmospheric BrC. We should note that buffer is used for all SEC-UV

measurements, but we have not yet compared with bulk UV-Vis in buffered solutions.
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Chapter 6

Conclusions

This work showed that a mixture of graphite and oxidized graphite can be separated

using our protocol (water-sonication-base-acid (WSBA)) to yield oxidized graphenic

materials like graphene oxide (GO) and oxidative debris (OD). A synergy between

the chemistry involved in the separation of GO and OD from as-prepared oxidized

graphite (aOG), and the radiocarbon dating cleaning procedure on graphenic carbon

materials helped to design WSBA. We demonstrated that sonication near neutral

conditions breaks aOG into smaller particles more easily than graphite. This process

helped to separate aOG from graphite in a mixture. These findings help to understand

the reasons why conventional ABA cleaning procedure sometimes breaks down poorly

preserved charred graphenic materials. They are also promising and helpful to take

a further step for the separation of oxidized graphenic materials from archaeological

sources of charred graphenic materials.

A combination of analyses using vibrational spectroscopy (Raman and infrared)

and pH measurements on the uncleaned archaeological charcoal suggests that a mix-

ture of oxidized carbon materials are present in the sample. WSBA on archaeological

charcoal helped to separate three groups of oxidized graphenic materials with different
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levels of oxidation: the least, moderate, and the highest. For the future work, these

materials can be used as potential sources for radiocarbon dating purposes, especially

for poorly preserved charred graphenic materials where all sample sometimes diminish

during the cleaning procedure, leaving no solid behind to be dated.

UV-Vis analyses on the supernatants of acid and base treated reference, and en-

vironmentally altered sources of graphenic materials demonstrate that pH plays an

important role in the spectroscopic features of the samples. The pH of the blank

itself shows different absorption features. It also causes graphenic samples to behave

differently since it affects the way they suspend in the solution. UV-Vis spectroscopy

shows the evidence of oxidized carbon in the supernatant of the base (0.1 M NaOH)

treated archaeological charcoal, but it is not capable of differentiating it from con-

taminants like humic acid (HA). Size exclusion chromatography coupled with a UV

detector (SEC-UV), on the base soluble portion of archaeological charcoal, showed

compounds with similar UV response and retention time compared with HA.

In this thesis, I explored the presence of oxidized graphenic materials in archaeo-

logical charcoal as an environmentally-altered source of graphenic materials through

several characterization techniques. However, there is also a possibility that car-

bonaceous contaminants like HA are present in the sample. These findings will help

researchers who work with environmentally-altered graphenic carbon materials either

for the chemistry or radiocarbon dating perspectives. This research provides informa-

tion about handling a mixture of graphite and oxidized graphite to obtain oxidized

graphenic materials. This helps archaeologists who deal with graphenic materials like

charcoal to optimize their cleaning procedures for poorly preserved samples. The ex-

traction of oxidized graphenic materials in archaeological charcoal has the potential to

introduce other viable sources of graphenic carbon materials for radiocarbon dating.
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Appendix A

Supporting information

In this appendix, I provide results for side projects.

A.1 Effects of pH and temperature on the Raman

spectra of coal

Researchers found that pH plays an important role in the chemistry of graphite-like

materials. The concentrated acid rinse expands graphite layers and creates defects

to remove intercalated counterions [1, 2] and mineralized carbonates [3]. Base treat-

ment at pH=11 not only removes humic substances, [3–5] but also exfoliates graphite

layers [6]. Others found that soluble and sedimented fractions, obtained after ABA

treatment, in fossil charcoal yield statistically similar dates [7]. This suggests that

acid and base wash remove original carbon in fossil charcoal. Graphene oxide (GO) is

hydrophilic and degrades gradually in water producing H+ ions [8,9]. When graphene

oxide is treated with NaOH (1M), 35 percent of mass loss occurs due to the removal

of oxidative debris (OD). Temperature is another contributing factor that affects

graphite structure during the aqueous treatment. Eigler et al. showed that the struc-

122



ture of GO is not stable after base treatment at 40 ◦C.

Figure A.1 shows raw Raman spectra that are grouped according to acidic, basic,

or water treatments. The most apparent differences are in the background intensity,

which we assume are related to fluorescence, based on earlier work by Alon et al. [5].

It is a messy figure, but the colour groupings highlight an exciting trend. The coloured

plots correspond to different treatment temperatures. Although base treatment at any

temperature consistently reduces the background intensity, acid and water treatment

introduce more variability in the background intensity. However, spectra obtained

after aqueous treatments at different pH and temperatures on coal did not show

any specific changes in D to G intensity ratio or peak positions to confirm graphite

structural changes.

To do a precise analysis of the spectral changes of treated samples, I obtained the

D to G intensity ratio and D-width for each spectrum and compared them with each

other. Before showing the results, I give an example to describe how I analyzed the

data to get the D/G intensity, D-width, and error bar from a raw spectrum. Figure

A.2a shows a raw spectrum of acid treated coal at 23 ◦C. I obtained all necessary

information about Raman peaks through analysis of a Raman spectrum using IGOR

Pro with the "Multi-peak fitting 2" package applying polynomial baseline corrections

and either Gaussian or Lorentzian peak shapes. Figure A.2b shows the fitted peak

indicating the D and G peaks.

Figure A.3 compares D to G intensity against D width, grouped according to

acidic, basic, or water treatments. There is considerable variability in the D to G

intensity ratio and D width among spectra from different spots on the same sample.

Earlier reports show that this is quite common, even for laboratory-produced graphene

oxide [10]. Our results show that there is no significant difference after base treatment

at 23 ◦C, while base treatments at higher temperatures tend to increase the width and
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Figure A.1: The Raman spectra of coal before and after base (top), acid (middle),
or water (bottom) treatments at different temperatures. The same original (before
treatment) coal spectra are shown in black on all three plots.
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Figure A.2: Representative (a) raw and (b) analyzed Raman spectra of acidic coal at
23 ◦C.
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relative intensity of the D peak. We suspect this is due to the elimination of functional

groups or cleavage of the oxidized graphite structure [10]. Acid treatment at high and

low temperatures cause a larger spread in both width and relative intensity of the D

peak. Studies have shown that even treatment of natural graphite with acid (HCl)

expands graphite layers [2]. It was also observed that modern charcoal, even with

optimal preservation and a higher proportion of crystalline graphite compared with

fossil charcoal, experienced weight loss after HCl treatment [11]. Hence, we infer that

acid (1M HCl) treatment leads to structural changes in the graphite-like materials

structures in coal.

Water treatment shows an interesting effect: at all temperatures, water increases

the relative intensity of the D peak but doesn’t cause a significant change in the D

peak width. Water can remove water-soluble materials such as oxidized graphite and

humic substances from the sample.
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Figure A.3: Comparing D to G intensity vs. D peak widths before and after either a
basic (top), acidic (middle), or water treatment. The same original (before treatment)
coal values are shown in black on all three plots; coloured plots correspond to different
treatment temperatures.

127



A.2 Homogenization of oxidized materials

In Chapter 4, we suggested that a mixture of oxidized and non-oxidized graphite

materials might be present in archaeological charcoal. Also, IR data from WSBA

on the uncleaned archaeological charcoal confirmed that the least, moderate, and

highly oxidized materials exist in the sample. Since oxidation levels of these oxidized

materials are not uniquely defined, we oxidize archaeological charcoal to see if we can

transform non-oxidized portion to a uniform oxidized materials like what we did for

graphite flakes, then separate GO and OD from oxidized materials.

Surprisingly, the uncleaned archaeological charcoal does not undergo oxidation

to get as-prepared oxidized graphite (aOG) like the graphite flakes (Figure A.4a).

Results show that D and G peak positions remain the same after oxidation. However,

background intensity decreases after the treatment that might be due to the removal

of oxidizable carbon [12].

To find out whether it only occurs for one particular sample, we also oxidized

uncleaned coal as another source of naturally occurring graphite materials. Figure

A.4b compares the Raman spectra of a coal sample before and after oxidation. Like

uncleaned archaeological charcoal, D and G peak positions do not change after the

chemical oxidation.

These results suggest that the non-oxidized portion might not be accessible for

oxidizing agents. Archaeological charcoal is a heterogeneous sample, which means

that it contains a mixture of materials with non-uniform compositions. Dimiev et

al. suggest that the morphology, size, and structural characteristics of flakes affects

diffusion rate of oxidizing agents, which causes different oxidation degree [13]. They

found that the formation of GO consists of three steps. In the first step, sulfuric acid

intercalates graphite layers to make graphite intercalation compound (GIC), and then

oxidizing agents penetrate between the layers to make pristine graphite oxide (PGO).
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Figure A.4: Raman spectra of (top) archaeological charcoal and (bottom) coal samples
(blue) before and (red) after chemical oxidation.
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In the last step, water exfoliates graphite oxide to have single layer GO.

Our results confirm that the non-oxidized graphite, in archaeological charcoal,

does not undergo chemical oxidation to yield GO the same as graphite flakes do. This

might lead us to conclude the graphite in archaeological charcoal is already in an

oxidized form.
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