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Abstract. It is shown that the behavior of extended
limited-choice Petri nets with exponentially distributed fir-
ing times can be represented by probabilistic state graphs.
For bounded Petri nets the corresponding state graphs are
finite, stationary descriptions can thus be obtained by stan-
dard techniques used for analysis of continuous-time finite-
state homogenous Markov chains. An immediate applica-
tion of such a model is performance analysis of concurrent
systems, and in particular queueing systems with exponen-
tially distributed interarrival and service times. A sim-
ple model of an interactive computer system with priority
scheduling is used as an illustration of performance eval-
uation, and a short comparison of timed Petri nets with
stochastic Petri nets is given.

1. INTRODUCTION

A Petri net [1,6,12] is known as an abstract, formal model
of communication between asynchronous components of a
system. The properties, concepts, and techniques of Petri
nets are being developed in a search of natural and simple
methods for describing and analyzing systems that may
exhibit asynchronous and concurrent activities. The major
use of Petri nets has been the modeling of systems of events
in which it is possible for some events to occur concurrently
but there are constraints on the concurrence, precedence,
or frequency of these occurences [1,3,11]. Such a model,
however, is not complete enough for the study of systems
performance since no assumption is made on the duration
of systems activities. The timed Petri nets have been in-
troduced by Ramchandani [12] by assigning firing times to
the transitions of Petri nets. Sifakis [14] introduced an-
other definition of a timed Petri net by assigning time to
places of a net. Merlin and Farber [9] discussed timed Petri
nets where a time threshold and maximum delay were as-
signed to a transition to allow the incorporation of timeouts
into protocol models. Razouk [13] used a restricted class of
timed Petri nets with enabling as well as firing times to de-
rive performance expressions for communication protocols.
Recently Molloy [10] introduced stochastic Petri nets in
which transition firing times are exponentially distributed
random variables, and the corresponding firing rates are as-
signed to transitions of a net. Ajmone Marsan, Conte and
Balbo [2] generalized stochastic Petri nets introducing two
classes of transitions, timed and immediate ones. Timed
transitions (as in stochastic nets) have exponentially dis-
tributed firing times, while immediate transitions fire in
zero time, i.e., they are used to represent logical conditions
which do not contribute to delay times. In (basic and gen-
eralized) stochastic Petri nets, however, transition firings

are intantaneous events (as in place/transition nets), and
tokens, during the “firing times” actually remain in corre-
sponding places. Therefore the analysis is based on reach-
ability sets which are generated without timing considera-
tions. This introduces certain restrictions on modelling of
even very simple systems.
The method described in this paper is an extension of the

approach originated by Ramchandani and used to model
the performance of digital systems at the register transfer
level [15,16] when fixed (or deterministic) firing times can
be used. Basic Petri nets are extended by inhibitor arcs
[1,11] in order to model priorities of events and priority-
based scheduling disciplines. The use of inhibitor arc is
restricted to generalized “free-choice” classes. Firing rates
of exponentially distributed firing times are assigned to
transitions of a Petri net, and a new state description is
introduced which represents the behavior of timed nets
in a way similar to homogeneous continuous-time finite-
state Markov chains. This directly provides such perfor-
mance measures as utilization of systems components, av-
erage queue lengths, average waiting times and turnaround
times or average throughput rates, and at the same time
preserves the simplicity of model specification and offers
automatic generation of the state space.
This paper is organized in 4 main sections. Section 2 con-

tains definitions of basic concepts for extended Petri nets.
Timed Petri nets are introduced in section 3. Application
of timed Petri nets to modelling and performance evalua-
tion of computer systems is discussed in section 4. Section
5 compares stochastic Petri nets with M-timed Petri nets.

2. EXTENDED PETRI NETS

An extended Petri net N is a quadruple N = (P, T,A,B)
where:

P is a finite, nonempty set of places,

T is a finite, nonempty set of transitions,

A is a set of directed arcs which connect places with tran-
sitions and transitions with places, and:

∀t ∈ T ∃pi, pj ∈ P : (pi, t) ∈ A ∧ (t, pj) ∈ A,

B is a set of inhibitor arcs, B ⊂ P × T , and A and B are
disjoint sets.

A place p is an input (or an output) place of a transition t
iff there exists an arc (p, t) (or (t, p), respectively) in the set
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A. The sets of all input and output places of a transition t
are denoted by Inp(t) and Out(t), respectively. Similarly,
the sets of input and output transitions of a place p are
denoted by Inp(p) and Out(p). A place p is an inhibitor
place of a transition t iff there exists an inhibitor arc (p, t)
in the set B. The set of all inhibitor places of a transition
t is denoted by Inh(t).
A marked Petri net M is a pair M = (N,m0) where:

N is an extended Petri net, N = (P, T,A,B),

m0 is an initial marking function which assigns a nonneg-
ative integer number of so called tokens to each place
of the net, m0 : P → {0, 1, ...}.

Let any function m : P → {0, 1, ...} be called a marking
of a net N = (P, T,A).
A transition t is enabled by a marking m iff every input

place of this transition contains at least one token and every
inhibitor place of t contains zero tokens. The set of all
transitions enabled by a marking m is denoted by T (m).
A place p is shared iff it is an input place for more than

one transition. A shared place p is guarded iff for each two
different transitions ti and tj sharing p there is another
place pk such that pk is in the input set of ti and in the
inhibitor set of tj :

∀ti ∈ Out(p) ∀tj ∈ Out(p)− {ti} ∃pk ∈ P − {p} :
(pk, ti) ∈ A ∧ (pk, tj) ∈ B ∨ (pk, ti) ∈ A ∧ (pk, tj) ∈ A

i.e., no two transitions from the set Out(p) can be enabled
by the same marking m. A net is conflict-free iff all its
shared places are guarded.
A shared place p is free-choice (or extended free-choice

[6]) iff the input sets and inhibitor sets of all transitions
sharing p are identical, i.e., iff:

∀ti, tj ∈ Out(p) : Inp(ti) = Inp(tj) ∧ Inh(ti) = Inh(tj).

A shared place p is limited-choice iff the set of transitions
sharing p, Out(p), can be subdivided into two disjoint sets
Nch(p) and Fch(p) such that p is free-choice with respect
to Fch(p)

∀ti, tj ∈ Fch(p) : Inp(ti) = Inp(tj) ∧ Inh(ti) = Inh(tj).

and p is guarded with respected to Nch(p)

∀ti ∈ Nch(p) ∀tj ∈ Out(p)− {ti} ∃pk ∈ P − {p} :
(pk, ti) ∈ A ∧ (pk, tj) ∈ B ∨ (pk, ti) ∈ A ∧ (pk, tj) ∈ A.

In other words, for a limited-choice place p, each mark-
ing m enables either at most one transition from the set
Nch(p), or all transitions in the set Fch(p), and then there
is a “limited free choice” (i.e., free choice restricted to the
set Fch(p)) of selecting a transition for firing. It can be
observed that a free-choice place p is a special case of a
limited-choice place when there is no restriction, i.e., the
set Nch(p) is empty, while a guarded place p is another
special case when the ”restricted” set Fch(p) is empty.

A net is limited-choice iff all its shared places are limited-
choice. Only limited-choice extended Petri nets are consid-
ered in this paper.
Every transition enabled by a marking m can fire. When

a transition fires, a token is removed from each of its input
places and a token is added to each of its output places.

This determines a new marking in a net, a new set of en-
abled transitions, and so on.
A marking mj is directly reachable from a marking mi

in a net N, mj ← mi, iff there exists a transition t enabled
by the marking mi, t ∈ T (mi), such that

∀p ∈ P : mj(p) =







m(p)− 1, if p ∈ Inp(t)−Out(t);
m(p) + 1, if p ∈ Out(t)− Inp(t);
m(p), otherwise.

A marking mj is (generally) reachable from a marking

mi in a net N, mj
∗
← mi, if there exists a (possibly empty)

sequence of markings (mi0mi1mi2 ...mik) such that mi0 =
mi, mik = mj , and each marking miℓ is directly reachable
from the marking miℓ−1

for ℓ = 1, ..., k.
A set M(M) of reachable markings of a marked Petri net

M = (N,m0) is the set of all markings which are reachable

from the initial marking m0, M(M) = {m | m
∗
← m0}.

A marked net M is bounded if there exists a positive
integer k such that each marking in the set M(M) assigns
at most k tokens to each place of the net

∃k > 0 ∀m ∈M(M) ∀p ∈ P : m(p) ≤ k.

If a marked net M is bounded, its reachability set M(M)
is finite. Only bounded Petri nets are considered in this
paper.
An enable function of a marking m in a net N is any

function e : T → {0, 1, ...} such that after initiating all
firings indicated by nonzero values of e, the set of enabled
transitions is empty, i.e. E(m′) = ∅, where:

∀p ∈ P : m′(p) = m(p)−
∑

t∈Out(p)

e(t)

and the marking m′′, created by firing all transitions indi-
cated by nonzero values of e, is reachable from m, m′′ ∈
M((N,m)), where:

∀p ∈ P : m′′(p) = m(p) +
∑

t∈Inp(p)

e(t)−
∑

ti∈Out(p)

e(t).

i.e., any function which indicates (by nonzero values) all
those transitions which can fire simultaneously (and some
of the transitions may fire several times). For conflict-free
nets, for each marking m there exists exactly one enable
function which is determined by

∀t ∈ T : e(t) =

{

0, if
∑

p∈Inh(t) m(p) > 0;

minp∈Inp(t)(m(p)), otherwise.

For limited-choice nets, there may be several different
enable functions for the same marking m. The set of all
enable functions of a marking m is denoted by E(m).

3. TIMED PETRI NETS

In a timed Petri net, each transition t takes a positive
time to fire. When a transition t is enabled, a firing can be
initiated by removing a token from each of t’s input places.
This token remains in the transition t for the “firing time”,
and then the firing terminates by adding a token to each
of t’s output places. Each of the firings is initiated in the
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same instant of time in which it is enabled. If a transition
is enabled while it fires, a new, independent firing can be
initiated. For conflict-free nets all enabled transitions im-
mediately initiate their firings since each marking of a net
uniquely determines the enable function. If a net contains
conflicts, and there are several different enable functions
for the same marking, the selection of an actual enable
function is assumed to be a random process which can be
described by corresponding probabilities.
The operation of a timed Petri net can thus be considered

as taking place in “real time”, and it is assumed that it
starts at the time τ = 0. At this moment, the firings
indicated by an enable function e ∈ E(m0) are initiated and
the tokens are removed from the input places. Then, after
the time corresponding to the shortest “firing time” of the
transitions which initiated firings, the tokens are deposited
in appropriate output places creating a new marking, a new
set of enabled transitions, and so on.
The firing times of transitions can be described in several

ways. In D-timed Petri nets [7,15,16] they are deterministic
(or constant), i.e., there is a positive (rational) number as-
signed to each transition of a net which determines the time
of firing. In M-timed Petri nets [17] (and stochastic Petri
nets [2,10]), the firing times are exponentially distributed
random variables, and the corresponding firing rates are
assigned to transitions of a net. The memoryless property
of exponential distributions is the key factor in analysis of
M-timed Petri nets.
An M-timed extended limited-choice Petri net T is a

triple T = (M, c, r) where:

M is an extended limited-choice marked Petri net, M =
(N,m0), N = (P, T,A,B),

c is a choice function which assigns a ”free-choice” proba-
bility to each transition t of the net in such a way that
for each limited-choice place p of N:

∑

t∈Fch(p)

c(t) = 1,

and for all transitions which do not belong to limited-
choice classes, c(t) = 1,

r is a firing rate function which assigns a positive real
number r(t) to each transition t of the net, r : T →
R+, and R+ denotes the set of positive real numbers;
the firing time of a transition t is a random variable
v(t) with the distribution function

Prob[v(t) > x] = e−r(t)∗x, x > 0.

The memoryless property of exponential distributions
means that if the duration v of a certain activity (e.g.,
the firing time) is distributed exponentially with parame-
ter r, and if that activity is observed at time y after its
beginning, then the remaining duration of the activity is
independent of y and is also distributed exponentially with
parameter r:

Prob[v < x+ y | v > y] = Prob[v > x] = e−r∗x.

The exponential distribution is the only continuous dis-
tribution with that property.

Also, if v and w are the durations of two independent
simultaneous activities a and b, distributed exponentially
with parameters q and r, respectively, then the time inter-
val u until the first completion of an activity (a or b) is
distributed exponentially with parameter (q + r), and the
probability that the activity a will complete first is equal
to q/(q+ r), while the same probability for the activity b is
equal to r/(q + r). These results can be generalized in an
obvious way to any number of activities. They are used in
the description of state transitions.
A state s of an M-timed Petri net T is a pair s = (m, f)

where:

m is a marking function, m : P → {0, 1, ...},

f is a firing function which indicates (for each transition of
the net) the number of active firings, i.e., the number
of firings which have been initiated but are not yet
terminated, f : T → {0, 1, ...}.

An initial state s of a net T is a pair s = (mi, fi) where fi
is an enable function from the set E(m0), and the marking
mi is defined by

∀p ∈ P : mi(p) = m0(p)−
∑

t∈Out(p)

fi(t).

A limited-choice M-timed net T may have several differ-
ent initial states.
A state sj = (mj , fj) is directly (tk, eℓ)-reachable from

the state si = (mi, fi), sj ← si, iff the following conditions
are satisfied:

1. fi(tk) > 0,

2. ∀p ∈ P : mij(p) = mi(p) +

{

1, if p ∈ Out(tk);
0, otherwise;

3. eℓ ∈ E(mij),
4. ∀p ∈ P : mj(p) = mij(p)−

∑

t∈Out(p) eℓ(t),

5. ∀t ∈ T : fj(t) = fi(t) + eℓ(t)−

{

1, if t = tk;
0, otherwise.

The state sj which is directly (tk, eℓ)-reachable from the
state si is thus obtained by the termination of a tk firing
(1), updating the marking of a net (2), and then initiating
new firings (if any) which correspond to the enable function
eℓ from the set E(mij) (3, 4 and 5).
It can be observed that the eℓ functions in the definition

of directly reachable states can assume the values 0 and 1
only.
Similarly as for marked nets, a state sj is (generally)

reachable from a state si if there is a sequence of directly
reachable states from the state si to the state sj . Also,
a set S(T) of reachable states is defined as the set of all
states of a net T which are reachable from the initial states
of the net T. For bounded nets the sets of reachable states
are finite.
A state graph G of an M-timed Petri net T is a labeled

directed graph G(T) = (V,D, b) where:

V is a set of vertices which is equal to the set of reachable
states of the net T, V = S(T),

D is a set of directed arcs, DsubsetV timesV , such that
(ssubi, ssubj) is in D iff ssubj is directly reachable
from ssubi,
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b is a function which assigns the probability of transition
from si to sj to each arc (si, sj) in the set D, b :
D → [0, 1], in such a way that if sj is directly (tk, eℓ)-
reachable from si, then

b(si), sj) = r(tk)∗fi(tk)∗
∏

t∈T

c(t)eℓ(t)/
∑

t∈T

r(t)∗fi(t).

Example. For the timed Petri net shown in Fig.1a (as
usually, places are represented by circles, transitions by
bars, inhibitor arcs by small circles instead of arrowheads,
the initial marking by dots inside places, and the firing rate
function and the choice function are given as an additional
descriptions of transitions), the state graph is shown in
Fig.1b, and the derivation of the set S(T) of reachable
states is shown in Tab.1. It can be observed that the net
contains two shared places, p1 and p4; p4 is a free-choice (or
extended free-choice [6]) place, while p1 is a limited-choice
place with Nch(p1) = {t2} and Fch(p1) = {t3, t4}. The
choice function c is thus effectively defined for t3 and t4 only
(for all remaining transitions c(t) = 1), with c(t3) = 0.25
and c(t4) = 0.75. �

Fig.1. Timed Petri net (a) and its state graph (b).

Tab.1. The set of reachable states for m0=[1,1,0,1,0].

mi fi mij

i 1 2 3 4 5 1 2 3 4 5 tk 1 2 3 4 5 j b(si, sj)

1 0 0 0 1 0 0 1 0 0 0 2 1 0 1 1 0 2 0.750
3 0.250

2 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 4 0.167
4 1 0 0 0 1 5 0.833

3 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 6 0.333
3 1 0 0 0 1 5 0.667

4 0 1 0 0 0 0 0 0 1 0 4 1 1 0 0 1 7 1.000
5 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 7 0.333

5 1 0 0 1 0 2 0.500
3 0.167

6 0 1 0 0 0 0 0 1 0 0 3 1 1 0 0 1 7 1.000
7 0 0 0 0 0 0 1 0 0 1 2 1 0 1 0 0 5 0.500

5 0 0 0 1 0 1 0.500

It can be observed that the state graph of a limited-choice
bounded M-timed Petri net is a continuous-time finite-state
homogenous Markov chain in which the average time h(s)
spent in the state s = (m, f), s ∈ S(T), (or the sojourn
time) is equal to

h(s) =
1

∑

t∈T r(t) ∗ f(t)
.

Therefore, the stationary probabilities y(s) of the states s
can be obtained by solving a system of simultaneous linear
equations [5,7]







∑

(si,sj)∈D b(si, sj) ∗ y(sj)/h(sj) = y(si)/h(si),

i = 1, ...,K − 1;
∑

1≤i≤K y(si) = 1

where K is the number of states in the set S(T).
For the net from the example, the sojourn times h(s) and

the stationary probabilities y(s) are given in Tab.2.

Tab.2. Stationary probabilities for m0 = [1, 1, 0, 1, 0].

i h(si) y(si)
1 0.500 0.155
2 0.167 0.136
3 0.333 0.091
4 0.200 0.027
5 0.333 0.391
6 0.500 0.045
7 0.250 0.155

4. PERFORMANCE EVALUATION

A very simple closed-network model of an interactive sys-
tem with 2 classes of users (and jobs) and nonpreemptive
priority scheduling is shown in Fig.2a. The system contains
one central server Pc with two queues of waiting jobs Q1

and Q2 (for class-1 and class-2 jobs, respectively), and n1

terminals in class-1 and n2 terminals in class-2. All class-
1 jobs have higher priority than the class-2 ones, i.e., if
class-1 and class-2 jobs are waiting for the central server,
the class-1 jobs will receive the service first. The class-
1 jobs are statistically identical while there are two types
of class-2 jobs, “short” and “long” ones, with probabili-
ties a and (1 − a), respectively. To simplify the solution,
it is assumed that the jobs of the same class are served
by the First-Come-First-Served discipline, and that all the
service times and the terminal times are exponentially dis-
tributed. Under these assumptions the number of jobs in
the system (i.e., in the waiting queues and in the server) is
a finite-state continuous-time homogeneous Markov chain
[5,7]. For n1=n2=1 there are 7 states of the Markov chain:

0: no jobs in the system;
1: a class-1 job in Pc;
2: a short class-2 job in Pc;
3: a long class-2 job in Pc;
4: a class-1 job in Pc, 1 job in Q2;
5: a short class-2 job in Pc, 1 job in Q1;
6: a long class-2 job in Pc, 1 job in Q1.
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Fig.2. Closed-network model of an interactive system (a)
and its transition-rate diagram (b):

The corresponding transition-rate diagram [4] is shown
in Fig.2b where a1 and a2 denote the terminal rates for
class-1 and class-2, respectively, and d1, d2 and d3 denote
the service rates for class-1, and short and long class-2 jobs,
respectively.
The same system can be modeled by the timed Petri net

shown in Fig.1a. The transitions t2, t3 and t4 correspond
to the central server processing class-1 jobs (t2), long (t3)
and short (t4) class-2 jobs with the service rates (or the
firing rates) equal to 2, 2 and 5, respectively. The places
p2 and p4 model the waiting queues (for class-1 and class-2
jobs, respectively). The transitions t1 and t5 correspond
to the class-1 and class-2 terminals, respectively (with the
terminal rates or the firing rates equal to 1 for class-1 and 2
for class-2 jobs). The initial number of tokens in the places
p2 and p3 represents the number of class-1 terminals, n1,
and the initial number of tokens assigned to places p4 and
p5 indicates the number of class-2 terminals, n2. The place
p1 and its initial number of tokens model the number of
servers (or server channels), in this case 1.
For the initial marking m0 = [1, 1, 0, 1, 0] there are 7

states of the net (Tab.1) and 7 states of the Markov chain
(Fig.2b). The correspondence between the Petri net states
and the states of the Markov chain is shown in the Tab.3.

Tab.3. Petri net states and Markov chain states.

Petri net Markov chain
1 4
2 2
3 3
4 5
5 0
6 6
7 1

It can be observed that the Markov chain from Fig.2b
(with a1=1, a2 = 2, d1 = d2 = 2, d3 = 5, and q=0.75) is
isomorphic to the state graph from Fig.1b augmented by

state-transition rates, determined by the state-transition
probabilities b(si, sj) and the average sojourn times h(s),
s ∈ S(T). For example, the (ssub7, ssub5) transition rate
is equal to 0.5/0.25=2, and is the same as the Markov (1,0)
transition rate dsub2=2. The solutions of both models
must thus be equivalent.
Since the server is idle in the state s5 only (m5(p1) = 1,

and also Markov state “0”), the equilibrium probability
that the system is idle is equal to the stationary probability
y(s5) = 0.391 (Tab.2). Then the utilization of the system
is immediately 1-0.391=0.609 which is composed of 0.310
for class-1 jobs (y(s1) + y(s7)) and 0.299 for class-2 jobs.
The average throughput rates can be obtained from the
server’s load. Since the average service time for class-1
jobs is equal to 0.5 time units, and the server utilization
for this class is 0.310, then the average throughput rate for
class-1 jobs is equal to 0.310/0.5=0.62 jobs per time unit,
and the average turnaround time is equal to 1/0.62=1.613
time units. Since for class-1 jobs the average terminal time
and the average service time are equal to 1.0 and 0.5 time
unit, respectively, the class-1 jobs spend, on average, 1.613-
1.0-0.5=0.113 time units in the waiting queue. Similarly,
for class-2 jobs the average throughput rate is equal to
0.299/(0.25*0.5+0.75*0.2)=1.087 jobs per time unit, and
the average turnaround time is equal to 0.920 time units.
Since, for class-2 jobs, the average terminal time and the
average service time are equal to 0.5 and 0.275 time units,
respectively, the average waiting time is equal to 0.145 time
units.
For n1 = n2 = 2, there are 19 states in the set S(T), and

the same performance measures are as follows:

stationary probability that the system is idle 0.100
utilization of the system . . . . . . . . . . . . . . . . . . . 0.900
class-1 utilization of the system . . . . . . . . . . . . 0.537
average class-1 throughput rate . . . . . . . . . . . . 0.931
average class-1 turnaround time . . . . . . . . . . . . 2.148
average class-1 waiting time . . . . . . . . . . . . . . . . 0.648
class-2 utilization of the system . . . . . . . . . . . . 0.363
average class-2 throughput rate . . . . . . . . . . . . 1.320
average class-2 turnaround time . . . . . . . . . . . . 1.515
average class-2 waiting time . . . . . . . . . . . . . . . . 0.740

Many other results can be obtained in a very similar way.

5. STOCHASTIC AND M-TIMED PETRI NETS

In stochastic Petri nets [2,10], the firing times are as-
signed to transitions, however, for the whole period of fir-
ing, tokens remain in corresponding places and the actual
“transition” occurs at the end of firing time. In conse-
quence, the state space is easily determined as the set of
reachable markings, and the probabilities of transitions be-
tween the states (or markings, in fact):

b(mi,mj) =

{

r(tk) ∗ h(mi), if mj
tk← mi;

0, otherwise.

The average sojourn times are defined on the basis of
firing rates assigned to enabled transitions [2,10]:

h(m) =
1

∑

t∈T (m) r(t)
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where, as before, b(mi,mj) is the probability of transition
from the state mi to the state mj , h(m) is the average time
spent in the state m, r is the firing-rate function, r : T →
R+, and T (m) denotes the set of transitions enabled by
the marking m.
Stochastic Petri nets do not consider “multiple” firings,

i.e., states in which a transition is enabled several times.
Since the set of reachable markings is constructed by “firing
one transition at a time”, the stochastic approach should
be either restricted to “1-enable” (or singular) nets, or all
such cases must be taken into account separately. Fig.3
shows 3 different Petri nets which model three different
queueing systems, M/M/1//3 (a), M/M/2//3 (b), and
M/M/inf//3 (c) [7].

Fig.3. Petri net models of M/M/1/3 (a), M/M/2//3 (b),
and M/M/inf//3 (c) systems.

The state graphs obtained by the stochastic approach are
shown in Fig.4a,b,c, where the state-transition rates corre-
spond to all firing rates arbitrarily assumed to be equal to
x (which does not really matter). The graphs are isomor-
phic, the behavior of these three stochastic nets must thus
be identical, while the models are definitely different.

Fig.4. Stochastic transition-rate diagrams of M/M/1/3 (a),
M/M/2//3 (b) and M/M/inf//3 systems.

Fig.5a,b,c show the state-transition-rate diagrams ob-
tained by the analytical approach [5,7].
The results of M-timed Petri net analysis are exactly the

same. It can be observed that (in this case) the stochas-
tic net approach can easily be modified by introducing an
“enable function” e : T → {0, 1, ...} (as in section 2) and
extending the formulas:

b(mi,mj) =

{

emi
(tk)r(tk) ∗ h(mi), if mj

tk← mi;
0, otherwise;

Fig.5. Analytical transition-rate diagrams of M/M/1/3 (a),
M/M/2//3 (b) and M/M/inf//3 systems.

h(m) =
1

∑

t∈T (m) em(t) ∗ r(t)
.

The second difference between stochastic and M-timed
Petri nets is in the “interpretation” of free-choice (extended
free-choice, limited-choice, etc.) classes. In M-timed Petri
nets the “choice” is separated from the (selected) firing
because during firing tokens remain “in” (selected earlier)
transitions. Consequently, all free-choice classes are de-
scribed by “independent” probabilities which are not re-
lated to firing rates of transitions. In stochastic nets, during
firing periods tokens remain in places, all free-choice tran-
sitions are enabled at the same time, and consequently, the
“choice” probabilities are determined by the firing rates of
free-choice transitions. Moreover, this is the only way to
determine the (relative) frequencies of random events, so
all probabilities do depend upon firing rates (in generalized
stochastic nets [2] the free-choice classes are “independent”
only at the “immediate” level).
Fig.6a,b show Petri net models of two different queueing

systems, M/M/1//1 (a), and M/H2/1//1 (b) [4,7].

Fig.6. Petri net models of M/M/1//1 (a) and
M/H2/1//1 (b) systems.

For both nets, stochastic approach results in the state-
transition-rate diagram shown in Fig.7a, while M-timed
Petri net state-transition diagrams are different (Fig.7a,b)
and, again, correspond to the analytical solutions [7].
Stochastic and M-timed Petri nets must thus use quite dif-
ferent modelling methods.
Finally, for analysis of bulk (or burst) arrivals and/or

services [7], i.e., for systems with multiple simultaneous
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Fig.7. Transition-rate diagrams of M/M/1//1 (a) and
M/H2/1//1 (b) systems.

events, M-timed approach can be generalized in a rather
straightforward way [17] while stochastic approach may re-
quire a rather substantial extension.

6. CONCLUDING REMARKS

Even the very simple example of an interactive system
modelling illustrates the characteristic features of timed
Petri nets. Models are usually quite simple, and their pa-
rameters correspond in a very natural way to components
or activities of the modelled systems (e.g., the number of
users, the number of processors). The state space can easily
be generated from model specifications, and since the states
of the modelling net directly correspond to the states of
the modelled system, a verification step is provided which
is not available in analytical modelling. A pilot version of a
program which analyzes extended and generalized M-timed
Petri nets is given in [17].
The class of timed Petri nets discussed in the paper is

restricted in several ways (limited-choice, bounded nets),
some of the restrictions, however, can be removed easily by
appropriate extensions of the formalism. In fact, nets with
more general conflicts can be handled in a very similar way
provided the probabilities of conflicting firings are known
and included in the state description.
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