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Abstract

In integrated simulation applications, simulation tools
interact with other components of computer-aided de-
sign systems at the level of internal structures, sharing
some internal data and communicating through proce-
dural invocations. There are two basic types of interac-
tions between interacting tools, the so called reverse and
indirect communication methods. Reverse communica-
tion returns to the invocation environment after each
required task; it is a rather flexible technique but it re-
quires global control methods which can be quite unreli-
able and difficult for modifications in nontrivial applica-
tions. Indirect communication uses local control at dif-
ferent levels of hierarchical organization, passing global
information from one level of the hierarchy to another; it
corresponds thus to hierarchical structure of tools and to
different levels of abstraction at different levels of hierar-
chy. The paper describes several integrated applications
built around a circuit simulation environment, and dis-
cusses interfaces designed for the integration of different
tools.

1. INTRODUCTION

Computer-aided circuit analysis, or circuit simulation
has become a widely accepted tool in the area of inte-
grated circuit design [BCSV, FiNi, NSST, Pede, VISi].
By using this method, circuit designers can easily inves-
tigate the effects of different designs on the circuit per-
formance. The process of selecting an appropriate design
to satisfy the required specifications is usually based on
consecutive approximations as well as on the designer’s
experience, and there is a clear need for simulators in-
tegrated with other computer-aided design tools such
as optimization methods, mixed analog-digital simula-
tors, mixed symbolic-numerical simulators, etc. [AnHu,
LKCF, NSST].

Circuit optimization is a very good example of diffi-
culties in such integration. Despite considerable research
activity in optimization of electronic circuits, optimiza-
tion techniques have not been used as widely as might
be expected [BCSV, ChV1, NPSS, NSST]. The reasons
which are most frequently named to explain this situa-
tion are: the difficulty of linking optimization packages

with simulation programs, the inadequacy of the opti-
mization algorithms used, and the sophistication of these
tools.

The most efficient optimization techniques assume
that the objective (and constraint) functions are differ-
entiable, and their (at least) first derivatives are avail-
able [BKZ, BCSV, GMSW, HaMa, Hieb, MGH, Pow,
Sch]. In the case of circuit optimization, when the objec-
tive (and constraint) functions are evaluated from circuit
responses, quite often partial derivatives are obtained
by approximation techniques, and then several software
tools (e.g., numerical approximation of gradients, scal-
ing and descaling routines, etc.) must be used for in-
terfacing (general) optimization algorithms with circuit
simulators.

An efficient organization of circuit optimization, with
repeated circuit simulations, cannot be provided by tra-
ditional simulation programs which are usually batch-
oriented, and which require a new, independent run for
each modification of the circuit. A more flexible struc-
ture of simulators is needed in which different analyses
can be performed selectively, “on demand”, and in which
it is possible to modify circuit elements during a simu-
lation session. The simulators should have an “open”
structure of a collection (or a package) of procedures
rather than a “closed” program with one, fixed sequence
of operations. SPICE-PAC [Zubl] is such a simulation
package, derived from the popular SPICE-2G.6 circuit
simulator [NPSS, Pede, Vlad]. SPICE-PAC, similarly to
the SPICE-2G.6 program, does not provide the values of
derivatives of evaluated circuit responses. In all applica-
tions which require gradient information (e.g., circuit op-
timization), the values of derivatives of circuit responses
must be approximated by numerical methods. Then,
however, as the number of software packages grows, sys-
tematic approach to communication between packages
becomes more and more important, as it can significantly
increase overall reliability and reduce the total develop-
ment time.

There are two basic methods of communication be-
tween software packages, the so called reverse and in-
direct communication [GMPW, More]. Packages with
reverse communication interact on a “master—slave” ba-
sis, which means that there always is one “controlling”
(master) package and a number of “controlled” (slave)
packages that are invoked to perform specific (minor)
tasks, and which return to the “master” immediately af-
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ter completion of the task. It is this controlling package
that is responsible for coordination of all packages and
interfaces; the control is thus “centralized” and for com-
plex software systems it can become quite difficult to
manage and maintain.

In the case of indirect communication, the components
are organized in a hierarchical structure, and the overall
coordination is rather simple; the top level is responsi-
ble for major decisions only; all detailed decisions and
actions are “delegated” to lower-level components which
follow the same principle but on a smaller scale. The
overall coordination and control is thus “decomposed”
into a number of (hierarchical) levels, with well-defined
interactions between levels, and “information hiding”
due to interactions betweens adjacent levels only. On
the other hand, however, indirect communication offers
much less flexibility than reverse communication scheme
as all components must conform to fixed schemes of in-
teraction and communication.

Reverse and indirect communication are briefly char-
acterized in section 2 and then illustrated with two prac-
tical examples, circuit optimization and mixed-mode
simulation. For both examples, circuit simulation is pro-
vided by SPICE-PAC, a simulation package derived from
the popular SPICE simulator. Section 3 outlines ba-
sic features of the simulation package SPICE-PAC, de-
scribes its general structure and interaction with other
packages. Section 4 discusses circuit optimization that
uses SPICE-PAC for circuit analyses, i.e., for evaluation
of the optimization objective and constraint functions.
Mixed-mode simulation or simulation of mixed analog—
digital circuits is presented in section 5. Section 6 con-
cludes the paper.

2. REVERSE AND INDIRECT
COMMUNICATION

Reverse communication is usually implemented in a
star-like structure, around the central coordinating mod-
ule, as shown in Fig.1; the “central coordinator” super-
vises execution of tasks, it selects the order of task ac-
tivations, and it passes all relevant information between
interacting tasks performing all required conversions and
transformations of data. For more complex applications,
with large number of tasks executed according to irregu-
lar patterns (which may depend upon the data), reliable
implementation of the coordinator is a nontrivial prob-
lem requiring an expert knowledge of all tasks involved,
their constraints and side-effects.

In the case of circuit optimization, “task-1” could rep-
resent an optimization module, “task-2” — numerical ap-
proximation of gradients, “task-3” — evaluation of ob-
jective and constraint functions for a particular opti-
mization problem, and “task-4” — evaluation of circuit
responses for a given set of parameters (determined by
“task-17 or “task-2"). A possible sequence of interac-
tions would be an invocation (from the central coordina-
tor) of “task-1” to perform an optimization. Whenever
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Fig.1. Global reverse communication.

“task-1” needs an evaluation of the objective and/or con-
straint functions or their derivatives, it “returns to the
coordinator with a corresponding “request”. Depend-
ing upon this request, the coordinator invokes “task-2”
(for derivatives) or “task-3” (for objective and/or con-
straint functions). If numerical approximation of gradi-
ents (“task-2”) needs a function value (e.g., for approx-
imation based on perturbations), it “returns” to coordi-
nator with a “request” that is directed to “task-3”, etc.

In order to reduce complexity of central coordination,
the set of tasks can be decomposed into a number of
(relatively) independent parts with “local coordination”
limited to subsets of tasks. This creates a simple form of
hierarchical reverse communication, as shown in Fig.2.
Further decomposition can be performed within subsets
of tasks creating consecutive levels of hierarchical struc-
ture which reduces complexity of coordination but also
restricts interactions between tasks to local subsets; all
nonlocal interactions are usually coordinated by several
control modules.

Ak CENTRAL ASK.D
TASK- COORDINATOR TASK-
TASK-3/4
LOCAL
TASK-3 TASK-4
CONTROL

Fig.2. Hierarchical reverse communication.

Decomposition of central coordination into a hierar-
chical structure introduces a new type of interactions;
the communication between the (remaining) central co-
ordinator and local coordinators as well as among local
coordinators is done at a “higher-level”, i.e., a level that
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corresponds to operations of whole decomposed parts
rather than individual tasks.

Systematic decomposition results in a hierarchical
structure similar to one shown in Fig.3, which can be
obtained from that shown in Fig.2 by one more decom-
position of the central coordinator; it can be observed
that in this “new” structure the central coordination has
been practically eliminated.

LEVEL-0 (MAIN)

1 1
LEVEL-1 LEVEL-1
(CONTROL) (CONTROL)
v ' ' '
TASK-1 TASK-2 TASK-3 TASK-4

Fig.3. Hierarchical structure.

A significant advantage of hierarchical organization is
abstraction that it offers at different level of hierarchy.
For example, a transformation of the previous circuit op-
timization example into a hierarchical structure (shown
in Fig.4) is slightly different as the hierarchy of tasks
shown is rather a simple “path” than a binary struc-
ture of Fig.3; optimization module invokes the objec-
tive/constraint function and gradient evaluation ones,
the gradient evaluation invokes the function evaluation,
and finally the function evaluation calls the circuit sim-
ulator.

LEVEL-0 (MAIN)

!

LEVEL-1 (TASK-1)

!

LEVEL-2 (TASK-2)

!

LEVEL-3 (TASK-3)

!

LEVEL-4 (TASK-4)

Fig.4. Hierarchical abstraction.

The levels of abstraction correspond to levels of hi-
erarchical structure; at level-3, the evaluation function
“includes” the circuit simulator (as indicated by bro-
ken lines), and any invocation of the function evaluation
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Fig.5. Indirect communication.

module “automatically” invokes the lower levels. Simi-
larly, level-2 corresponds to evaluation of gradients eval-
uation with all the details (depending upon the evalua-
tion method used) “hidden” at lower levels of the hierar-
chy. Level-1 is the “application level” which means that
the whole hierarchy corresponds to a specific application
determined by a particular composition of modules.

Quite often it is convenient to provide a number of
functionally equivalent modules at the same levels of
the hierarchical structure (e.g., different variants of the
same method or different approaches to the solution of
the same problem), as shown in Fig.5. Then, of course,
a technique is needed for selection required variants at
different levels of hierarchy and for passing relevant in-
formation to selected variants. Indirect communication
is such a technique. Conceptually it corresponds to pa-
rameterized procedural abstraction with a number of pa-
rameters assigned to consecutive levels of the hierarchi-
cal structure (although in practical implementations this
association may not be clear). In effect, a change of one
or more parameters at the “top” level may result in a
different behavior several levels “below”.

In conclusion, for several interacting packages, reverse
communication provides a “direct”, flexible access to all
packages, but it requires a detailed knowledge of all com-
ponents to pass correct data structures and implement
required sequencing. Indirect communication is less flex-
ible than “loosely coupled” components of systems with
reverse communication, but it offers better abstraction
and structuring of packages. Indirect communication is
thus a very convenient method for composition of pack-
ages; a gradient optimization package composed with a
package for numerical approximation of derivatives re-
sults in a new package that provides optimization with-
out derivatives, etc.
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3. CIRCUIT SIMULATION

Computer-aided circuit analysis or circuit simulation,
which matured in the 1970’s, has established itself as a
significant tool for analysis and design of integrated cir-
cuits. The SPICE-2 program [Pede, Vlad] developed at
the University of California, Berkeley, has become one of
the most popular “second-generation” circuit simulators.
It provides several linear and nonlinear analyses, includ-
ing DC operating point, nonlinear DC transfer curves,
nonlinear transient, etc. Circuits may contain resistors,
capacitors, inductors and mutual inductors, independent
linear and nonlinear voltage and current sources, four
types of dependent sources, transmission lines, and the
four most common semiconductor devices: diodes, BJTs,
JFETs and MOSFETs. SPICE has built-in models for
semiconductor devices and the users need to specify only
the pertinent model parameter values; moreover, if dif-
ferent semiconductor devices use the same model, the
model parameters can be specified once only.

The SPICE program is, however, a “second genera-
tion” simulator which is batch-oriented and very ineffi-
cient for applications in which numerous variants of the
same circuit need to be analyzed (e.g., circuit optimiza-
tion). For such applications a new structure of the sim-
ulator is required, in which different analyses (for the
same circuit topology) are performed “on demand”, and
in which there is an access to internal representation
of circuit elements in order to update their values dur-
ing optimization. The simulator should have an “open”
structure of a collection (or a package) of procedures
rather than a “closed” program with one, fixed sequence
of operations. SPICE-PAC is such a simulation package,
obtained by redesigning the SPICE 2G.6 simulation pro-
gram.

SPICE-PAC is upwardly compatible with SPICE
which means that it accepts the same input language
(with only a few minor exceptions), and it provides the
same set of circuit analyses, but it also supports a num-
ber of extensions which are not available in the origi-
nal SPICE programs; a hierarchical naming scheme for
(nested) subcircuits, static and dynamic circuit variables
for modifications of circuit elements values during (inter-
active) simulation sessions, dynamic declarations of pa-
rameters and outputs, or parameterized subcircuit calls
are examples of such extensions.

SPICE-PAC is organized into two levels; the “main”
level contains 25 procedures (called SPICEA to SPICEY
[Zub2]) that provide an interface with application-
dependent programs, such as read a circuit description,
update circuit variables, perform one of circuit analy-
ses, etc. The second level collects all internal procedures
(“invisible” to application programs) that implement op-
erations of the main level. There is no restriction on the
order or number of analyses performed within a single
simulation session since all analyses are performed “on
demand”, by calling appropriate procedures of the pack-
age. Similarly, parameters of analyses, outputs or circuit
variables can also be defined or updated any number of
times by calling appropriate procedures. As shown in
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Fig.6. SPICE-PAC’s organization.

Fig.6, it is the application-dependent part that controls
the sequence of operations, as required by a particular
application. Reverse communication is used between the
application “driver” and the simulation package.

The SPICE-PAC project was oriented toward two ba-
sic applications, interactive simulation and circuit opti-
mization. In interactive circuit simulation, the driving
routine mainly handles communication with the user,
i.e., it enters user commands, converts them into corre-
sponding sequences of SPICE-PAC’s interfacing proce-
dure invocations, and displays (in numerical or graphical
form) the results. The complexity of the driver is directly
related to the sophistication of interaction. In typical
applications the interaction is rather simple, and it can
use, for example, commands similar to the SPICE input
language. A convenient representation of results appears
to be a more troublesome issue because of a variety of
available output devices and presentation methods.

In circuit optimization, the driving routine has to con-
trol at least two packages, the optimization package and
the circuit simulator. In many cases, when indirect com-
munication is used for interfacing circuit simulation with
optimization, the packages are hierarchically structured,
and then the whole optimization process is controlled
by the selected optimization algorithm. This also means
that the user can influence the optimization process only
by selection of the starting point and (some of) the op-
timization parameters. More flexible (but also more dif-
ficult) solution is to use reverse communication in which
case user routines (or user - in an interactive way) can
control the optimization process at the step level, and
can adjust the parameters even during the optimization
process.

4. CIRCUIT OPTIMIZATION

The most effective optimization methods assume that
the objective (and constraint) functions are differen-
tiable, and their (at least) first derivatives are available
[BCSV, GMPW]. In some cases, however, even if the
derivatives can be obtained analytically, the amount of
calculations can be quite excessive, and then numeri-
cal approximation of gradients can be the simplest and
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the most effective solution [Broy]. This can be done di-
rectly by differencing function values, i.e., by evaluating
differences of function values which correspond to small
perturbations of independent variables (one at a time),
or indirectly, by updating the initial approximation in
consecutive iteration steps using for example Broyden
formula [Broy] or one of its modifications [Mad].

Optimization algorithms are designed to solve classes
of problems determined by properties of the objective
and constraint functions. The most popular types of
objectives [GMPW, HoSch, Sch] include linear objec-
tive function(s), quadratic objective function(s), sum of
squares of linear functions, generalized polynomial ob-
jective function(s), general objective function(s), sum
of squares of general functions. The popular types of
constraints are unconstrained problems, bounded prob-
lems (constant constraints), linear constraint functions,
sparse linear constraint functions, quadratic constraint
functions, generalized polynomial constraint functions,
general (nonlinear) constraint functions. Within the
same class of objective and constraint functions, differ-
ent algorithms may provide different rates of conver-
gence (linear, superlinear, quadratic, etc.), they may
use different interaction mechanisms (passing informa-
tion through the parameter lists or global variables and
structures), different data structures (static or dynamic
arrays, uniform one dimensional arrays or multidimen-
sional structures, etc.), and may have significantly differ-
ent requirements for (user-supplied) working space. Yet
another important consideration is the control structure
that connects the definition of the objective and con-
straint functions and (possibly) the derivatives with the
optimization algorithm (usually it is a user-defined pro-
cedure which can have a fixed or quite flexible form).
The most popular solution [GMSW, HaMa, HoSch, Mad,
More] is to use a fixed structure for the user-supplied
procedure and to pass the name of this procedure as
one of optimization parameters (which is a simple form
of indirect communication). Some of the optimization
codes use reverse communication for interfacing user def-
initions [GMPW, Pow, Sch].

The choice of an optimization algorithm depends not
only upon the type of problems to be solved, but also
upon the available information about performance of
the algorithm, i.e., the number of function evaluations,
the workspace size, the convergence properties, and the
“behavior” of the algorithm during extensive testing on
problems that are believed to be typical [GMPW, HoSch,
Sch]. However, because proliferation of “good” algo-
rithms proved to be an ineffective means for provid-
ing high quality software, an awareness developed of the
need for program libraries. A program library is a set
of routines that are conceived and written within a uni-
fied framework, to be available to a general community
of users. A pilot version of such an optimization library
has been derived from existing, modified, redesigned, re-
structured or simply new optimization codes.

This library is composed of three layers. The central
layer contains the “core” routines which implement reli-
able, efficient and general optimization algorithms. The
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Fig.7. Organization of circuit optimization.

bottom layer extends the core by a number of auxiliary
routines (e.g., scaling routines, approximation of gradi-
ents, etc.) which are identical (or almost identical) for
many core routines. Both layers support reverse as well
as indirect communication. The top layer is composed
of simple drivers (or service routines [GMPW]) which
use indirect communication facilities of remaining lev-
els to compose several routines into independent (and
simple-to-use) packages. Presently, the library contains
two core optimization algorithms, an implementation of
minimax optimization with linear constraints proposed
by Hald [HaMa] and later modified and extended sev-
eral times, and an implementation of a very reliable
Han-Powell method for minimization with general con-
straints [Han, Pow] (the method is quite attractive for
circuit optimizations because of extremely low number
of function evaluations [Sch], however, its workspace re-
quirements are rather high). Since both algorithms re-
quire partial derivatives of all functions (objective as well
as constraint) with respect to all optimization variables,
routines for numerical approximation of gradients have
been included in the library. A composition of SPICE-
PAC with this pilot optimization library is shown in
Fig.7. Indirect communication is used for accessing ob-
jective and constraint evaluation routines, and reverse
communication for circuit simulation operations.

As an example of circuit optimization, a single stage
CE amplifier in a self-biasing configuration is analyzed,
and it is to find the values of resistors R1, R2 and
RE, such that for the midband frequency f=50KHz, and
for the temperatures between -50 and 100 degrees Cel-
sius, the voltage gain is equal (or, as close as possible,
rather) to 10V/V, and the input resistance is not less
than 10Kohms. The minimax optimization is used in
this example.

*x% INPUT LISTING -- TEMPERATURE = 27.0 DEG C
** single stage CE amplifier optimization 1
VCC 5 0 12

VIN 1 0 AC 1
R1 2 5 100K
R2 2 0 10K
RC 4 5 5K
RE 3 0 300
CB 1 2 100UF
Q1 4 2 3 MOD

.MODEL MOD NPN(BF=50 VAF=50 IS=1.E-9 RB=100)
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.PRINT AC V(4) V(2) I(VIN)
.AC 50K

.END/EXT

.VAR R1

.VAR R2

.VAR RE

.PAR/1 TEMP(-50.0)

.PAR/2 TEMP(27.0)

.PAR/3 TEMP(100.0)

.END

In minimax formulation, the optimization variables
are R1, R2 and RE, and the 2k + 1 residual functions
(k is the number of discrete temperature values; in this
example k=3) are:

e the differences between the magnitude of the voltage
gain and 10 V/V for the selected temperatures (k
residual functions),

o the differences between 10 V/V and the magnitude
of the voltage gain for the selected temperatures (k
residual functions),

e the difference between 10K and the minimum input
resistance (decreased 100 times).

The trace of optimization steps is as follows (max de-
notes the maximum residual function, i.e., the maximum
absolute value of the difference between 10V/V and the
voltage gain):

R1 R2 RE max
1 1.004+05 1.00d+04 3.00d+02 6.91d+01
2 1.214+05 9.58d+03  3.98d+02 4.62d+01
3 1.964+05 1.49d4+04  4.59d+02  2.24d+01
4  2.86d+05 2.32d+04 4.74d+02 6.014-01
5 4.01d4+05 2.89d+04  4.25d+02 5.14d-01
6  4.474+05 3.54d+04  4.45d+02 2.694-01
7  2.65d+05 1.89d+04  4.544d+02 1.024+01
8 4.03d+05 3.08d+04  4.39d+02 2.20d-01
9  3.55d+05 3.25d+04 4.51d+02 7.35d-02
10  3.45d+05 3.34d+04  4.52d+02 2.17d4-02
11 3.39d+05 3.38d+04  4.53d+02 4.63d-03
12 3.38d+05 3.38d+04 4.53d+02  3.25d4-03
13 3.38d+05 3.38d+04 4.53d+02 3.36d4-03

After 13 iteration steps the maximum residual func-
tion is less than 0.004. In many cases a less accurate
solution, obtained in a few iteration steps, should be
satisfactory.

5. MIXED-MODE SIMULATION

As the analog and digital process technologies merge,
so must the corresponding simulation tools. The phrase
“mixed-mode” simulation has been used to refer to the
simulation of electrical networks consisting of both ana-
log and digital parts, regardless of the level of design
abstraction.

Mixed-mode simulation has been gaining popularity
because of analog circuitry that exists in virtually all
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Fig.8. Mixed-mode simulation.

digital systems. It appears, however, that even among
sophisticated users of design automation tools, the ana-
log and digital portions of a system are usually designed
and simulated separately. It also appears, that it is
rather difficult to correlate these two distinct simula-
tions in order to analyze how analog and digital parts
affect each other. Clearly, an “integrated” approach is
needed which can handle both analog and digital sim-
ulation within one, consistent simulation environment
[Goer]. A number of modifications and extensions have
been implemented in SPICE-PAC to allow simulation of
circuits with digital elements described at the gate or
block level. General organization of mixed-mode simu-
lation is shown in Fig.8.

Any implementation of integrated mixed-mode sim-
ulation must solve two basic questions, (i) conversion
of analog to digital and digital to analog information
on interfaces of analog and digital components, and (ii)
synchronization of the (usually variable) timesteps of
the analog simulation [VISi] with the event list that
drives the (event-driven) digital simulation [MME]. The
analog-to-digital conversion can be handled by establish-
ing voltage thresholds and corresponding digital signals
(the conversion is performed by elements called “thresh-
olders”). The digital-to-analog conversion is much more
difficult because it must generate a continuous analog
signal on the basis of discrete digital values. Two popu-
lar and simple solutions assume that the converted wave-
forms are (1) piecewise linear (with averaged levels) or
(2) piecewise exponential.

A basic analog-digital interface implemented in
SPICE-PAC provides a table-driven conversion of analog
to (multivalued) digital signals and vice versa. Piecewise
linear characteristics of independent voltage and/or cur-
rent sources [Vlad] are used for interactions between dig-
ital and analog parts; the “smoothing” of discrete digital
signals is thus implemented by piecewise linear functions.
The interface is composed of two sections, one for analog-
to-digital communication, and the second for communi-
cation in the opposite direction. In the input (circuit
specification) language, these two sections are described
by two new directives, PUTLIST and GETLIST, respec-
tively:

.PUTLIST:Tnamel Voutputl,Voutput2,...
.GETLIST:Tnamel:Tname2 Vsourcel,Vsource2,...
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where “Tnamel” is the name of a TABLE pseudoelement
[Zubl] that defines the conversion table for analog-to-
digital (and digital-to-analog) interface; “Tname2” is the
name of another TABLE pseudoelement that defines the
delay table for digital-to-analog conversion; each “Vout-
put” is a voltage output in the SPICE sense, i.e., it is ei-
ther “V(nodel,node2)” or “V(nodel)” if the second node
is zero; each “Vsource” is the name of an independent
voltage source with a piecewise linear time-dependent
function.

The conversion table is defined as an ordered sequence
of increasing (threshold) voltages interposed with (inter-
nal) values of corresponding digital signals:

.TABLE Tname VoltO Numl Voltl Num2 Volt2 Num3 ...
Numk Voltk

In the following simple example, the digital part (not
shown here) is a two-input one-output block, with inputs
indicated by the PUTLIST and the output by GETLIST.
It should be observed that there is one common con-
version table for analog-to-digital and digital-to-analog
conversions, and that the rise and fall rates are different:

VV 1 0 PULSE(-5.0,+5.0,0.5US,10NS, 10NS, 2US,5US)
R1 1 2 1K

Cl1 2 0 1INF

R2 1 3 1K

C2 3 0 200PF

VX 5 0 PWL(0O -5.0,15U -5.0)

RX 5 0 1K

.TRAN 50NS 10US

.PRINT TR V(2) V(3) V(5)
.PUTLIST:TCONV V(2),V(3)
.GETLIST:TCONV:TDEL VX

.TABLE TCONV (-5.0,-1,0.0,1,+5.0)
.TABLE TDEL (2E-7,5E-8,2E-8)

.END

The implementation of time-domain (transient) anal-
ysis has been modified in such a way that if both PUT-
LIST and GETLIST are nonempty the analog-digital
interfacing routines are invoked for each successfully
solved timepoint [VISi]. The interfacing routines per-
form analog-to-digital conversion of all PUTLIST volt-
ages, and then check if any digital value created dur-
ing this conversion differs from the corresponding (dig-
ital) value created at the previous timepoint. If there
is at least one “new” digital value after the conversion,
the timepoint is (iteratively) adjusted to a value corre-
sponding to the closest conversion threshold, and then
the interfacing routine is invoked to perform a single step
of digital simulation (at the gate, functional or behav-
ioral level). After completion of this step, the digital-
to-analog conversions are performed for those (digital)
signals which are indicated in the GETLIST specifica-
tions and which changed their (digital) values during the
simulation, and the simulation resumes.

The gate-level description of the digital part is com-
posed of three parts, “input”, “output” and “circuit”; for
example, a description of a two-input one-output block
for the analog part shown earlier

838

input : x1,x2;
output : y;
circuit

y:=xor(x1,x2)
end

where the “input” signals x1 and x2 correspond to con-
secutive (analog) PUTLIST elements, and the “output”
signal y to the GETLIST voltage source.

The trace of all changes of digital signals is as follows:

time : 0.0000d+00 inp -1 -1 out -1
time : 6.4360d-07 inp -1 1 out 1
time : 1.1986d-06 inp 1 1 out -1
time : 2.6536d-06 inp 1 -1 out 1
time : 3.0649d-06 inp -1 -1 out -1
time : 5.6436d-06 inp -1 1 out 1
time : 6.1541d-06 inp 1 1 out -1
time : 7.6536d-06 inp 1 -1 out 1
time : 8.0716d-06 inp -1 -1 out -1

It can be observed that the “delayed” events are the
only events that are analyzed without changes of (digi-
tal) input signals.

6. CONCLUDING REMARKS

Two different mechanisms for implementation of soft-
ware interfaces have been discussed and illustrated with
simple examples of circuit optimization and mixed-mode
simulation. Indirect communication provides a simple
technique for hierarchical structuring and tuning inte-
grated tools to particular needs. Reverse communication
seems to be “invaluable” mechanisms in new or uncon-
ventional applications as it provides unrestricted access
to all components of an integrated system (it may, how-
ever, be very “troublesome” for inexperienced users). It
is anticipated that a combination of both communication
techniques will prove useful in practical applications.

In some cases, considerable improvements can be ob-
tained by restructuring and redesigning existing pro-
grams. A conversion of the SPICE circuit simulation
program into a simulation package significantly reduces
difficulties and inefficiencies associated with interfacing
circuit simulation with other software tools.

Systematic approach to design and organization of
computer-aided design software is needed. A good ex-
ample has been set by “mathematical software” or soft-
ware which implements wodely applicable mathematical
procedures; NAG, IMSL and NATS are examples of suc-
cessful projects that resulted in widely used collections
of high-quality numerical software [Cowe]. Computer-
aided design software is more difficult to unify and “stan-
dardize” as it often lacks the rigor of numerical algo-
rithms, however, if its growing popularity is the best in-
dication that it should follow the best examples of math-
ematical libraries.
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