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Abstract

Preemptive D-timed Petri nets are Petri nets with de-
terministic firing times and with generalized inhibitor arcs
to interrupt firing transitions. A formalism is presented
which represents the behavior of free-choice D-timed Petri
nets by discrete-space discrete-time semi-Markov processes.
Stationary probabilities of states can thus be determined by
standard techniques used for analysis of Markov chains. A
straightforward application of timed Petri nets is modelling
and analysis of systems of asynchronous communicating pro-
cesses, and in particular communication protocols. Places
of Petri nets model queues of messages, transitions repre-
sent delays in communication networks, interrupt arcs con-
veniently model timeout mechanisms, and probabilities as-
sociated with free-choice classes correspond to relative fre-
quencies of random events. Simple protocols are used as an
illustration of modelling and analysis.

1. INTRODUCTION

The increasing trend to distribute functions of
information-processing systems into different processes
and processors results in significant growth of complexity of
coordination in such systems. This is particularly acute for
the interactions or protocols that specify how distributed
processes or processors are synchronized and how they com-
municate with one another. Formal methods are gradually
being developed to describe such interactions [6,9,14,25],
and Petri nets [1,7,19,23] proved to be an interesting and
advantageous example of such formalisms [8,9,13,15]. Petri
nets have been successfully used in modelling [3,10,18],
validation [4,13] and analysis [8,10,16] of systems of events
in which it is possible for some events to occur concurrently,
but there are constraints on the occurrence, precedence, or
frequency of these occurrences. Basic Petri nets, however,
are not complete enough for the performance studies since
no assumption is made on the duration of systems events.
Timed Petri nets have been introduced by Ramchandani
[20] by assigning firing times to transitions of Petri nets
(t-timed nets), and by Sifakis [24] by assigning time to
places of a net (p-timed nets). Garg [11] used p-timed nets
for specification of communication protocols. Merlin and
Farber [16] discussed timed Petri nets where a time thresh-
old and maximum delay were assigned to each transition of
a net to allow the incorporation of timeouts into protocol
models. Berthomieu and Menasche [5,15] used state classes

to obtain finite representation of behavior of nets defined
by Merlin and Farber; their description is sufficient for
validation and verification studies, but requires further
refinements for performance analysis since no distribution
of firing times is assumed. Razouk [21] and Razouk and
Phelps [22] discussed an interesting class of timed Petri nets
with enabling as well as firing times (p&t-timed nets), and
derived performance expressions for simple communication
protocols; since the enabling and firing times correspond
to the time thresholds of Merlin and Farber, such nets can
easily model timeout mechanisms, however, the proposed
formalisms requires some further refinements or extensions
in cases of multi-level priorities and more general conflicts.
A thorough study of general conflicts in t-timed nets was
presented by Holliday and Vernon [12].

This paper describes a continuation of the approach orig-
inated by Ramchandani [20] and subsequently extended by
inhibitor arcs and guarded places to model timeouts [26,27].
In inhibitor Petri nets, however, firing transitions cannot be
]em interrupted, and timeout signals must be rather neutral-
ized than canceled or cleared. In this paper, inhibitor Petri
nets are augmented by interrupt arcs in order to cancel ini-
tialized firings of transitions, as required in strict modelling
of timeouts. Similarly as in [20,26,27], constant (or determin-
istic) firing times are assigned to transitions of a Petri net,
and a state description is introduced which is isomorphic to
discrete-space discrete-time homogeneous semi-Markov pro-
cesses. Standard techniques derived for analysis of Markov
chains can thus be used to derive many performance mea-
sures such as utilization of systems components, average
waiting times and turnaround times or average throughput
rates, and at the same time preserves the simplicity of model
specification and offers automatic generation of the state
space.

This paper is organized in 4 main sections. Section 2 con-
tains definitions of basic concepts for inhibitor free-choice
Petri nets. Extended D-timed Petri nets are introduced in
Section 3. Application of extended D-timed Petri nets to
modelling and analysis of protocols is discussed in Section 4.
Section 5 discusses enhanced D-timed Petri nets which com-
bine two types of Petri nets, ordinary (i.e., without time)
inhibitor nets and extended D-timed nets in order to reduce
the state space by elimination of all vanishing states, i.e.,
those states which formally belong to the state space, but
which do not contribute to the stationary behavior of a net.
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2. INHIBITOR PETRI NETS

An inhibitor Petri net N is a quadruple N = (P, T,A,B)
where:

P is a finite, nonempty set of places,

T is a finite, nonempty set of transitions,

A is a set of directed arcs which connect places with tran-
sitions and transitions with places such that for each
transition there is at least one place connected with it:

∀t ∈ T ∃p ∈ P : (p, t) ∈ A,

B is a (possibly empty) set of inhibitor arcs which connect
places with transitions, B ⊂ P × T , and A and B are
disjoint sets.

A place p is an input (or an output) place of a transition
t iff there exists an arc (p, t) (or (t, p), respectively) in the
set A. The sets of all input and output places of a transition
t are denoted by Inp(t) and Out(t), respectively. Similarly,
the sets of input and output transitions of a place p are
denoted by Inp(p) and Out(p). Also, a place p is an inhibitor
place of a transition t iff (p, t)]inB. The set of all inhibitor
places of t is denoted by Inh(t), and the set of transitions
connected by inhibitor arcs with a place p is denoted by
Inh(p), Inh(p) = {t|p ∈ Inh(t)}. The notation is extended
in the standard way to sets of places and transitions.

A marked Petri net M is a pair M = (N,m0) where:

N is an inhibitor Petri net, N = (P, T,A,B),

m0 is an initial marking function which assigns a nonnega-
tive integer number of so called tokens to each place of
the net, m0 : P → {0, 1, ...}.

Let any function m : P → {0, 1, ...} be called a marking
in a net N = (P, T,A,B).

A transition t is enabled by a marking m iff every input
place of this transition contains at least one token and every
inhibitor place of t contains zero tokens. The inhibitor arcs
provide thus a test if zero condition, which is not available
in basic Petri nets [1,7,19]. The set of all transitions enabled
by a marking m is denoted by En(m).

A place p is shared iff it is an input place for more than
one transition. In inhibitor nets, a shared place p is guarded
iff for each two different transitions ti and tj sharing p there
exists another place pk such that pk is in the input set of one
and in the inhibitor set of the other of these two transitions:

∀ti ∈ Out(p) ∀tj ∈ Out(p)− {ti} ∃pk ∈ P − {p} :
(pk, ti) ∈ A ∧ (pk, tj) ∈ B) ∨ (pk, ti) ∈ B ∧ (pk, tj) ∈ A).

i.e., no two transitions from the set Out(p) can be enabled
by the same marking.

A shared place p is free-choice (or extended free-choice
[7]) iff the input sets and inhibitor sets of all transitions
sharing p are identical. An inhibitor net is free-choice iff
all its shared places are either free-choice or guarded. Only
free-choice nets are considered in this paper since in most
cases free-choice nets are sufficient for modelling of random
events, e.g., random faults in communication networks or

random services with discrete distributions (another class of
timed Petri nets is used for random events with continuous
distributions [2,17,28]). Some other classes of nets can be
described in a similar way.

Every transition enabled by a marking p can fire. When
a transition fires, a token is removed from each of its input
places (but not inhibitor places) and a token is added to each
of its output places. This determines a new marking in a net,
a new set of enabled transitions, and so on.

A marking mj is directly reachable (or tk-reachable) from
a marking mi in a net N iff there exists a transition tk en-
abled by the marking mi, t ∈ En(mi), such that

∀p ∈ P ) : mj(p) =







mi(p)− 1, if p ∈ Inp(tk)−Out(tk),
mi(p) + 1, if p ∈ Out(tk)− Inp(tk),
mi(p), otherwise.

A marking mj is (generally) reachable from a mark-
ing mi in a net N if there exists a sequence of markings
(mi0mi1mi2 ...mik ) such that mi0 = mi, mik = mj , and each
markingmiℓ is directly reachable from the markingmiℓ−1 for
ℓ = 1, ..., k.

A set M(M) of reachable markings of a marked Petri net
M = (N,m0) is the set of all markings which are reachable
from the initial marking m0 in the net N.

A marked net M is bounded if there exists a positive in-
teger k such that each marking in the set M(M) assigns at
most k tokens to each place of the net

∃k > 0 ∀m ∈ M(M) ∀p ∈ P : m(p) ≤ k.
An obvious conclusion is that a marked net M is bounded

iff its reachability set M(bfM) is finite.
In analysis of timed nets it appears very convenient to

have a concise notation that indicates all possibilities of fir-
ing transitions for a given marking m. The set of selection
functions is introduced to describe all such possibilities.

A selection function g of a marking m in a net N is any
function g : T → {0, 1, ...} which satisfies the following con-
ditions:

(1) there exists a (finite) sequence of transitions u =
(ti1 , ti2 , ..., tik ), such that tij ∈ En(mij−1) for j =
1, ..., k, where mi0 = m0 and

∀p ∈ P : mij (p) = mij−1(p)−

{

1, if p ∈ Inp(tij ),
0, otherwise ;

(2) the set of transitions enabled by mik , En(mik ), is
empty;

(3) for each tinT , g(t) is equal to the number of occurrences
of t n the sequence u.

A selection function g is thus any function which indicates
(by nonzero values) all those transitions which can simultane-
ously initiate their firings (and some transitions may initiate
their firings several times).

The set of all selection functions of a marking m is denoted
by Sel(m).

A marked net M is singular iff all selection functions of
all reachable markings indicate at most a single firing of a
transition



Preeemptive D–timed Petri nets, timeouts, modeling and analysis of communication protocols 723

∀m ∈ M(M) ∀g ∈ Sel(m)) ∀t ∈ T ) : g(t) ≤ 1.

To simplify the description of timed Petri nets, only singu-
lar free-choice nets are considered in this paper. Nonsingular
nets can be described by a rather straightforward extension
of the formalism given in the next section.

Example. The Petri net shown in Fig.1 (as usual, places are
represented by circles, transitions by bars, inhibitor arcs by
arcs with small circles instead of arrowheads, and the initial
marking function is indicated by dots inside places) contains
one inhibitor arc (p5, t5), one free-choice place p3, and one
guarded place p4.

The initial part of the derivation of the set of reachable
markings M(M) is given in Tab.1; it should be observed
that the set M(M) is infinite since the sequence of firing
transitions (t1, t5, t1, t5, ...) can be continued for ever, creat-
ing consecutive markings (m1,m3,m7, ...) in which the num-
ber of tokens in p2 increases. Similarly, the cyclic sequence of
firing transitions (t1, t2, t4, t1, ...) systematically increases the
number of tokens in p5. Consequently, the net is unbounded.
�

mi

i 1 2 3 4 5 tk j

0 1 0 0 0 0 1 1
1 0 1 0 1 0 2 2

5 3
2 0 0 1 1 0 3 4

4 5
5 6

3 1 1 0 0 0 1 7
2 6

4 0 0 0 1 0 5 0
5 1 0 0 1 1 1 8

6 0
6 1 0 1 0 0 1 9

3 0
4 10

7 0 2 0 1 0 2 9
5 11

8 0 1 0 2 1 2 12
6 1

9 0 1 1 1 0 2 13
... ......... ... ...

Tab.1. Initial markings reachable from m0 = [1, 0, 0, 0, 0].

3. EXTENDED D-TIMED PETRI NETS

In timed Petri nets each transition fires in real time, i.e.,
there is a firing time associated with each transition of a net.
The firing times can be defined in several ways. In D-timed
Petri nets [26,27] they are deterministic (or constant), i.e.,
there is a nonnegative number assigned to each transition of
a net which determines the duration of transition’s firings. In
M-timed Petri nets [28] (or stochastic Petri nets [2,17]), the
firing times are exponentially distributed random variables,

Fig.1. Marked Petri net M1.

and the corresponding firing rates are assigned to transitions
of a net.

Since in timed Petri nets the firing of a transition is not
an instantaneous event, the inhibitor arcs can be general-
ized. The proper inhibitor arcs affect the transitions only at
the beginning of their firings because they participate in en-
abling of transitions. The generalized inhibitor arcs, called
interrupt arcs, affect a transition not only at the beginning
of firing, but also during its firing; they can interrupt firing
transitions and preempt the resources acquired at the be-
ginning of firing. Interrupt arcs are necessary to model pre-
empting scheduling disciplines, to represent properly timeout
mechanisms, or to model unreliable processors which can fail

during processing of user jobs. In some cases such interrupts
and preemptions can be represented by inhibitor nets [27],
but usually such models and their behavior become unnec-
essarily complicated.

An extended D-timed free-choice Petri net T is a triple
T = (M, c, f) where:

M is an extended free-choice marked Petri net, M =
(N,m0), N = (P, T,A,B,C), and C is a set of interrupt
arcs, C ⊆ B,

c is a choice function which assigns a free-choice probability
to each transition t of the net in such a way that for each
free-choice place p of N:

∑

t∈Out(p) c(t) = 1,

and for all remaining transitions c(t) = 1,

f is a firing time function which assigns a nonnegative real
number f(t) to each transition t of the net, f : T → R+

and R+ denotes the set of nonnegative real numbers.

In ordinary nets (i.e., nets without time), interrupt arcs
are equivalent to inhibitor arcs since the firing of an enabled
transition is an instantaneous event. In extended timed Petri
nets, the firing of a transition may be discontinued by any one
of interrupt arcs associated with this transition. If, during a
firing period of a transition t, one of places connected with p
by interrupt arcs becomes nonempty (i.e., it contains at least
one token), the firing of t ceases and the tokens removed from
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t’s input places at the beginning of firing are returned to their
original places.

In extended nets, a place @p@ is an interrupting place of
a transition t iff (p, t) ∈ C. The set of interrupting places of
t is denoted by Int(t), and the set of transitions connected
with p by interrupt arcs is denoted by Int(p), Int(p) = {t ∈
T | pinInt(t)}.

Moreover, an extended Petri net is simple if the input sets
of transitions with nonempty interrupting sets are disjoint
with interrupting sets of other transitions, i.e.

∀t ∈ T : Int(t) = ∅ ∨ Inp(t) ∩ Int(T − {t} = ∅,

where ∅ denotes the empty set. Simple nets eliminate propa-

gation of interrupts when one interrupted transition, through
its input set, interrupts another transition.

In order to simplify the description of net behavior, only
simple nets are considered in this paper.

The behavior of an extended D-timed Petri net can be
represented by a sequence of states where each state describes
the current marking as well as the firing transitions of a net.
Each termination of a transition firing changes the state of
a net.

A state s of an extended D-timed Petri net T is a triple
s = (m,n, r) where:

m is a marking function, m : P → {0, 1, ...},

n is a firing-rank function which indicates the number of
active firings (i.e., the number of firings which have been
initiated but are not yet terminated) for each transition
of the net, n : T → {0, 1, ...},

r is a remaining-firing-time function which assigns the re-
maining firing time to each independent firing (if any)
of a transition, i.e., if the firing rank of a transition t
is equal to k > 0, n(t) = k, the remaining-firing-time
function r(t) is a vector of k nonnegative nondecreas-
ing real numbers denoted by r(t)[1], r(t)[2], ..., r(t)[k];
r is a partial function and it is undefined for all those
transitions t for which n(t) = 0.

An initial state si of a net T is a triple si = (mi, ni, ri)
where ni is a selection function from the set Sel(m0), ni ∈
Sel(m0), the remaining-firing-time function is equal to the
firing times f(t) for all those transitions t for which ni > 0:

∀t ∈ T : r(i)(t) =

{

f(t), if ni(t) > 0,
undefined, otherwise;

and the marking mi is defined as:

∀p ∈ P : mi(p) = m0(p)−
∑

t∈Out(p) ni(t) .

An extended free-choice D-timed net T may have several
different initial states.

A state sj = (mj , nj , rj) is directly reachable (or gk–
reachable) from the state si = (mi, ni, ri), iff the following
conditions are satisfied:

(1) gk ∈ Sel(miji) ,

(2) ∀p ∈ P : mj(p) = miji(p)−
∑

t∈Out(p) gk(t),

(3) ∀t ∈ T : nj(t) = ni(t)− ai(t)− di(t) + gk(t),

(4) ∀t ∈ T : rj(t)[ℓ] =







ri(t)[ℓ+ ai(t) + di(t)]− hi,
if 1 ≤ ℓ ≤ ni(t)− ai(t)− di(t),
f(t), if gk(t) > 0 ∧ ℓ = nj(t),

where:

(5) ∀p ∈ P : miji(p) = mij(p) +
∑

t∈Out(p) di(t),

(6) ∀tinT : di(t) = min(ni(t)− ai(t),
∑

p∈Int(t) mij(p)),

7) ∀p ∈ P : mij(p) = mi(p) +
∑

t∈Inp(p) ai(t),

(8) ∀t ∈ T : ai(t) =

{

1, if ni(t) > 0 ∧ ri(t)[1] = hi,
0, otherwise;

(9) hi = mint∈T (ri(t)[1]).

The state sj which is gk-reachable from the state si is thus
obtained by the termination of the next firings (i.e., those
firings for which the remaining firing time is the smallest one;
this time is denoted by hi and is called the holding time or
the sojourn time of state si) (8,9), updating the marking of a
net (7), checking if updated interrupting sets discontinue any
active firing and performing all required modifications (5,6),
and then initiating new firings (if any) which correspond to
the selection function gk from the set Sel(miji) (1,2,3 and
4). It should be observed that the number of interrupted
firings is determined by the total number of tokens in the set
of interrupting places (6).

Similarly as for marked nets, a state sj is (generally) reach-
able from a state si if there is a sequence of directly reachable
states from the state si to the state sj . Also, a set S(T) of
reachable states is defined as the set of all states of a net T
which are reachable from the initial states of the net T.

A state graph G of a D-timed Petri net T is a labeled
directed graph G(T) = (V,D, b) where:

V is a set of vertices which is equal to the set of reachable
states of the net T, V = S(T),

D is a set of directed arcs, D ⊂ V × V , such that (si, sj) is
in D iff sj is directly reachable from si,

b is a labeling function which assigns the probability of tran-
sition from si to sj to each arc (si, sj) in the set D,
b : D → [0, 1], in such a way that if sj is gk-reachable
from si, then

b(si, sj) =
∏

t∈T

c(t)gk(t).

Example. The D-timed Petri net shown in Fig.2 (the in-
terrupt arcs have small dots instead of arrowheads and the
firing time function as well as the choice function are given
as additional descriptions of transitions) is a refinement of
the net from Fig.1; it contains one interrupt arc (p5, t5), one
free-choice place p3, and one guarded place p4.

The state graph for this net is shown in Fig.3, and the
derivation of the set S(T) of reachable states is given in
Tab.2. �
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mi ni mij gk
si 1 2 3 4 5 1 2 3 4 5 6 hi 1 2 3 4 5 1 2 3 4 5 6 sj b(si, sj)

1 0 0 0 0 0 1 0 0 0 0 0 1.0 0 1 0 1 0 0 1 0 0 1 0 2 1.00
2 0 0 0 0 0 0 1 0 0 1 0 2.0 0 0 1 0 0 0 0 0 1 0 0 3 0.90

0 0 1 0 0 0 4 0.10
3 0 0 0 0 0 0 0 0 1 1 0 2.0 1 0 0 0 1 1 0 0 0 0 1 5 1.00
4 0 0 0 0 0 0 0 1 0 1 0 0.0 0 0 0 0 0 0 0 0 0 0 0 6 1.00
5 0 0 0 0 0 1 0 0 0 0 1 0.0 0 0 0 0 0 0 0 0 0 0 0 1 1.00
6 0 0 0 0 0 0 0 0 0 1 0 3.0 1 0 0 0 0 1 0 0 0 0 0 1 1.00

Tab.2. The set of reachable states for T1.

Fig.2. D-timed Petri net T1.

3 2 4

5 1 6

Fig.3. State graph G(T1).

A D-timed Petri net T is p-bounded if there exists a pos-
itive integer kp such that for each state s = (m,n, r) in
S(bfT ), the marking function m assigns at most kp tokens
to each place of the net

∃kp > 0 ∀(m,n, r) ∈ S(T) ∀p ∈ P : m(p) ≤ kp .

Also, T is t-bounded if there exists a positive integer kt
such that for each state s = (m,n, r) in S(T), the firing-rank
function n assigns at most kt firings to each transition of the
net

∃kt > 0 ∀(m,n, r) ∈ S(T) ∀t ∈ T : n(t) ≤ kt .

Finally, T is bounded iff it is p-bounded and t-bounded.
Similarly as for marked nets, T is bounded iff its set of

reachable states S(T) is finite.
Only bounded D-timed Petri nets are considered in this

paper.
It should be observed that in general case there is no di-

rect relationship between boundedness of a D-timed Petri
net T = (M, c, f) and its underlying marked net M. The D-
timed net from Fig.2 is bounded (Tab.2) while its underlying
marked net (Fig.1) in unbounded (Tab.1).

4. PROTOCOL MODELLING AND ANALYSIS

The Petri net shown in Fig.2 is a model of a very simple
protocol in which messages are exchanged between a sender
(place p1) and a receiver (place p3), and each received mes-
sage is confirmed by an acknowledgement sent back to the
sender (in the loop p1, t1, p2, t2, p3, t4, p1). There is a nonzero
probability that the system can lose (or distort) a message or
an acknowledgement; the place p3 is a free-choice place, and
the transition t3 models a message/acknowledgement sink;

the probability associated with t3, c(t3), represents thus the
probability of losing a message or an acknowledgement (or
shortly a token) in the system. A timeout is used to recover
from lost tokens. It works in the following way. An event of
sending a message is modelled by the transition t1. When
it fires, single tokens are deposited in p2 (a message) and
in p4 (a timeout). A token in p4 immediately starts a firing
of the timeout transition t5 (since p5 is empty). The firing
time associated with t5 is large enough to allow the transfer
of a message and an acknowledgement. If there is no loss
of tokens, i.e., if t4 is selected for firing (according to its
probability), the transition t4 will finish its firing before t5,
and then a token in the place p5 interrupts and cancels the
timeout (i.e., the firing of t5), the timeout token is returned
to p4, and then t6 fires and removes the tokens from p4 and
p5 (t6 is another token sink). If, however, a message or ac-
knowledgement has been lost (i.e., if t3 has been selected for
firing instead of t4), the timeout t5 ends its firing without
interruption, and regenerates the lost token in p1, i.e., the
message is retransmitted to the receiver.

The state graph representing the behavior of this model
contains 6 states, as shown in Fig.3 (and Tab.2). It contains
one decision node (the state s2) with two outgoing branches
and branch probabilities q and (1−q), corresponding to a lost
and regenerated token, and a correct transfer, respectively
(in the example q = c(t3) = 0.1). It can be observed that
the state graph can be reduced (by simply aggregating the
paths connecting the decision node) to a single-node graph
shown in Fig.4 in which one branch represents a loss and

recovery of a token (and replaces the states s1, s2, s4 and
s6), and the second branch represents correct transfers (i.e.,
it replaces the states s1, s2, s3 and s5).

Fig.4. Reduced transition graph for T1.

The times associated with the branches (i.e., the total
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times of aggregated paths) correspond to the transition times,
and are equal to 6 and 5, respectively. The (reduced) tran-
sition graph from Fig.4 can be transformed to an equivalent
state graph [27] shown in Fig.5, with the state holding times
equal to h1 = 6 and h2 = 5 and transition probabilities q
and 1− q.

Fig.5. Reduced state graph for T1.

The stationary probabilities x1 and x2 of the reduced
states s1 and s2 (Fig.5) can be obtained as the solution of
two equations

x1 = q ∗ x1 + q ∗ x− 2,
x1 + x2 = 1,

from which x1 = q and x2 = 1 − q. In general case, the
stationary probabilities x(s) of the reduced states s ∈ Sr(T)
are obtained by solving a system of simultaneous linear equa-
tions
{

∑

(sj ,si)∈Dr
b(sj , si) ∗ x(sj) = x(si), i = 1, ...,K − 1;

∑

1≤i≤K
x(si) = 1;

where K is the number of states in the reduced set of states
Sr(T).

Since the stationary probability of correct transfers is
equal to 1 − q = 0.9, and one correct transfer requires
f(t1) + f(t2) + f(t4) = 5 time units, the throughput ρ is
equal to 0.9 ∗ 5/(0.9 ∗ 5 + 0.1 ∗ 6)/5 = 0.174 messages per
time unit.

The total time required for one correct transfer is com-
posed of the message sending time (f(t1)) and two trans-
mission delays, one for a message (f(t2)) and the second for
acknowledgement (f(t4)); the acknowledgement is usually
very short, so its sending time is negligible. The message
sending time is directly proportional to the length of a mes-
sage, and inversely proportional to the data signaling rate
(or the speed of transmission) v. For a fixed message length,
the transfer time can thus be reduced by increasing the data
signaling rate v; then, however, the probability of errors, q,
is increased. Assuming (for simplicity of consideration) that
q is a linear function of v

q(v) = q0 + q1 ∗ v

and that the total transfer time d(v) can be approximated
by the following simple function

d(v) = d0 + d1/v,

the throughput ρ as a function of v is

ρ(v) = (1− q(v))/d(v) = (1− q0 − q1 ∗ v)/(d0 + d1/v).

The function ρ(v) has a maximum between 0 and (1 −
q0)/q1, as shown in Fig.6 (for q0 = 0, q1 = 0.1, d0 = 3 and
d1 = 2 the maximum throughput is equal to 0.2 messages
per time unit, and it corresponds to v = 2). It should be
noticed that the initial part of this curve is very steep.

0

0.05

0.1

0.15

0.2

ρ

0 1 2 3 4 5 v

Fig.6. Throughput ρ as a function of v.

Further improvement of throughput can be obtained by
optimizing the length of messages [26].

5. ENHANCED D-TIMED PETRI NETS

Extended D-timed Petri nets usually contain some auxil-

iary transitions which have zero firing times (e.g., t3 and t6 in
Fig.2), i.e., transitions which fire instantaneously. Such tran-
sitions do not contribute to the timed behavior of a net, but
they increase the state space generating states with holding
time equal to zero. Enhanced Petri nets eliminate such van-

ishing states during generation of the set of reachable states,
and this can considerably reduce the state space as well as
simplify the performance analysis (based on stationary prob-
abilities). Enhanced Petri nets combine two different classes
of Petri nets, immediate nets which are in fact ordinary (i.e.,
without time) inhibitor free-choice straight Petri nets, and
timed nets which are extended free-choice simple D-timed
Petri nets.

A net Ni = (Pi, Ti, Ai, Bi, Ci) is a Ti-implied subnet of an
extended net N = (P, T,A,B,C) iff

(1) Ti ⊂ T ,

(2) Ai = A ∩ (P × Ti ∪ Ti × P ),

(3) Bi = B ∩ (P × Ti),

(4) Ci = C ∩ (P × Ti),

(5) Pi = Inp(Ti) ∪Out(Ti) ∪ Inh(Ti) ∪ Int(Ti).

A net N is straight iff for all initial markings m0, the set
of reachable markings M(M), M = (N,m0), can be ordered
in such a way that for all pairs of markings mi and mj from
the set M(M), mj can be (generally) derived from mi only
if i is smaller than j, i.e., iff the marking graph of M [19,28]
is acyclic. In straight nets all firing sequences of (finite)
markings are finite. If a graph of a net N = (P, T,A,B,C)
does not contain cycles, i.e., if a directed graph (P ∪ T,A)
is acyclic, the net is obviously straight, but many cyclic nets
are also straight.

An enhanced Petri net H is a 6-tuple H =
(P, Tt, T0, A,B,C) where:
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(P, Tt ∪ T0, A,B,C) is an extended free-choice Petri net,

Tt is a set of timed transitions,

T0 is a set of immediate transitions such that the T0-implied
subnet of (P, Tt∪T0, A,B,C) is straight, the sets Tt and
T0 are disjoint, and for each free-choice place p:

Out(p) ⊆ Tt ∨Out(p) ⊆ T0,

i.e., each free-choice class of transitions must belong
either to the set of timed or to the set of immediate
transitions.

The set of all transitions is denoted by T , T = Tt ∪ T0.
An enhanced marked Petri net M is a pair M = (H,m0)

where H is a an enhanced Petri net and m0 is the initial
marking function.

Similarly as before, the set of transitions enabled by a
markingm is denoted by En(m). Moreover, En0(m) denotes
the set of immediate transitions enabled by m, and Ent(m)
the set of timed transitions enabled by m.

An enhance function e of a marking m in a net M is any
function e : T → {0, 1, ...} such that:

(1) there exists a finite (possibly empty) firing sequence of
immediate transitions u = (ti1 , ti2 , ..., tik ) which trans-
forms the marking m into a marking mk, and the set
of immediate transitions enabled by mk, En0(mk), is
empty, and

(2) for each immediate transition t ∈ T0 the number of
occurrences of t in the sequence u is equal to e(t), while
for each timed transition t ∈ Tt, e(t) = 0.

The set of all enhance functions of a marking m is denoted
by Enh(m).

Since the immediate subnet (i.e., the T0-implied subnet)
is straight, for each marking m, the set Enh(m) is finite.

In enhanced nets, selection functions are defined similarly
as in extended (or inhibitor) nets but with respect to the
timed transitions only. A selection function of a marking m
in an enhanced net H is thus any such function g : T →
{0, 1, ...} that:

(1) there exists a sequence of timed transitions w =
(ti1 , ti2 , ..., tik ) in which tij ∈ Ent(mij−1) for j = 1, ...k
and for mi0 = m, where:

∀p ∈ P : mij (p) = mij−1(p)−

{

1, if p ∈ Inp(tij ),
0, otherwise;

(2) the set of timed transitions enabled by mik , Ent(mik ),
is empty;

(3) for each timed transition t ∈ Tt the number of occur-
rences of t in the sequence w is equal to g(t), while for
each immediate transition t ∈ T0, g(t) = 0.

It should be observed that there are two basic differences
between enhance and selection functions:

(1) enhance functions are (effectively) defined for immedi-
ate transitions while selection functions for timed tran-
sitions,

(2) enhance functions describe sequences of (complete)
firings while selection functions indicate initiations of
(timed) firings.

An enhanced free-choice D-timed Petri net T is a triple
T = (M, c, f) where:

M is a marked enhanced free-choice Petri net, M =
(H,m0), bfH = (P, Tt, T0, A,B,C),

c is a choice function which assigns a free-choice probability
to each transition of a net in such a way that for each
free-choice place p:

∑

t∈Out(p)

c(t) = 1,

and for all remaining transitions c(t) = 1,

f is a firing time function which assigns the time of firing
f(t) to each timed transition t of the net, f : Tt → R+.

A state s of a D-timed Petri net T is a triple s = (m,n, r)
where:

m is a marking function, m : P → {0, 1, ...},

n is a firing-rank function, n : Tt → {0, 1, ...},

r is a remaining-firing-time function, r : Tt → (R+)n.

An initial state si of an enhanced net T is a triple
si = (m−i, ni, ri) where ni is a selection function from the
set Sel(mk), ni ∈ Sel(mk), the marking function m − i
is the residual marking after initiating the firings indicated
by ni, the remaining firing time function ri is equal to the
firing times f(t) for all those transitions t ∈ Tt for which
ni is nonzero, and the (intermediate) marking mk is deter-
mined by an enhance function ek from the set Enh(m0),
ek ∈ Enh(m0), in the following way:

∀p ∈ P : mk(p) = m0(p) +
∑

t∈Inp(p)

ek(t)−
∑

t∈Out(p)

ek(t).

An enhanced free-choice net T may have several different
initial states.

A state sj = (mj , nj , rj) is directly reachable (or (ek, gℓ)-
reachable) from the state si = (mi, ni, ri) iff:

(1) ek ∈ Enh(miji);

(2) gℓ ∈ Sel(mijk);

(3) ∀p ∈ P : mj(p) = mijk(p)−
∑

t∈Out(p) gℓ(t);

(4) ∀t ∈ T : nj(t) = ni(t)− di(t) + gℓ(t);

(5) ∀t ∈ T : rj(t)[z] =







ri(t)[z + di(t)]− hi,
if 1 ≤ z ≤ ni(t)− di(t),

f(t), if gℓ(t) > 0 ∧ z = nj(t);

where:

(6) ∀p ∈ P ) : mijk(p) =

miji(p)−
∑

t∈Out(p) ek(t) +
∑

t∈Inp(p) ek(t);

(7) ∀p ∈ P : miji(p) = mij(p) +
∑

t∈Out(p) di(t);
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(8) ∀t ∈ T : di(t) =
{

min(ni(t)− ai(t),
∑

p∈Int(t) mij(p)), if t ∈ Tt,

0, otherwise;

(9) ∀p ∈ P : mij(p) = mi(p) +
∑

t∈Inp(p) ai(t);

(10) ∀t ∈ T : ai(t) =

{

1, if ni(t) > 0 ∧ ri(t)[1] = hi,
0, otherwise;

(11) hi = mint∈T∧ni(t)>0(ri(t)[1]).

The state sj which is (ek, gℓ)-reachable from the state si
is obtained by the termination of the next firings (10,11)
and updating the marking of a net (9), performing all inter-
rupts (if any) as determined by the function di (7,8), then
performing all immediate firings which correspond to an en-
hance function ek from the set Enh(mij) (1,6), and finally
initiating new firings (if any) indicated by the selection func-
tion gℓ from the set Sel(mijk) (2,3,4 and 5).

Similarly as for reachable markings, a state sj is reachable
from a state si if there is a sequence of directly reachable
states from the state si to the state sj . Also, a set S(T) of
reachable states is defined as the set of all states of a net
T which are reachable from the initial states (including the
initial states). For enhanced free-choice bounded D-timed
nets the sets of reachable states are finite.

A state graph G of a D-timed Petri net T is a labeled
directed graph G(T) = (V,D, b) where:

V is a set of vertices which is equal to the set of reachable
states of the net T, V = S(T);

D is a set of directed arcs, D ⊆ V × V , such that (si, sj) is
in D iff sj is directly reachable from si in T;

b is a labeling function which assigns the probability of
transitions from si to sj to each arc (si, sj) in the set
D, b : D → [0, 1], in such a way that if sj is (ek, gℓ)-
reachable from si, then

b(si, sj) =
∏

t∈T

c(t)ek(t)+g]ell(t).

Example. The enhanced net T2 shown in Fig.7 is yet an-
other model of the protocol from Fig.2 (the timed transitions
are represented by solid bars while immediate transitions by
bars). T2 uses immediate transitions as a replacement for all
transitions with zero firing times (an additional immediate
transition t7 is used to satisfy the requirement that the whole
free-choice classes must be either immediate or timed).

The derivation of the state space for T2 is shown in Tab.3.

mi ni ek gℓ
si 1 2 3 4 5 6 1 2 4 5 hi 3 6 7 1 2 4 5 sj
1 0 0 0 0 0 0 1 0 0 0 1.0 0 0 0 0 1 0 1 2
2 0 0 0 0 0 0 0 1 0 1 2.0 0 0 1 0 0 1 0 3

1 0 0 0 0 0 0 4
3 0 0 0 0 0 0 0 0 1 1 2.0 0 1 0 1 0 0 0 1
4 0 0 0 0 0 0 0 0 0 1 3.0 0 0 0 1 0 0 0 1

Tab.3. The set of reachable states for T2.

Fig.7. D-timed Petri net T2.

Tab.3 contains only 4 states. It should be observed that
the entries with nonzero values of hi are identical in Tab.3
and in Tab.2.

The idea of reducing the number of reachable states by
changing some of transitions into immediate ones is used in
an enhanced free-choice D-timed Petri netT3 shown in Fig.8.
T3 is a Petri net model of the sliding window protocol.

Fig.8. D-timed Petri net T3.

The simple communication protocol discussed earlier
(Fig.2, Fig.7) may be adequate for short distances, but is
very inefficient for long distance communication since to send
another message, the sender must wait the whole delay of the
message as well as acknowledgement. For long distance com-
munication, a more efficient method is to allow the sender
to transmit several consecutive messages without waiting for
an acknowledgement; since the transmitted messages may
be lost or damaged in transit, the sender must store them in
a buffer for possible retransmission. The concept of a win-

dow is used to denote the messages stored in the buffer, and
window size determines the maximum number of outstand-
ing unacknowledged messages. When the sender eventually
receives acknowledgement for a buffered message, it releases
the corresponding space in the buffer and transmits another
message storing it in the released buffer space (the proto-
col’s window slides by one message). For retransmission of
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lost messages or acknowledgements, a timeout mechanism is
used, similarly as before. Since messages may be lost in tran-
sit, each message contains a unique sequence number which
identifies the message. It is assumed that the messages may
be be sent and received in order not necessarily following the
sequence numbers.

The sender and receiver are represented in Fig.8 by p1
and p3, respectively. The sender’s buffer is modelled by p10.
The window size is 3 in this example (m0(p1)). t1 and p9
send consecutive messages into communication channel (p2
and t2), store them in the buffer (p10), and start the time-
out (p4 and t5). A correct transfer is acknowledged by fir-
ing t7 and then t4, which cancels (one) timeout (p5, t5 and
t6), and releases one buffer section (t8). If a message is lost
or damaged (t3), eventually the timeout terminates (t5 and
p8), and retransmits the message (t9). In Fig.8 retransmis-
sion of timed-out messages has priority over transmission of
consecutive messages (inhibitor arc (p8, t1) blocks t1 if p8 is
nonempty).

The net T3 has 64 states, 26 reduced states, and its
throughput is equal to 0.524 messages per time unit, so it
is three times greater than the throughput of previous pro-
tocols (Fig.2, Fig.7). It should be observed that the protocol
from Fig.8 is equivalent to those from Fig.2 and Fig.7 for
window size equal to 1 (i.e., m0(p1) = 1).

6. CONCLUDING REMARKS

It has been shown that the behavior of a class of D-timed
Petri nets with interrupt arcs can be represented by discrete-
state discrete-time homogeneous semi-Markov processes. In-
terrupt arcs (which are generalized inhibitor arcs) provide a
simple mechanism to discontinue the firing of transitions, and
this can be used for strict modelling of timeouts in commu-
nication protocols. Moreover, enhanced D-timed nets which
combine two classes of nets, ordinary inhibitor nets and D-
timed extended nets, reduce the state space of modelling nets
by removing all those states which do not contribute to the
timed behavior of a model, but which are formally needed for
intermediate state transitions. Consequently, D-timed proto-
col models are usually quite simple (in fact, they are simpler
than in many other approaches), and their parameters cor-
respond in a very natural way to components or activities
of modelled systems (e.g., the numbers of messages, timeout
signals, etc.). The results can be obtained in a rather general
form, and repeated analyses with different sets of parameters
can indicate the effects of performance changes correspond-
ing to different queueing disciplines, or different priorities of
messages, etc. The state space can easily be generated from
model specifications, and since the states of the modelling
net directly correspond to the states of the modelled sys-
tem, a verification step is provided which is not available in
simulation or analytical modelling.

The class of timed Petri nets discussed in the paper is
restricted in several ways (simple free-choice singular nets),
some of the restrictions, however, can be removed by rather
straightforward extensions of the presented formalism.

The class of timed Petri nets described in this paper can
be used to represent time Petri nets proposed by Merlin and
Farber [5,13] since the interrupt arcs are flexible enough to
model timeout mechanisms, and minimum as well as maxi-
mum times assigned to time transitions can be represented by
free-choice classes of transitions. Consequently, the extreme

(or worst-case) conditions can be analyzed in the modelled
nets.
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