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Abstract

Modified D-timed Petri nets are Petri nets with ”spe-
cial” arcs to interrupt firing transitions, and with deter-
ministic firing times; these special arcs are called ”in-
terrupt” arcs. It is shown that the behaviour of simple
modified bounded free-choice D-timed Petri nets can be
represented by finite probabilistic state graphs, stationary
probabilities of states can thus be obtained by standard
techniques used for analysis of Markov chains. An imme-
diate application of such a model is performance analysis
of systems of interacting asynchronous processes, and in
particular communication protocols. Places of Petri nets
model queues of messages, transitions represent events
in communication networks, interrupt arcs conveniently
model timeouts, and probabilities associated with free-
choice classes correspond to relative frequencies of random
events. A simple protocol based on unnumbered messages
and acknowledgements is used as an illustration of analy-
sis.

1. INTRODUCTION

Petri nets [1,6,16] have been successfully used in mod-
elling [3,8,9,15], validation [4,11] and analysis [7,9] of sys-
tems of events in which it is possible for some events to
occur concurrently, but there are constraints on the oc-
currence, precedence, or frequency of these occurrences.
A basic Petri net, however, is not complete enough for
the study of systems performance since no assumption
is made on the duration of system events. Timed Petri
nets have been introduced by Ramchandani [17] by assign-
ing firing times to the transitions of Petri nets. Sifakis
[20] introduced another definition of a timed Petri net
by assigning time to places of a net. Garg [10] used the
same approach for specification of communication proto-
cols. Merlin and Farber [13] discussed timed Petri nets
where a time threshold and maximum delay were assigned
to each transition of a net to allow the incorporation of
timeouts into protocol models. Berthomieu and Menasche
[5,12] used ”state classes” to obtain finite representation
of behaviour of nets defined by Merlin and Farber; such
a description is sufficient for validation and verification
studies, but requires further refinement for performance
analysis. Razouk [18] and Razouk and Phelps [19] dis-
cussed an interesting class of timed Petri nets with en-
abling as well as firing times, and derived some perfor-
mance expressions for a simple communication protocol;
since the enabling times correspond to the time thresh-
olds of Merlin and Farber, such nets can easily model
timeout mechanisms, however, in some cases probabilities

of conflicting firings cannot be directly associated with
corresponding transitions which can distort the models.
The method described in this paper is a continuation

of the approach originated by Ramchandani [17] and sub-
sequently extended by inhibitor arcs and guarded places
to model timeouts [21,22]. In extended Petri nets, how-
ever, firing transitions cannot be ”interrupted:, and time-
out signals must be rather ”neutralized: than ”canceled”.
In this paper, basic Petri nets are enhanced by ”inter-
rupt” (or ”cancel”) arcs in order to interrupt firing tran-
sitions as required in strict modelling of timeouts. Sim-
ilarly as in [17,21,22], constant (or deterministic) firing
times are assigned to transitions of a Petri net, and a
state description is introduced which is similar to finite
state homogeneous Markov chains. This directly provides
many performance measures such as utilization of sys-
tems components, average waiting times and turnaround
times or average throughput rates, and at the same time
preserves the simplicity of model specification and offers
automatic generation of the state space.
This paper is organized in 3 main sections. Section 2

contains definitions of basic concepts for modified free-
choice bounded singular Petri nets. Modified D-timed
Petri nets are introduced in Section 3. Application of
modified D-timed Petri nets to modelling and analysis of
protocols is discussed in Section 4.

2. MODIFIED PETRI NETS

A modified (basic) Petri net N is a quadruple N =
(P, T,A,C) where:

P is a finite, nonempty set of places,

T is a finite, nonempty set of transitions,

A is a set of directed arcs which connect places with
transitions and transitions with places such that for
each transition there is at least one place connected
with it

∀t ∈ T ∃p ∈ P : (p, t) ∈ A,

C is a set of interrupt arcs which connect places with
transitions, C ⊂ P × T , and A and C are disjoint
sets.

A place p is an input (or an output) place of a transition
t iff there exists an arc (p, t) (or (t, p), respectively) in the
set A. The sets of all input and output places of a tran-
sition t are denoted by Inp(t) and Out(t), respectively.
Similarly, the sets of input and output transitions of a
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place p are denoted by Inp(p) and Out(p). Also, a place
p is an interrupting place of a transition t iff (p, t) ∈ C.
The set of all interrupting places of t is denoted by Int(t),
and the set of transitions connected by interrupt arcs with
a place p is denoted by Int(p), Int(p) = {t|p ∈ Int(t)}.

A modified net N = (P, T,A,C) is simple iff the inter-
rupt sets of all transitions are disjoint

∀ti ∈ T ∀tj ∈ T − {ti} : Int(ti) ∩ Int(tj) = ∅

where ∅ denotes the empty set. Only simple modified nets
are discussed in this paper. Nonsimple nets require a very
similar, but slightly extended description which takes into
account conflicts of interrupt sets.
A place pp@ is shared iff it is an input place for more

than one transition. A net is conflict-free iff it does not
contain shared places. A shared place p is free-choice iff
the input sets of all transitions sharing p are identical. A
net is free-choice iff all its shared places are free-choice.
Only free-choice Petri nets are considered in this paper.
Some other classes of Petri nets can be described in a very
similar way.
A marked Petri net M is a pair M = (N,m0) where:

N is a Petri net, N = (P, T,A,C),

m0 is an initial marking function which assigns a non-
negative integer number of so called tokens to each
place of the net, m0 : P → {0, 1, ...}.

Let any function m : P → {0, 1, ...} be called a marking
in a net N = (P, T,A,C).
A transition t is enabled by a marking m iff every input

place of this transition contains at least one token. The
set of all transitions enabled by a marking m is denoted
by T (m).
Every transition enabled by a marking m can fire. Fir-

ing of an enabled transition t can be considered as com-
posed of two steps; in the first step the firing is initiated
by removing a single token from each of t’s input places,
while the second step terminates the firing by adding a
token to each of t’s output places. Firing of a transition
determines a new marking in a net, a new set of enabled
transitions, and so on. In modified Petri nets, an initiated
firing of transition t is interrupted and canceled if the in-
terrupt set Int(t) is nonempty and all interrupting places
of t contain at least one token. Cancellation of an initi-
ated firing of t removes a single token from all interrupt
places of t, but no tokens are added to t’s output places.

A marking mj is directly reachable from a marking mi

in a net N iff there exists a transition t enabled by the
marking mi, t ∈ T (mi), such that

∀p ∈ P : mj(p) =







mij(p) + 1, if p ∈ Out(t) ∧
minpk∈Int(t)(mi(pk)) = 0,

mij(p), otherwise,

where

∀p ∈ P : mij(p) =







mi(p)− 1, if p ∈ Inp(t)) ∨
(p ∈ Int(t) ∧mint(t,mi) > 0,

mi(p), otherwise.

where mint((t,m) = minpk∈Int(t)(m(pk)).

A marking mj is reachable from a marking mi

in a net N if there exists a sequence of markings
(mi0mi1mi2 ...min) such that mi0 = mi, min = mj , and
each marking mik is directly reachable from the marking
mik−1

for k = 1, ..., n.
A set M(M) of reachable markings of a marked Petri

net M = (N,m0) is the set of all markings which are
reachable from the initial marking m0 (including m0).
A marked net M is bounded if there exists a positive

integer k such that each marking in the set M(M) assigns
at most k tokens to each place of the net

∃k > 0 ∀m ∈ M(M) ∀p ∈ P : m(p) < k.

If a marked netM is bounded, its set of reachable mark-
ings M(M) is finite. Only bounded nets are considered
in this paper.
An enable function e of a marking m in a net N and

its interrupting function de are any functions e : T →
{0, 1, ...} and de : T → {0, 1, ...} such that

(1) there exists a sequence of transitions u =
(ti1 , ti2 , ..., tik), such that for j = 1, ..., k, tij ∈
T (mij−1

) where mi0 = m and

∀p ∈ P : mij (p) =















mij−1
(p)− 1, if p ∈ Inp(tij )
∨ p ∈ Int(tij ) ∧
minpk∈Int(t)(m(pk)) > 0,

mij−1
(p), otherwise,

(2) the set of transitions enabled by mik , T (mik), is
empty,

(3) for each t ∈ T , e(t) is equal to the number of occur-
rences of t in the sequence u, while de(t) is equal to
the number of interrupted and canceled (or simply
interrupted) firings of t in the sequence u;

i.e., an enable function e is any function which indicates
(by nonzero values) all those transitions which can simul-
taneously initiate their firings (and some transitions may
initiate their firings ”several times”), while its interrupt
function de indicates the numbers of interrupted firings.
The set of all enable functions of a marking m is denoted
by E(m).
A marked net M is singular iff all enable functions of

all reachable markings indicate at most a single firing of
a transition

∀m ∈ M(M) ∀e ∈ E(m)) ∀t ∈ T : e(t) ≤ 1.

To simplify the description of timed Petri nets, only
singular free-choice bounded nets are considered in this
paper. Nonsingular nets can be described by a rather
straightforward extension of the formalism which follows.

3. MODIFIED D-TIMED PETRI NETS

In timed Petri nets each transition takes a ”real time” to
fire, i.e., there is a ”firing time” associated with each tran-
sition of a net. The firing times can be defined in several
ways. In D-timed Petri nets [17,21,22] they are determin-
istic (or constant), i.e., there is a nonnegative (rational)
number assigned to each transition of a net. In M-timed
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Petri nets (or stochastic Petri nets [2,14]), the firing times
are exponentially distributed random variables, and the
corresponding firing rates are assigned to transitions of a
net.
A modified D-timed free-choice Petri net T is a triple

T = (M, c, f) where:

M is a free-choice marked Petri net, M = (N,m0), N =
(P, T,A,C),

c is a choice function which assigns a ”free-choice” prob-
ability to each transition t of the net in such a way
that for each free-choice place p of N:

∑

t∈Out(p) c(t) = 1,

and for all remaining transitions c(t) = 1,

f is a firing time function which assigns a nonnegative
real number (t) to each transition t of the net, f :
T → R+, and R+ denotes the set of nonnegative
real numbers.

The behaviour of a modified D-timed Petri net can be
represented by a sequence of states where each state de-
scribes the current marking as well as the firing transitions
of a net. Each termination of a firing changes the current
state of a net.
A state s of a modified D-timed Petri net T is a triple

s = (m,n, r) where:

m is a marking function, m : P → {0, 1, ...},

n is a firing-rank function which indicates the number of
active firings (i.e., the number of firings which have
been initiated but are not yet terminated) for each
transition of the net, n : T → {0, 1, ...},

r is a remaining-firing-time function which assigns the re-
maining firing time to each independent firing (if any)
of a transition, i.e., if the firing rank of a transition t is
equal to k, n(t) = k, the remaining-firing-time func-
tion r(t) is a vector of k nonnegative nondecreasing
real numbers denoted by r(t)[1], r(t)[2], ..., r(t)[k]; r
is a partial function and it is undefined for all those
transitions t for which n(t) = 0.

An initial state si of a net T is a triple si = (mi, ni, ri)
where ni is determined as a difference between an enable
function e from the set E(m0) and its interrupt function
de

∀tinT : ni(t) = e(t)− de(t), e ∈ E(m0),

the remaining-firing-time function is equal to the firing
times f(t) for all those transitions t for which ni(t) > 0

∀tinT : ri(t) =

{

f(t), if ni(t) > 0,
undefined, otherwise;

and the marking mi is defined as

∀p ∈ P : mi(p) = m0(p)−
∑

tinOut(p)

e(t).

A modified free-choice D-timed net T may have several
different initial states.
A state sj = (mj , nj , rj) is directly ek-reachable from

the state si = (mi, ni, ri), iff:

(1) ek ∈ E(mji),

(2) ∀p ∈ P : mji(p) = mi(p)−
∑

t∈Int(p) aj(t),

(3) ∀t ∈ T : aj(t) = min(ni(t)− ai(t), gij(t)),

(4) ∀t ∈ T : gij(t) = minp∈Int(t)(mij(p)),

(5) ∀p ∈ P : mij(p) = mi(p) +
∑

t∈Inp(p) ai(t),

(6) ∀t ∈ T : ai(t) =

{

1, if ni(t) > 0 ∧ ri(t)[1] = hi,

0, otherwise;

(7) hi = mint∈T (ri(t)[1]),

(8) ∀t ∈ T : aij(t) = ai(t) + aj(t),

(9) ∀p ∈ P : mj(p) = mji(p)−
∑

t∈Out(p) ek(t),

(10) ∀t ∈ T : nj(t) = ni(t)− aij(t) + ek(t)− dek(t),

(11) ∀t ∈ T : rj(t)[ℓ] =















ri(t)[ℓ+ aij(t)]− hi,

if 1 ≤ ℓ ≤ ni(t)− aij(t),
f(t), if ek(t) > dek(t) ∧

ℓ = nj(t).

The state sj which is directly ek-reachable from the
state si is thus obtained by the termination of the ”next”
firings (i.e., those firings for which the remaining firing
time is the smallest one; this time is denoted by h(si)
(6,7), updating the marking of a net (5), checking if up-
dated interrupting sets discontinue any active firing and
performing required modifications (2,3), and then initiat-
ing new firings (if any) which correspond to the enable
function ek from the set E(mji) (1, 9, 10 and 11).
Similarly as for marked nets, a state sj is reachable

from a state si if there is a sequence of directly reachable
states from the state si to the state sj . Also, a set S(T)
of reachable states is defined as the set of all states of a
net T which are reachable from the initial states of the
net T (including the initial states). For bounded nets the
sets of reachable states are finite.
The state graph G of a D-timed Petri net T is a labeled

directed graph G(T) = (V,D, b) where:

V is a set of vertices which is equal to the set of reachable
states of the net T, V = S(T),

D is a set of directed arcs, D ⊂ V ×V , such that (si, sj)
is in D iff sj is directly reachable from si,

b is a function which assigns the probability of transition
from si to sj to each arc (si, sj) in the set D, b : D →
[0, 1], in such a way that if sj is directly ek-reachable
from si, then

b(si, sj) =
∏

t∈T

c(t)ek(t).

Example. For a simple Petri net shown in Fig.1 (as
usual, places are represented by circles, transitions by
squares, interrupt arcs by arcs with black dots instead
of arrowheads, the initial marking by dots inside places,
and the firing time function as well as the choice func-
tion are given as additional descriptions of transitions),
the state graph is shown in Fig.2, and the derivation of
the set S(T1) of reachable states is given in Tab.1.
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mi ni mij ek
si 1 2 3 4 5 1 2 3 4 5 hi 1 2 3 4 5 1 2 3 4 5 sj b(si, sj)
1 0 0 0 0 0 1 0 0 0 0 1.0 0 1 0 1 0 0 1 0 1 0 2 1.00
2 0 0 0 0 0 0 1 0 1 0 10.0 0 0 1 0 0 0 0 0 0 1 3 0.90

0 0 1 0 0 4 0.10
3 0 0 0 0 0 0 0 0 1 1 5.0 1 0 0 0 1 1 0 0 0 0 1 1.00
4 0 0 0 0 0 0 0 1 1 0 0.0 0 0 0 0 0 0 0 0 0 0 5 1.00
5 0 0 0 0 0 0 0 0 1 0 10.0 1 0 0 0 0 1 0 0 0 0 1 1.00

Tab.1. The set of reachable states for f(t4) = 20 and m0 = [1, 0, 0, 0, 0].

Fig.1. Modified free-choice D-timed Petri net T1.

It can be observed that the time spent in the state s5,
h5, is equal to f(t4)−f(t2). If the timeout f(t4) changes,
the state graph has the same structure, and the only dif-
ferences are in the remaining-firing-time components in
some of the Petri net states. �

4. ANALYSIS OF PROTOCOLS

The Petri net shown in Fig.1 is a model of a very sim-
ple protocol in which messages are exchanged between
a sender (place p1) and a receiver (place p3), and each
received message is confirmed by an acknowledgement
sent back to the sender (in the loop p1, t1, p2, t2, p3, t5, p1).
There is a nonzero probability that the system can lose (or
distort) a message or an acknowledgement; the place p3
is a free-choice place, and the transition t3 models a mes-
sage/acknowledgement ”sink”; the probability associated
with t3, c(t3), represents thus the probability of losing a
message or an acknowledgement (or shortly a ”token”) in
the system. A ”timeout” is used to recover from lost ”to-
kens”. It works in the following way. An event of ”sending
a message” is modelled by transition t1. When it fires, sin-
gle tokens are deposited in p2 (a ”message”) and in p4 (a
”timeout”). A token in p4 immediately starts a firing of
the ”timeoutU transition t4. The firing time associated
with t4 is large enough to allow the transfer of a message
and an acknowledgement. If there is no loss of tokens, i.e.,
if t5 is selected for firing (according to its probability), the
transition t5 will finish its firing before t4, and then a to-
ken in the place p5 interrupts and cancels the timeout
(i.e., the firing of t4). If, however, a message or acknowl-
edgement has been lost (i.e., if t3 has been selected for

firing instead of t5), the timeout t4 ends its firing without
interruption, and regenerates the ”lost” message in p1.
The state graph representing the behaviour of this

model contains 5 states, as shown in Fig.2 (and Tab.1). It
contains one ”decision” node (the state s2) with two out-
going branches and branch probabilities q and (1−q), cor-
responding to a lost and regenerated token, and a correct
transfer, respectively (in the example q = c(t3) = 0.1).
It can be observed that the state graph can be reduced
(by simply ”aggregating” the paths connecting the ”de-
cision” node) to a single-node graph shown in Fig.3 in
which one branch represents ”a loss and recovery of a to-
ken” (and replaces the states s1, s2, s4 and s5), and the
second branch represents correct transfers (i.e., it replaces
the states s1, s2 and s3). The times associated with the
branches (i.e., the total times of ”aggregated” paths) cor-
respond to the ”transition times”, and are equal to 21 and
16, respectively.

Fig.2. State graph for T1.

The (reduced) transition graph from Fig.3 can be trans-
formed to an equivalent state graph [22] shown in Fig.4,
with the holding times (i.e., times spent in the correspond-
ing states) equal to h1 = 21 and h2 = 16 and transition
probabilities q and 1− q.

Fig.3. Reduced transition graph for T1.

The stationary probabilities x1 and x2 of the reduced
states s1 and s2 (Fig.4) can be obtained as the solution
of two simultaneous linear equations

x1 = q ∗ x1 + q ∗ x2,
x1 + x2 = 1,

from which x1 = q and x2 = 1 − q. In general case,
the stationary probabilities x(s) of the reduced states s ∈
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Fig.4. Reduced state graph for T1.

Sr(T) are obtained by solving a system of simultaneous
linear equations

{
∑

(sj ,si)∈Dr
b(sj , si) ∗ x(sj) = x(si); i = 1, ..., k − 1

∑

1≤i≤k x(si) = 1

where k is the number of states in the set Sr(T).
Since the stationary probability of correct transfers is

equal to 1 − q = 0.9, and one correct transfer requires
f(t1) + ft2) + f(t5) = 16 time units, the throughput is
equal to 0.9/16=0.0563 messages per time unit.
Fig.5 shows slightly modified net from Fig.1 where ad-

ditional place p6 is used for sequencing messages through
the channel (represented by t2). For initial marking m0

representing 2 messages in the system (m0(p1)+m0(p2) =
2), the derivation of the states is shown in Tab.2, the orig-
inal state graph in Fig.6, and the reduced state graph in
Fig.7. The holding times for reduced states are equal
h1 = h2 = 11, and the transition probabilities q and
(1−q), are as before. It can be observed that the reduced
state graph is isomorphic to the reduced state graph from
Fig.4. Consequently, the stationary probabilities are the
same, i.e., x1 = q and x2 = 1− q.

Fig.5. Modified free-choice D-timed Petri net T2.

Since a correct transfer of a single message re-
quires max(f(t1) + f(t2), f(t5)) = 11 time units (the
messages are sent sequentially through the channel,
but their acknowledgements may be sent concurrently
with subsequent messages), the throughput is equal to
0.9/11=0.0818 messages per time unit in this case. It
can be observed, that the throughput cannot be further
increased by increasing the number of messages in the
system because the effective transfer time is equal to the

Fig.6. State graph for T2.

Fig.7. Reduced state graph for T2.

sequential part of the transfer (which becomes the bot-
tleneck in the system) and the messages will simply wait
in the sender’s queue (p1). Further improvement can be
obtained, however, by changing the length of messages
[21].
Many other results can be derived in a very similar way.

5. CONCLUDING REMARKS

It has been shown that the behaviour of a class of D-
timed Petri nets with interrupt arcs can be represented by
finite-state probabilistic graphs which are homogeneous
finite-state discrete-time Markov chains. Escape arcs pro-
vide a mechanism for interrupting firing transitions, which
can conveniently model timeouts of communication pro-
tocols. Protocol models are usually quite simple (in fact,
they are significantly simpler than in previous models
[21,22]), and their parameters correspond in a very natu-
ral way to components or activities of modelled systems
(e.g., the numbers of messages, timeout signals, etc.). The
results can be obtained in a rather general form, and re-
peated analyses with different sets of parameters can in-
dicate the effects of performance changes corresponding
to different queueing disciplines, or different priorities of
messages, etc. The state space can easily be generated
from model specifications, and since the states of the mod-
elling net directly correspond to the ”states” of the mod-
elled system, a verification step is provided which is not
available in simulation or analytical modelling.
The stationary probabilities of systems states are ob-

tained by solving a system of linear equations. Therefore
it may seem that the Petri net approach is feasible only
for rather small systems. It should be observed, how-
ever, that the state graphs generated by timed Petri nets
can be substantially reduced by relatively simple graph
transformations [22], and the transformations can easily
be integrated with state generation algorithms. Moreover,
additional ”structural” regularities can be used for further
simplifications; for example, quite often [22] the (reduced)
state graphs contain several identical subgraphs in which
case complete subgraphs can be substituted by single ver-
tices to obtain ”preliminary” solutions, subsequently re-
fined, as in hierarchical decomposition methods.
The class of timed Petri nets discussed in the paper is

restricted in several ways (singular, free-choice, bounded
nets), some of the restrictions, however, can be removed
by rather straightforward extensions of the formalism.
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mi ni mij ek
si 1 2 3 4 5 6 1 2 3 4 5 hi 1 2 3 4 5 6 1 2 3 4 5 sj b(si, sj)
1 1 0 0 0 0 0 0 1 0 1 0 10.0 1 0 1 0 0 1 1 0 0 0 1 2 0.90

1 0 1 0 0 3 0.10
2 0 0 0 0 0 0 1 0 0 1 1 1.0 0 1 0 1 0 0 0 1 0 1 0 4 1.00
3 0 0 0 0 0 0 1 0 1 1 0 0.0 0 0 0 0 0 0 0 0 0 0 0 5 1.00
4 0 0 0 0 0 0 0 1 0 2 1 4.0 1 0 0 0 1 0 0 0 0 0 0 6 1.00
5 0 0 0 0 0 0 1 0 0 1 0 1.0 0 1 0 1 0 0 0 1 0 1 0 7 1.00
6 1 0 0 0 0 0 0 1 0 1 0 6.0 1 0 1 0 0 1 1 0 0 0 1 2 0.90

1 0 1 0 0 3 0.10
7 0 0 0 0 0 0 0 1 0 2 0 9.0 1 0 0 0 0 0 0 0 0 0 0 8 1.00
8 1 0 0 0 0 0 0 1 0 1 0 1.0 1 0 1 0 0 1 1 0 0 0 1 2 0.90

Tab.2. The set of reachable states for f(t4) = 20 and m0 = [1, 1, 0, 1, 0, 0].
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