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Abstract 

The Human Visual System (HVS) has the ability to focus on specific parts of a scene, 

rather than the whole image. Human eye movement is also one of the primary functions 

used in our daily lives that helps us understand our surroundings. This phenomenon is one 

of the most active research topics in the computer vision and neuroscience fields. The 

outcomes that have been achieved by neural network methods in a variety of tasks have 

highlighted their ability to predict visual saliency. In particular, deep learning models have 

been used for visual saliency prediction. In this thesis, a deep learning method based on a 

transfer learning strategy is proposed (Chapter 2), wherein visual features in the 

convolutional layers are extracted from raw images to predict visual saliency (e.g., saliency 

map). Specifically, the proposed model uses the VGG-16 network (i.e., Pre-trained CNN 

model) for semantic segmentation. The proposed model is applied to several datasets, 

including TORONTO, MIT300, MIT1003, and DUT-OMRON, to illustrate its efficiency. 

The results of the proposed model are then quantitatively and qualitatively compared to 

classic and state-of-the-art deep learning models.  

In Chapter 3, I specifically investigate the performance of five state-of-the-art deep neural 

networks (VGG-16, ResNet-50, Xception, InceptionResNet-v2, and MobileNet-v2) for the 

task of visual saliency prediction. Five deep learning models were trained over the 

SALICON dataset and used to predict visual saliency maps using four standard datasets, 

namely TORONTO, MIT300, MIT1003, and DUT-OMRON. The results indicate that the 
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ResNet-50 model outperforms the other four and provides a visual saliency map that is 

very close to human performance. 

In Chapter 4, a novel deep learning model based on a Fully Convolutional Network (FCN) 

architecture is proposed. The proposed model is trained in an end-to-end style and designed 

to predict visual saliency. The model is based on the encoder-decoder structure and 

includes two types of modules. The first has three stages of inception modules to improve 

multi-scale derivation and enhance contextual information. The second module includes 

one stage of the residual module to provide a more accurate recovery of information and 

to simplify optimization. The entire proposed model is fully trained from scratch to extract 

distinguishing features and to use a data augmentation technique to create variations in the 

images. The proposed model is evaluated using several benchmark datasets, including 

MIT300, MIT1003, TORONTO, and DUT-OMRON. The quantitative and qualitative 

experiment analyses demonstrate that the proposed model achieves superior performance 

for predicting visual saliency.   

In Chapter 5, I study the possibility of using deep learning techniques for Salient Object 

Detection (SOD) because this work is slightly related to the problem of Visual saliency 

prediction. Therefore, in this work, the capability of ten well-known pre-trained models for 

semantic segmentation, including FCNs, VGGs, ResNets, MobileNet-v2, Xception, and 

InceptionResNet-v2, are investigated. These models have been trained over an ImageNet 

dataset, fine-tuned on a MSRA-10K dataset, and evaluated using other public datasets, 

such as ECSSD, MSRA-B, DUTS, and THUR15k. The results illustrate the superiority of 
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ResNet50 and ResNet18, which have Mean Absolute Errors (MAE) of approximately 0.93 

and 0.92, respectively, compared to other well-known FCN models.  

Finally, conclusions are drawn, and possible future works are discussed in chapter 6. 
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Chapter 1. Introduction 

1.1 Research Motivation 

Human Visual Attention (HVA) is a very important function in the human visual system. 

To focus on a part of the scene instead to focus on the whole scene, we need to move our 

eyes to that specific place. The phenomenon of visual attention has been studied for over a 

century [1]. Recent experiments suggest that attention is required for us to perceive 

anything at all [1]. During the day, we scan the visual spotlight surrounding the 

environment, targeting things like words, faces, images on a package, reading books, and 

a variety of other objects. Recently, neural networks have been used to deal with visual 

attention phenomena (i.e., visual saliency prediction) [2]. Despite these tremendous efforts 

and immense progress, there continues to be room for improvement in terms of datasets, 

evaluation measures, cognitive study, analysis of deep network models, applications, and 

the prediction accuracy of various models [2]. 

1.2 Research Objectives 

  Despite significant improvements to the problem of visual saliency prediction based on 

deep learning techniques, recent models still cannot fully understand high-level semantics 

(i.e., the semantic gap). Therefore, the main objective of this research work is to decrease 

the semantic gap for visual saliency prediction, thus reaching human visual system 

performance. 
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       In order to achieve the main objective of this research, the following specific objectives are 

defined: 

1- Investigate the use of semantic segmentation techniques based on the encoder-decoder 

structure. This structure employed the pre-trained network (i.e., VGG-16) for predicting 

human eye fixation. 

2- Study the performance of five pre-trained CNN models to solve the problem of visual 

saliency prediction.  

3- Develop a novel model based on the encoder-decoder structure. This model includes an 

addition inception module and skip connections with a residual module. The former 

module will improve multi-scale inference and enrich contextual information, while the 

latter contributes to the recovery of more detailed information, simplifies optimization, and 

avoids the vanishing gradient problem. 

4- Investigate ten pre-trained CNN models for salient Object Detection (SOD). These 

models including FCNs(8s,16s,32s), VGGs (16,19), ResNets (18,50), MobileNet-v2, 

Xception, and InceptionResNet-v2.  

1.3 Thesis Organization 

This thesis is a paper-based one that contains six chapters. Chapter 1 is the introduction, 

which includes a description of the research motivation, research objectives, thesis 

structure, contributions, and a literature review. In Chapter 2, a deep learning model based 

on a pre-trained network (VGG-16) for visual saliency prediction is proposed. In Chapter 

3, the performance of several CNN pre-trained models for visual saliency prediction is 
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investigated. Chapter 4 describes a novel model based on a Fully Convolutional Network 

(FCN) (full-training), to predict visual saliency. In Chapter 5, 10 pre-trained CNN models 

based on semantic segmentation techniques for Salient Object Detection (SOD) are then 

investigated. Finally, the overall conclusions are drawn and future work is outlined in 

Chapter 6.   

1.4 Contributions 

This thesis presents the following contributions: 

1. A deep learning model based on the semantic segmentation technique for visual saliency 

prediction is proposed. The VGG-16 network is a pre-trained network, which is appropriate 

for achieving tasks that do not have enough datasets for model training. The proposed 

model was trained on a well-known dataset (SALICON) and was also evaluated on other 

datasets, including TORONTO, MIT300, MIT1003, and DUT-OMRON. The trained 

model is able to predict visual saliency (e.g., saliency map) with reasonable accuracy with 

respect to other state-of-the-art models.   

2.   The performance of five state-of-the-art deep neural networks (VGG-16, ResNet-50, 

Xception, InceptionResNet-v2, and MobileNet-v2) for the task of visual saliency 

prediction are investigated. In this work, five deep learning models are trained over the 

SALICON dataset and then used to predict visual saliency maps using four standard 

datasets, namely TORONTO, MIT300, MIT1003, and DUT-OMRON. The results indicate 

that the ResNet-50 model outperforms the other four and provides a visual saliency map 

that is very close to human performance. 
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3. A novel model based on a Fully Convolutional Network (FCN) architecture is proposed. 

The proposed model is trained in an end-to-end style and designed to predict visual 

saliency. The model is based on the encoder-decoder structure and includes two types of 

modules. The first has three stages of inception modules to improve multi-scale derivation 

and enhance contextual information. The second module includes one stage of the residual 

module to provide a more accurate recovery of information and simplify optimization. The 

entire proposed model is fully trained from scratch to extract distinguishing features and to 

use a data augmentation technique to create variations in the images. The proposed model 

is evaluated using several benchmark datasets, including: MIT300, MIT1003, TORONTO, 

and DUT-OMRON.  

4. Finally, the work described above is extended for Salient Object Detection (SOD). While 

this task differs from visual saliency prediction, it is related. In this work, the capability of 

several well-known pre-trained models for semantic segmentation, including FCNs, 

VGGs, ResNets, MobileNet-v2, Xception, and InceptionResNet-v2, are investigated. 

These models have been trained over an ImageNet dataset, fine-tuned on a MSRA-10K 

dataset, and evaluated using other public datasets, including ECSSD, MSRA-B, DUTS, 

and THUR15k. The results illustrate the superiority of ResNet50 and ResNet18, compared 

to other well-known FCN models. Moreover, the most robust model against noise is 

ResNet50, whereas VGG-16 is the most sensitive, relative to other state-of-the-art models. 
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1.5 Literature Review  

1.5.1   Background  

In this section, a brief review of related work on visual saliency prediction is provided. 

Then, the architecture used in the task of visual saliency prediction is summarized. There 

are two types of architecture of visual saliency prediction models: the first is based on 

classical methods (non-deep learning), whereas the second is based on deep learning 

methods. In the last few years, several models have been proposed for the prediction of 

visual saliency. The pattern that predicted using visual saliency prediction can be defined 

as a saliency map. The saliency map illustrates that the location of human attention is a 

unique area within the whole image [3]. Importantly, the purpose of a saliency map is to 

change the representation of an image to a smooth image that is more meaningful and easier 

to analyze [4]. 

Generally, Human Visual Attention (HVA) is based on two strategies; bottom-up and top-

down visual attention. Bottom-up models mainly employ low-level cues, such as color, 

intensity, and texture. Additionally, bottom-up strategies try to select regions that show 

prominent characteristics from their surroundings. In contrast, top-down approaches are 

task-oriented and try to locate a target object from a specific category and are, therefore, 

dependent on the features of the interesting object [5, 6]. More details about the two 

strategies will be explained in the next sections.  
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1.5.2 Bottom-Up Strategy 

The bottom-up visual saliency strategy is an important module of human visual attention 

and is based on the location of visually important features in the image. This phenomenon 

of visual attention is inspired by a biological vision, following the feature integration of 

Treisman’s theory [7]. This theory suggests that when observing a stimulus, features are 

recorded early, automatically, and in parallel across the visual field, while objects are 

specified separately and only at a later stage, which requires localized attention. Moreover, 

this module decomposes visual input into separate low-level feature maps, such as color, 

contrast, and orientation. For every single feature, a different map is calculated and 

normalized. Therefore, a saliency map is formed by the weighted collection of all maps. 

Highs in the map reflect the attention (i.e., saliency) [8]. Over the past several years, the 

results of bottom-up modules have been evaluated using mathematical and statistical tools. 

These models also have been evaluated using eye movement data provided by the gaze 

location of viewers [9]. 

1.5.3 Top-Down Strategy   

 In contrast, the top-down module is driven by a task. This module uses prior knowledge, 

rewards, or expectations as high-level visual factors to recognize the target of interest. 

Several top-down saliency models have been proposed [7]. Top-down modules are 

primarily investigated by cueing experiments, in which a hint brings one’s attention to the 

target. This hint could be what the target is and where it is located. Oliva et al. presented a 

top-down visual search model using a Bayesian framework [8]. Gao et al. also proposed a 
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top-down model based on decision-theoretic models [3]. They explained a top-down 

saliency as a classification task wherein locations where a target could be differentiated 

from non-targets with the least amount of error are classified as salient. 

1.5.4 Conventional Saliency Models (Non-Deep Learning Era) 

   Several classic non-deep learning saliency models have been proposed, all of which are 

based on bottom-up strategies. These models were introduced by Treisman and Gelade in 

1980 [9], the computational architecture was developed by Koch and Ullman in 1985 [10], 

and the bottom-up model of Itti et al. was proposed in 1998 [11]. These models are based 

on feature map extraction, such as color, intensity, texture, and orientation. Itti et al. 

proposed a model which was able to predict human behavior in visual search functions, 

explain robustness to image noise, traffic sign detection, and predict where humans look 

while viewing of images and videos [12, 13].  

Many models have been introduced to predict static saliency, such as Attention for 

Information Maximization (AIM) [14], Graph-based Visual Saliency (GBVS) [15], 

Spectral Residual saliency (SR) [16], Boolean Map based Saliency (BMS) [17], Saliency 

Using Natural statistics (SUN) [18], Adaptive Whitening Saliency (AWS) [19], and the 

Judd et al. model [5]. Many models have also been proposed for extracting dynamic 

saliency (i.e., video images), such as AWS-D [20], Xu et al. [21], Rudoy et al. [22], OBDL 

[23], and PQFT [24]. Most of these static and dynamic models are inspired by biological 

vision.  
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1.5.5 Deep Learning Saliency Models 

 Deep learning (DL) has become the fastest-growing trend in big data analysis and is widely 

considered as one of the top ten breakthrough technologies of the year 2013 [25]. The 

success of deep learning has brought with it a new wave of saliency models that perform 

much better than classical saliency systems based on hand-crafted features. Researchers 

now utilize available deep architectures that are properly trained to recognize the scene and 

then reuse them to predict visual saliency. In general, deep learning techniques require a 

large dataset to deliver high performance. However, these large-scale datasets for fixation 

are not enough. Therefore, deep saliency models are pre-trained on a huge dataset and are 

then trained (i.e. fine-tuned) on smaller scale mouse click or eye movement datasets. 

Subsequently, this method allows for models to reuse the knowledge (i.e., Semantic 

knowledge) that is learned in CNNs and transfer it to the visual saliency task. 

1.5.5.1 Static Saliency Models 

In general, static saliency models have been in use since 2014 and form the basis of modern 

models. Table 1.1 explains the timeline for the static visual saliency models based on deep 

learning techniques. 
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   Table 1.1:  A timeline of static visual saliency based on deep learning since 2014. 

2014 2015 2016 2017 2018 2019 

-eDN [26] 

-Deep Gaze I  

[27] 

-Mr-CNN 

[28] 

-DeepFix 

[29] 

-SALICON 

[30] 

-JuntingNet 

[31] 

-SalNet [32] 

-PDP [33] 

-DSCLRCN 

[34] 

-ML-Net [35] 

-SalGAN [36] 

-Deep Gaze II 

[37] 

-iSEEL [38] 

 

-EML-NET 

[39] 

-SAM ResNet 

[40] 

-DVA [41] 

 

-MSI-Net [42] 

-SDS [43] 

1.5.5.2 Dynamic Saliency Models 

In general, dynamic saliency models have high computational and memory requirements. 

Therefore, working with models of video saliency prediction is a more challenging task 

than image saliency prediction. Regardless, there has been an increasing interest in video 

saliency over the past few years driven by its applications (e.g., image, video 

summarization, and video captioning).   

Conventionally, video saliency models pair bottom-up feature extraction with an ad-hoc 

motion estimation that can be achieved either by means of optical flow or feature tracking. 

Moreover, deep video saliency models learn the whole process end-to-end. In these works, 

the dynamic characteristics are modeled in one of two ways: 1) adding temporal 

information to the CNN, or 2) developing a dynamic structure using LSTMs. In addition, 

there are many models that have been developed for visual saliency prediction in videos, 

such as: 
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1. Two-stream network: As one of the first attempts, Bak et al. [44] applied a two stream 

(five years each) CNN architecture for video saliency prediction. RGB frames and 

motion maps were fed into the two streams. 

2. Chaabouni et al.: These authors employed transfer learning to adapt a previously 

trained deep network for saliency prediction in natural videos. They trained a five layered 

CNN on RGB color planes and residual motion for each video frame. However, their 

modes use only the very short-term temporal relations of two consequences frames [45]. 

3. Bazzani et al.: A recurrent mixture density network is proposed for saliency prediction 

[46]. The input clip of 16 frames is inserted to a 3D CNN, the output of which becomes 

the input for a LSTM. Finally, a linear layer projects the LSTM representation to a 

Gaussian mixture model, which describes the saliency map. 

4. OM-CNN: Proposed by Jiang et al., the Object-to-Motion CNN model includes two 

subnets of objectness and motion that are trained end-to-end. Objectness and object 

motion information are used to predict intraframe saliency of videos [47]. 

5. Leifman et al.: The authors introduced a novel Depth-Aware Video Saliency approach 

to predict human focus of attention when viewing RGBD videos on regular 2D screens 

[48].  

6. Gorji & Clark: These authors proposed a multi-stream Convolutional Long Short-Term 

Memory network (ConvLSTM) structure which augments state-of-the-art in static 

saliency models with dynamic Attentional Push. Their network contains a saliency 

pathway and three push pathways [49].  
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7. ACLNet:  The Attentive CNN-LSTM Network augments a CNN-LSTM with a 

supervised attention mechanism to enable fast end-to-end saliency learning. The attention 

mechanism encodes static saliency information, allowing LSTM to focus on learning a 

more flexible temporal saliency representation across successive frames [50]. 

8.  SG-FCN Sun et al. proposed a robust deep model that utilizes memory and motion 

information to capture salient points across successive frames. The memory information 

enhanced the model’s generalization because changes between two adjacent frames are 

limited within a certain range, and hence the corresponding fixations should remain 

correlated [51].  
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Chapter 2. Visual Saliency Prediction Based on Deep Learning 

Abstract  

Human eye movement is one of the most important functions for understanding our 

surroundings. When a human eye processes a scene, it quickly focuses on dominant parts 

of the scene, commonly known as visual saliency detection or visual attention prediction. 

Recently, neural networks have been used to predict visual saliency. This work proposes a 

deep learning encoder-decoder architecture, based on a transfer learning technique, to 

predict visual saliency. In the proposed model, visual features are extracted through 

convolutional layers from raw images to predict visual saliency. In addition, the proposed 

model uses the VGG-16 network for semantic segmentation, which uses a pixel 

classification layer to predict the categorical label for every pixel in an input image. The 

proposed model is applied to several datasets, including TORONTO, MIT300, MIT1003, 

and DUT-OMRON, to illustrate its efficiency. The results of the proposed model are 

quantitatively and qualitatively compared to classic and state-of-the-art deep learning 

models. Using the proposed deep learning model, a global accuracy of up to 96.22% is 

achieved for the prediction of visual saliency. 

2.1 Introduction 

Humans have a strong ability to pay attention to a specific part of an image instead of 

processing the entire image. This phenomenon of visual attention has been studied for over 

a century [1]. Visual attention is defined as the processes that enable an observer to focus 
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on selected aspects of the retinal image over non-selected aspects. In other words, visual 

attention refers to a set of cognitive procedures that select relevant information and filter 

out irrelevant information from cluttered visual scenes. The task of visual attention 

prediction is a popular research area in the computer vision and neuroscience fields. In 

general, Human Visual Attention (HVA) is based on two strategies: bottom-up and top-

down visual attention. Bottom-up models mainly employ low-level cues, such as color, 

intensity, and texture. Additionally, the bottom-up strategy tries to select regions which 

show the prominent characteristics of their surroundings [2,3]. In contrast, top-down 

approaches are task-oriented and try to locate a target object from a specific category. They 

also depend on the features of the object of interest [4,5].  Accordingly, bottom-up and top-

down approaches are mainly driven by the visual characteristics of a scene and the task of 

interest, respectively [6,7]. 

In the last few years, several models have been proposed for the prediction of human visual 

saliency, with the most common technique being a saliency map. Saliency maps illustrate 

that the location of human attention is focused on a particular area within the whole mage 

[8–10]. In addition, a saliency map is an image that shows each pixel’s unique quality.  

Importantly, the purpose of a saliency map is to change the representation of an image to a 

smooth image that is more meaningful and easier to analyze [11,12]. 

Deep Convolutional Neural Networks (CNNs) have been commonly used in the field of 

visual attention. This is because CNNs are strong visual models and they are able to learn 

features from a raw image dataset (low-level feature) and create a feature map (high-level 
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feature) [13,14]. This scenario describes how the human visual system can detect the 

location of visual attention. In the last few years, several deep learning models have been 

used to predict visual saliency points, most of which have achieved impressive 

performances compared to conventional methods [15–18]. The task of extracting a saliency 

map has further opened the door for several applications, especially in computer vision, 

including object detection, object recognition, scene classification, video understanding, 

and image compression [19]. 

This study aims to propose the application of a semantic segmentation model based on the 

VGG-16 network (see Section 2.2.1 for more details on the VGG-16 network) to predict 

human visual attention in the field of view. Specifically, the main objective of this research 

is to improve the accuracy of visual saliency prediction by proposing a fully convolutional 

neural network-based model. The proposed method that we used falls under the bottom-up 

category. Therefore, in the results section, we only compare our proposed method with 

relevant bottom-up methods (see Section 2.4.1 for more details on relevant methods). 

The proposed model was developed based on the encoder-decoder architecture, wherein 

the fine-tuning strategy was applied in the encoder stage (i.e., VGG-16 model) [20]. More 

specifically, this study uses a VGG-16 model that was trained on more than a million 

images from the ImageNet database [20,21]. In addition, we trained the proposed model 

using SALICON images (see Section 2.3.3.1 for more details on the SALICON dataset) 

and their ground truth data [22], and evaluated the results over several datasets, including 

TORONTO, MIT300, MIT1003, and DUT-OMRON [23–25]. 
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The contributions of this work can be summarized in the following points: 

(1) A deep learning architecture based on the VGG-16 network that is able to predict visual 

saliency is proposed. As opposed to the current state-of-the-art technique that uses three 

stages in the encoder/decoder architecture [26], the proposed network uses five encoder 

and decoder stages to produce a useful saliency map (e.g., visual saliency). This makes the 

proposed architecture more powerful for extracting more specific deep features. 

(2) The proposed model is the first to use a semantic segmentation technique within the 

encoder-decoder architecture to classify all image pixels into the appropriate class 

(foreground or background), where the foreground is most likely a salient object. 

(3) The proposed model is evaluated using four well-known datasets, including 

TORONTO, MIT300, MIT1003, and DUT-OMRON. The proposed model achieves a 

reasonable result, with a global accuracy of 96.22%. 

To this end, the proposed method, based on the VGG-16 network, is described in Section 

2.2; the materials and methods of the proposed model in Section 2.3; and the quantitative 

and qualitative experimental results obtained from the four datasets are explained in 

Section 2.4. Finally, we summarize our results in the conclusion and report potential future 

uses, applications, and improvements to this research in Section 2.5.  
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2.2 The Proposed Method 

The proposed model is based on a semantic segmentation technique using the VGG-16 

network. Hereby, we thoroughly explain all the important information about the VGG-16 

network in the next sub-sections. 

2.2.1 The VGG-16 Network Architecture 

In this section, we describe the architecture of the proposed model. Our model architecture 

consists of encoder-decoder stages; the encoder stage has five convolutional blocks (conv1, 

conv2, conv3, conv4, and conv5). The encoder blocks are learned by down-sampling, 

which applies different receptive field sizes to create the feature maps. The decoder stage 

has also five deconvolution blocks (decon1, decon2, decon3, decon4, and decon5). The 

decoder blocks up-sample the feature maps and this creates an output the same size as the 

input image. The encoder blocks are adopted from a pretrained network called VGG-16 

[14]. 

VGG-16 network was developed by Simonyan and Zisserman in the 2014 ILSVRC 

competition [13]. Generally, the VGG-16 network contains thirteen convolution layers, 

five pooling layers, and three fully connected layers [20]. The VGG-16 network is trained 

on more than a million images from the ImageNet database [21] and can classify images 

into 1000 object classes. The VGG-16 network has an image input size of 224×224. Figure 

2.1 (a, b) shows the general structure and the data flow through the VGG-16 network. 

The major difference between VGG-16 network and the previous networks is the use of a 

series of convolution layers with small receptive fields (3×3) in the first layers instead of a 
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few layers. This results in fewer parameters and more nonlinearities in between, making 

the decision function more selective and the model easier for training [13]. 

 

(a) 

 

(b) 

Figure 2.1: General Structure of VGG-16 network: (a) Convolution layers of VGG-16 network, 

and (b) Data flow in VGG-16 network [13]. 

The input image is passed over a series of convolution layers with 3×3 convolutional filters. 

This is beneficial because the filter will capture the notation of the center, left/right, and 

up/down. The convolution stride is set to 1 pixel, whereas the padding is set to 1-pixel. 

Five max-pooling layers are used after convolution layers for the down-sampling operation 

(i.e., dimensionality reduction). Each max-pooling is also performed over 2×2 pixels, with 
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stride 2. In addition, three fully connected (fc) layers follow a series of convolution layers. 

In specific, the first two have 4096 channels each, and the third has 1000 channels. The 

structure of the fully connected layers is the same in all networks. The final layer is a soft-

max layer that must have the same number of nodes as the output layer. The function of 

the soft-max layer is to map the non-normalized output to probability distribution through 

predicted output classes [13].  

The convolutional neural network can be considered as the composition of several 

functions as:  

𝑓(x) = 𝑓𝐿 (… 𝑓2 (𝑓1 (x; w1); w2) … ), 𝑤𝐿),                                                   (2.1) 

where each function 𝑓𝐿  takes as input a datum xL  and a parameter vector 𝑤𝐿 and produces 

as output a datum xL+1. The parameters 𝑤 = (𝑤1, … , 𝑤𝐿) are learned from the input data 

for solving a specific problem, for example image classification. Moreover, there is a 

function called non-linear activation (i.e., not linear function), which is associated with the 

convolution layers. This function is also used to keep all the input value of the network as 

positive value. Equation (2.2) explains this concept.  

𝑦𝑖𝑗𝑘 = 𝑚𝑎𝑥(0, 𝑥𝑖𝑗𝑘)                                                                  (2.2) 

There is another important operator also associated with the architecture of the VGG-16 

network that is called the pooling operator. The purpose of this operator is reducing the 

dimension of the input volume (i.e., sub-sampling method) and preserving discriminant 



25 

 

information. There are several types of the operator, such as max-pooling, average-pooling, 

and sum-pooling. For instance, the output of a 𝑝 × 𝑝 max-pooling operator is: 

             𝑦𝑖𝑗𝑘 = max{𝑦𝑖′𝑗′𝑘: 𝑖 ≤ 𝑖′ < 𝑖 + 𝑝, 𝑗 ≤ 𝑗′ < 𝑗 + 𝑝}.                                             (2.3) 

2.2.2 Visual Saliency Prediction Model 

In this section, we propose a visual saliency prediction model based on a semantic 

segmentation algorithm, where the fixation map is modeled as the foreground (salient 

object). A semantic segmentation algorithm classifies and labels every pixel in an image 

into objects (foreground) and background [22]. There are many applications for semantic 

segmentation, including road segmentation for autonomous driving and cancer cell 

segmentation for medical diagnosis. 

The architecture of the proposed semantic segmentation model is illustrated in Figure 2.2. 

To obtain a multi-level prediction, each output of the convolution layer (encoder) must be 

connected directly to the corresponding deconvolution layer (decoder). In general, the task 

of visual attention uses a combination of low-level and high-level features. In other words, 

we incorporate multi-layer information together to produce the output saliency map. Low-

level features, such as edges, corners, and orientations, are captured by small-level 

receptive fields, while high-level features, such as semantic information (e.g., object parts 

or faces), are extracted by high-level receptive fields. Moreover, there are many receptive 

field sizes, and each corresponds to the layer size. Therefore, based on the advantages of 

CNNs, we can use small and high receptive fields in down-sampling (e.g., multi- 
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convolution layers, such as in the VGG-16 network) to create feature maps. Both low- and 

high-level features are very important for predicting human visual saliency. Thus, our 

proposed model produces the final saliency map based on the combination of all the outputs 

of the individual deconvolution operations. Additionally, in our proposed model, we only 

consider the CNN layers that create feature maps and we exclude the fully connected 

layers. In addition, the saliency combination block represents the merged multi-layer 

output saliency predictions (i.e., the prediction average achieves a higher performance 

compared to that of a single-layer output).  

 

 Figure 2.2: Architecture of the proposed model. Note that size of the input image is denoted by 

(wxh) where the w is the width, and h is the height in pixels. All saliency maps also have a 

similar size to that of the input image. 
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Assume we have an input image, and its feature map is F𝑙−1of the l- th layer and the 

convolution processes are specified by the weight, W𝑙. Thus, the output of the feature map 

can be calculated by:   

F 𝑙   = 𝑓𝑐𝑜𝑛 (F𝑙−1; W𝑐𝑜𝑛
𝑙 ) = W𝑐𝑜𝑛

𝑙 ∗ F𝑙−1, 𝑙 = 1 … L,    (2.4) 

where F0 is the input image, the symbol ∗ indicates the convolution operation, and L is the 

number of layers. The deconvolution operation is the opposite of the convolution operation 

and it can be run in two directions (forward and backward through of convolution), where 

it performs the up-sampling operation represented by Equation (2.5):  

f𝑑𝑒𝑐𝑜𝑛(F; W𝑑𝑒𝑐𝑜𝑛) = W𝑑𝑒𝑐𝑜𝑛 ∅𝑠 F,                                                           (2.5) 

where the ∅𝑠 is the stride convolution and 𝑠 is an up-sampling factor. The output operation 

of the decoder is then given as follows: 

  Y𝑙 = 𝐷(F𝑙 ; W𝑑𝑒𝑐𝑜𝑛
𝑙 ),                                                                     (2.6) 

where 𝐷 is the deconvolution operation, and W𝑑𝑒𝑐𝑜𝑛
𝑙  is all the kernel weights of the 

deconvolution layers. Moreover, the total number of weights can be explained by: 
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𝑊 = (𝑊𝑐𝑜𝑛
1 , … , 𝑊𝑐𝑜𝑛

𝐿 , 𝑊𝑑𝑒𝑐𝑜𝑛
𝑙1  , … , 𝑊𝑑𝑒𝑐𝑜𝑛

𝑙𝑀 ),                                                  (2.7) 

where 𝑀 is the output prediction maps. Additionally, the loss-function is a Stochastic 

Gradient Descent with Momentum (SGDM, Equation (2.8)). The objective of this function 

is to accelerate gradient vectors in the right direction and increase the speed of 

convergence. In other words, SGDM optimizes the differentiable function and decreases 

classification errors [19,23]. The loss function can also be defined by Equation (2.8):  

𝐿(𝛼) = 𝑌𝑙𝑜𝑔𝐻𝑙 + (1 − 𝑌) log(1 − 𝐻𝑙) ,    𝑌 ε {0,1},                                          (2.8) 

where 𝐿(𝛼) is the cross entropy between the predicted probability 𝐻𝑙 and the ground 

truth (GT) labeled 𝑌. 

2.3 Materials and Methods 

In this section, we describe all the steps for implementing our work, including training, 

adjusting the parameters of, validating, and testing the model on several available 

benchmark datasets (TORONTO, MIT300, MIT1003, and DUT-OMRON). 

2.3.1 Model Training 

The proposed model was trained on a standard dataset (i.e., SALICON) [15]. This dataset 

consists of a training dataset (10,000 images) and validation dataset (5,000 images) both 

with ground truth data, and a test dataset (5,000 images) without ground truth data. All the 
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images are in JPG format, except for the ground truth dataset which is in grayscale PNG 

format, and all images have a resolution of (640×480). At the beginning of the training, all 

the weights of the filters were initialized based on the pre-trained network (VGG-16), 

which has an input image of (224×224) and a Gaussian distribution with a 0.01 standard 

deviation and zero mean for the weights of each layer [15]. The purpose of using the VGG-

16 pre-trained network is to transfer the learned knowledge and reuse it to predict human 

visual saliency. Additionally, the network parameters were as follows: Initial Learn Rate 

0.01, Max Epochs 10, Mini Batch Size 10, and number of iterations 620. The network has 

been trained on 10,000 images and used selected images from the test datasets for testing 

(the global accuracy of the proposed model was 96.22%). Moreover, using the loss function 

(SGDM), the model parameters learned to increase the speed of convergence and to 

decrease output errors. Figure 2.3 illustrates the training progress produced by the proposed 

model from the specified training images (SALICON).  

 

Figure 2.3: Value of validation accuracy and loss as a function of epochs. 
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2.3.2 Model Testing 

This section is for testing the proposed model on several dataset images (test images). As 

we illustrated in the previous section, the SALICON test images are available without 

ground truth, thus, we suggested to use other datasets, such as TORONTO, MIT300, 

MIT1003, and DUT-OMRON datasets for model testing. Figure 2.4 shows the model 

testing on the selected images. Note that the proposed model has the ability to detect the 

most salient objects in the scene. 
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Figure 2.4: Model testing :(a) TORONTO and MIT300 datasets, and (b) MIT1003 

and DUT-OMRON datasets. 

2.3.3 Datasets 

The proposed model was tested on several well-known datasets, including TORONTO, 

MIT 300, MIT1003, and DUT-OMRON, which are described below. During the model 

testing, given an inquiry image, we obtained the saliency map prediction from the last 

saliency combination layer. The average time to test an image was about 15s. 
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2.3.3.1 SALICON 

SALICON is the largest dataset for visual attention on the popular Microsoft Common 

Objects in context (MS COCO) image database [15]. It contains 10,000 training images, 

5,000 validation images, and 5,000 testing images with a fixed resolution of 480×640, 

collected from the Microsoft COCO dataset. This dataset also includes the ground truth 

data for the training and validation datasets; however, the ground truth data for the test 

datasets were not available [15]. 

2.3.3.2 TORONTO 

The TORONTO dataset contains 120 colour images with a fixed resolution of 511×681 

pixels. This dataset contains both indoor and outdoor environments and was free-viewed 

by 20 human subjects [17].  

2.3.3.3 MIT300 

MIT300 is a collection of 300 images that contains the eye movement data of 39 observers. 

It should be noted that MIT300 is a challenging dataset since its images are highly varied 

and natural. Saliency maps of all images are withheld and employed by the MIT Saliency 

Benchmark for model evaluation (http://saliency.mit.edu/results_mit300.html) [24]. 

2.3.3.4 MIT1003 

MIT1003 is a collection of 1,003 images from the Flicker and LabelMe collections. 

Saliency maps have also been obtained from the eye-tracking data of 15 users. It is the 

http://saliency.mit.edu/results_mit300.html


33 

 

largest eye fixation dataset, wherein there are 779 landscapes and 228 portraits images that 

vary in size from 405×405 to 1024×024 pixels [24]. 

2.3.3.5 DUT-OMRON 

DUT-OMRON contains 5,168 high quality images that were manually selected from more 

than 140,000 images. Images in this database have one or more salient objects and a 

relatively complex background [25]. 

2.3.4 Evaluation Metrics 

There are several indices for evaluation metrics to measure the agreement between visual 

saliency and model prediction. There are also previous studies on saliency metrics, which 

explain that it’s hard to perform a fair comparison to evaluate saliency models by one 

metric [26]. In general, saliency evaluation indices are divided into location-based and 

distribution-based metrics. The former type of evaluation considers the saliency map at 

district locations; the latter considers both predicted saliency and human eye fixation maps 

as continuous distributions. The most well-known location-based indices are the Area 

Under the ROC curve in two versions of Judd and Borji [22]. Alternatively, the most 

commonly used distribution-based indices are the Normalized Scanpath Saliency (NSS) 

and Similarity Metrics (SIM). These indices are described in detail in the following 

sections [22]. 
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2.3.4.1 Normalized Scanpath Saliency (NSS) 

The NSS metric was introduced to the saliency community as a simple correspondence 

measure between human eye fixation and model prediction. NSS is susceptible to false 

positives and relative differences in saliency across the image. Given a saliency map S and 

a binary map of fixation location F, then  

𝑁𝑆𝑆 =
1

𝑁
∑ 𝑆 ̅(𝑖)𝐹(𝑖),

𝑁

𝑖=1
 

where   𝑁 = ∑ 𝐹(𝑖)    𝑎𝑛𝑑    𝑆̅  =
𝑆−𝜇(𝑠)

𝜎(𝑆)𝑖 , 

(2.9) 

where N is the total number of human eye positions and 𝜎(𝑆) is the standard deviation.  

2.3.4.2 Similarity Metric (SIM) 

The similarity metric (SIM) uses the normalized probability distributions of the saliency 

and human eye fixation maps. SIM is calculated as the sum of the minimum values of each 

pixel. The similarity between these two maps is calculated as: 

𝑆𝐼𝑀 = ∑ min (𝑆́

𝑖=1

(𝑖), 𝐺 ́ (𝑖)),     (2.10) 

where 𝐒́ and 𝐆́ are the normalized saliency map and the fixation map, respectively. A 

similarity score between zero and one indicates that the distributions are the same and that 

they do not overlap.   
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2.3.4.3 Judd Implementation (AUC-Judd) 

The AUC-Judd metric is widely used to evaluate saliency models. The saliency map is 

treated as a binary classifier to separate positive from negative samples at various 

thresholds. The true positive (tp) rate is the proportion of the saliency map’s values above 

a certain threshold at fixation locations. The false positive (fp) rate is the proportion of the 

saliency map’s values that occur above the threshold of non-fixated pixels. In this 

implementation, the thresholds are sampled from the saliency map’s values [27,28]. 

2.3.4.4 Borji Implementation (AUC-Borji) 

The AUC-Borji metric uses a uniform random sample of image pixels as negatives and 

defines the fixation map’s (saliency map) values above the threshold of these pixels as false 

positives. This version of the Area Under ROC curve measurement is based on Ali Borji's 

code. The saliency map is treated as a binary classifier to separate positive from negative 

samples at various thresholds. The true positive (TP) rate is the proportion of the saliency 

map’s values above the threshold of fixation locations. The false positive (FP) rate is the 

proportion of the saliency map’s values that occur above the threshold sampled from 

random pixels (as many samples as fixations, sampled uniformly from all image pixels). 

In this implementation, threshold values are sampled at a fixed step size [29]. 

2.3.4.5 Semantic Segmentation Metrices 

These metrices are used to evaluate the prediction results against the ground truth data. In 

this study two different semantic segmentation metrcies are used, which Global Accuracy 
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and Weighted Intersection over Union (WeightedIoU). Specifically, the Global 

Accuracy is the ratio of correctly classified pixels, regardless of class, to the total number 

of pixels and the WeightedIoU is the average IoU of all classes, weighted by the number 

of pixels in the class, wherein the MeanIoU is the average IoU  score of all classes in that 

particular image [27,30]. 

2.4 Experimental Results 

2.4.1 Quantitative Comparison of the Proposed Model with Other State-of-

the-Art Models 

To evaluate the efficiency of the proposed model, we compared it to six state-of-the-art 

models. We selected four dataset benchmarks (TORONTO ,MIT300, MIT1003, and DUT-

OMRON) for comparison of the quantitative results. These results are reported in Table 

2.1, Table 2.2, Table 2.3, and Table 2.4, respectively.  

Table 2.1 shows that, with the TORONTO dataset, the proposed model outperforms the 

other six models in terms of the NSS, AUC-Judd, and AUC-Borji metrics; however, in 

terms of the SIM (similarity) metric, the DVA algorithm [19] has the best results. This is 

because SIM metric is better suited for non-binary classifiers. However, the proposed 

algorithm is a binary classifier. The other metrics used in the study (NSS, AUC-Judd, 

AUC-Borji) are all binary classifier metrics. From Table 2.2, one can see similar results 

for the MIT300 dataset as those for the TORONTO dataset, except for the AUC-Borji 

metric, where the GBVS and Judd models perform slightly better than the proposed model. 
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Table 2.3 illustrates that for the MIT1003 dataset, the proposed model again outperforms 

the other six models in terms of the NSS and AUC-Judd metrics; however, in terms of the 

other two metrics, the DVA model provides the best performance. From Table 2.4, one can 

see that for the DUT-OMRON dataset the proposed model outperforms the other six 

models only in terms of the AUC-Judd metric and the DVA model provides the best 

performance in terms of the other three metrics. Overall, for all four investigated datasets, 

the proposed model provides the highest AUC-Judd metric. 

Table 2.5 explains the evaluation metrics obtained from the proposed model. Specifically, 

the highest and lowest Global Accuracies are obtaned when the model was tested on the 

TORONTO dataset (global accuracy of 96.22%), and the MIT300 dataset (global accuracy 

of 94.13%), respectively. 

   Table 2.1: Comparison of the quantitative scores of several models on TORONTO [24] 

dataset. Note, the bold values are the best scores. 

Model NSS SIM AUC-Judd AUC-Borji 

ITTI [31] 1.30 0.45 0.80 0.80 

AIM [16] 0.84 0.36 0.76 0.75 

Judd Model [27] 1.15 0.40 0.78 0.77 

GBVS [24] 1.52 0.49 0.83 0.83 

Mr-CNN [32] 1.41 0.47 0.80 0.79 

DVA [19] 2.12 0.58 0.86 0.86 

Proposed Model 3.00 0.42 0.91 0.87 

    Note. Humans baseline [22]         3.29                   1.00                        0.92                           0.88  
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Table 2.2: Comparison of the quantitative scores of several models on MIT300 [24] 

dataset.       

Model NSS SIM AUC-Judd AUC-Borji 

ITTI 0.97 0.44 0.75 0.74 

AIM 0.79 0.40 0.77 0.75 

Judd Model 1.18 0.42 0.81 0.80 

GBVS 1.24 0.48 0.81 0.80 

Mr-CNN 1.13 0.45 0.77 0.76 

DVA 1.98 0.58 0.85 0.78 

Proposed Model 2.43 0.51 0.87 0.80 

       Table 2.3: Comparison of the quantitative scores of several models on MIT1003 [24] 

dataset.    

Model NSS SIM AUC-Judd AUC-Borji 

ITTI 1.10 0.32 0.77 0.76 

AIM 0.82 0.27 0.79 0.76 

Judd Model 1.18 0.42 0.81 0.80 

GBVS 1.38 0.36 0.83 0.81 

Mr-CNN 1.36 0.35 0.80 0.77 

DVA 2.38 0.50 0.87 0.85 

Proposed Model 2.39 0.42 0.87 0.80 

Table 2.4: Comparison of the quantitative scores of several models on DUT-OMRON 

[24] dataset. 

Model NSS SIM    AUC-Judd        AUC-Borji 

ITTI  3.09 0.53 0.83 0.83 

AIM  1.05 0.32 0.77 0.75 

GBVS  1.71 0.43 0.87 0.85 

DVA  3.09 0.53 0.91 0.86 

Proposed Model 2.50 0.49 0.91 0.84 
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Table 2.5: Model predication results (i.e., Global accuracy) on several datasets 

(TORONTO, MIT300, MIT1003, and DUT-OMRON). 

 

Datasets 

 

GlobalAccuracy 

 

WeightedIoU 

TORONTO 0.96227 0.94375 

MIT300 0.94131 0.91924 

MIT1003 0.94862 0.92638 

DUT-OMRON 0.94484 0.92605 

 

2.4.2 Qualitative Comparison of the Proposed Model with Other State-of-

the-Art Models 

We first qualitatively tested the proposed model on the SALICON dataset; then, we 

evaluted the model on the TORONTO, MIT300, MIT1003, and DUT-OMRON datasets. 

Figures 2.5 illustrates the saliency map results obtained when the proposed model and five 

other state-of-the-art models are applied to sample images drawn from the studied datasets. 

From this figure, one can see that the proposed model is capable of predicting most of the 

salient objects in the given images.   
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Figure 2.5: The saliency maps obtained from the proposed model and five other state-of-

the-art models for a sample image from the TORONTO, MIT300, MIT1003, and DUT-

OMRON datasets. 

http://web.cs.hacettepe.edu.tr/~erkut/projects/CovSal/
http://web.cs.hacettepe.edu.tr/~erkut/projects/CovSal/
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2.5 Conclusion 

In this study, a deep learning model has been proposed to predict visual saliency on images. 

This work uses a deep network with five encoders and five decoders (convolution and 

deconvolution) and the semantic segmentation approach to predict human visual saliency. 

The proposed model generates a sequence of features at the multi-stage level to produce a 

saliency map. The experimental results obtained from the analysis of four benchmark 

datasets illustrate the superior prediction capability of the proposed model with respect to 

other state-of-the-art methods. Additionally, the proposed model achived an accuracy of 

more than 94% for all datasets, although the highest performance (i.e., 96%) was obtained 

from the TORONTO dataset. Additionally, in the training stage, the increased number of 

training images will increase the prediction accuracy of the proposed model; however, the 

model requires a larger memory.  

In the future, we will focus on how to collect a new dataset, creating its ground truth data 

(e.g., data augmentation method), and designing new models with improved evaluation 

metrics. Importantly, it is possible to use the model presented herein to facilitate other 

tasks, such as salient object detection, scene classification, and object detection. Moreover, 

this work provides the basis to develop new models, able to learn from high-level 

understanding; for example, they will be able to detect the most interesting part of the 

image (e.g., a human face) and the most prominent person in the scene. 
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Chapter 3. Performance Evaluation of Pre-Trained CNN Models for 

Visual Saliency Prediction 

Abstract  

The Human Visual System (HVS) has the ability to focus on specific parts of a scene, 

rather than the whole scene. This phenomenon is one of the most active research topics in 

the computer vision and neuroscience fields. Recently, deep learning models have been 

used for visual saliency prediction. In this work, we investigate the performance of five 

state-of-the-art deep neural networks (VGG-16, ResNet-50, Xception, InceptionResNet-

v2, and MobileNet-v2) for the task of visual saliency prediction. In this work, we train five 

deep learning models over the SALICON dataset and then use the trained models to predict 

visual saliency maps using four standard datasets, namely: TORONTO, MIT300, 

MIT1003, and DUT-OMRON. The results indicate that the ResNet-50 model outperforms 

the other four and provides a visual saliency map that is very close to human performance. 

3.1 Introduction 

The Human Visual System (HVS) processes certain parts of a visual scene rather than the 

entire image. This is called Human Visual Attention (HVA), also referred to as visual 

saliency prediction. Visual saliency prediction is also beneficial for other applications in 

the computer vision field, including salient object detection [1], image retrieval [2], 

multiresolution imaging [3], and scene classification [4-6].  
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Over the past few years, several models have been proposed to tackle the problem of visual 

saliency prediction. The most common form used to predict visual saliency is a saliency 

map. A saliency map predicts the probability that each pixel in an image will attract human 

attention. To generate a saliency map, the salient points in the image are collected and 

convolved with a Gaussian filter [7]. Generally, saliency maps smooth the image, making 

it more meaningful and easier to analyze. Overall, HVA is sorted into bottom-up and top-

down approaches. The first approach uses low-level features, including intensity, color, 

texture, and edge orientation [8, 9]. The second approach is a top-down method, which is 

task-driven and requires an explicit understanding of the context of the visual scene. On 

the other hand, it depends on the features of the object of interest [10, 11]. 

Deep Convolutional Neural Networks (CNNs) have been used in the field of visual 

attention because they can extract robust features and achieve superior performance 

compared with other state-of-the-art methods. For instance, Fully Convolutional Neural 

networks (FCNs) have been recently proposed to solve the problem of visual saliency 

prediction [12]. FCNs are beneficial because they have the same architecture as CNNs but 

do not contain fully connected layers.  

In this chapter, we use FCN architecture for semantic segmentation based on five deep 

learning models, namely VGG-16, ResNet-50, Xception, InceptionResNet-v2, and 

MobileNet-v2 to solve the problem of visual saliency prediction. These models were first 

trained on the SALICON dataset, and the trained models were then evaluated over four 

datasets, including TORONTO, MIT300, MIT1003, and DUT-OMRON.   
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The remainder of this chapter is organized as follows: Section 3.2 describes the overview 

of semantic segmentation and pre-trained models. Section 3.3 explains the visual and 

numerical experimental results. Finally, this work is concluded in Section 3.4. 

3.2 Materials and Methods  

3.2.1 Semantic Segmentation  

 Semantic segmentation plays an important role in image understanding and is essential for 

image analysis tasks. In semantic segmentation, each region or pixel is labeled with a set of 

classes as backgrounds and foregrounds. Deep neural networks are commonly used as 

effective techniques for semantic segmentation. In this section, we briefly introduce the five 

state-of-the-art deep learning models used in this work. 

3.2.2 Pre-Trained Models  

  Pre-trained models are those trained over a large benchmark dataset to classify images from 

different classes. These pre-trained models can be used for other applications, such as 

semantic segmentation using a technique called transfer learning. Using pre-trained models 

finely tuned by transfer learning is beneficial when only a small training dataset is available. 

The models used in this work have all been trained over huge datasets (e.g., ImageNet 

dataset [13]). They can classify images into 1000 classes, such as keyboard, mouse, pencil, 

and many types of animals. Consequently, the models have learned rich feature 

representations of a wide range of images, subsequently adjusting the parameters for visual 

saliency dataset.   
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3.2.2.1 VGG-16 Model 

 The VGG-16 network was developed by Simonyan and Zisserman in the 2014 ILSVRC 

competition [14]. Generally, the VGG-16 network contains thirteen convolution layers, 

five pooling layers, and three fully connected layers. The VGG-16 model can classify 

images into 1000 object classes and has an image input size of 224×224. 

3.2.2.2 ResNet-50 Model 

This model is a Convolutional Neural Network that was trained over more than a million 

images from the ImageNet database [13]. This model has 50 layers and can classify images 

into 1000 object categories [15].   

3.2.2.3 Xception Model 

Xception is a CNN introduced by Francois Chollet at the Conference on Computer Vision 

and Pattern Recognition (CVPR) in 2017. This model has 18 layers and an image input 

size of 299×299 [16]. 

3.2.2.4 InceptionResNet-V2 Model 

This type of the network was built by integrating two deep CNNs, namely ResNet [15] and 

inception models [17]. This model has 164 layers and an image input size of 299×299. This 

model also has the ability to classify images into 1000 object classes.     

https://www.mathworks.com/help/deeplearning/ref/xception.html
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3.2.2.5 MobileNet-V2 Model 

This model is a CNN that was trained over more than a million images from the ImageNet 

database. This model is 54 layers deep and has an image input size of 224×224 [18]. This 

can also classify images into 1000 object classes.    

3.2.3 Pre-Trained Models Specification 

 Table 3.1 presents some of the parameters of the pre-trained models used in this study. 

These parameters are important as they affect the performance and complexity (training 

and testing time) of each model. 

Table 3.1: Pre-Trained Model Parameters. Note, L: layers, M: Million. 

Pre-Trained Model Depth (L) 

() 

(L) 

Image 

Input   

Size 

Number of Parameters (M) 

VGG-16 16 224×224 138 

ResNet-50 50 224×224 25.6 

Xception 71 299×299 22.9 

InceptionResNet-v2 164 299×299 55.9 

MobileNet-v2 
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MobileNe

t- 

224×224 3.5 

 

3.2.4 Datasets    

The models were trained using the SALICON dataset and then tested on four other standard 

datasets, including TORONTO, MIT 300, MIT1003, and DUT-OMRON described below: 
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3.2.4.1 SALICON Dataset 

SALICON is the largest dataset for visual attention in the popular Microsoft Common 

Objects in Context (MS COCO) image database [19]. It contains 10,000 training images, 

5000 validation images, and 5000 testing images, with a fixed resolution of 480×640 

pixels. 

3.2.4.2 TORONTO Dataset 

The TORONTO dataset contains 120 colour images with a fixed resolution of 511×681 

pixels. This dataset contains both indoor and outdoor environments and was free viewed 

by 20 human subjects [20]. 

3.2.4.3 MIT300 Dataset 

The MIT300 dataset has 300 natural images, and their saliency maps were generated from 

the eye-tracking data of 39 users who free-viewed these images. This dataset is a 

challenging dataset since its images are highly varied and natural [4]. 

3.2.4.4 MIT1003 Dataset 

MIT1003 is a collection of 1003 images from the Flicker and LabelMe collections. 

Saliency maps were also obtained from the eye-tracking data of 15 users. It is the largest 

eye fixation dataset, wherein there are 779 landscapes and 228 portraits images that vary 

in size from 405×405 to 1024×1024 pixels [4].  
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3.2.4.5 DUT-OMRON Dataset 

DUT-OMRON has 5,168 high quality images. The largest height or width of this dataset 

is 400 pixels. Each image was free viewed by five subjects. This dataset was manually 

selected from more than 140,000 images. There is more than one salient object in this 

dataset, and each image has a more complex background [21].  

3.2.5 Evaluation Metrics  

There are several methods to evaluate the agreement between human eye fixation and 

model prediction. In this work, we utilize the following four evaluation metrics for 

performance assessment. 

3.2.5.1 Normalized Scanpath Saliency (NSS) 

The NSS metric was introduced to the saliency community as a simple correspondence 

measure between ground truth data and model prediction [20].  

3.2.5.2 Similarity Metric (SIM) 

 SIM was presented to the saliency community as a simple correspondence measure 

between saliency maps and ground truth data, computed as the average normalized saliency 

at fixated locations [20]. 
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3.2.5.3 AUC-Borji 

This version of the Area Under ROC Curve (AUC)-measure was developed by A. Borji. 

This metric uses a uniform random sample of image pixels as negatives and defines the 

fixation (saliency) map’s values above the threshold of these pixels as false positives [20]. 

3.2.5.4 AUC-Judd 

This version of the AUC-measure was developed by T. Judd. The AUC-Judd metric is 

widely used for evaluating saliency models. The saliency map is treated as a binary 

classifier to separate positive from negative samples at various thresholds [20].  

3.3 Experimental Results 

3.3.1 Models Training  

Since this work is based on the transfer learning method (fine-tuning), a large training 

dataset is not required. Here, the five pre-trained models presented in Section 3.2.2 were 

trained over a standard dataset (i.e., SALICON).  In the training stage, 1000 images were 

employed. Table 3.2 illustrates the important parameters (i.e., training global accuracy, 

validation accuracy, and training time) provided after the training process. The investigated 

models were trained using minimization of the cross-entropy loss function and stochastic 

gradient descent with a momentum (SGDM) optimizer. The mini-batch size was 10, the 

number of epochs was 25, and the learning rate was set at 0.001.  
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Table 3.2: The most important parameters through the training stage of all pre-trained 

models. Note, AC: Accuracy, LO: Loss. 

----------- Training Validation 
Training    

Time 

(min) 

Testing 

Accuracy 

(%) 
Pre-Trained Model 

AC 

(%) 

LO 

(%) 

AC 

(%) 

LO 

(%) 

VGG-16 94.3 0.15 92.9 0.17 602 92.19 

ResNet-50 99.4 0.02 95.2 0.25 1602 95.10 

Xception 99.6 0.01 95.2 0.33 2239 94.99 

InceptionResNet-v2 99.6 0.01 95.5 0.30 2683 95.28 

MobileNet-v2 

 

99.0 0.03 95.4 0.22 1118 95.22 

 

3.3.2 Visual Results          

Fig 3.1 depicts the visual saliency maps predicted by the state-of-the-art pre-trained models 

discussed in Section 3.2.2 and the datasets presented in Section 3.2.4. From this figure, one 

can see that both VGG-16 and ResNet-50 predict visual saliency maps very close to the 

ground truth. One can further see that the poorest result was obtained from the 

InceptionResNet-v2 model. Among the four datasets, the image drawn from the 

TORONTO dataset provides better results than those drawn from the other three datasets.   
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Pre-Trained Model 

Dataset 

Input 

Image 

Ground 

Truth 

Model 

Prediction 

VGG-16 

TORONTO 
   

ResNet-50 

TORONTO 
   

Xception 

TORONTO 
   

MobileNet-v2 

TORONTO  
   

VGG-16 

MIT300  
   

MobileNet-v2 

MIT300  

   

InceptionResNet-v2 

MIT300  
   

ResNet-50 

MIT1003  
   

Xception 

MIT1003  
   

InceptionResNet-v2 

MIT1003 

    
VGG-16 

DUT-OMRON 

    
ResNet-50 

DUT-OMRON 

    

Figure 3.1: Visual saliency maps predicted by state-of-the-art pre-trained models for 

images drawn from the TORONTO, MIT300, MIT1003, and DUT-OMRON datasets.  

 

 

 

https://www.mathworks.com/help/deeplearning/ref/xception.html
https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html
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3.3.3 Numerical Results 

To give more insight on the performance of the five investigated models, we provide 

numerical results in this Section. For comparison purpose, we use the metrics presented in 

Section 3.2.5, i.e., SIM, NSS, AUC-Judd, and AUC-Borji.  

 Table 3.3 presents the SIM and NSS metrics computed for all four datasets. From the left 

part of this table, one can see that the VGG-16 model provides the highest SIM value; 

however, for the other three datasets, the SIM metric is mostly lower than the other four 

models. On the other hand, ResNet-50 performs consistently well for all four datasets. 

From the right side of Table 3.3, one can see that all models provide reasonable NSS values 

for all datasets; however, the lowest NSS is obtained using InceptionResnet-v2 model 

which has even more layers than the other four models and this is mainly due to the 

overfitting problem which usually observed in very deep models. Table 3.4 presents the 

AUC-Judd and AUC-Borji metrics for all four datasets. From this table, one can see that 

the ResNet-50 model consistently performs well and, on average, outperforms the other 

models. The poorest AUC metrics were obtained using the InceptionResNet-v2 model. 
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Table 3.3: SIM and NSS metrics obtained from the state-of-the-art pre-trained models for 

the A: TORONTO, B: MIT300, C: MIT1003, and D: DUT-OMRON datasets. Note: 

Bolded values represent the best values. 

--------- SIM NSS 

Pre-Trained Model A B C D A B C D 

VGG-16 3.00 0.97 1.13 0.64 0.42 0.32 0.36 0.47 

ResNet-50 1.48 1.49 1.79 1.53 0.45 0.35 0.30 0.41 

Xception 1.51 1.67 2.21 1.30 0.24 0.12 0.21 0.28 

InceptionResNet-v2 1.10 1.89 1.91 1.35 0.28 0.14 0.18 0.28 

MobileNet-v2 1.42 1.14 1.09 1.35 0.37 0.39 0.37 0.33 

Table 3.4: AUC-Judd and AUC-Borji metrics obtained from the state-of- the-art pre-

trained models for A: TORONTO, B: MIT300, C: MIT1003, and D: DUT-OMRON 

datasets. Note: Bolded values represent the best values. 

--------- AUC-Judd AUC-Borji 

Pre-Trained Model A B C D A B C D 

VGG-16 0.91 0.86 0.87 0.76 0.87 0.66 0.68 0.59 

ResNet-50 0.92 0.90 0.90 0.91 0.73 0.74 0.78 0.74 

Xception 0.88 0.89 0.86 0.84 0.75 0.76 0.82 0.70 

InceptionResNet-v2 0.81 0.92 0.85 0.82 0.68 0.83 0.78 0.69 

MoileNet-v2 0.89 0.91 0.86 0.87 0.72 0.71 0.68 0.71 
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3.4 Conclusion 

In this work, we assessed the performance of five state-of-the-art deep learning models 

(i.e., VGG-16, ResNet-50, Xception, InceptionResNet-v2, and MobileNet-v2) for visual 

saliency prediction. These models were trained using the SALICON dataset and then tested 

over four other standard datasets (i.e., TORONTO, MIT300, MIT1003 and DUT-

OMRON). ResNet-50 outperformed the other models and its saliency maps very closely 

predicts the ground truth data. For instance, the AUC-Judd metric averaged over all four 

datasets was 0.91. The poorest performance was observed from InceptionResNet-v2 model 

and was likely caused by overfitting due to the large number of layers in this model.  
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Chapter 4. A Novel Fully Convolutional Network for Visual Saliency 

Prediction  

Abstract  

Human Visual System (HVS) has the ability to pay visual attention, which is one of the 

many functions of the HVS. Despite the many advancements being made in visual saliency 

prediction, there continues to be room for improvement. Deep learning has recently been 

used to deal with this task. This work proposes a novel deep learning model based on a 

Fully Convolutional Network (FCN) architecture. The proposed model is trained in an end-

to-end style and designed to predict visual saliency. The model is based on the encoder-

decoder structure and includes two types of modules. The first has three stages of inception 

modules to improve multi-scale derivation and enhance contextual information. The 

second module includes one stage of the residual module to provide a more accurate 

recovery of information and simplify optimization. The entire proposed model is fully 

training style from scratch to extract distinguishing features and to use a data augmentation 

technique to create variations in the images. The proposed model is evaluated using several 

benchmark datasets, such as MIT300, MIT1003, TORONTO, and DUT-OMRON. The 

quantitative and qualitative experiment analyses demonstrate that the proposed model 

achieves superior performance for predicting visual saliency.   
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4.1 Introduction 

A Human Visual System (HVS) processes a part of the visual scene instead of the whole 

scene. This phenomenon is called Human Visual Attention (HVA), also referred to as 

visual saliency prediction, which is an important research area in the field of computer 

vision. HVA is also known as human eye fixation prediction, visual saliency prediction, or 

saliency map detection. Visual saliency prediction is also beneficial for other applications 

in the computer vision field, including salient object detection [1], image retrieval [2], 

multiresolution imaging [3], and scene classification [4-6]. 

Many models have been developed to predict visual saliency, the most popular being the 

saliency map. Saliency maps describe the probability that each image pixel will attract 

human attention. In other words, saliency maps are images that display the unique qualities 

of each pixel in a given image [7]. To produce a saliency map, the salient points in the 

image are collected and convolved with a Gaussian filter [7]. The probability that each 

pixel in the image will attract human attention is represented by a heat map or gray-scale 

image. Notably, saliency maps smooth the image, making it more meaningful and easier 

to analyze. This is useful for condition image captioning architecture because it indicates 

what is salient and what is not [8]. 

To evaluate the saliency map, human eye fixation data in free viewing is used because there 

is a direct link between human eye movement and visual attention [8]. Generally, HVA 

runs on two approaches. The first is a bottom-up approach which utilizes low-level 

features, including intensity, color, edge orientation, and texture [9, 10]. Such an approach 
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attempts to decide regions that show obvious characteristics of their surroundings. The 

second is a top-down approach, which is task-driven and requires an explicit understanding 

of the context of the visual scene. Moreover, it depends on the features of the object of 

interest [11, 12]. 

The deep Convolutional Neural Network (CNN) is the most widely utilized deep learning 

method for image processing applications. Specifically, CNN is capable of extracting 

discriminant visual features (e.g., 2-D spatial features) by applying a hierarchy of 

convolutional filters using multiple nonlinear transformations. Studies have also used 

Convolutional Neural Networks (CNNs) for studying saliency map detection to confirm 

the importance of end-to-end task learning and automatic feature extraction [13-17]. The 

deep CNN model achieves an even higher classification accuracy. For example, deep 

learning techniques have achieved superior results in multiple tasks, such as driverless car, 

scene classification, object (e.g., vehicle) detection, image classification, and semantic 

segmentation. However, deep learning architecture requires sufficient training data for 

superior performance on several sets of visual tasks, such as local image detection [18], 

global image classification[19], and semantic segmentation [20].  

Although several deep learning models have been proposed to solve the problem of 

saliency prediction, and those models provide good performance, those models essentially 

were proposed for object recognition and then fine-tuned for saliency prediction. 

Consequently, the pixel-based classification for the visual attention task remains 

challenging. This highlights the necessity of designing a novel FCN model specifically for 
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the task of saliency prediction. In addition, our proposed model is designed for training 

from scratch. Therefore, we added some modules (e.g., three inception modules and 

residual modules) to improve the model performance. 

The inception module is useful since there are benefits from filters with different sizes in 

one layer, which contribute to multi-scale inference and enhance contextual information. 

This highlights the necessity of combining feature maps at different resolution to extract 

useful information. In addition, residual module recovers more accurate information and 

simplifies optimization, while avoiding the vanishing gradient problem. Moreover, the 

residual module decreases the number of parameters by dropping several layers in the deep 

learning model. Therefore, this prevents the overfitting of the proposed model. 

 In this study, we utilized an encoder-decoder structure based on the Fully Convolutional 

Network (FCN) architecture to address the problem of bottom-up visual attention in visual 

saliency predication. FCN has the same architecture as the CNN network, but unlike CNN 

it does not contain any fully connected layers. FCNs are also powerful visual models that 

generate high-level features from low-level features to produce hierarchies. Moreover, 

FCN utilizes multi-layer information and addresses pixel-based classification tasks using 

an end-to-end style [20]. In addition, the proposed model also includes both inception and 

residual modules to improve multi-scale inference and the recovery of more accurate 

information, respectively.  
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This study proposes a new model based on an encoder-decoder structure (i.e., FCN) to 

improve the performance of visual saliency prediction. The specific contributions of this 

work are as follows:  

(1)  A new model of FCN architecture for visual saliency prediction that uses two types of 

modules is proposed. The first module contains three stages of inception modules, 

improves the multi-scale inference, and performs contextual information. The second 

module contains one stage from the residual module and also recovers more accurate 

information and simplifies optimization, while avoiding the vanishing gradient problem. 

 (2) Four well-known datasets, including TORONTO, MIT300, MIT1003, and DUT-

OMRON, were used to evaluate the proposed model. The experiments demonstrate that 

the proposed model achieves results comparable or superior to those of other state-of-the-

art models.  

The remainder of this work is organized as follows: First, the related work is explained in 

Section 4.2. The Proposed model is described in more detail in Section 4.3 and the 

experimental results for the proposed model are discussed in Section 4.4. Section 4.5 

presents the quantitative and qualitative experimental results obtained from the four 

datasets. Finally, the results are summarized, and possible future uses, and applications of 

the proposed model are explored in Section 4.6.  
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4.2 Related work 

Visual saliency prediction has received attention from computer vision researchers for 

many years. The earliest computational model was introduced by Koch and Ullman [19], 

which inspired the work of Itti et al. [21]. This model combines low level features at 

multiple scales to generate saliency maps. Subsequently, many models have been proposed 

in this way and in the last several decades there has been renewed interest in visual saliency 

detection [22-32].  Most of this work has been focused on how to detect visual saliency in 

an image/video using different methods [33-35]. 

Most conventional attention models are based on a bottom-up strategy. These contain three 

important steps to detect visual saliency: feature extraction, saliency extraction, and 

saliency combination. Salient regions in the visual scene are first extracted from their 

surroundings through hand-crafted low-level features (e.g., intensity, color, edge 

orientation, and texture), and center-surround contrast is widely used for generating 

saliency. The saliency may also be produced by the relative difference between the region 

and its local surroundings [21], [36], [37]. The last step for saliency detection combines 

several features to generate the saliency map. 

In the last few years, many visual saliency models have been introduced for object 

recognition. Deep-learning models achieved better performance compared to non-deep 

learning models. The first proposed model, Deep Neural Networks (DNN) [17], was 

trained from scratch to predict saliency. Subsequent models were based on pre-trained 

models. For example, the DeepGaze I model  [38] was the first to be trained on a pre-
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trained model (AlexNet [19] trained on ImageNet [39]), and outperformed the training 

stage from scratch. DeepGaze II [40] has also has been proposed based on a pre-trained 

model (VGG-19 [41]), where attention information was extracted from the VGGNet 

without fine-tuning the attention task. Next, the DeepFix model [42] was proposed by 

Kruthiventi et al. based on a pre-trained model VGG-16. Furthermore, in [43] object 

detection and saliency detection were carried out using a deep convolutional neural 

network (CNN). Finally, the SALICON net model [44] was proposed to capture multi-

scale saliency using combined fine and coarse features from two-stream CNNs that were 

trained with multi-scale inputs. 

Since the superior success of transfer learning models for visual saliency prediction has 

been established, several new models have been proposed that have improved saliency 

prediction performance. For instance, the SALICON model fine-tunes a mixture of deep 

features [44] using AlexNet [19], VGG-16 network [41], and GoogleNet [45] for visual 

saliency prediction. PDP [14] and DeepFix [42] were used on the VGG-19 network for the 

same task using MIT300 and the SALICON dataset, and FUCOS [46] fine-tunes features 

that were trained on the PASCAL dataset. Overall, DeepFix and SALICON models 

demonstrated significantly improved performance compared to DeepGaze I in the MIT 

benchmark. 
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4.3 Material and Methods 

4.3.1 Proposed Model 

The proposed model follows an FCN structure (i.e., a pixel-based approach) and the 

generic encoder-decoder form. The important difference between CNN and FCN networks 

is that the latter has learning filters throughout its structure. Even the decision-making 

layers at the end of the network are filters. FCNs also do not have any fully connected 

layers that are usually available at the end of the network.    

Figure 4.1 explains the architecture of the proposed model for visual saliency prediction 

and the configuration of the proposed model is explained in Table 4.1. The encoder stage 

contains three blocks of convolution layers, each of which is followed by batch 

normalization, rectified linear unit (ReLU), and max pooling. The encoder stage is the same 

as that of a conventional CNN and generates feature maps by down-sample pooling. The 

decoder stage also transposes convolutional layers but does so in the opposite direction. 

Therefore, the decoder stage produces label maps (up-sampling) with the same input image 

size. The transposed convolution layers contain un-pooling and convolution operators. 

Unlike the max-pooling operation, the un-pooling operation increases the size of feature 

maps through the decoding stage. In addition, the image input size of the proposed model 

is 224 x 224 pixels.  

Three inception modules are also used in the proposed model. Inception modules are useful 

because they benefit from different sized filters in one layer, which contributes to the multi-

scale inference and enhances contextual information [20]. In addition, a residual module is 
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also added to the proposed model because it effectively avoids the vanishing gradient 

problem by introducing an identity shortcut connection [47] . Moreover, activations from 

a previous layer are reused by the residual module for the adjacent layer to learn its weights. 

Figure 2 shows the architecture of the inception and residual modules, respectively. Figure 

4.2 (a) explains the layers of the inception module which contains three branches. The first 

two contain a sequence of two convolution filters, where the patch sizes of the layers are 

1x1, the second layer is 3x3, and the last layer is 5x5, respectively. The third branch 

contains only one convolutional filter which has a patch size of 1x1. Each convolutional 

layer is followed by batch normalization and ReLU. Figure 4.2 (b) explains the structure 

of the residual module, which contains two branches. The first branch has a stack of three 

convolutional filters, sized 1x1, 3x3, and 1x1, respectively. The second branch has a single 

1x1 convolutional filter. The two branches are combined by element-wise summation. 

Table 4.2 explains the number of each filter in the two modules (i.e., inception and 

residual). Notably, the convolutional module contains a Convolutional 2D, Batch 

Normalization, as well as a ReLU layer. The transposed convolutional module also 

contains the same layers as the convolutional module. 
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Figure 4.1. Architecture of the proposed model. 

Table 4.1. Configuration of the proposed model. 

 

 

 

 

 

                             

Note (*): See Table 4.2 for the filter size of the inception and residual modules. 

------------ Layer type Filter size 

Encoder Convolution 3x3, 64 

 Residual Module (*), 64 

 Convolution 3x3, 128 

 Max pooling 2x2 

 Convolution 3x3, 256 

 Max pooling 2x2 

Decoder Inception Module (*), 256 

 Transposed convolution 3x3, 256 

 Convolution 3x3, 256 

 Convolution 3x3, 128 

 Transposed convolution 3x3, 64 

 Convolution 3x3, 2 

 Pixel Classification Layer -  
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Table 4.2. Configuration of inception and residual modules. 

Module Convolutional Configuration Operation Output 

Inception 1x1,256             3x3,256 

1x1,256             5x5,256 

1x1,256 

Concatenation 256 

Residual 1x1,32    3x3,64      1x1,64 

1x1,64 

Element-wise sum 64 

 

 

(a) 

 

(b) 

Figure 4.2. Architecture of (a) Inception and (b) residual modules. 
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4.3.2 Semantic Segmentation 

The segmentation task plays an important role in image understanding and is essential for 

image analysis tasks. In semantic segmentation, each region or pixel is labeled as a class, 

such as flower, person, road, sky, ocean, or car. Many applications use semantic 

segmentation techniques, such as autonomous driving, Bio Medical Image Diagnosis, 

robotic navigation, localization, and scene understanding. Furthermore, Deep Neural 

Networks (DNNs) are commonly used as effective techniques for semantic segmentation 

[20]. Semantic segmentation works with semantics and location; global information 

determines the “what” while local information determines the “where” of an image. Deep 

feature hierarchies encode semantics and location in a nonlinear local-to-global pyramid 

[20]. Our proposed model (i.e., FCN) uses semantic segmentation techniques to assign each 

pixel in the given image into appropriate classes (i.e., foreground or background) in order 

to predict visual saliency (i.e., saliency map generation).  

4.3.3 Datasets 

The proposed model was trained using a standard available dataset (i.e., SALICON) and 

subsequently tested on four other well-established datasets, including TORONTO, MIT 

300, MIT1003, and DUT-OMRON. All these datasets have different characteristics and so 

each is described below. 
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4.3.3.1 SALICON 

The largest dataset for visual attention applications on the popular Microsoft Common 

Objects in Context (MS COCO) image database is SALICON [47]. This dataset contains 

10,000 training, 5,000 validation, and 5,000 testing images with a fixed resolution of 

480x640. While this dataset contains the ground truth data for the training and validation 

datasets, the test dataset ground truth data were unavailable [48].  

4.3.3.2 TORONTO 

One of the most widely used datasets for visual attention is the TORONTO dataset. It has 

120 color images with a resolution of 511x681 pixels. This dataset contains images that 

were captured in indoor and outdoor environments and has been free-viewed by 20 human 

subjects [37]. 

4.3.3.3 MIT300 

The MIT300 dataset has 300 natural images and the eye-tracking data of 39 users who free 

viewed these images were used to generate saliency maps. This dataset is challenging since 

its images are highly variable and natural [49]. A MIT saliency benchmark website for 

model evaluation (http://saliency.mit.edu/results_mit300.html) is available to evaluate any 

saliency model using this dataset. 

4.3.3.4 MIT1003 

MIT1003 includes 1,003 images from the Flicker and LabelMe collections. Saliency maps 

of these images have also been generated from the eye-tracking data of 15 users. This 

http://saliency.mit.edu/results_mit300.html
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dataset contains 779 landscape and 228 portrait images that vary in size from 405x405 to 

1024x1024 pixels, making it the largest available eye fixation dataset [50]. 

4.3.3.5 DUT-OMRON 

DUT-OMRON has 5,168 high quality images that were manually selected from over 

140,000 images. The largest height or width of this dataset is 400 pixels and each image is 

represented by five subjects. There is more than one salient object in this type of dataset 

and the image has a more a complex background [51]. 

4.3.4 Evaluation Metrics 

Several methods may be used to evaluate the correspondence between human eye fixation 

and model prediction [52]. Generally, saliency evaluation metrics are divided into 

distribution- and location-based metrics. Previous studies on saliency metrics found it is 

difficult to perform a reasonable comparison for assessing saliency models using a single 

metric [51]. Here, we accomplished our experiment by extensively considering several 

different metrics, including the Similarity Metric (SIM), Normalized Scanpath Saliency 

(NSS), and AUC. The last metric is the area under the receiver operating characteristic 

(ROC) curve (e.g., AUC-Borji, and AUC-Judd). For clarification, we indicate the map of 

fixation locations as Q, the predicted saliency map as S, and the continuous saliency map 

(distribution) as G. 
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4.3.4.1 Similarity Metric (SIM) 

The SIM metric produces a histogram that is a measurement of the similarity between two 

distributions. This metric considers the normalized probability distributions of both the 

saliency and human eye fixation maps. SIM is also computed as the sum of the minimum 

values at each pixel, after normalizing the input maps. Equation (1) explains how to 

calculate the SIM metric. 

SIM = ∑ min (Ś

i=1

(i), G ́ (i)), 

where      ∑ S ́ (i)i =1, and  ∑ G ́ (i)i =1, 

     (4.1) 

and Ś and Ǵ are the normalized saliency and the fixation maps, respectively. Importantly, 

a similarity of one indicates that the distributions are the same whereas a zero indicates that 

they do not overlap. 

4.3.4.2 Normalized Scanpath Saliency (NSS)          

NSS was is a simple correspondence measure between saliency maps and ground truth 

data, computed as the average normalized saliency at fixated locations. NSS is, however, 

susceptible to false positives and relative differences in saliency across the image [53]. To 

calculate NSS given a saliency map S and a binary map of fixation location F,  

NSS =
1

N
∑ S ̅(i)xF(i),N

i=1                                                            (4.2) 
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where          N = ∑ F(i)    and    S̅  =
S−μ(s)

σ(S)i , 

and N is the total number of human eye positions and σ(S) is the standard deviation. 

4.3.4.3 AUC-Borji 

The AUC-Borji metric, based on Ali Borji’s code [54], uses a uniform random sample of 

image pixels as negatives and defines false positives as any fixation (saliency) map values 

above the threshold of these pixels. The saliency map is a binary classifier that separates 

positive from negative samples at varying thresholds, the values of which are sampled at a 

fixed step size. The proportion of the saliency map values above the threshold at the 

fixation locations is the true positive (TP) rate. Conversely, the proportion of the saliency 

map values that occur above the threshold sampled from random pixels (as many samples 

as fixations, sampled uniformly from all image pixels) is the false positive rate (FP).  

4.3.4.4 AUC-Judd 

The AUC-Judd metric [50] is also popular for the evaluation of saliency models. As with 

AUC-Borji, positive and negative samples are separated at various thresholds by treating 

the saliency map as a binary classifier. Unlike AUC-Borji, however, the thresholds are 

sampled from the saliency map’s values. The proportion of the saliency map’s values above 

a specific threshold at specific fixation locations is known as the true positive (tp) rate. 

Alternatively, the proportion of the saliency map’s values that occur above the threshold 

of non-fixated pixels is the false positive (fp) rate. 
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4.4 Experimental Results 

This section explains all the steps for implementing our work (see Table 3 for more details 

about experimental steps). Specifically, training, adjusting the parameters, validating, and 

testing the proposed model on the aforementioned datasets (e.g., TORONTO, MIT300, 

MIT1003, and DUT-OMRON) are described in detail. 

4.4.1 Model Training 

The most important step for the proposed deep learning model to predict visual saliency is 

model training. In this work, the proposed model was trained from scratch (i.e., full 

training). Training of the models from scratch is challenging due to computational and data 

availability, leading to problems of overfitting. However, there are several techniques, such 

as normalization, data augmentation, and dropout layers that are useful for mitigating the 

problems generated from overfitting.  

In general, the full-training style has two different categories. In the first category, the CNN 

architecture is fully designed and trained from scratch. In this case, the number of CNN, 

pooling layers, the kind of activation function, neurons, learning rate, and the number of 

iterations should be determined. In the second category, the network architecture and the 

number of parameters remain unchanged, but the advantages of pre-existing architecture 

and full training is applied to given images.   

In this study, the first category was employed. Specifically, the proposed model was trained 

using the well-known dataset, SALICON (see Section 4.3.3.1 for more details) and was 

also validated using a specific validation dataset (i.e., 5000 images). This dataset is the 
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largest available for visual attention (i.e., 10,000 images for training, 5,000 for validation) 

and was created for saliency applications. At the beginning of the training task, all filter 

weights were randomly initialized because a pre-trained network was not used in this study. 

A mini batch of 16 images was used in each iteration and the learning rate was set as 0.001. 

The proposed model parameters were learned using the back-propagating loss function by 

stochastic gradient descent with a momentum (SGDM) optimizer 

Since the number of images available for the training task was limited (i.e., 10,000 images), 

we suggested using the date augmentation technique to increase the number of training 

images by creating modified versions of images in the dataset. This technique was carried 

out to mitigate overfitting by rotating at 30° intervals. This technique also improves 

performance and the proposed model’s ability for generalization. Figure 4.3 illustrates the 

proposed model’s training progress from the mentioned training images (SALICON).  

 

(a) 
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             (b) 

Figure 4.3. (a)Value of validation accuracy and (b) loss as a function of epochs. 

4.4.2 Model Testing 

In this step, we evaluated the proposed model using very well-known datasets including 

TORONTO, MIT300, MIT1003, and DUT-OMRON. Based on the experimental results, 

one can see the proposed model has the ability to predict visual saliency in a given image. 

The output of the test image is described as the saliency map, which can be obtained from 

the last layer of the proposed model. All the training and testing tasks were performed on 

an Intel CPU i7-3370K machine with 3.5 GHz and 16 GB RAM memory. An NVIDIA 

GeForce GTX 1080 Ti GPU with 11 GB of memory under CUDA version 8.0 was also 

utilized in this work. 
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4.5 Discussion 

4.5.1 Quantitative Comparison of the Proposed Model with Other 

Advanced Models 

To evaluate the efficiency of the proposed model for predicting visual saliency, we 

compared it to 10 state-of-the-art models, including ITT, AIM, Judd Model, GBVS, Mr-

CNN, CAS, SalGAN, DeepGaze I, DeepGaze II, and ML-NET. The models were applied 

to the four previously mentioned datasets (i.e., TORONTO, MIT300, MIT1003, and DUT-

OMRON), and the quantitative results are presented in Tables 4.3, 4.4, 4.5, and 4.6, 

respectively. All these models differ in terms of computational speed (i.e., run time). Table 

4.7 explains the properties of the proposed model as well as the other 10 visual saliency 

models. From this table, one can see the run time of the proposed model is about 12 s on 

our machine (i.e., an Intel CPU i7-3370K).  

Notably, the main difference between our proposed model and the other state-of-art models 

is that the proposed model was specifically designed for saliency prediction, whereas the 

other pre-trained models were essentially designed for object recognition and then fine-

tuned for the visual saliency prediction task. In addition, our proposed model was trained 

from scratch, which requires a large number of training images to provide a reasonable 

performance; however, the largest dataset available for this application contains 10,000 

images (e.g., SALICON) which was insufficient for training the proposed model from 

scratch. 
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Table 4.3 illustrates that, with the TORONTO dataset, the proposed model outperforms 

other models (deep and classical models) in terms of NSS; however, in terms of SIM, AUC-

Judd, and AUC-Borji, the GBVS model provides the best results (note that the bolded 

values are the best results).  From Table 4.4, one can see that with the MIT300 dataset, the 

model that provides the best performance is DeepGaz II in terms of the AUC-Judd and 

AUC-Borji metrics. However, the SalGAN model produces the best results for the SIM 

metric, while the ML-NET model provides the best value for the NSS metric. In Table 4.5 

(for MIT1003 dataset), one can see that the proposed model surpasses the other models in 

terms of the SIM and AUC-Judd metrics, while the GBVS model provides the best results 

for the NSS metric. Finally, Table 4.6 shows that, with the DUT-OMRON dataset, the 

proposed model achieved the best result in terms of the AUC-Judd metric, while the GBVS 

model is the best in terms of the AUC-Borji metric.  

Table 4.3. Comparison of the quantitative scores of several models on TORONTO [37] 

dataset. 

Model NSS SIM AUC-Judd AUC-Borji 

ITTI  1.30 0.45 0.80 0.80 

AIM  0.84 0.36 0.76 0.75 

Judd Model 1.15 0.40 0.78 0.77 

GBVS 1.52 0.49 0.83 0.83 

Mr-CNN 1.41 0.47 0.80 0.79 

CAS  1.27 0.44 0.78 0.78 

Proposed Model 1.52 0.46 0.80 0.76 

   Note. Humans baseline [36]         3.29                    1.00                       0.92                            0.88  
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  Table 4.4. Comparison of the quantitative scores of several models on MIT300 [49] 

dataset.           

Model NSS SIM AUC-Judd AUC-Borji 

ITTI [21] 0.97 0.44 0.75 0.74 

AIM [55] 0.79 0.40 0.77 0.75 

Judd Model [50] 1.18 0.42 0.81 0.80 

GBVS [36] 1.24 0.48 0.81 0.80 

Mr-CNN [26] 1.13 0.45 0.77 0.76 

CAS [56] 0.95 0.43 0.74 0.73 

SalGAN [57] 2.04 0.63 0.86 0.81 

DeepGaze I [38] 1.22 0.39 0.84 0.83 

DeepGaze II [58] 1.29 0.46 0.87 0.86 

ML-NET [59] 2.05 0.59 0.85 0.75 

Proposed Model 1.73 0.42 0.80 0.71 

Table 4.5. Comparison of the quantitative scores of several models on MIT1003 [50] 

dataset.    

Model NSS SIM AUC-Judd AUC-Borji 

ITTI 1.10 0.32 0.77 0.76 

AIM 0.82 0.27 0.79 0.76 

Judd Model 1.18 0.42 0.81 0.80 

GBVS 1.38 0.36 0.83 0.81 

Mr-CNN 1.36 0.35 0.80 0.77 

CAS 1.07 0.32 0.76 0.74 

Proposed Model 1.35 0.44 0.88 0.78 
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Table 4.6. Comparison of the quantitative scores of several models on DUT-OMRON [57] 

dataset. 

Model NSS SIM AUC-Judd AUC-Borji 

ITTI 3.09 0.53 0.83 0.83 

AIM 1.05 0.32 0.77 0.75 

GBVS 1.71 0.43 0.87 0.85 

CAS 1.47 0.37 0.80 0.79 

Proposed Model 1.84 0.45 0.88 0.76 

 

Table 4.7: Properties of the proposed model and ten visual saliency models 

Model Training Deep Learning Run Time 

BMS No No 0.3 S 

CAS No No 16 S 

GBVS No No 2 S 

ITTI No No 4 S 

Mr-CNN yes Yes 14 S (GPU) 

SalNet yes Yes 0.1 S (GPU) 

eDn yes Yes 8 S (GPU) 

AIM yes No 2 S 

Judd Model yes No 10 S 

DVA yes Yes 0.1 S (GPU) 

Proposed Model yes Yes 12 S 
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4.5.2. Qualitative Comparison of the Proposed Model with Other 

Advanced Models 

The qualitative results obtained by the proposed model are compared with those of five 

state-of-the art models, such as ITTI, FES, CovSal, GBVS, and SDS-GM [60] , on the 

aforementioned datasets (i.e., TORONTO, MIT300, MIT1003, and DUT-OMRON). 

Figure 4.4 explains the visual saliency map results and the proposed model predicts visual 

saliency, i.e., generate saliency map, within the given images. As shown in the figure, the 

proposed model has ability to consistently capture saliency from low-level features (e.g., 

colour) and more high-level features (e.g., human, face, and text). Based on the evaluation 

of the proposed model, we can see the proposed model produces reasonable saliency maps 

compared with other state-of-the-art models.  

------------- TORONTO MIT300 

Model Test image Ground 

Truth 

Model 

prediction 

Test image Ground 

Truth 

Model 

prediction 

ITTI [7] 

      

FES [11]  

      
CovSal [12]  

      
GBVS [9]  

      
SDS-GM 

[13]     
  

http://web.cs.hacettepe.edu.tr/~erkut/projects/CovSal/
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Proposed     

Model       
------------- MIT1003 DUT-OMRON 

ITTI 

      
FES  

    
 

 

CovSal 

      
GBVS 

      
SDS-GM 

      
Proposed      

Model       

Figure 4.4. Saliency maps obtained from the proposed model and five advanced models 

for a sample image from the TORONTO, MIT300, MIT1003, and DUT-OMRON datasets. 

4.5.3 Ablation Study 

In this work, we evaluated several different aspects of the proposed model’s architecture.  

Table 4.8 illustrates the results of the experiments conducted in this work. Based on the 

architecture of the proposed model, we suggested 13 different scenarios in order to find an 

optimum architecture. Several conclusions were obtained based on these experiments: 

(1) From scenarios S1 to S4, we can see the best global accuracy is achieved with 3 

encoder-3 decoder stages (i.e., global accuracy was 85.05 % and loss function was 0.2384).  

http://web.cs.hacettepe.edu.tr/~erkut/projects/CovSal/
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(2) S7 describes the proposed model using 3 convolutional modules & 3 inception modules. 

This architecture also produced the best global accuracy (i.e., global accuracy was 93.63 

%, and loss function was 0.1051) compared to S5 and S6, which contain one and two 

inception modules, respectively.  

(3) S13 is the last scenario we selected as the entire model, including 3 convolutional, 3 

inception, and 1 residual module (i.e., Figure 4.1). This scenario produced a higher global 

accuracy (i.e., global accuracy was 97.05 %, and loss function was 0.07) compare to those 

of scenarios S11 and S12.   

Table 4.8. Different FCN models applied in this study. 

FCN Models Training Validation 

Scenarios Description Accuracy Loss Accuracy Loss 

S1 2 convolutional modules 79.14 % 0.2650 78.88 % 0.2700 

S2 3 convolutional modules 85.05 % 0.2384 83.08 % 0.2571 

S3 4 convolutional modules 83.47 % 0.2548 82.94 % 0.2608 

S4 5 convolutional modules  80.04 % 0.2873 76.52 % 0.2775 

S5 3 convolutional modules & 1 inception modules 89.69 % 0.2119 85.05 % 0.2231 

S6 3 convolutional modules & 2 inception modules 90.84 % 0.1995 85.37 % 0.2454 

S7 3 convolutional modules & 3 inception modules 93.63 % 0.1051 89.24 % 0.1666 

S8 3 convolutional modules & 1 residual modules 87.55 % 0.2138 84.97 % 0.2317 

S9 3 convolutional modules & 2 residual modules 83.23 % 0.2597 82.10 % 0.2684 
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4.6 Conclusions 

A new deep CNN model has been proposed in this work for predicting visual saliency in 

the field of view. The main novelty of this model is its use of a new deep learning network 

with three encoders and three decoders (convolution and deconvolution) for visual saliency 

prediction, as well as its inclusion of two modules (inception and residual modules). The 

proposed model was trained from scratch and used the data augmentation technique to 

produce variations of images. The experiment results illustrate that the proposed model 

achieves superior performance relative to other state-of-the-art models. Moreover, we 

discovered that an increase in the number of training images will increase the model 

prediction accuracy (i.e., improvement in model performance); however, the 

implementation of the model requires a large amount of memory and so it is difficult to use 

large numbers of training images. Furthermore, because the model was trained from 

scratch, we expected the model will require more training data that other models, which 

are currently unavailable. 

A promising direction for future research is to collect a new dataset, generate its ground 

truth, and design new models with good performance and improved evaluation metrics 

based on the one proposed herein. Extending the proposed model and applying it to 

S10 3 convolutional modules & 3 residual modules 81.66 % 0.2750 79.12 % 0.2921 

S11 3 convolutional modules & 1 inception module & 1 

residual module 

89.46 % 0.1829 88.59 % 0.1889 

S12 3 convolutional modules & 2 inception module & 1 

residual module 

92.73 % 0.1255 89.92 % 0.2111 

S13 3 convolutional modules & 3 inception module & 1 

residual module 

97.05 % 0.07 90.64 % 0.1588 
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examples of dynamic saliency (i.e., video images), is another plausible and interesting 

avenue of research. The proposed model may also facilitate other tasks, such as scene 

classification, salient object detection, and object detection, making it applicable in a 

number of disciplines. Importantly, future models based on that proposed herein should be 

able to learn from high-level understanding, so they are able to, for example, detect the 

most important object of the image (e.g., focusing on the most important person in the 

room). Saliency models also need to understand high-level semantics in the visual scene 

(i.e., semantic gap), and cognitive attention studies can help to overcome some of the 

restrictions identified in the proposed model. 
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Chapter 5.  Salient Object Detection Using Semantic Segmentation 

Techniques  

Abstract  

Salient Object Detection (SOD) is the operation of detecting and segmenting a salient 

object in a natural scene. Several studies have examined various state-of-the-art machine 

learning approaches for SOD. In particular, Deep Convolutional Neural Networks (CNNs) 

are commonly applied for SOD because of their powerful feature extraction abilities. In 

this work, we investigate the semantic segmentation capability of several well-known pre-

trained models, including FCNs, VGGs, ResNets, MobileNet-v2, Xception, and 

InceptionResNet-v2. These models have been trained over an ImageNet dataset, fine-tuned 

on a MSRA-10K dataset, and evaluated using other public datasets, such as ECSSD, 

MSRA-B, DUTS, and THUR15k. The results illustrate the superiority of ResNet50 and 

ResNet18, which have Mean Absolute Errors (MAE) of approximately 0.93 and 0.92, 

respectively, compared to other well-known FCN models. Moreover, the most robust 

model against noise is ResNet50, whereas VGG-16 is the most sensitive, relative to other 

state-of-the-art models. 

5.1 Introduction  

The Human Visual System (HVS) has the ability to detect visually distinguished stimuli 

(the pre-attentive stage) called salient regions. The filtered salient regions are then 

processed in more detail to obtain high-level information (the attentive stage). The 



101 

 

detection of salient objects has long been studied by neuroscientists and psychologist and 

has recently become of interest to the computer vision community. The task of Salient 

Object Detection (SOD) is very useful, and works as a pre-processing step for image 

processing and computer vision tasks, such as object detection [1], image classification [2], 

video summarization [3],  content-aware image editing [4], image understanding [5, 6], 

and image captioning [7, 8].   

In the computer vision field, the SOD model detects the most salient object in the scene 

and segments the accurate region of that object. In other words, the SOD model aims to 

localize and extract the most prominent and eye-attracting objects or regions in an image. 

Most of the existing models attempt to extract the most salient object; however, some of 

these models can be used to find many salient objects in an image. Generally, the SOD 

model performs well if it can meet the following criteria: 1) the probability of the real 

salient object region and the reality of marking the foreground as a salient object should be 

high; 2) high computational efficiency; the SOD model should quickly detect salient 

regions; and 3) high resolution; the output of the SOD model should have full resolution 

and maintain the information of the original image [9]. 

Deep Convolutional Neural Networks (CNNs) have been recently adopted for SOD 

because they can extract robust features, achieving results comparable to other state-of-

the-art methods [6]. In addition, a feature extraction process based on CNNs includes more 

high-level semantic information, since the CNNs are pre-trained on the datasets object 

recognition tasks. In particular, Fully Convolutional Neural networks (FCNs) have recently 
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been utilized for SOD. This type of deep network was proposed by Long et al. [10] and has 

produced impressive results for SOD because it has the ability to address pixel-based 

classification tasks in an end-to-end style. Furthermore, FCN has the same architecture as 

CNN, but does not contain any fully connected layers. FCNs are also powerful visual 

models that produce hierarchies of features by generating high-level features from low-

level features. Since Long et al propose the original process of semantic segmentation 

based on FCN, three novel architectures, including FCN-8s, FCN-16s, and FCN-32s, have 

been developed. 

Despite deep improvements having been made, there are still two major challenges that 

prevent its use in real-world application, such as embedded devices. The first challenge is 

that FCN-based models produces the low resolution of the saliency map. Due to the pooling 

operations and repeated stride in CNN, it is unavoidable to lose resolution and complicated 

to smooth. Therefore, it is impossible to locate salient objects precisely, particularly for the 

small objects and object boundaries. The second challenge is the dense weight and large 

redundancy of current deep saliency models. Consequently, this task is too heavy for the 

pre-processing step to apply in the subsequent high-level tasks; and also, the memory is 

not sufficient for embedded devices.   

This work evaluates the capabilities and accuracies (i.e., transfer learning, fine tuning) of 

ten pre-trained models based on FCN (i.e., semantic segmentation technique) to address 

the problem of SOD. These models include VGG-Net (VGG-16, VGG-19), (FCN-8S, 

FCN-16S, FCN-32S), ResNet-18, ResNet-50, MobileNet-v2, Xception, and 
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InceptionResnet-v2. Most of these models were trained for image classification tasks on 

more than a million images for from the ImageNet database [11].  

In summary, this work has the following contributions: 

1. We investigate FCNs (i.e., semantic segmentation) for SOD. 

2. All pre-trained models (i.e., FCNs, VGGs, ResNets, MobileNet-v2, Xception, and 

InceptionResNet-v2) were evaluated on four well-known benchmark datasets, 

including ECSSD, MSRA-B, DUTS, and THUR15k.  

3. Sensitivity analysis was performed to evaluate the trained models against noise. 

The remainder of this chapter is organized as follows: Section 5.2 explains the related work 

of this research. Section 5.3 explains the materials and methods used in this work. Section 

5.4 describes the experimental results. Section 5.5 presents the quantitative and qualitative 

experimental results, and the assessment of the trained models against noise over four 

benchmark datasets. Finally, our conclusions are drawn in Section 5.6. 

5.2 Related Work  

Salient Object Detection has received attention from computer vision researchers for 

many years. Early methods try to focus on low-level features and cues. The most widely 

applied is Contrasted Prior, which considers that salient regions make high contrast 

compared with the background in the scene [12-17]. Additionally, there is an approach 

that uses color uniqueness and spatial distribution to compute saliency of objects [18]. 

Jiang et al. [19] and Zhang et al. [20] use perspective of objects’ uniqueness and 
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surroundings to detect salient objects. Shen et al. [21] consider the background can be 

demonstrated by a low-rank matrix, and salient objects are the sparse noise. In addition, 

an approach called (Center Bias) that supposes the salient object is located in the center 

of the image [20, 22-25].  

In the last few years, many SOD models have been proposed, especially with CNNs 

employed in this task. Recently, CNNs have shown superior performance in many tasks 

of computer vision because they have ability to extract high-level and multi-scale 

features. Li et al. [26] suggested the use of multi-scale features extracted from a deep 

CNN to extract a saliency map. Wang et al. [27] use integrating both local estimation and 

global search for predicting a saliency map; two different deep CNNs are trained to 

capture global contrast and local information. Zhao et al. [28] proposed multi-context 

deep learning framework for SOD. They applied two CNNs to extract local and global 

context information. Lee et al. [29] considered both hand-crafted features and high-level 

features. To merge these features together, a combined fully connected neural network 

was designed in order to generate the saliency map. Liu and Han [30] designed a two-

stage deep network. The first stage produced a coarse prediction map, and the second 

stage refine the details the output of the first stage (i.e., the coarse prediction map) 

hierarchically and gradually. Li and Yu [31] designed a deep contrast network. This 

network merged a segment-wise spatial pooling stream and a pixel-level fully 

convolutional stream. 
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FCN-based methods are another approach for SOD [31, 32]. These achieve an important 

improvement compared with patch-wise deep networks methods, because FCN has the 

ability to capture richer and multiscale information. Hu et al. [33] proposed to learn a 

level set [34] function to output accurate boundaries and compact saliency. Luo et al. 

designed a network with a 4 x 5 grid structure to combine global and local information, 

then used a fusing loss of cross entropy and boundary IoU inspired by [35]. Zhang et al. 

[36] proposed a sibling architecture and a structural loss function for predicting saliency 

with clear boundaries. Zhang et al. [37] designed a controlled bi-directional passing of 

features between layers and shallow years to achieve accurate predictions. In spite of 

tremendous efforts and huge progress in the last two years, there is still ample room for 

improvement over the generic CNN models for SOD. 

5.3 Materials and Methods 

5.3.1 Semantic Segmentation Techniques   

In general, image segmentation is the process of partitioning a digital image into multiple 

portions (i.e., sets of pixels, also known as image objects). Semantic segmentation, in 

particular, is a novel technique in the field of computer vision. The task of image 

segmentation is useful because it simplifies and changes the representation of an image to 

something easier to analyze [38]. Looking at the larger picture, semantic segmentation is a 

high-level task that smooths the way towards a complete scene understanding. Semantic 

segmentation can be defined as classification of the object class for each pixel within an 

image [39]. That means there is a label (e.g., flower, person, road, sky, ocean, or car) for 

https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Pixel
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each pixel. In other words, semantic segmentation uses a pixel classification layer to predict 

the categorical label for every pixel in an input image. We can, therefore, think of semantic 

segmentation as image classification at the pixel level. Many applications now utilize 

semantic segmentation techniques, such as autonomous driving [40], industrial inspection 

[41], classification of terrain visible in satellite imagery [42], and medical imaging analysis 

[43]. The next section describes the pre-trained models that have been used to support the 

semantic segmentation technique.  

5.3.2 Pre-Trained Models   

Using a pre-trained model for fine-tuning is a good solution when only a small dataset is 

available. All pre-trained models used in this study have been trained on a huge dataset 

(e.g., the ImageNet dataset [11]) and can classify images into 1000 object classes, such as 

a keyboard, mouse, pencil, and many animals. Consequently, the networks have learned 

rich feature representations for a wide range of images, subsequently adjusting the 

parameters for the SOD dataset. In this subsection, we briefly review ten state-of-the-art 

pre-trained models that we use later in this work. 

1.VGG-16 Network 

The VGG-16 network was developed by Simonyan and Zisserman in the 2014 ImageNet 

large Scale Visual Recognition Competition (ILSVRC) competition [44]. Generally, the 

VGG-16 network contains 13 convolution layers, five pooling layers, and three fully 

connected layers. The VGG-16 network can classify images into 1000 object classes and 

https://heartbeat.fritz.ai/basics-of-image-classification-with-pytorch-2f8973c51864
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has an image input size of 224 × 224. Figure 5.1 (a, b) illustrates the general structure and 

the data flow through the VGG-16 network. 

 

 

(a) 

 

       

(b) 

Figure 5.1: General Structure of VGG-16 network: (a) Convolution layers and (b) data flow [14].  
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The major difference between the VGG-16 network and previous networks is the use of a 

series of convolution layers with small receptive fields (3 × 3) in the first layers instead of 

a few layers. This results in fewer parameters and more nonlinearities in between, making 

the decision function more selective and the model easier to apply for training [44].   

The input image is passed over a series of convolution layers with 3 × 3 convolutional 

filters. This is beneficial because the filter will capture the notation of the center, left/right, 

and up/down. The convolution stride is set to 1 pixel, whereas the padding is set to 1 pixel. 

Five max-pooling layers are used after convolution layers for the down-sampling operation 

(i.e., dimensionality reduction). Each max-pooling is also performed over 2 × 2 pixels, with 

a stride value of 2. In addition, three fully connected (FC) layers follow a series of 

convolution layers. Specifically, the first two have 4096 channels each, and the third has 

1000 channels. The structure of the fully connected layers is the same in all networks. The 

final layer is a soft-max layer that must have the same number of nodes as the output layer. 

The function of the soft-max layer is to map the non-normalized output to a probability 

distribution through predicted output classes [44], [45]. 

2.VGG-19 Network 

VGG-19 is a CNN that contains 16 convolution layers, five pooling layers, and three fully 

connected layers. This network has19 layers and has an image input size of 224 x 224 [44]. 

This pre-trained network is trained on more than a million images from the ImageNet 

database [11]. This network has ability to classify images into 1000 classes, such as mouse, 

keyboard, pencil, and animals. In addition, this increases the depth of the network and 
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contributes to learning more complex features. The impressive results of VGG revealed 

that the network depth is a significant factor in obtaining high classification accuracy. 

Figure 5.2 explains the data flow in the VGG-19 network.  

 

        

Figure 5.2: Data flow in the VGG-19 Network. 

3. ResNet-18 Network 

ResNet-18 is a CNN developed by Kaimming et al.; it won first place in the ILSVRC2015 

competition [46]. This network has 18 layers and has an image input size of 224 x 224. 

[11]. This network can classify images into 1000 classes, such as mouse, keyboard, pencil, 

and animals. Table 5.1 explains the architecture of the ResNet-18 network [47].  
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Table 5.1: ResNet-18 Architecture. 

Layer Name Output Size ResNet-18 

Conv1 112 x 112 x 64 7 x 7,64, stride 2 

 

Conv2_x 

 

56 x 56 x 64 

3 x 3 max pool, stride 2 

[ 
3 𝑥3,64 
3 𝑥 3,64

 ] x 2 

Conv3_x 28 x 28 x 128 [ 
3 𝑥3, 128 
3 𝑥 3, 128

 ] x 2 

Conv4_x 14 x 14 x 256 [ 
3 𝑥3, 256
3 𝑥 3, 256

 ] x 2 

Conv5_x 7 x 7 x 512 [ 
3 𝑥3,512
3 𝑥 3, 512

 ] x 2 

average pool 1 x 1 x 512 7 x 7 average pool 

fully connected 1000 512 x 1000 fully connection 

Softmax 1000 -------- 

 

4. ResNet-50 Network 

ResNet-50 is a CNN with 50 layers and, as with the ResNet-18 and VGG-19 networks, can 

classify images into 1000 classes, such as a mouse, pencil, keyboard, and animals [46].  As 

a result, the network has learned rich feature representations for a wide range of images. 

The network has image input size of 224 x 224. Figure 5.3 explains the architecture of this 

network.   

 

Figure 5.3: ResNet-50 Network Architecture [17]. 
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5. MobileNet-v2 Network 

MobileNet-v2 Network is a CNN with 54 layers and has an image input size of 224 x 224. 

In addition, this network is the second version (V2) of MobileNet, and so is more efficient 

and powerful than the original. This version contains two types of blocks: (1) a residual 

block with a stride of 1 and (2) a block with a stride of 2 for downsizing [49]. Figure 5.4 

illustrates the main building block of MobileNet-v2 network.  

 

Figure 5.4: Main block of MobileNet-v2 Network. 

6. Xception Network 

Xception is a CNN presented by Francois Chollet at the Conference on Computer Vision 

and Pattern Recognition (CVPR) in 2017. This network has 18 layers and an image input 

size of 299 x 299. Figure 5.5 shows the architecture of Xception network [50]. This network 

         Bottleneck Residual Block 

https://www.mathworks.com/help/deeplearning/ref/xception.html
https://www.mathworks.com/help/deeplearning/ref/xception.html
https://www.mathworks.com/help/deeplearning/ref/xception.html
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has an architecture, constructed based on a linear stack of a depth-wise separable 

convolution layer with linear residual connections. In this configuration, there are two 

significant convolution layers: a depth-wise convolution layer [51], where a spatial 

convolution is executed independently in each channel of input data, and point-wise 

convolutional layer, where a 1 X 1 convolutional layer maps the output channels to a new 

channel space using a depth-wise convolution.  

 

Figure 5.5: The architecture of Xception Network. 

7. InceptionResnet-v2 Network 

InceptionResNet-v2 is a CNN designed based on two successful deep networks, ResNet 

[46] and Inception [52]. This network has 164 layers and an image input size of 229 x 229 

[53]. Batch-normalization is used only on the top of the traditional layers, rather than on 

the top of the summation. In particular, residual modules are used to allow an increase in 

https://www.mathworks.com/help/deeplearning/ref/xception.html
https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html
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the number of Inception blocks, therefore, increasing the network depth. Moreover, the 

most important problem associated with deep networks is the training stage. This problem 

can be fixed using residual connections [46]. The residual connection is an efficient 

approach to solving the training problem, especially when a large number of filters is 

applied in the network. Subsequently, scaling the residual connections contributes to 

stabilizing the network during the training stage. Figure 5.6 explains the architecture of the 

InceptionResnet-v2 used in this work.  

 

Figure 5.6: The architecture of InceptionResnet-v2 Network. 

8. Fully Convolutional Networks (FCN) 

A FCN is a neural network containing convolutional layers, none of which are fully 

connected and are always available at the end of the network. Long, J et al., 2015 were the 

first to use a FCN to transform image pixels to pixel categories [10]. The main difference 

https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html
https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html
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between the classical CNN and FCN is that the latter has learning filters throughout its 

structure; even the decision-making layer at the end of the FCN contains filters.  

There are three different forms of FCN architecture that differ in the spatial precision of 

their output: FCN-8s, FCN-16s, and FCN-32s. Figure 5.7 explains the architecture of the 

FCN-8s, FCN-16s, and FCN-32s.  

1. FCN-8S: This type sums the 2X up-sampled conv7 with pool 4, up-samples them 

with stride 2 transposed convolution, and sums them with pool 3, prior to applying 

transposed convolution with stride 8 to produce the segmentation map. 

2. FCN-16s: This type sums the 2X up-sampled prediction from conv 7 with pool 4 

to generate the segmentation map. This uses a transposed convolution layer with 

stride 16.   

3. FCN-32s: This type generates the segmentation based on the output of conv7 and 

uses a transposed layer with stride 32.  

Figure 5.7 explains the architecture of the FCN-8s, FCN-16s, and FCN-32s models.  

 

Figure 5.7:  FCN models architecture [10]. 
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5.3.3 Datasets 

Since the development of SOD models, many datasets have been presented. These datasets 

play an important role in model training and evaluating performance (i.e., testing). In this 

work, we selected the dataset MSRA-10K for model training and five datasets (ECSSD, 

MSRA-B, MSRA-10K, DUTS, and THUR15k) for model testing. 

5.3.3.1 ECSSD 

This dataset contains 1000 images (JPG format). It has a semantic meaning and complex 

natural contents [54].  

5.3.3.2 MSRA-B 

This dataset is a subset of MSRA-A and contains 5000 images. The images were relabeled 

by nine users using bounding boxes [16].   

5.3.3.3 MSRA-10K 

This dataset is known as THUS10K. It contains 10000 images [18] selected from MSRA 

[16] and covers all 1000 images in ASD [55]. All the images have a fixed bounding box. 

This dataset has been widely used for SOD models because it has a large scale and accurate 

annotation.  

5.3.3.4 DUTS 

This dataset is the largest used for SOD models. It contains 10553 images for training (JPG 

format) and 5019 images for testing (JPG format). The training images have been selected 

from ImageNet train/val set [56] and the test images from the ImageNet set [56].  
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 5.3.3.5 THUR15k      

This dataset contains about 15000 images (JPG format) [30]. It is introduced to evaluate 

sketch-based image retravel. This dataset has also been divided into five subset datasets, 

including a butterfly, coffeeMug, dogjump, giraffe, and plane.  

5.3.4 Evaluation Metrics 

This dataset contains about 15000 images (JPG format) [30]. It is introduced to evaluate 

sketch-based image retravel. This dataset has also been divided into five subset datasets, 

including a butterfly, coffeeMug, dogjump, giraffe, and plane.  

5.3.4.1 Precision-Recall (PR) 

A PR metric is computed by comparing the salient map (binary mask) and ground truth 

with the following equation: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑃
 , 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,                                                      (5.1) 

where 𝑇𝑝, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 are true-positive, true-negative, false positive, and false 

negative, respectively. 

A set of thresholds that range from 0 to 255 are used to generate a binary mask, thus 

producing a pair of precision/recall values to evaluate model performance.  
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5.3.4.2 F-measure 

This metric is computed based on precision and recall by calculating a weighted harmonic 

mean as illustrated in the following equation:  

𝐹𝐵 = 
(1+𝐵2)𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝐵2 𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
,                                                               (5.2) 

where  𝐵2 is selected as 0.3 empirically to give more weight to precision [55]. Recall rate 

is also not as important as precision. 

 5.3.4.3 Mean Absolute Error (MAE) 

This metric uses average pixel-wise absolute error between the ground truth  𝐺𝜖{0,1}𝑊 𝑥𝐻 

and normalized map 𝑆𝜖 [0,1]𝑊 𝑥𝐻. However, these fail to take into consideration the true 

negative pixels. Equation 3 explains how to calculate the MAE metric [17]. 

𝑀𝐴𝐸 =
1

𝑊 𝑋 𝐻
∑ ∑ |𝐺(𝑖, 𝑗) − 𝑆(𝑖, 𝑗)|𝐻

𝑗=1
𝑤
𝑖=1 ,                                               (5.3) 

 where the 𝑊 𝑎𝑛𝑑 𝐻 is the width and height of the given image. 
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5.3.4.4 Weighted 𝑭𝑩 measure (Fbw) 

This metric is an extension of the F-measure metric [28]. It attempts to modify the four 

parameters, TP, TN, FP, and FN, to real values and applies various weights (w) to different 

errors in numerous locations using the following equation:     

𝐹𝐵
𝑤= 

(1+𝐵2)𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛𝑤 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙𝑤

𝐵2 𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛𝑤 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑤 .                                                          (5.4) 

5.4 Experimental Results 

In this study, semantic segmentation techniques were applied to ten pre-trained models, 

including VGG-Net (VGG-16, VGG-19), Fully Convolutional Network (FCN), (FCN-8S, 

FCN-16S, FCN-32S), ResNet-18, ResNet-50, MobileNet-v2, Xception, and 

InceptionResnet-v2. This section describes the training and model testing results. 

5.4.1 Model Training 

Since this work is based on pre-trained models, a large training dataset is not required. 

Here, all pre-trained models were trained over a well-known dataset, MSRA-10K (see 

Section 5.3.3. for more details). In the training stage, 1000 images were employed. Table 

5.2 explains the important parameters (e.g., training global accuracy, validation accuracy, 

training time, etc.) provided after training. The investigated models were trained using 

minimization of the cross-entropy loss function and stochastic gradient descent with a 
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momentum (SGDM) optimizer. The mini-batch size was 10, the number of epochs was 25, 

and the learning rate was set at 0.001. 

            Table 5.2: The most important parameters through the training stage of all pre-trained models. 
 

-------- Training Validation 

Training 

Time 

Testing 

Accuracy (%) 

Pre-Trained Model 

Training 

Accuracy 

Training 

Loss 

Validation 

Accuracy 

Validation 

Loss 

 

min, Sec 

 

------------- 

VGG-16 96.95 % 0.1209 91.07 % 0.2345 1515, 37 91.21 

VGG-19 96.95 % 0.1187 91.03 % 0.2377 1780, 27 91.34 

(ResNet-18) 99.14 % 0.0212 93.35 % 0.2991 2425, 19 93.44 

(ResNet-50) 99.37 % 0.0155 94.70 % 0.2602 1550, 48 95.37 

MobileNet-v2 98.75 % 0.0332 91.83 % 0.3487 1102, 01 92.67 

Xception 99.20 % 0.0202 92.55 % 0.3572 2250, 55 92.03 

InceptionResnet-v2 99.60 % 0.0100 93.25 % 0.3499 2621, 59 92.97 

FCN-8S 94.94 % 0.1351 90.14 % 0.2559 1526, 40 90.14 

FCN-16s 95.90 % 0.0949 92.87 % 0.1960 1467, 58 92.87 

FCN-32s 96.76 % 0.0732 92.06 % 0.2228 4482, 45 92.06 

Note: Bolded values represent the most efficient model for each parameter. 

5.4.2 Model Testing  

During the testing stage, we selected sample datasets to evaluate all trained models. Once 

given a query image, the salient object was detected from the last layer of the deep model. 

The processes of training and testing were carried out on an Intel CPU i7-3770k machine 

https://www.mathworks.com/help/deeplearning/ref/xception.html
https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html
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with 3.5 GHz and 16 GB RAM. Table 5.3 explains the most relevant parameters (i.e., 

depth, image input size, number of parameters, and segmentation time) influencing the 

training and testing time. Note that the segmentation time is different for all trained models. 

 

Table 5.3: Several parameters that influence the training and testing of different models in this 

study. Note: M means Million.  

Pre-Trained Models Depth Image Input Size 

Number of 

Parameters (M) 

Segmentation 

Time (Sec) 

VGG-16 16 224 -by- 224 138 5.16 

VGG-19 19 224 -by- 224 144 5.43 

ResNet-18 18 224 -by- 224 11.7 5.51 

ResNet-50 50 224 -by- 224 25.6 7.50 

MobileNet-v2 53 224 -by- 224 3.5 4.72 

Xception 71 299 -by- 299 22.9 6.28 

InceptionResnet-v2 164 299 -by- 299 55.9 24.78 

FCN-8S 18 224 -by- 224 2.06 8.24 

FCN-16s 17 224 -by- 224 -- 7.69 

FCN-32s 16 224 -by- 224 -- 7.56 

5.5 Discussion 

5.5.1 Quantitative Comparison of the State-of-the-Art Pre-Trained Models 

for SOD  

To recognize the best pre-trained model for SOD, we compared 10 that are commonly 

employed for semantic segmentation. All models were trained on a MSRA10K dataset and 

https://www.mathworks.com/help/deeplearning/ref/xception.html
https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html
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were evaluated on four well-known datasets (ECSSD, MSRA-B, DUTS, and THUR15k). 

Tables 5.4 and 5.5 illustrate the evaluation metrics of all pre-trained models applied to the 

previously mentioned datasets. Based on the obtained results, ResNet-50 performed the 

best and FCN-8S performed the worst compared to other models. In particular, FCN-32s, 

ResNet-50, and InceptionResnet-v2 presented in Table 5.4 (for ECSSD dataset) showed a 

better performance compared to other models of the precision metric (pre). In addition, 

FCN-8s, FCN-16s, and Xception presented the worst performance compared to other 

models on the same metric. In the same table (Table 5.4), we can see the Recall metric 

(Recall) showed that the ResNet-50, MobileNet-v2, and Xception are the best models 

compared to other models. Also, the VGG-19, FCN-32s, and VGG-16 presented the 

weakest performance compared to other models. For the measure (F-meas) metric, one can 

see the ResNet-50, ResNet-18, and MobileNet-v2 presented the best performance 

compared to other models. Moreover, the VGG-19, FCN-8s, and FCN-16s reported the 

worst performance compared to other models. For the last metric (MAE), the ResNet-50, 

MobileNet-v2, and ResNet-18 presented best compared to other models. FCN-8s, VGG-

19, and VGG-16 presented the worst compared to other models.  

  

 

 

https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html
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Table 5.4: Comparison of the quantitative scores of different models on ECSSD and MSRA-B. 

Note: Higher precision, a larger F-measure, and smaller MAE indicates better performance. 

((black bold): good, [red bold]: bad, {blue bold}: good). 

 

-------------- ECSSD MSRA-B 

Pre-Trained Models p r e Recall F- m ea s M A E p r e Recall F - m e a s M A E 

VGG-16 0.8298 0.4085 0.6501 0.1500  0.8392 0.4962 0.6707 0.1199 

VGG-19 0.8334 [0.2943] [0.5044] 0.1685  0.8664 [ 0 . 3 6 4 7 ]  [0.4690] 0.1356 

ResNet-18 0.8537 0.6782 0.8202 0.0851  0.9389 0.8771 0.9193 0.0307 

ResNet-50 0.8705 (0.7969) (0.8417) {0.0649} (0.9394) (0.9392) (0.9349) {0.0183} 

MobileNet-v2 0.8218 0.7716 0.7932 0.0800  0.8962 0.8605 0.8811 0.0397 

Xception 0.8140 0.6881 0.7687 0.0994  0.8880 0.8316 0.8711 0.0495 

InceptionResnet-v2 0.8618 0.6058 0.7466 0.1034 0.9249 0.8427 0.8880 0.0358 

FCN-8S [0.5272] 0.6371 0.5230 0.2176 [ 0 . 5 8 2 3 ]  0.6396 [ 0 . 5 6 6 5 ]  0.1795 

FCN-16s 0 .7904 0.4658 0.6500 0.1450 0.7662 0.5191 0.6585 0.1259 

FCN-32s (0.8913) 0.4062 0.6524 0.1450 0.8690 0.4841 0.7010 0.1167 

 

 

 

 

 

 

 

https://www.mathworks.com/help/deeplearning/ref/xception.html
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Table 5.5: Comparison of quantitative scores of different models on DUTS and THUR15k. Note 

((black bold): good, [red bold]: bad, {blue bold}: good). 

 

 

5.5.2 Qualitative Comparison of the State-of-the-Art Pre-Trained Models 

for SOD 

The qualitative results obtained by evaluating the pre-trained models on several example 

images from ECSSD, MSRA-B, DUTS, and THUR15k datasets are presented in Figure 

5.8. As shown, the trained model ResNet-50 performs the best and can detect the most 

salient object in the image over all datasets (Fig 5.8 a, b).   

 

-------------- DUTS THUR15k 

Pre-Trained Models p r e Recall F-meas M AE p r e R e c a l l F - m e a s M A E 

VGG-16 0.7616 0.7008 0.7201 0.1140 0.7049 0.5528 0.5811 0.1299 

VGG-19 0.7463 0.7049 0.7042 0.1136 0.7625 [0.3850] 0.5074 0.1275 

ResNet-18 0.8168 0.7006 0.7657 0.0988 (0 .7773) 0.5854 -  0 .0984 

ResNet-50 (0.8211) (0.7671) (0.7912) {0.0874} 0.7531 (0 .8132) (0 .7262) {0.0901} 

MobileNet-v2 0.7516 0.7101 0.7213 0.1125 0.6998 0.7715 0.6678 0.1059 

Xception 0.7341 0.6365 0.6787 0.1300 0.7123 0.6650 0.6496 0.1098 

InceptionResnet-v2 0.79666 0.5415 0.6751 0.1206 0.7740 0.6982 0.7053 0.0972 

FCN-8S [0.4652] 0.6037 [0.4549] 0.2446 [0.4697] 0.5952 [0.4430] 0.1898 

FCN-16s 0.6424 0.5027 0.5677 0.1730 0.6013 0.5476 0.5176 0.1521 

FCN-32s 0.7443 [0.4610] 0.6041 0.1568 0.7527 0.4980 0.5903 0.1208 

https://www.mathworks.com/help/deeplearning/ref/xception.html
https://www.mathworks.com/help/deeplearning/ref/inceptionresnetv2.html
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(b) 

Figure 5.8: Comparison of salient object detection models on: (a) ECSSD and MSRA-B; (b) 

DUTS and THUR15k datasets. Note the ResNet-50 produces the best results compared to other 

models.   

--------- 
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5.5.3 Sensitivity Analysis for the Trained Models Against Noise 

In this section, we evaluate all trained models for SOD against noise. Three types of noise 

(salt & pepper, Gaussian, and speckle) were applied to the selected images from two 

datasets (ECSSD, THUR15K), and the evaluation metrics were calculated. Based on the 

obtained results, the least sensitive model against noise is ResNet-50 (precision of 0.8739), 

and the most sensitive model is VGG-19 (precision of 0.7596). Table 5.6 illustrates the 

evaluation metrics for noisy sample images.   
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Table 5.6: Evolution metrics of selected trained models for SOD against noise in the selected 

datasets. Note: (Black bold): good; [Red bold]: bad; {Blue bold}: good). 

-------------- ECSSD THUR15k 

Pre-Trained 

Models 

  Noise Type p r e Recall F-meas MAE p r e Recall F-meas M A E 

VGG-16 

salt & pepper 0.7939 0.4462 0.5986 0.1451 0.7049 0.5528 0.5811 0.1299 

Gaussian 0.8014 [0.3456] [0.5453] 0.1645 - 0.3984 - 0.1486 

speckle 0.7818 0 .3 88 5  0.5738 0.1586 0.6513 0.4222 [0.4560] 0.1477 

VGG-19 

salt & pepper 0.8146 0.3695 0 . 5 6 5 4 0.1609 0.7625 [ 0 . 3 8 5 0 ]  0.5074 0.1275 

Gaussian 0.7596 0.3766 - 0.1620 - 0.4370 - 0.1377 

speckle 0.7360 0.3925 0 . 5 6 6 3 0.1638 0.6360 0.4693 0.4862 0.1432 

ResNet-18 

salt & pepper [0.5324] (0.8699) 0.5684 0.1997 0.7773 0.5854 - 0.0984 

Gaussian 0.7702 0.6364 0.7131 {0.1136} 0.6374 0.6387 0.5918 0.1156 

speckle 0.7324 0.6461 0.6920 0.1182 [0.5759] 0.6334 - 0.1403 

ResNet-50 

salt & pepper 0.7571 0.6442 0 . 6 7 1 2 0.1324 0.7531 (0.8132) (0.7262) {0.0901} 

Gaussian (0.8739) 0.5576 (0.7292) 0.1146 (0.7585) 0.6256 0.6466 0.1013 

speckle 0.8298 0.5115 0 . 6 7 6 1 0.1278 0 .6 3 38  0 .6 2 77  0 .5 7 08  0 .1 1 66  

5.6 Conclusion 

In this work, we evaluated the performance of state-of-the-art deep learning models that 

employ the semantic segmentation technique for Salient Object Detection. Deep learning 

models utilize the benefits of neural networks for extracting a hierarchy of features to detect 

a salient object in an image. We compared the performance of ten state-of-the-art deep 

learning models over four standard datasets. Based on the evaluation metrics (Precision-
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Recall, F-measure, and Mean Absolute Error) of the experimental results from four well-

known datasets (ECSSD, MSRA-B, DUTS, and THUR15k), we demonstrate that the 

Resnet-50 model outperformed the other investigated models, while the FCN-8s model 

performed the poorest. In addition, we discovered that the ResNet-50 model was the least 

sensitive against noise, whereas the VGG-16 model was most sensitive. Therefore, the 

ResNet-50 model offers the most efficient, accurate, and noise-resistant network for Salient 

Object Detection. As future work, the authors intend to extend this work for the detection 

of salient objects in video clips. This will require video clips with annotated salient objects 

and space-time deep learning models.  
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Chapter 6. Conclusions and Future Work 

6.1 Conclusions 

In this thesis, the capabilities and limitations of deep learning techniques for predicting 

visual saliency on still images were studied. In Chapter 2, a pre-trained model, (i.e., fine-

tuning) was proposed to predict visual saliency. The proposed model used deep learning 

encoder-decoder architecture based on a transfer learning technique. In particular, the 

proposed model (VGG-16 model) was trained on a well-known dataset (SALICON) and 

was tested on several datasets, including TORONTO, MIT300, MIT1003, and DUT-

OMRON dataset. The experimental results obtained from the analysis of four datasets 

explained the superior capability of the proposed model compared to other state-of-the-art 

models [52]. 

In Chapter 3, the performance of five state-of-the-art deep learning models (i.e., VGG-16, 

ResNet-50, Xception, InceptionResNet-v2, and MobileNet-v2) for visual saliency 

prediction was assessed. These models were trained using the SALICON dataset and then 

tested over four other standard datasets (i.e., TORONTO, MIT300, MIT1003 and DUT-

OMRON). ResNet-50 outperformed the other models and its saliency maps very closely 

predicted the ground truth data. The poorest performance was observed from the 

InceptionResNet-v2 model and was likely caused by overfitting due to the large number of 

layers in this model. 
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In Chapter 4, a novel Fully Convolutional Network (FCN) was proposed for visual saliency 

prediction. This model contains three encoder-decoders, three inception modules, and one 

residual module. The proposed model does not use any pre-trained models; however, this 

model was trained from scratch and used the data augmentation technique to create 

variations of images. The experimental results illustrated that the proposed model achieved 

reasonable results relative to other state-of-the-art models. In this work, increasing the 

number of training images was found to increase the model prediction accuracy. 

Furthermore, because the model was trained from scratch, I expected the model will require 

additional training data, which are currently unavailable as the maximum amount of 

available training data is currently about 10,000 images (e.g., SALICON). 

In Chapter 5, Salient Object Detection (SOD) was employed, because this topic is related 

to the topic of the thesis (visual saliency prediction). Indeed, SOD consists of identifying 

a binary map, while the objective of visual saliency is to predict a density map of human 

eye fixation. In this chapter, the performance of state-of-the-art deep learning models that 

employ the semantic segmentation technique for Salient Object Detection was evaluated. 

Deep learning models utilize the benefits of neural networks for extracting a hierarchy of 

features to detect a salient object in an image. In this work, the performance of ten state-

of-the-art deep learning models over four standard datasets were compared. Based on the 

evaluation metrics (Precision-Recall, F-measure, and Mean Absolute Error) of the 

experimental results from four well-known datasets (ECSSD, MSRA-B, DUTS, and 

THUR15k), the Resnet-50 model outperformed the other investigated models, while the 
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FCN-8s model performed the poorest. Moreover, the ResNet-50 model was found to be 

the least sensitive against noise, whereas the VGG-16 model was most sensitive. 

6.2 Future Work 

Although much progress has been made in visual saliency prediction using deep learning 

techniques, there continues to be room for improvement. For example, all proposed models 

still fall short of reaching human performance. Therefore, possible recommendations and 

ways to improve the results and performance of the proposed approaches in future work 

are highlighted below:  

 

1. The need for higher level visual understanding 

 Visual saliency models still cannot understand high-level semantic meaning in rich scenes 

(i.e., the semantic gap). To reach the level of human performance, visual saliency models 

will need to discover increasingly higher-level concepts in images, including the location 

of objects, text, and the expected locations of people in images [61]. 

2. Analysis of evaluation procedures 

Most evaluation benchmark metrics are not suitable for all deep models because they are 

often inconsistent with each other. For example, evaluation metrics for saliency models of 

video images continue to urge for the design of suitable measures for comparison with deep 

learning models [62].  



139 

 

3.  Collecting high quality data 

To improve the performance of visual saliency models based on deep learning, collecting 

new datasets for training, validating, and testing (still and video images) are required. 

These datasets are very important and are crucial to the model’s progress. Therefore, large 

scale datasets are useful for training models and achieving high performance. In addition, 

the analysis of the limitations of models (i.e., weakness) can help contribute to the design 

of new models, datasets, and applications, for that next qualitative step in performance 

[61]. 

4.  Salient Object Detection in video images 

we suggest extending the work of Salient Object Detection that achieved in chapter 5 for 

video clips. This work will require video clips with annotated salient objects and space-

time deep learning models.  

Overall, visual saliency prediction continues to be an important aspect of computer vision 

and neuroscience fields. Deep learning models, including the novel FCN model proposed 

in this dissertation, contribute to visual saliency prediction and there is great opportunity 

for future research in this field.  
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