
Estimating Unknown Dynamics of a Quadrotor

Aerial Vehicle Using Artificial Neural Networks

by

c©Sachithra H. Atapattu

A Thesis submitted to the School of Graduate Studies in partial fulfillment of the
requirements for the degree of

Master of Engineering

Memorial University of Newfoundland

October 2020

St. John’s Newfoundland

Abstract

This thesis presents the use of artificial neural networks (ANN) to accurately estimate
the unmodelled dynamics of a quadrotor aerial vehicle. Due to the complexity of aero-
dynamic models, ground effects, actuator non-linearities, and disturbances that occur
during operation, usually a complete dynamic modelling of a quadcopter is difficult
to achieve. A quadcopter’s flight stability mainly depends on its control system and
its navigation system. Therefore, the knowledge of the platform’s unknown dynamic
model will allow enhanced design of the autonomous system. This thesis focuses
on estimating the unmodelled dynamics using machine learning (ML) techniques to
achieve better design of control and navigation systems of quadcopters.
In this work, the dynamic behaviour of a quadcopter is expressed as a combination of a
nominal model and an unknown model. The nominal model is derived from classical
rigid-body dynamic equations, while ML approaches are used to estimate the un-
known model. Among the available ML techniques, two commonly used approaches;
Gaussian process regression (GPR) and ANN are evaluated in this thesis.
Training and testing of the methods were done offline, using a dataset gathered by
manually flying an AscTec Hummingbird quadcopter in an OptiTrack motion capture
environment. For the comparison of the selected ML techniques, the disturbance force
was learnt initially. Since ANN showed better results than GPR in initial comparison,
ANN was chosen and further evaluated with different architectures. The disturbances
in force and torque were learnt separately using two independent ANNs. These es-
timated residual dynamics were added to the nominal dynamic model to obtain the
compound dynamics. The results demonstrate reduction in model error in comparison
to the nominal model.
To demonstrate the use of learnt residual dynamics in improved controller design,
a trajectory tracking controller was implemented in a simulated environment. This
simulation was designed to track a desired trajectory in the presence of added distur-
bances estimated using the ANN model. The results are compared with the trajectory
tracking results obtained with only the nominal model. As expected, the controller
with disturbance correction using ANN model showed improved performance.

keywords: Artificial neural networks, Gaussian process regression, Quadcopter dy-
namics learning

ii

Acknowledgements

I would like to express my sincere gratitude to my thesis supervisors, Drs. Oscar De
Silva, George K. I. Mann, and Raymond G. Gosine for the guidance for completion of
my Master of Engineering thesis. Their invaluable lessons and motivation throughout
the research helped me to achieve success in my research.
I would like to acknowledge the funding agencies, NSERC Discovery grants, Dr. Go-
sine VP academic grant and Research Chair grant for providing the financial support.
I am privileged to be a member in the Intelligent Systems Laboratory (IsLab) with
the assistance of Dr. Thumeera R. Wanasinghe, Mr. Mihiran Galagedarage Don,
Mr. Eranga Fernando, Mr. Mahmoud Abd El Hakim, Mr. Kusal Tennakoon and
Mr. Didula Dissanayake. I am specially grateful to Mr. Eranga Fernando for his help
when capturing the data set using the quadcopter.
My heartfelt thanks go to my husband, Mr. Nushen Senevirathna (who is also a
member of the IsLab) for always being by my side to support my work.

iii

Table of Contents

Abstract ii

Acknowledgments iii

Table of Contents v

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Motivation . 1
1.2 Dynamics of a Quadcopter . 4
1.3 Unmodelled Dynamics and Imperfections 5
1.4 Estimation of Unknown Dynamics and Imperfections 7
1.5 Problem Statement . 9
1.6 Objectives and Expected Contributions of the Research 10
1.7 Organization of the Thesis . 11

2 Background on Selected ML Techniques 12
2.1 Artificial Neural Networks (ANN) . 12

2.1.1 Theoretical Background of ANN 12
2.1.2 Current Work on ANN for Learning Unknown Quadcopter Dy-

namics . 16
2.2 Gaussian Process Regression (GPR) 21

2.2.1 Theoretical Background of GPR 21
2.2.2 Current Work on GPR for Learning Unknown Quadcopter Dy-

namics . 22
2.3 Model-Based Control of Quadcopters 29

3 Comparison of GPR and ANN for Modelling the Unknown Dynam-
ics 35
3.1 Results of Learning Unknown Dynamics with GPR 36
3.2 Results of Learning Unknown Dynamics with ANN 39

iv

3.3 Performance Comparison of GPR and ANN 41
3.4 Summary . 43

4 Detailed Evaluation of Learning of Unknown Quadcopter Dynamics
Using ANN 45
4.1 Quadcopter Dynamics . 45
4.2 Data Selection . 47

4.2.1 Measurement Filtering . 49
4.2.1.1 Position Measurement Filter 49
4.2.1.2 Orientation Measurement Filter 53
4.2.1.3 Motor Velocity Measurement Filter 59

4.3 Learning Disturbance Forces . 61
4.4 Learning Unmodelled Torque . 68
4.5 Summary . 71

5 Simulated Multi-rotor Aerial Vehicle (MAV) Control Using Learned
Unknown Dynamics 74
5.1 Overview of the Simulation . 74
5.2 Simulated Trajectory and Model-based Controller 76
5.3 Performance of Quadrotor Trajectory Tracking with the Disturbance 79

5.3.1 Stability Analysis of the System when ba is Included in the NN
Inputs . 82

5.4 Summary . 84

6 Conclusions and Future Directives 85
6.1 Research Summery of Objective I . 86
6.2 Research Summery of Objective II . 86
6.3 Research Summery of Objective III 87
6.4 Contributions . 88
6.5 Future Directives . 88

Bibliography xi

v

List of Tables

2.1 NN Activation Functions . 15
2.2 NN configurations in [1] . 20

3.1 Hyperparameters table . 37
3.2 Coefficients of basis function . 38

4.1 AscTec Hummingbird Quadrotor Parameters 48
4.2 Performance comparison of ANN architectures for learning bfa 63
4.3 Performance comparison of ANN architectures for learning bτa 70

vi

List of Figures

2.1 General NN architecture with two hidden layers 13

3.1 Unknown force bfa modelled by GPR 39
3.2 Neural Network architecture with one hidden layer and linear activation 40
3.3 Unknown force bfa modelled by ANN 41
3.4 RMSE comparison of GPR and ANN w.r.t. the nominal model 42

4.1 Quadrotor path and selected subset for learning 48
4.2 Filtered position, p . 52
4.3 Filtered velocity, v . 52
4.4 Filtered acceleration, a . 53
4.5 Filtered quaternion, q . 58
4.6 Filtered angular velocity, ω . 58
4.7 Filtered angular acceleration, α . 59
4.8 Filtered motor velocities . 61
4.9 Disturbance force learnt from 18th model 66
4.10 Disturbance force learnt from 8th model 67
4.11 RMSE comparison of 8th model . 68
4.12 Disturbance learnt from 13th model 72
4.13 RMSE comparison of 13th model . 72

5.1 Overview of the simulation process 76
5.2 The trajectory followed by the controller without ANN model 80
5.3 The trajectory followed by the controller with ANN model 81
5.4 Comparison of actual and desired Euler angles 81

vii

Abbreviations

ANN Artificial Neural Networks

API Application programming interface

BLR Bayesian linear regression

CG Center of Gravity

DOF Degrees of Freedom

ESKF Error-state Kalman filter

GP Gaussian Process

GPR Gaussian Process Regression

IMU Inertial measurement unit

LM Levenberg-Marquardt

LQR Linear Quadratic Regulator

MAV Multi-rotor Aerial Vehicle

ML Machine Learning

MODERNN MOdular DEep Recurrent Neural Network

MPC Model Predictive Control

NN Neural Networks

PD Proportional-Derivative

PID Proportional-Integral-Derivative

ReLU Rectified Linear Units

RMSE Root-mean-square error

SSE Sum of squared errors

UAV Unmanned Aerial Vehicle

wBLR weighted Bayesian linear regression

viii

Chapter 1

Introduction

This chapter includes the motivation of this research followed by an introduction

to quadcopter dynamic models and disturbance models. Then an overview of the

available methods to estimate unknown dynamics is presented. In the final sections

of this chapter, the problem statement is formulated and the objectives of this research

are highlighted.

1.1 Motivation

Quadcopter is a type of unmanned aerial vehicle (UAV) which has become popular in

robotics during past decades due to its hovering capability, vertical takeoff and landing

ability, better maneuverability, flexible design, easy construction, and low cost [2, 3].

Quadcopters have been used in a wide range of indoor and outdoor applications such

as surveillance, aerial photography, transportation, and inspection tasks [2, 4]. In

addition, the applications of quadcopters are further growing into areas like military

operations and search and rescue missions in hazardous environments for humans [3].

1

A quadcopter has only four rotors as actuators which can be used to control thrust,

roll, pitch and yaw independently. However, the control demand of the 6 degrees of

freedom (DOF) as a rigid-body in a Euclidean space makes the system underactuated

[5]. It is worth mentioning here that although there are multi-rotor aerial vehicles

(MAVs) with six or more rotors, due to the planar configuration of rotors, they are

also considered underactuated. Hence, the stable operation of a quadrotor aerial

vehicle highly relies on its control system [4].

A controller generally attempts to drive the system to a desired state by applying

control inputs, with the objective of minimizing the error between desired and actual

states. Although simple feedback controllers such as Proportional-Integral-Derivative

(PID) controllers are capable of minimizing the state error, to some degree, model-

based controllers outperform in complex non-linear systems. In model-based con-

trollers, majority of the error components are captured by the model. Therefore, the

state error is reduced, allowing the controller to converge faster and more accurately.

The performance of model-based controllers such as Linear Quadratic Regulators

(LQR) and Model Predictive Control (MPC) directly depend on the accuracy of

the model [6], requiring an accurate dynamic model to achieve improved controller

performance. However, most of the time, the complex dynamic interactions are usually

neglected, in order to reduce analytical and computational complexity. Furthermore,

the system imperfections and unmodelled biases present in practical systems add-

up to this discrepancy [6]. Hence, the modelled dynamics of a physical system is a

simplified version of the underlying dynamics and under-represents the real behaviour

of the system.

In addition, the system dynamics are changed considerably when attaching a payload,

which is essential in some of the applications such as package delivery, surveillance

2

and inspection tasks [2]. When using the same control parameters throughout these

changing dynamics, it can cause system instabilities or reduced performance.

Generally, these system imperfections are handled by incorporating robust controllers,

rather than estimating the unknown dynamics [3, 7]. But, tuning the controller to

safely handle a wide range of possible scenarios can be difficult and may not utilize full

system capabilities. Therefore, estimating the unknown dynamics will be beneficial

to improve the quadcopter’s flight performance.

Estimating the unknown dynamics using traditional methods is challenging since some

of these dynamics can be caused by unknown sources. Typically, machine learning

(ML) techniques only consider the observed co-relation between the input and the

output. Therefore, incorporating ML techniques to estimate these unknown dynamics

can be considered as a better approach.

Recently, ML approaches have become popular in estimating the unknown dynamics

of quadcopters [6]. Few of the ML techniques that are commonly used in literature are

neural networks [4,8], Gaussian process regression [6], and Bayesian linear regression

[9]. Work in [4, 6, 8, 9] have demonstrated that the performance of the controller is

improved when the learnt dynamics are included in the controller model.

This thesis proposes the use of ML methods to achieve enhanced control of quad-

copters by capturing the unmodelled components in force and torque models of the

vehicle.

3

1.2 Dynamics of a Quadcopter

Modelling the dynamics of a quadcopter is challenging because of the complex non-

linear aerodynamics forces, gyroscopic moments, coupling between translational and

rotational dynamics leading to complex non-linear dynamic models [3]. However, its

basic dynamics can be derived from first principles using Newton-Euler laws, as shown

in (1.1) and (1.2) [8, 10–12].

Let the superscripts and subscripts w and b denote the world reference frame and the

quadcopter body reference frame, respectively. Then, wRb is the attitude rotation

matrix from body frame to world frame.

ma = mg + wRbT (1.1)

Jα = (Jω) × ω + τ (1.2)

Here, m and J are the mass and inertia tensor of the quadcopter, g = [0, 0,−9.81]T

is the gravity vector expressed in world frame, a is the acceleration of body frame

relative to world frame, expressed in world frame, α and ω are the angular acceleration

and angular velocity of body frame relative to world frame, expressed in body frame,

and finally, T and τ are the total body thrust and torques with respect to world

frame, expressed in body frame. The operator × indicates the cross product between

Jω and ω. These equations will be further discussed in chapter 4.1.

4

1.3 Unmodelled Dynamics and Imperfections

The above equations capture the basic dynamics of a quadcopter assuming ideal

conditions. But in practical scenarios, there are several disturbance sources that can

affect the dynamics of a quadcopter. One such disturbance is the aerodynamic drag

force Fd, which can be approximated as proportional to the body-frame velocity ṗb

as shown in (1.3), where pb is the position of the quadcopter relative to the world

frame [13] and Kd is the drag coefficient matrix.

Fd = −Kdṗb, (1.3)

This drag force can be modelled if the drag coefficients are estimated.

Another effect usually ignored yet significant is the physical imbalances of the quad-

copter, i.e., estimated center of gravity (CG) can be different from the nominal point,

which is usually considered to be located at the geometric center. This can also af-

fect the rotational inertia values, which are usually expressed at the geometric center.

Such an imbalance of the quadcopter can happen due to several reasons, e.g. when

payloads are attached to the quadcopter, modifications are made to the quadcopter,

or due to degradation of the quadcopter during its operation lifespan. Additionally,

there can be on-board sensor transformation errors and bias components of the sen-

sors, which might be neglected without capturing in the nominal dynamic equations.

In practical applications, even though the same motors and propellers are used, there

can be manufacturing imperfections and differences in motors and propellers. In a

basic dynamic model, all motors and propellers are assumed to be having the same

characteristics, but they may not. Therefore, it can also result in significant differences

in the dynamics than the actual model.

5

Although a nominal model neglects the said complex interactions, several research

work have been carried out to robustly control the quadrotor in the presence of un-

modelled disturbances [2, 7, 14]. These robust control algorithms handle the unmod-

elled dynamics of quadcopters. Quadcopter has an on-board attitude controller or

an angular rate controller (most of the time a PID controller) which can be tuned

to achieve the desired control [2]. In addition to this low-level roll-pitch-thrust con-

troller, quadcopters generally have a high-level controller which controls the position,

velocity and yaw states.

In order to compensate for the unmodelled dynamics, adaptive control algorithms

are regarded as state-of-the-art solutions since they can track a desired output when

there are parametric uncertainties [2, 7, 14]. Adaptive control has been incorporated

in [2, 7, 14] to improve the performance of the quadcopter attitude controllers when

manipulating different payloads. They have presented simulated and experimental

validation of the consistent controller performance, and enhanced system robustness

when incorporating adaptive control in the quadcopter controllers. Even though adap-

tive control algorithms have proven results in safe control in the presence of distur-

bances, their response is slow and has delayed feedback [8]. Therefore, to achieve

faster response and improve the flight performance, estimation of unmodelled dynam-

ics can be included in the dynamic model of the controller [8]. Then, the complete

dynamics of a quadcopter is written as a combination of known model and an un-

known model as shown in (1.4) [6]. The goal of detailed modelling is to estimate this

unknown model g as a function of states x and control inputs u. Here, k denotes the

kth time step.

xk+1 = f(xk,uk)
︸ ︷︷ ︸

Known model

+ g(xk,uk)
︸ ︷︷ ︸

Unknown model

(1.4)

6

Traditional parametric regression methods can be considered as the basic approach to

model these unknown dynamics. Linear regression is the simplest classical approach,

but due to the dimensionality and non-linearities of these unknown interactions, linear

regression may not capture the errors accurately, resulting in poor system performance

[3]. Non-linear parametric regression techniques can be better than linear regression,

since the operating range of the model is fitted to a non-linear function in these

methods. But, to identify a suitable model or a function, the nature of the unmodelled

dynamics should be known beforehand. Furthermore, the model may not follow the

same function throughout the operating region, resulting in over-fitting or under-

fitting in some sections. In order to overcome this issue, more advanced methods are

introduced in the literature. Recently, sophisticated ML techniques have become a

common strategy for model regression in the area of learning dynamics [9]. Literature

shows that ML techniques have been successfully used to learn unmodelled dynamics

as well as learn controller parameters [6, 8, 9].

1.4 Estimation of Unknown Dynamics and Imper-

fections

As mentioned in section 1.3, there are ML techniques that can be used to estimate

the unknown dynamics and disturbances that are not captured in the quadcopter’s

nominal dynamic model. Among these methods, Bayesian linear regression (BLR),

Gaussian process regression (GPR) and different versions of artificial neural network

(ANN) techniques are the most commonly used approaches [15]. A theoretical com-

parison of these approaches was carried out in this section to determine the most

suitable approaches to adapt in this work.

7

Neural networks (NN) is a classical approach for model regression in machine learn-

ing [16]. The accuracy of an ANN model can be increased by training for a large

dataset [17]. In addition to that, NN approach is capable of learning models that are

highly non-linear, due to its flexible structure. The complexity of the system can be

achieved by increasing the number of layers and neurons in the NN architecture [18].

Most importantly, compared to GPR, NN requires a lesser computation time and

memory for larger training sets [15]. Considering the purpose of this work, i.e., learn-

ing unknown quadcopter dynamics, most of these properties will be beneficial. To

obtain a highly accurate model and to capture higher order non-linearities, a large

number of neurons should be used in the NN. A larger training set is needed to serve

this purpose. If the training set is not sufficient for the network dimensionality, NNs

can result in ill-trained models causing unpredictable outputs and instabilities [8]. In

our case, this can be easily overcome by collecting a sufficiently large training dataset.

This thesis also considers GPR as a suitable machine learning candidate for quad-

copter unknown model identification. It is a probabilistic non-parametric regression

approach, which is shown to outperform NN in some circumstances [6]. An advantage

in these probabilistic models is that they provide the model uncertainty which can

be used to calculate the upper and lower confidence bounds of the prediction func-

tion [9]. In GPR, a normally distributed random variable is assigned to every point in

the state-space. Hence, the model can be described in a probabilistic framework [19].

Similar to ANN, the accuracy of the GPR depends on the density of the dataset used

for training. However, GPR will require higher computational power and time com-

pared to ANN when a larger dataset is used [9]. Despite these drawbacks, GPR is

also proven as a successful method in learning unknown quadcopter dynamics models

and controllers [6, 19,20].

8

In addition to the above approaches, Bayesian linear regression (BLR) is also used to

learn unknown system dynamics, despite its simple linear nature [9]. In [9], weighted

Bayesian linear regression (wBLR), which is an extension of BLR is used to estimate

unknown dynamics caused by factors such as payload, terrain, or tyre pressure on a

ground vehicle while performing repetitive path following tasks. The computational

cost is comparatively lesser in wBLR. Hence, this method can quickly and reliably

adapt to new situations through fast learning [9]. wBLR approach requires more prior

knowledge to identify a linear set of unknown parameters through transformations.

In contrast, NN offers a more flexible mechanism for defining the class of nonlinear

functions to be used for training a prediction model.

Among these methods, NN and GPR are considered to be more suitable for nonlinear

function approximation than wBLR, also with more proven results in literature [4,6,8].

This thesis first carries out a comparative study to select a method from GPR and

ANN by evaluating them on a same dataset. The selected approach which has a lesser

model error is then further analyzed in the task of learning unknown dynamics of a

quadrotor. A detailed description of these two approaches are presented in Chapter

2.

1.5 Problem Statement

Basic quadcopter dynamics are of low fidelity due to complex aerodynamic effects

and imperfections in hardware. These unknown components result in errors in force

and torque models shown in (1.1) and (1.2). Although these errors can be tolerated

from a robust controller, the performance will be limited. If these components can be

modelled with sufficient accuracy, the flight performance can be increased. Since the

9

performance of the model-based controllers depends on the model accuracy, captur-

ing a detailed dynamic model is beneficial for the controller algorithm and navigation

system design of quadcopters. Using traditional analytical methods to capture these

unknown dynamics can be difficult due to the complexity and unknown sources. How-

ever, predictable components of these can be estimated through ML techniques.

1.6 Objectives and Expected Contributions of the

Research

The objectives of this research and the associated contributions are identified as fol-

lows.

Objective 1 Evaluate GPR and ANN for estimating unknown dynamics of a quad-

copter.

• Detailed comparison of GPR and ANN to learn unmodelled forces of a

quadcopter.

• Performance comparison of different ANN architectures using model error.

Objective 2 Model the unknown force and torque dynamics using ANN.

• Extending the ANN approach to estimate the unmodelled torque compo-

nents.

Objective 3 Demonstrate the improvement of trajectory tracking performance when

the unknown dynamic model is incorporated in the controller.

10

1.7 Organization of the Thesis

Chapter 1 presents the motivation for this work followed by objectives and contri-

butions of this research and the expected outcome.

Chapter 2 describes the theoretical background of the selected ML techniques and

a literature review of the applications of these methods to learn unknown dy-

namics of a quadrotor UAV.

Chapter 3 compares GPR and ANN for learning unknown quadcopter dynamics on

a dataset captured by manually flying a quadrotor and selects most suitable

approach based on the comparison results.

Chapter 4 includes the detailed methodology of learning unknown quadcopter dy-

namics using ANN. The unmodelled force and torque are learnt and the model

error after adding the learnt term in the dynamics is compared with the nominal

model error.

Chapter 5 demonstrates the results on a simulation of a quadrotor flight controller

with a trajectory tracking problem. The results are shown in comparison with

the nominal model in the controller.

Chapter 6 includes the conclusion of this research and the future direction is pre-

sented.

11

Chapter 2

Background on Selected ML

Techniques

In this chapter, two state-of-the-art ML techniques; GPR and ANN are reviewed. Ac-

cording to the literature, these two techniques have been successfully used in learning

unmodelled dynamics of non-linear systems [6, 8, 15, 21].

2.1 Artificial Neural Networks (ANN)

2.1.1 Theoretical Background of ANN

The concept of NN is developed to mimic the neurons and connections in the human

brain, considering the human’s ability to learn fast and process complex information.

Human brain processes signals via axons between two neurons, so the same concept is

adapted in ANNs by having neurons and connections between them. Even though the

human brain’s ability to learn complex and highly non-linear information is far greater

12

The flow of an ANN is as follows. Let x0 be the input vector, xi be the neuron vector

in the ith layer, Wi be the weight matrix for the ith layer and bi be the bias vector

for the ith layer. Assuming number of neurons in the ith layer is ni, xi, Wi and bi are

defined as,

xi = [xi
1, x

i
2, ..., x

i
n]T (2.1a)

Wi =















wi
1,1 wi

2,1 ... wi
ni−1,1

wi
1,2 wi

2,2 ... wi
ni−1,2

...
...

. . .
...

wi
1,ni

wi
2,ni

... wi
ni−1,ni















(2.1b)

bi = [bi
1, b

i
2, ..., b

i
ni

]T (2.1c)

Each subsequent neuron vector is calculated by multiplying the previous neuron vector

with the corresponding weight matrix and then adding the corresponding bias vector.

xi = Wixi−1 + bi (2.2)

Since this is linear equation, each subsequent layer is a linear function of the previ-

ous layer. To include non-linearities, this resultant xi vector is passed through an

activation function. Then, (2.2) can be re-written as,

xi = fi(Wixi−1 + bi) (2.3)

where fi denotes the activation function for the ith layer. For a simple ANN with two

hidden layers and the output vector (y), the layer equations can be combined as in

14

(2.4).

y = f3



W3

[

f2

(

W2

[

f1(W1x0 + b1)
]

+ b2

)]

+ b3



 (2.4)

The activation function can be selected from number of options. Commonly used

functions are shown in table 2.1.

Table 2.1: NN Activation Functions

Name Equation

Linear f(x) = x
Sigmoid f(x) = 1

1+e−x

Rectified Linear Unit (ReLU) f(x) = max(0, x)

Hyperbolic Tangent (tanh) f(x) = ex
−e−x

ex+e−x

When the inputs of the training set are associated with corresponding labels or targets,

the process is called supervised learning [23]. In supervised learning, the weights and

biases are trained using a set of labeled data. This labeled dataset is called the training

set. Objective of the training process is to minimize the error between desired output

and the network output. After each iteration, the error between desired and trained

output is calculated using a separate dataset. This dataset is called the validation

set. Due to over-fitting, after certain number of iterations, this validation error will

start to increase. The training process will be terminated at this point. The set of

weights and biases for every layer when the error is minimum is chosen as the optimal

weights and biases. Finally, the trained network is then verified using a testing set

independent from the training and validation sets.

15

2.1.2 Current Work on ANN for Learning Unknown Quad-

copter Dynamics

ANN is a commonly used ML technique to learn unknown quadcopter dynamics,

because of its high flexibility and relatively modest computational cost. This section

presents a literature review on the previous work carried out by different researchers

on deploying ANN to learn the unmodelled dynamics of a physical system. Since

the objectives of this thesis are focused towards the dynamics of a quadcopter, more

attention is given to the literature related to quadcopter dynamics.

The main reference for the quadcopter dynamics in this research can be found in [8],

which learns the complex aerodynamic effects happened when landing and taking-off a

quadrotor UAV. They have stated that unknown aerodynamic effects can be captured

as force and torque components. Their dynamic equations are given in (2.5). The

states in their system are, position p of the quadcopter expressed in world frame,

velocity v of the body frame w.r.t. world frame expressed in world frame, rotation

matrix R from body frame to world frame, and the body angular velocity ω w.r.t.

world frame expressed in body frame.

ṗ = v (2.5a)

mv̇ = mg + Rfu + fa (2.5b)

Ṙ = RS(ω) (2.5c)

Jω̇ = Jω × ω + τu + τa (2.5d)

Here, m and J are the mass and inertia tensor of the quadcopter, g is the gravity

16

vector. fu and τu are the thrust and torque of the quadrotor, expressed in body

frame. S(ω) is the skew-symmetric matrix defined in (2.6), where ωx, ωy and ωz are

angular velocities around x, y and z axes.

S(ω) =











0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0











, (2.6)

They have considered modelling only the disturbance force fa to improve their con-

troller. The disturbance torque τa is limited in the landing and take-off application [8].

Their ANN consists of four fully-connected hidden layers activated by ReLU (Recti-

fied Linear Units) function (refer to table 2.1). ReLU activation function is selected

because of the faster convergence and higher robustness compared to sigmoid func-

tions [8]. They have chosen their inputs as global height z, global velocity v, attitude

rotation matrix R and control input u, and output is disturbance force, fa. They

have used spectral normalization to guarantee the Lipschitz constant of the ANN,

i.e. the maximum ratio between output variations and input variations in the func-

tion [25]. The training is done offline in this work, then the result is applied to the

dynamic model in the on-board controller in real-time. They have proven results for

smoother take-off and landing tasks when the learnt unknown dynamics are included.

The work presented in [18] is also focused on learning unknown dynamics of a quad-

copter. Their dynamics are derived using the states s = [p,v, ζ,ω]T , where p is the

position of the body frame expressed in world frame, v is the velocity of the body

frame w.r.t. world frame expressed in world frame, ζ = (φ, θ, ψ) is the Euler angles of

the body frame w.r.t. world frame, and ω is the body angular velocity w.r.t. world

frame, expressed in body frame. The dynamic equation is given in (2.7a).

17

ṡ =















v

fv

R̂ω

fω















, (2.7a)

where,

R̂ =











1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0
sinφ

cos θ

cosφ

cos θ











. (2.7b)

Here, the unknown linear and angular accelerations, fv and fω are separately trained

using a single hidden layer NN with ReLU activation function, minimizing mean

squared prediction error. Input vector of the NN used for learning fv is [v,ω, sin(ζ), cos(ζ), u1],

while the NN which learnt fω used [v,ω, sin(ζ), cos(ζ), u2, u3, u4], where u1 is the body

thrust in z-direction and u2, u3 and u4 are the body torques in x, y and z directions

respectively. These control inputs, i.e., u1, u2, u3 and u4 are expressed in body frame.

After learning process is completed offline, they have developed a Linear Quadratic

Regulator (LQR) controller for a trajectory tracking problem. They have achieved

better results when using the learnt unknown model in the controller.

The work in [18] is motivated by [21], which learns unknown dynamics of a helicopter.

The dynamic model used in [21] is given in (2.8).















ṙ

q̇

v̇

ω̇















=















C12v

1
2
ωq

CT
12g − ω × v + fv

fω















, (2.8)

18

where g is the gravity vector and C12 is the rotation matrix from body frame to world

frame.

The states of the dynamic model in this work are; position of the helicopter r w.r.t.

world frame expressed in world frame, orientation of the helicopter q w.r.t. world

frame, linear velocity of the helicopter v w.r.t. world frame expressed in body frame

and angular velocity of the helicopter ω w.r.t. world frame expressed in body frame.

They have also trained the unknown linear and angular acceleration components, fv

and fω using a DNN as a combination of a quadratic lag model and a two hidden

layer NN with ReLU activation.

The MPC controller presented in [1] has also used NN to learn the dynamics of a

cart-pole, quadcopter, and an AutoRally vehicle. The states in this work are the

configuration q and it’s first derivative q̇ w.r.t. time. In case of a quadcopter, its

configuration can be considered as the position and velocity. The discretized system

equation is written as;

xt+1 =







qt + q̇t∆t

q̇t + f(xt,ut)∆t






, (2.9)

where ∆t is the discrete time step.

Their task was to learn the unknown term f in the above model. This function f is the

second derivative of q, i.e., the acceleration. They have used twelve states in the NN

model. A fully connected two hidden layer ANN with TanH activation (refer table

2.1) is adopted in this work, comparing the results with three different combinations

of hidden-layer neurons for the quadcopter performance. These configurations are in

table 2.2. Since their dynamic model has twelve states and four control inputs, they

incorporated bootstrapping in their NN model. Bootstrapping provides statistical in-

19

formation on the statistical distribution of the NN outputs [26]. They have mentioned

that the quadrotor resulted repetitive failures without bootstrapping. After learning

the model, they have simulated a trajectory tracking task on the quadcopter. Accord-

ing to their simulation results, all three network configurations have shown similar

results, but the first and third networks took an extra iteration to achieve their task

than the second network with 32 neurons in the hidden layers. Their experiments are

only carried out for the AutoRally vehicle.

Table 2.2: NN configurations in [1]

Layer 1 neurons Layer 2 neurons Activation function

Configuration I 16 16 tanh
Configuration II 32 32 tanh
Configuration III 64 64 tanh

A MOdular DEep Recurrent Neural Network (MODERNN) is used in [24] to learn the

higher order non-linear dynamics in a quadcopter model. Their algorithm is a novel

approach to ANN, which combines different types of NN in one model. They have

focused on a trajectory tracking problem, therefore their input to the NN is the sum of

motor velocities while the output is the position of the quadrotor. The training process

is carried out as an offline batch learning approach to achieve a higher accuracy of the

model. In order to optimize a sum of squared errors (SSE) cost function, they have

adapted the Levenberg-Marquardt (LM) algorithm [27], which is a gradient descent

training method. A simulated quadcopter trajectory tacking algorithm is used in this

work to test their algorithm along with a comparison with other available approaches.

Work is presented in [5] does not directly train the unknown dynamics, but NN is used

as an identifier as well as in the controller. They have used a single hidden layer NN

with sigmoid activation. Their results were validated using a quadcopter simulator,

20

with and without a payload.

The above literature shows the application of ANN to learn unknown terms in various

dynamic models. A variety of ANN architectures presented in these literature exhibits

how the number of hidden layers and neurons affected their applications. Motivated

by these work, the work presented in this thesis also uses ANN to learn the unknown

dynamics of a quadcopter model.

2.2 Gaussian Process Regression (GPR)

2.2.1 Theoretical Background of GPR

Gaussian process regression is a non-parametric regression method that trains a model

as a probabilistic function. According to [28], a Gaussian process (GP) is defined using

a set of random variables, where any finite number of them have a joint Gaussian

distribution. Its mathematical model is defined by introducing a fixed mean function

(m(x)) along with a kernel function (k(x, x′)) [28]. The kernel (k(x, x′)) defines the

covariance between two variables: x and x′. The mathematical model of a GP is given

as,

f(x) ∼ GP(m(x), k(x, x′)) (2.10)

where,

m(x) = E[f(x)] and

k(x, x′) = E[(f(x) −m(x))(f(x′) −m(x′))].

21

Regarding the complexity of having a fixed mean for the whole model in the practical

applications, an additional term, which is called the basis function was inserted into

this model [28]. There can be more than one basis function in the model. The

coefficients of basis functions β are estimated during the regression process. By adding

the basis functions h(x) to the model, the residuals are estimated as a zero-mean

Gaussian process,

g(x) = f(x) + h(x)Tβ (2.11)

where f(x) ∼ GP(0, k(x, x′)).

The kernel function is defined using a set of hyperparameters. For an example, the

squared exponential kernel in (2.14) uses measurement noise, σ2
ω, process variance,

σ2
η, and length scales, l as hyperparameters. These hyperparameters are learnt during

the training process. Once the Gaussian process model is learnt, it predicts the

corresponding output for a given arbitrary input. For a new input vector x∗, the

joint distribution between observed function values y and predicted response f∗ can

be expressed as the probabilistic model in (2.12).







y

f∗







∼ N







0,







k(x, x) + σ2
nI k(x, x∗)

k(x∗, x) k(x∗, x∗)













(2.12)

2.2.2 Current Work on GPR for Learning Unknown Quad-

copter Dynamics

Several research studies have selected GPR as their learning approach to learn un-

known quadcopter dynamics. In [6], a learning-based control process using Gaussian

processes is described. The states x used in their paper are, quadcopter’s position

expressed in world frame [x, y, z], velocity of body frame w.r.t. world frame expressed

22

in world frame [ẋ, ẏ, ż], Euler angles of the body frame in z, y and x directions [ψ, θ, φ]

and angular velocities of the quadcopter w.r.t. world frame expressed in world frame

[ωx, ωy, ωz]. The control inputs u are desired roll φdes, desired pitch θdes, desired angu-

lar velocity around z-axis of the body frame ωz,des and desired velocity in z-direction

of the world frame żdes. They have controlled the x and y positions of the quadrotor

by maintaining constant z-position and yaw using a separate controller.

Their dynamics are defined as a combination of two parts; a known model f(xk,uk)

and an unknown model g(xk,uk), as in (2.13). The known model was derived from

dynamic equations using first principles, while the unknown model, which is to be

learnt will capture the unmodelled dynamics in f(xk,uk).

xk+1 = f(xk,uk) + g(xk,uk), (2.13)

where k denotes the kth time step.

In [6], the authors have modelled g(x,u) as a zero-mean GP. As mentioned in section

1.3, the unknown dynamics are assumed to be non-linear, but in this work, the dy-

namics are assumed to be linear around a specific operating point with corresponding

steady-state input. Given that any kernel with a continuous first derivative can be

used for GPR [6], they have selected a squared-exponential kernel having separate

length scale for each predictor in the input matrix as in (2.14).

k(ai,aj) = σ2
ηexp

(

− 1

2
(ai − aj)

T M−2(ai − aj)
)

+ δijσ
2
ω (2.14)

where, δij = 1 if i = j and 0 otherwise.

This Kernel is parameterized by hyperparameters; measurement noise, σ2
ω, process

23

variance, σ2
η, and length scales, l. The length scales are the diagonal elements of the

diagonal matrix M . Each predictor has its corresponding length scale, which can be

used in the predictions. These hyperparameters were initialized using the standard

deviations of the available dataset and estimated while training.

In order to define the GP for an application, these hyperparameters in the kernel

should be learnt. In this work, they have used a dataset to learn these parameters by

solving a maximum loglikelihood problem using gradient ascent methods.

Once the learning process is completed, N number of past observations D as given

in (2.15) are used to predict the output g(a∗) for an arbitrary input, a∗. These past

observations are assumed to be noisy, therefore, ĝ(a) = g(a) + ω with ω ∼ N (0, σ2
ω)

where, g(a) is the true function value. The joint probability between ĝ and g(a∗) is

shown in the following equation, which is used to calculate the unknown dynamics

for a given input.

D = {ai, ĝ(ai)}N
i=1 (2.15)







ĝ

g(a∗)







∼ N







0N ,







K̄ kT (a∗)

k(a∗) k(a∗,a∗)













(2.16)

The work carried out in [29] uses GPR to approximate a performance measure, J(a)

of the control objective, where a is the controller input. Their goal is to optimize the

controller parameters, but since the learning process of J follows GPR this work is

also considered as a good example for our research. Same as the work in [6], authors

of [29] also predict the function value J(a∗) at an arbitrary input a∗ using n number

of past observations. Their mean µn and the variance σ2
n functions at an arbitrary

input a∗ are given in (2.17).

24

µn(a∗) = kn(a∗)(Kn + Inσ
2
ω)−1Ĵn (2.17a)

σ2
n(a∗) = k(a∗,a∗) − kn(a∗)(Kn + Inσ

2
ω)−1kT

n (a∗) (2.17b)

where, In is the n×n identity matrix, Ĵn is the noisy observations of J with covariance

σ2
ω, Kn is the covariance matrix containing the entries k(ai,aj) at ith row and jth

column and kn(a∗) is defined as,

kn(a∗) = [k(a∗,a1), k(a∗,a2), ..., k(a∗,an] (2.18)

Matèrn kernel in (2.19) is chosen in this work, instead of the commonly used squared-

exponential kernel. The hyperparameters in this kernel include measurement noise

σ2
ω, prior variance σ2

η, and length-scales l (diagonal elements in M corresponding to

the rate of change of J w.r.t. a.

k(ai,aj) = σ2
η(1 +

√
3r(ai,aj))exp(−

√
3r(ai,aj)) (2.19a)

where,

r(ai,aj) =
√

(ai − aj)T M−2(ai − aj) (2.19b)

After learning J , a safe control algorithm using Bayesian optimization is used to

optimize J within a safety margin. Bayesian optimization an approach to find the

global maximum of a function expressed as a GP. Since this work is to introduce the

control algorithm, only what is relevant for our research is discussed here.

Another research performed to learn unknown quadcopter dynamics using GPR can

be found in [19]. Their quadcopter dynamics are formulated from the position r =

25

[x, y, z]T and the orientation Euler angles φ, θ, ψ as;

r̈ = gzw +
1

m
Rzwfz (2.20a)











φ̇

θ̇

ψ̇











=











1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ











ω (2.20b)

where, zw = [0, 0, 1]T , m, g, R and f are the mass of the quadcopter, gravitational

acceleration, rotation matrix from body frame to world frame, and the thrust in

the body frame expressed in body frame, respectively. The angular velocities of the

quadrotor w.r.t. world frame expressed in body frame, ω = [ωx, ωy, ωz]T are the

control inputs to the quadcopter. Since the disturbances are not captured in the

nominal model, an unknown term is added to each dimension of the above model.

The inputs to the GP model are selected as, q = [rT , ṙT , θ, φ, ψ]T .

r̈ = gzw +
1

m
Rzwfz +











GP1(0, k(q, q′))

GP2(0, k(q, q′))

GP3(0, k(q, q′))











(2.21a)











φ̇

θ̇

ψ̇











=











1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ











ω +











GP4(0, k(q, q′))

GP5(0, k(q, q′))

GP6(0, k(q, q′))











(2.21b)

Mean m and the variance σ2 at a query point x∗ are expressed as;

m(x∗) = kT
∗

(K + σ2
nI)−1yw (2.22a)

26

σ2(x∗) = k(x∗, x∗) − kT
∗

(K + σ2
nI)−1k∗ (2.22b)

Here, I is the corresponding identity matrix, yw is a collection of w number of mea-

surements, K is the covariance matrix containing the entries k(xi, xj) at ith row and

jth column and k∗ is defined similar to (2.23) as,

k∗ = [k(x1, x∗), k(x2, x∗), ..., k(xw, x∗)] (2.23)

Since the computation of the inverse of the kernel takes a significantly higher amount

of time which causes practical deficiencies, they have introduced a method to speed-

up the process. When the quadrotor is moving forward, their kernel is updated by

adding new points and removing old and unnecessary points. This way, the kernel

can be defined smaller, without using the whole dataset.

A simulation of trajectory tracking problem for a quadcopter is carried out to validate

the results in [19]. A disturbance wind model is added to the system and the unknown

dynamics are learnt online during the flight. Their results show a significant reduction

in the trajectory error once the unknown dynamics learnt by GPR is added to the

system model.

[20] presents another approach learning unknown quadcopter dynamics using GPR.

They have proposed a general dynamic model as in (2.24), as a combination of known

dynamic functions h and g with an unknown disturbance term d, where x is the state

of the system and u is the control input. The unknown term d is a deterministic,

state dependant and assumed to be locally Lipschitz continuous.

f(x,u, d) = h(x) + g(x)u + d (2.24)

27

This disturbance model d is then estimated through GPR. As observations in the

learning process, they have calculated the disturbance model prediction d̂ using (2.25).

An approximation of state derivatives f̂ , was obtained from numerical differentiation.

d̂(x) = f̂(x,u(x)) − h(x) − g(x)u(x) (2.25)

This d̂ is assumed to be a noisy measurement of d, a zero-mean Gaussian noise with

variance σ2
n. After learning this unmodelled disturbance as a GP with squared expo-

nential kernel K, the prediction of the function d̄ at a given input x∗ can be expressed

as;

d̄(x∗) = µ(x∗) + K(x∗,X)(K(X,X) + σnI)−1(d̂(x) − µ(X)) (2.26)

where, µ(X) is the mean function at the past inputs X = [x1, x2, ..., xN].

A disturbance set D̂ is calculated from these predictions as follows.

D̂(x) = [d̄(x∗) −mσ∗(x), d̄(x∗) +mσ∗(x)]; ∀m ∈ R
+ (2.27)

This set D̂ is then used to perform a reachability analysis followed by an optimal

safe control law, which is the main target in their work. Their results are tested

in a quadrotor altitude controller, which increased the performance by adding this

disturbance model to the dynamics. The state-space model for the quadcopter system

is presented in (2.28), comprised of the states; altitude of the quadrotor x1, vertical

velocity x2 and average angular velocity of the four rotors x3.

ẋ1 = x2 (2.28a)

28

ẋ2 = kTx
2
3 + g + d(x) (2.28b)

ẋ3 = kp(u− x3) (2.28c)

where, u is the control input taken as the desired average angular velocity, kp is a time

constant defined as 1/kp = 0.15s, g = −9.81ms−2 is the gravitational acceleration and

d is the unknown disturbance model, predicted by GPR.

2.3 Model-Based Control of Quadcopters

Adding unknown dynamic components to the nominal dynamic model can improve

the performance of the model-based control of the quadrotor UAVs [6, 8, 18]. The

application of the learnt unknown dynamics in the controller can be found in many

literatures, including the papers presented in sections 2.1.2 and 2.2.2. This section

includes a discussion about currently available model-based controllers with learnt

unknown dynamic models.

Linear quadratic regulator (LQR) is one of the common model-based controllers found

in literature [18]. Although LQRs are designed for linear systems, it can be imple-

mented on non-linear systems once the dynamics are linearized. The work in [18] has

developed an LQR controller for trajectory tracking. The linearized dynamics of their

system is expressed as,

sn+1 = Asn + Bun, (2.29)

where n is the nth time step. The state vector and the control inputs are represented

as s and u, respectively. Vector s includes the basic dynamic states and the learnt

dynamics from a NN. When the desired states and the nominal open-loop control

29

signal are designated as s∗ and u∗, the state error s̄ and input compensation ū are

defined as,

s̄n = sn − s∗n (2.30a)

and

ūn = un − u∗n. (2.30b)

Once (2.29) is expressed in terms of these errors, the error dynamics become

s̄n+1 = As̄n + Būn. (2.31)

These state errors are used to calculate a quadratic cost function J as defined in

(2.32). The LQR generated a controller to minimize J .

JN(s̄0) =
N∑

n=0

(

s̄T
n Qs̄n + ūT

n Rūn

)

(2.32)

Here, N is the number of data points in the horizon and Q and R are positive definite

matrices. The closed-loop control inputs are then calculated from,

un = u∗n + K(sn − s∗n). (2.33)

The time-invariant state feedback matrix K should be defined so that the cost J is

minimized.

Another control approach to achieve stabilization and trajectory tracking is the Model

predictive control (MPC) [1]. The work presented in [1] have improved the classi-

cal MPC approach which is capable of blending the learnt dynamic model with the

controller. This algorithm is called information theoretic MPC, which is based on

30

sampling the trajectories.

The discrete-time stochastic dynamic model is defined as,

xt+1 = F(xt,ut) (2.34)

where xt is the state vector of the system and ut is the commanded control input

at tth time step. The actual input v is assumed to be corrupted by a normally

distributed noise and expressed as vt ∼ N (ut,Σ). The algorithm depends on the

hyperparameters, system noise Σ, terminal cost φ, instantaneous state cost q and a

positive scalar variable λ. For the quadcopter control system, λ = 1 and q is defined

as,

q(x) = (x − xd)T Q(x − xd) + 100000C (2.35)

where xd is the desired state and Q is a diagonal matrix. The term 100000C represents

φ, where C is triggered if the quadcopter is crashed.

They have introduced a sampling approach called importance sampling. The MPC

algorithm generates a control sequence and the first element of the control sequence

is executed. In the next iteration, the remaining elements of this sequence are taken

as the importance sampling trajectory. The minimum cost β is subtracted from the

cost function to guarantee that at least one trajectory has low cost. The cost at kth

sample is,

S(εk) =
T∑

t=0

(

q(xt) + λuT
t−1Σ

−1εk
t−1

)

(2.36)

where εk = {εk
0, ε

k
1, ..., ε

k
T −1} is the noise sequence throughout the time steps at the

31

kth sample. At k, an importance sampling weight w(εk) is defined as

w(εk) =
1

η
exp

(

− 1

λ
(S(εk) − β)

)

. (2.37)

η is approximated using Monte-Carlo estimate es follows.

η =
K−1∑

k=0

exp
(

− 1

λ
(S(εk) − β)

)

(2.38)

Finally, the control input for K samples at tth time step is computed by,

ut =
K∑

k=1

w(εk)εk
t . (2.39)

The first element u0 is sent to the actuators, while the remainder is used in the next

iteration.

A nonlinear feedback linearization controller is formulated in [8] to develop a trajectory

tracking controller. The disturbance force learnt from ANN is added to the dynamic

model to improve the performance. The trajectory error is defined as

p̃ = p − pd, (2.40)

where p and pd are the observed and desired positions, respectively. This model

is transferred into a reference velocity tracking problem by introducing a composite

variable s,

s = ˙̃p +

V

p̃ = ṗ − vr (2.41)

where

V

is a positive definite diagonal matrix. Now the reference velocity becomes

32

vr = ṗd − V

p̃. (2.42)

Then an approximation to the learnt disturbance force f̂a is evolved to compute the

desired rotor force fd as follows.

fd = f̄d − f̂a (2.43)

Here,

f̄d = mv̇r − Kvs −mg, (2.44)

where Kv is the velocity gain, m is the mass of the quadcopter and g is the gravita-

tional acceleration.

Finally, the control input of the current time step uk is calculated from the following

equation.

uk = B−1
◦







(

f̄d − f̂a

)

.k̂

τd







(2.45)

Here, k̂ is the unit vector in the direction of the rotor thrust. Usually, this direction

is the z direction in the body reference frame. The matrix B◦ is the relationship

between rotor thrust and torques defined by,

B◦ =















CT CT CT CT

0 CT larm 0 −CT larm

−CT larm 0 CT larm 0

−CQ CQ −CQ CQ















, (2.46)

where larm is the rotor arm length and CT and CQ are the rotor thrust and torque

33

coefficients respectively.

The desired torque τd is calculated from (2.47), were, Kω is the angular velocity gain,

J is the quadrotor’s inertia tensor, and ω is the observed angular velocity. Parameters

ωr and ω̇r are the reference angular velocity defined equivalent to vr in (2.41) and its

first derivative, respectively.

τd = Jω̇r − Jω × ωr − Kω(ω − ωr) (2.47)

34

Chapter 3

Comparison of GPR and ANN for

Modelling the Unknown Dynamics

As per the first objective of this research, the most suitable ML approach for our

application had to be selected between ANN and GPR. An experiment was carried

out for a dataset gathered using AscTec Hummingbird quadrotor UAV to learn the

unknown disturbance force in (2.5b). According to the literature, the dominant com-

ponent in this disturbance model is the aerodynamic drag force [13], mentioned in

(1.3). This drag force has a linear relationship with the body velocity bṗ. Since it is

easier to train a NN for a linear behaviour, (2.5b) is converted into the body fixed

reference frame. The terms are defined as in (2.5b) and (1.3).

bfa = RT (mv̇ − (mg + Rfu)) = −Kd
bṗ (3.1)

This disturbance force was then learnt using NN and GPR separately, taking the

body-frame velocity bv (=bṗ) as the inputs. Here, the body-frame velocity refers to

35

the velocity of the quadcopter w.r.t. world frame expressed in body frame. The three

components in the output bfa were trained as three different processes. Although the

behaviour was assumed to be linear, this system has unknown non-linearities as well.

Therefore, errors in the learnt model are expected.

3.1 Results of Learning Unknown Dynamics with

GPR

As the first approach, GPR was used to learn the unknown disturbance force men-

tioned above. In order to proceed with GPR, a suitable kernel function had to be

selected. According to the literature, any kernel function which has a continuous first

derivative can be used [6]. Referring to [6], the squared-exponential kernel (refer to

(3.2)) was chosen. This thesis followed the same procedure as in the reference paper,

with a separate length scale for each predictor (i.e., velocity components in x, y and

z directions) of the input matrix. Hyperparameters, process variance σf and length

scales l (diagonal elements of the diagonal matrix M) were initialized using the stan-

dard deviations of the available dataset and they were estimated while training. Table

3.1 includes the initial and estimated hyperparameters.

k(xi,xj) = σ2
fexp

(

− 1

2
(xi − xj)

T M−2(xi − xj)
)

(3.2)

Here, xi and xj are two samples of the dataset.

Since a zero-mean GP is assumed, a basis function was included in the GPR model. A

linear basis function in (3.3) was chosen in this case, because the relationship between

inputs and outputs are assumed to be linear (refer to (3.1)).

36

h(xi) = [1,xi] (3.3)

Now, the equation for GP becomes,

g(x) = f(x) + h(x)β (3.4)

where, f(x) is a zero-mean GP,

f(x) ∼ GP(0, k(x,x′)) (3.5)

The coefficients β associated with the basis function are presented in table 3.2.

Table 3.1: Hyperparameters table

Hyperparameter Initialized value Trained value

fx

Process variance, σ2
f 0.1903 0.2425

Length scale 1, l1 (for vx) 1 0.1140
Length scale 2, l2 (for vy) 1 0.1019
Length scale 3, l3 (for vz) 1 0.1653

fy

Process variance, σ2
f 0.2186 0.1770

Length scale 1, l1 (for vx) 1 0.1794
Length scale 2, l2 (for vy) 1 0.1073
Length scale 3, l3 (for vz) 1 0.3064

fz

Process variance, σ2
f 1.0342 1.1678

Length scale 1, l1 (for vx) 1 0.1822
Length scale 2, l2 (for vy) 1 0.0891
Length scale 3, l3 (for vz) 1 0.2326

A subset of 1500 data points from the gathered dataset was selected as the past

observations for the training process. The disturbance force bfa was then learnt as

a GP from this training set. The next 1500 data points were then selected to test

37

Table 3.2: Coefficients of basis function

Coefficient Trained value

fx

β1 -0.0199
βx1 (for vx) -0.0762
βx2 (for vy) 0.0099
βx3 (for vy) 0.0123

fy

β1 -0.0368
βx1 (for vx) -0.0448
βx2 (for vy) -0.1499
βx3 (for vy) -0.0114

fz

β1 -0.2598
βx1 (for vx) -0.0755
βx2 (for vy) 0.2959
βx3 (for vy) -0.0992

the validity of the generated GPR model. The prediction of bfa for the new input

velocities in this testing set (considering each velocity as x∗) was calculated from the

(2.16).

The results from GPR were compared with the nominal bfa calculated from the mea-

surements for both training and testing sets, as shown in Figure 3.1. The first 1500

data points corresponds to the training set, while the next 1500 points represents the

testing set where the nominal model is plotted as solid lines and the GP prediction is

shown in dotted lines.

According to the above plot, the GP prediction for the training set exactly follows

the expected values of the nominal model error, but the testing set has a notable

error. Since this behaviour yields to a significant decrement in the root-mean-square

error (RMSE) if the whole training and testing sets are chosen, only testing set was

considered in RMSE calculations. The nominal model error (i.e. nominal bfa) has

a RMSE of 0.563N , while the RMSE in the model error with the GPR model (i.e.

38

Figure 3.1: Unknown force bfa modelled by GPR

nominal model error + bfa trained by GPR) is 0.6128N , which is 8.8% higher than

the nominal model error.

3.2 Results of Learning Unknown Dynamics with

ANN

This section includes the results obtained from training bfa using ANN. Similar to

the GPR method, the body frame velocities bv were selected as inputs to the net-

work, which was designed with one hidden layer having three neurons. Since a linear

relationship is assumed between bfa and bv, a linear activation function was included

after the hidden layer. The training and testing sets were also chosen as the same used

in GPR. During the training process, the training set was divided among training,

validation and testing sets having 70%, 15% and 15% of the data respectively. The

39

After the network was built with trained weights and biases, the predicted output was

generated for both training and testing sets. The result obtained for the dataset is

included in Figure 3.3. According to the Figure, an error has been occurred between

the expected and predicted outputs, in both training and testing sets. This result

sums up that the assumption of a linear relationship is occurred and trained, but

there are more non-linear relations as well in the model. Comparing the RMSE

between the nominal model and trained model, it has been reduced from 0.563N to

0.5273N , which is a reduction of 6.3% from the nominal model.

Figure 3.3: Unknown force bfa modelled by ANN

3.3 Performance Comparison of GPR and ANN

In section 3.1 and section 3.2, the disturbance force was modelled using GPR and

ANN respectively. With reference to the training set, the prediction of both GPR and

ANN followed the nominal model with lesser error and the GPR model showed better

41

results following the exact model. This behaviour is expected because the model was

generated by feeding the same outputs to both GPR and ANN. But, when considering

the testing set, which is more important for predictions at unknown inputs, the GPR

model had higher errors than the ANN model. This behaviour is projected in Figures

3.1 and 3.3.

In order to have a further agreement on the errors, the RMSE for both GPR model

and ANN model were compared in the Figure 3.4. This RMSEs were calculated only

for the testing sets because it reflects the practical situations, i.e., the predictions for

unknown force model at new inputs that are not used in training. As per this chart,

the RMSE has been reduced in ANN predictions from 6.3% than the nominal model,

while it is increased from 8.8% in the GPR model.

Figure 3.4: RMSE comparison of GPR and ANN w.r.t. the nominal model

The next concern when choosing the better algorithm is the time consumed for the

training process. Lesser time consumption is essential for online training to avoid the

lags in the controller, which the quadcopter’s stability depends on. Comparing the

42

selected approaches, ANN took only 10.33s, while the GPR spent 87.07s on training.

When the RMSE for the testing set and the time consumption is taken into account, it

is apparent that the ANN has more advantage than GPR. Although the performance

of GPR was low in our work, GPR has proven successful results in the literature

[6, 19, 29]. Our comparison is an initial approach for choosing a better method for

learning unknown dynamics of a quadrotor. Over-fitting in the training set is one of

the causes for this behaviour. Due to the less flexibility of GPR, this was hard to

control. Compared to GPR, ANN has more flexibility to adapt to our dataset and it

showed lesser RMSE as well.

Considering the aforementioned advantages, ANN approach was chosen over GPR

method for further implementations in this research.

3.4 Summary

In this chapter, a comparison of GPR and ANN was presented. The disturbance force

bfa was learnt using both approaches and the results were compared. The dataset

was divided into training and testing sets. The training set was used to learn the

model for bfa and testing set was used to predict bfa for new inputs which were not

used in training. According to the results, both approaches could predict the output

similar to expected value, since the model was generated using the same training set.

However, the predicted output for the testing set had considerable errors in both

approaches. The GPR approach had higher errors than ANN method.

In the comparison of RMSEs for the testing set, the RMSE in GPR approach was even

higher than the RMSE of the nominal model. ANN approach could reduce the RMSE

from 0.563N to 0.5273N compared to the nominal model. In addition, GPR showed

43

over-fitting and was not flexible to adapt to the dataset. On the other hand, ANN has

more flexibility for our work. Further investigation is recommended for using GPR.

Since this is an initial comparison, the better method was chosen from the obtained

results. Hence, ANN approach was considered as the most suitable method for our

application.

44

Chapter 4

Detailed Evaluation of Learning of

Unknown Quadcopter Dynamics

Using ANN

In this chapter, application of the selected ML approach, ANN to learn unknown

quadcopter dynamics is discussed. First, the complete dynamic model of the quad-

copter selected in this work is introduced in section 4.1, then the progressive approach

for learning unknown dynamic model using ANN is described in the following sections.

The effect of changing the ANN architecture on increasing the complexity and accu-

racy of the model is also discussed.

4.1 Quadcopter Dynamics

The dynamics of the quadcopter is expressed as a combination of a known dynamic

model derived from the Newton-Euler equations and an unknown term. This com-

45

bined dynamic model has the states, position p, velocity bv of the quadcopter w.r.t

world frame, expressed in body frame, rotation matrix wRb from body reference frame

to world frame and the angular velocity bω of the body frame w.r.t. world frame, ex-

pressed in body frame. The aerodynamic disturbances are the dominant components

in the unmodelled dynamics. These aerodynamic disturbances affect the force and

torque model of the quadrotor [8]. Hence, unknown dynamic terms are included in

the force and torque in the basic dynamic model. In the quadcopter dynamic model

defined in (4.1), the unknown terms bfa = [fx, fy, fz]T and bτa = [τx, τy, τz]T refer to

the unknown force and torque of the body frame w.r.t. the inertial frame, expressed

in body frame.

ṗ = wRb
bv (4.1a)

mba = mwRT
b g + bT + bfa (4.1b)

wṘb = wRb[
bω]× (4.1c)

J bα = J bω × bω + b
Γ + bτa (4.1d)

The skew-symmetric matrix [bω]× is defined as,

[bω]× =











0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0











, (4.2)

where bω = [ωx, ωy, ωz]T .

In this dynamic model (see (4.1)), m and J are the mass and the inertia of the

quadcopter, g is the gravity vector defined as g = [0, 0,−9.81]T , ba and bα are

46

the quadcopter’s linear and angular accelerations w.r.t the world frame and bT =

[0, 0, Tz]T and b
Γ = [Γx,Γy,Γz]T are the total thrust and torque of the body frame

w.r.t the world frame. The terms ba, bα, bT and b
Γ are expressed in the body frame.

The body thrust in z-direction Tz and the body torques Γx, Γy and Γz can be calcu-

lated from the velocities of four motors, u1, u2, u3 and u4. This relationship can be

expressed as;















Tz

Γx

Γy

Γz















=















CT CT CT CT

0 CT larm 0 −CT larm

−CT larm 0 CT larm 0

−CQ CQ −CQ CQ





























u2
1

u2
2

u2
3

u2
4















(4.3)

where, larm, is the length from CG to a rotor axis and CT and CQ are the thrust and

torque coefficients respectively.

4.2 Data Selection

In order to model the above nominal dynamics in (4.1), the quadcopter’s position,

linear and angular velocities and accelerations, the velocities of each individual motor

and the quadcopter parameters: mass, inertia, and force and torque coefficients are

required. A dataset capturing necessary measurement was gathered by manually fly-

ing an AscTec Hummingbird quadcopter under an OptiTrack motion capture system.

A segment of the path that the quadcopter was flown is selected for the unknown

dynamics learning process. The path that the quadcopter followed, along with the

selected subset of that path is shown in Figure 4.1.

47

Figure 4.1: Quadrotor path and selected subset for learning

The position data were directly taken from the OptiTrack measurements, while the

motor velocities were accessible through the AscTec Hummingbird API (Application

programming interface). Although the acceleration measurements were available from

the IMU (Inertial measurement unit), those were not used in the calculations since

these data are corrupted by a considerable bias and noise. Therefore, the velocity

and acceleration were calculated by differentiating the position data captured by Op-

tiTrack. The fixed parameters of the quadcopter were collected from the literature on

AscTec Hummingbird quadcopter, [30] presented in Table 4.1.

Table 4.1: AscTec Hummingbird Quadrotor Parameters

Parameter Value

Mass, m 0.7 kg
Arm length, larm 0.17 m

Moment of inertia around x axis, Jxx 0.00071 kgm2

Moment of inertia around y axis, Jyy 0.00071 kgm2

Moment of inertia around z axis, Jzz 0.017 kgm2

Thrust coefficient, CT 4.9782×10−8 N/(rpm)2

Torque coefficient, CQ 8×10−10 Nm/(rpm)2

48

Even though the OptiTrack measurements were used instead of IMU measurements

to calculate the derivatives of position and orientation, these data also appeared to be

noisy, because the differentiation also amplified the noise in OptiTrack measurements.

In addition, it was observed that the motor velocities also had a significant noise, as

well as a considerably higher multiplication factor of 64 when converting the measure-

ments into rpm. Hence, the OptiTrack data and the motor velocity measurements

were filtered using Kalman filters before modelling the dynamic system.

4.2.1 Measurement Filtering

4.2.1.1 Position Measurement Filter

The position measurements from the OptiTrack motion capture system was filtered

to obtain smoother measurements for p, v and a. A discretized Kalman filter [31]

with the states, position (p), velocity (v), acceleration (a) and jerk (j) was used for

filtering. The dynamic model is presented in (4.4). The first derivative of the jerk

(j̇) was modelled as a zero-mean Gaussian noise, ηj ∼ N (0, 0.001I3). The position

measurements were also assumed to be corrupted by a zero-mean Gaussian noise,

ηp ∼ N (0, 0.0002I3). Here, I3 is the 3 × 3 identity matrix and covariances 0.001 and

0.0002 were determined by trial and error when tuning the filter.

x = [p,v,a, j]T (4.4a)

ẋ = [v,a, j,ηj]
T (4.4b)

With the measurements,

yp = p + ηp (4.5)

49

Once the dynamic model is determined, the Kalman filter algorithm was followed.

In order to proceed with Kalman filter, the process noise covariance matrix Q and

measurement noise covariance matrix R were defined as,

Q = 100







09×9 09×3

03×9 0.1I3







(4.6a)

R =











0.00022 0 0

0 0.00022 0

0 0 0.00022











(4.6b)

The state-space model of this process is defined by (4.7). This is the prediction stage

in the Kalman filter, where the next state estimation, x̂, and covariance, P , are

propagated.

x̂k = Φx̂k−1 (4.7a)

P −

k = ΦPk−1Φ
T + Q, (4.7b)

The discrete-time state transition matrix Φ is defined as,

Φ =















I3 dtI3
dt2

2
I3

dt3

6
I3

03 I3 dtI3
dt2

2
I3

03 03 I3 dtI3

03 03 03 I3















(4.8)

where, dt represents the discrete sampling time.

50

Next, the observer correction in (4.9) is performed on measurements.

ŷk = Hx̂k (4.9a)

K = P −

k HT (HP −

k HT + R)−1 (4.9b)

xk = xk + K(yk − ŷk) (4.9c)

P +
k = (I − KH)P −

k (4.9d)

Here, H is the output matrix and K is the Kalman gain. The H matrix is defined

as follows.

H =
[

I3 03×9

]

(4.10)

This process was followed on every OptiTrack position measurement. After iterating

through the dataset, the filtered p, v and a data were generated. The results after

filtering is illustrated in Figures 4.2, 4.3 and 4.4. As the figures show, the noises

incorporated with the velocity and acceleration measurements have been reduced, re-

sulting a smoother output. These results were used for the learning process described

in section 4.3.

51

Figure 4.2: Filtered position, p

Figure 4.3: Filtered velocity, v

52

Figure 4.4: Filtered acceleration, a

4.2.1.2 Orientation Measurement Filter

The OptiTrack orientation quaternion measurement, q and its derivatives were also

filtered using an error-state Kalman filter (ESKF) [32]. Unlike the position filter

in section 4.2.1.1, the error in state vector and the error in output vector of the

rotations do not have a linear behaviour. These rotations belong to the matrix Lie

group SO(3) [33]. If the error between the actual state (R ∈ SO(3)) and the predicted

state (R̂ ∈ SO(3)) is expressed as R − R̂, this result does not belong to SO(3). This

issue was addressed by defining an exponential map from a small perturbation of

rotation error δθ ∈ R
3 in a direction u to the rotation in SO(3) [32] as follows.

exp(δθu) = I cos(δθ) + [u]× sin(δθ) + uuT (1 − cos(δθ)) (4.11)

Hence,

R = exp(δθu). (4.12)

53

To inverse this exponential map, that is to convert from SO(3) to R, a logarithmic

map is defined as below.

δθu = log(R) (4.13)

u and δθ is calculated from,

δθ = cos−1

(

trace(R) − 1

2

)

(4.14a)

u =
(R − RT)∨

2 sin(δθ)
(4.14b)

Here, (.)∨ is the inverse operation of [.]×.

The concept of the exponential map is used in the ESKF to overcome the non-linearity

in the rotation error. The states for this filter was chosen as orientation q, angular

velocity ω, angular acceleration α and the first derivative of the angular acceleration

α̇.

x =
[

q,ω,α, α̇

]T

(4.15)

The second derivative of α was assumed to have a Gaussian noise ηα̈ ∼ N (0, 0.1I3).

The measurements were taken as the rotation matrix obtained from the quaternion

measurements with a Gaussian noise ηq ∼ N (0, 0.001I3). Here, I3 is the 3×3 identity

matrix.

The process noise covariance matrix Q and measurement noise covariance matrix Rν

for this filter were defined as,

54

Q = 500











1 0 0

0 0.1 0

0 0 1











and (4.16a)

Rν =











0.0012 0 0

0 0.0012 0

0 0 0.0012











. (4.16b)

The covariance of α̈ and η, and the covariance matrices Q and Rν were determined

by trial and error method when tuning the filter.

Since the measurements were propagated in terms of the rotation matrix R, q =

[qw,qv]T is converted into R as,

R = (q2
w − qT

v qv)I + 2qvqT
v + 2qw[qv]×, (4.17)

where I is the 3 × 3 identity matrix.

The state matrix in continuous domain F is defined as,

F =















03×3 RT
03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3















. (4.18)

As filter was executed in the discrete domain, this F matrix is converted into the

discrete domain state matrix Φ as follows.

55

Φ = I12×12 + F dt+ F 2dt2, (4.19)

where dt is the sampling time.

The process noise covariance matrix Q was also converted into the discrete domain

as,

Qd = GQGTdt2. (4.20)

Where,

G =
[

03×3 03×3 03×3 I3×3

]T

. (4.21)

Then the covariance P was propagated from the above matrices.

P −

k = ΦPk−1Φ
T + Qd. (4.22)

When calculating the next state estimations, the rotations are integrated from the

principles of the Lie group SO(3). Since ω and its higher derivatives still follow the

rules in vector space, their derivatives were generated from the vector space integration

laws.

qk = exp(ωk−1dt) ⊗ qk−1 (4.23a)

ωk = ωk−1 + αk−1dt (4.23b)

αk = αk−1 + α̇k−1dt (4.23c)

α̇k = α̇k−1 (4.23d)

where ⊗ indicates the quaternion multiplication and the exponential map exp(.) is

56

defined in (4.11).

In the observer correction step, an error term was defined as follows to correct the

estimated states later in (4.27).

e = log(RT y) (4.24)

where y is the orientation measurement q converted into rotation matrix R (refer to

(4.17)). The logarithmic map log(.) is defined in (4.13).

Kalman gain for the correction is calculated by

K = P −

k HT (HP −

k HT + Rν)−1 (4.25)

with the output matrix,

H =
[

I3×3 03×3 03×3 03×3

]

. (4.26)

The corrected state estimations and the covariance are,

qk = qk ⊗ exp
(

K(1 : 3, :)e
)

(4.27a)

ωk = ωk + K(4 : 6, :)e (4.27b)

αk = αk + K(7 : 9, :)e (4.27c)

α̇k = α̇k + K(10 : 12, :)e (4.27d)

P +
k = P −

k − KHP −

k (4.27e)

57

Following the above Kalman filter algorithm, the filtered measurements for q, ω and

α were generated. This result is presented in Figures 4.5, 4.7 and 4.6. These figures

indicate that the noise is reduced considerably, but there are some regions with higher

noisy data after the 5000th data point. Since the dataset for learning was selected

from 1500th to 4500th data point, these noisy data could be avoided.

Figure 4.5: Filtered quaternion, q

Figure 4.6: Filtered angular velocity, ω

58

Figure 4.7: Filtered angular acceleration, α

4.2.1.3 Motor Velocity Measurement Filter

It was observed that the motor velocity measurements were also corrupted by a noise.

This resulted difficulties when training the unknown torque bτa, because this noise is

significant compared to bτa. Hence, in addition to the OptiTrack measurements, the

motor velocities were also filtered.

A discretized Kalman filter was used to filter the velocity measurements of each motor.

The states were chosen as,

x = [vm, v̇m, v̈m]T (4.28)

where, vm, v̇m, v̈m are the motor velocity and first and second derivatives of the motor

velocity, respectively. The third derivative of the motor velocity was modelled as a

zero-mean Gaussian noise, ηm ∼ N (0, 0.01). The dynamic model is shown in (4.29).

ẋ = [v̇m, v̈m, ηv̈m]T (4.29)

59

Measurement of this model was chosen as vm, with a zero-mean Gaussian noise,

ηm ∼ N (0, 1).

y = vm + ηm (4.30)

The discretized Kalman filter algorithm explained in section 4.2.1.1 was followed here

as well. The process noise covariance matrix Q and measurement noise covariance

matrix R were defined as,

Q = 10000











0 0 0

0 0 0

0 0 0.1











and (4.31a)

R =
[

1

]

. (4.31b)

Here, the higher order terms are neglected since the sampling rate is high.

The current state estimation and covariance propagation was done according to the

state-space model defined in (4.7) and the observer correction was calculated from

(4.9). The state transition matrix Φ and output matrix H used in this filter are

defined as follows.

Φ =











1 dt dt2

2

0 1 dt

0 0 1











(4.32)

H =
[

1 0 0

]

(4.33)

60

This methodology was followed for filtering the measurements of all four motors,

having a separate filter for each motor with the same filtering matrices. The filtered

result is demonstrated in Figure 4.8.

Figure 4.8: Filtered motor velocities

4.3 Learning Disturbance Forces

The main objective of this research is to learn the unmodelled force disturbances bfa

in (4.1b). This section describes the methodology of learning the bfa using ANN.

As described in Chapter 3, the dominant unmodelled force, i.e., the drag force has

a linear relationship with the body-frame velocity. Therefore, the body frame force

model was selected so that the body frame disturbance bfa will be learnt.

The training and testing sets were selected from the captured dataset in section 4.2,

avoiding the sudden impacts as much as possible. The dataset from 1500 to 4500 data

points were selected in this case, having the first 1500 points as the training set and

the next 1500 points as the testing set. This way, the highly noisy data after 120s

61

(refer to Figure 4.3) could be eliminated. This selected dataset in the quadrotor’s

path is displayed in Figure 4.1.

The observed output bfa for the training set was calculated from this dataset by

re-arranging (4.1b) as,

bfa = mba − (mwRT
b g + bT). (4.34)

The same equation was used to calculate the expected output of the testing set for

comparison with the ANN prediction. The measurements ba and wRb were calculated

from the filtered data, while the thrust bT was calculated from the motor velocities

according to (4.3).

The body-frame velocity bv was selected as the input for the NN in the initial approach

described in section 3.2. That NN comprises of a single hidden layer with three hidden

neurons and linear activation. This NN could reduce the model error from 0.563N to

0.5299N , but this result was generated assuming that the drag force is the dominant

force in bfa. Although the results showed this assumption was correct, the model still

had errors due to other complex aerodynamic effects and the system imperfections.

Since the quadrotor’s physical parameters were adopted from literature, it can be

considered as a main reason to the system imperfections. In order to overcome these

issues, the NN was designed more complex, by increasing the number of inputs, hidden

layers, hidden layer neurons as well as the activation functions.

In addition to the model states, the model inputs also affect the system dynamics.

Therefore, including the system input u as an input to the NN will result a better

prediction than using only bv as the input. Adding higher order linear terms (ba)

and orientation data (q, bω, bα) to the input might also capture the effect of these

terms as well. By increasing the number of hidden layers the complexity of the model

62

can be increased. The activation function can be changed to introduce non-linearities

to the model as well. Since several literature that used ReLU activation has proven

successful results, [8, 18,21] this function was evaluated in this work as well.

Considering all of these requirements, the prediction was generated for different ANN

architectures and model inputs. The RMSE in the testing set of all these combina-

tions was compared to select the best ANN architecture with the minimum RMSE.

This comparison is presented in Table 4.2. Result for the ANN architecture used in [8]

is presented as the first model in the table.

Table 4.2: Performance comparison of ANN architectures for learning bfa

Model No. Inputs
No. of

hidden layers
No. of hidden
layer neurons

Activation
function

RMSE
(N)

0 Nominal model - - - 0.5630
1 bv, pz, q, u 4 3 ReLU 0.5226
2 bv 1 3 Linear 0.5264
3 bv 1 3 ReLU 0.5210
4 bv, u 1 3 Linear 0.4190
5 bv, u 1 5 Linear 0.4193
6 bv, u 1 5 ReLU 0.4417
7 bv, u 2 2 Linear 0.4333
8 bv, u 2 3 Linear 0.4139
9 bv, u 2 4 Linear 0.4170
10 bv, u 2 5 Linear 0.4206
11 bv, u 2 5 ReLU 0.5175
12 bv, u 3 5 Linear 0.4158
13 bv, u 3 3 Linear 0.4178
14 bv, ba, u 2 5 Linear 0.2542
15 bv, ba, u 2 5 ReLU 0.3071
16 bv, ba, p, u 2 5 ReLU 0.3009
17 bv, ba, p, u 2 5 Linear 0.2389
18 bv, ba, q, u 2 5 Linear 0.0775
19 bv, q, u 2 5 Linear 0.4190
20 bv, q, ω, u 2 5 Linear 0.4268

63

These results prove that introducing the motor velocities u = [u1, u2, u3, u4] to the

NN inputs has significantly reduced the RMSE (refer to model numbers 2 and 4).

Furthermore, the RMSE has been decreased by adding the higher order terms and

the orientations (refer to model numbers 13, 14 and 18). In general, when introducing

the non-linearities by ReLU activation function, the RMSE has been slightly increased

than using linear activation. Only the 3rd configuration has the opposite behaviour.

Therefore, it was concluded that adding non-linearities from ReLU activation does

not have a positive effect in this work. The reason for this behaviour is that the

relationship between the dominant component of the unmodelled force bfa (drag force)

and the input bv is linear.

When increasing the number of layers and number of hidden neurons, first the RMSE

was decreased. After two hidden layers and three hidden neurons, the RMSE started

increase due to over-fitting. We compared this result when using bv and u as inputs.

The least RMSE was obtained by the 18th model, which used the acceleration and

orientation quaternion in addition to bv and u. The RMSE in this model is 13.8% of

the nominal model. This model is consisted of two hidden layers with five neurons in

each hidden layer. Since the linear activation function is used here, the overall output

of this ANN can be expressed by combining the weight and bias matrices in each layer

as,

bfa = W x + b, (4.35)

where x = [bv, ba, q,u]T is the input vector to the ANN.

The weight matrix W and bias vector b are calculated by,

W = W2W1W0 (4.36a)

64

where, Wi denotes the weight matrix of ith layer, including the input layer (layer 0).

b = W2W1b0 + W2b1 + b2 (4.36b)

where, bi denotes the bias vector of ith layer, including the input layer (layer 0).

These W and b matrices were trained as follows.

W =










0.0035 −0.0016 −0.0079 0.9190 −0.1057 −0.0015 0.0348

−0.0215 −0.0219 −0.0145 0.1949 1.1993 0.1803 −0.0058

0.0006 −0.0023 0.0019 −0.0025 −0.0069 0.6978 0.0081

−0.1317 −0.8695 −0.0242 −0.0022 −0.0048 −0.0077 0.0011

1.0527 −0.1820 0.0015 −0.1105 0.0202 −0.0433 −0.0078

−0.0066 0.0033 −0.0059 −0.1770 −0.0853 −0.1281 −0.1578










(4.37a)

b =
[

0.5036 0.2560 0.0042

]T

(4.37b)

The result of this ANN was compared with the expected output calculated from

(4.34). Figure 4.9 shows the predicted output from ANN plotted against the calculated

expected output. The first 1500 data points represent the training set, while the next

1500 points belong to the testing set.

Although this ANN model showed the least RMSE among the compared models, when

using this model in the simulation in Chapter 5, the system became highly unstable,

with significantly larger trajectory errors. This issue was encountered when using the

other ANN architectures with ba as an input to the network. A stability analysis was

carried out in section 5.3.1 to check the impact of having ba in the NN model. The

65

Figure 4.9: Disturbance force learnt from 18th model

results show that the system becomes unstable when ba is included as an input to the

NN. Therefore, all network models with acceleration input was rejected.

Among the remaining architectures, the model with minimum RMSE (model 8) was

chosen as the best model. This model has bv and u as inputs, two hidden layers and

three hidden layer neurons. Linear activation is used in this model as well. Since this

network has the same number of hidden layers as the 18th model, (4.36) can be used

to calculate the weights and biases. The final weight and bias for this model are,

W =










−0.2053 0.0017 0.0156 −0.0242 0.0473 0.0474 −0.1034

−0.0992 −0.4139 −0.0479 −0.2134 0.0402 −0.0952 0.1189

−0.0387 0.0313 0.0203 −0.2092 −0.0329 −0.0251 −0.2713










(4.38a)

b =
[

0.4768 0.2994 −0.3817

]T

(4.38b)

66

The learnt predictions for bfa using the 8th model is shown in Figure 4.10.

Figure 4.10: Disturbance force learnt from 8th model

Although the prediction from the 8th model is not accurate as the 18th model, the 8th

model also tracks the desired bfa significantly. This model has neglected the nigher

noisy data between 2000th point to 2500th point.

The overall RMS error in this model is 73.5% of the RMSE in the nominal model.

In addition, the RMSE of the force error components in x, y and z directions were

also compared in Figure 4.11. According to the figure, RMSEs are significantly re-

duced once the learnt disturbance was added, resulting a notable improvement in the

dynamic model.

67

Figure 4.11: RMSE comparison of 8th model

4.4 Learning Unmodelled Torque

The next objective of this work is to learn the unmodelled torque bτa in (4.1d). The

procedure of designing an ANN and the results obtained for learning bτa is discussed

in this section.

The same dataset used for learning the force disturbance in section 4.3 was selected

in this approach as well. The first 1500 data points of this dataset were chosen as the

training set, while the testing set was the next 1500 points. In order to calculate the

observed output for training process and the expected output to compare with the

ANN predictions while testing, (4.1d) was re-arranged as,

bτa = J bα − (J bω × bω + b
Γ). (4.39)

This equation is expressed in body frame, therefore bτa will be learnt w.r.t. the body-

frame of the quadcopter. The measurements bα and bω were calculated from the

filtered data in section 4.2.1.2, while the J is collected from the literature (refer to

68

Table 4.1). b
Γ was calculated from (4.3), using the filtered motor velocities in section

4.2.1.3.

Having the knowledge that the system inputs u improves the model (from the work in

section 4.3), the initial inputs for the ANN were chosen as the orientation quaternion

q and the motor velocities u. The initial ANN was designed to have one hidden

layer with three hidden neurons and linear activation function. After generating the

observation set of the training data, these input-output pairs were fed into the ANN

to learn the bτa model. Then, the predicted outputs were generated for the testing

set by feeding the testing inputs and its output set was compared with the expected

values calculated from (4.39). This resulted the RMSE to reduce from 0.0841Nm to

0.00083Nm.

Although the above network could reduce the model error, that might not be the best

ANN model for this task. Therefore, different ANN architectures were tested having

different combinations of inputs, increasing the complexity by changing the number of

hidden layers and neurons and adding non-linearities from ReLU activation function.

Table 4.3 shows the comparison of RMSE of the tested ANNs.

According to this analysis, it is noted that introducing the ReLU activation function

for non-linearities does not improve the performance. Therefore, linear activation

function was considered more suitable for this process. Among all architectures tested,

the 13th, 14th, and 15th models show the least RMSE. Among these models, the 13th

model was chosen because it has lesser number of hidden neurons, which will be faster

than the other models when learning. This model uses x = [q, bω, bα,u]T as inputs,

has two hidden layers with three hidden neurons and linear activation. The output

69

Table 4.3: Performance comparison of ANN architectures for learning bτa

Model
No.

Inputs
No. of

hidden layers
No. of hidden
layer neurons

Activation
function

RMSE
(Nm)

0 Nominal model - - - 0.0841
1 q, u 1 3 Linear 0.0137
2 q, u 1 5 Linear 0.0106
3 q, u 1 5 ReLU 0.0117
4 q, u 2 5 Linear 0.0105
5 q, u 3 3 Linear 0.0105
6 q, u 3 3 ReLU 0.0116
7 q, u 3 5 Linear 0.0105
8 q, u 3 5 ReLU 0.0105
9 q, bω, u 1 3 Linear 0.0088
10 q, bω, u 1 5 Linear 0.0124
11 q, bω, u 2 3 Linear 0.0084
12 q, bω, bα, u 2 2 Linear 0.0236
13 q, bω, bα, u 2 3 Linear 0.00083
14 q, bω, bα, u 2 4 Linear 0.00083
15 q, bω, bα, u 2 5 Linear 0.00084
16 q, bω, bα, u 2 3 ReLU 0.0238
17 q, bω, bα, u 2 5 ReLU 0.0062

of this network bτa can be calculated from the learnt weight W and bias b as follows.

bτa = W x + b, (4.40)

Since this model also has the ANN architecture similar to the ANN architecture in

section 4.3, the W and b can be calculated from the weights and biases in each layer

according to (4.36). The trained W and b of the ANN model for learning bτa are,

70

W =










−0.0010 0.0011 0.0002 0.0007 0.0007 −0.0007 0.0011

−0.0013 −0.0003 0.0002 0.0004 −0.0007 −0.0002 −0.0003

−0.0000 −0.0000 −0.0000 0.0000 −0.0000 −0.0000 0.0000

0.0251 0.0010 −0.0003 −0.0008 −0.4667 0.0003 0.8365

0.0005 0.0247 −0.0007 0.6661 0.0007 −0.4940 −0.0008

0.0000 0.0000 0.9694 0.4324 −0.2130 0.3211 −0.3817










(4.41a)

and

b =
[

0.0986 −0.0077 0.1417

]T

. (4.41b)

The ANN prediction for the testing set was calculated from (4.39) using these values

for W and b. The results are then compared with the expected output, as presented

in Figure 4.12. This plot clearly indicates how the ANN prediction overlaps with the

expected result.

The RMSE of the nominal model in (4.1d) and the RMSE of the model after adding

the predicted disturbance from the ANN is compared in Figure 4.13. This result

was generated for each dimension in bτa. The overall RMSE is 0.98% of the nominal

model.

4.5 Summary

The methodology and results of learning unmodelled quadrotor dynamics using ANN

were included in this chapter. Several network architectures with different inputs

were compared to select the best suitable model. When learning bfa, the deep neural

network with two hidden layers and five hidden neurons showed the least RMS error.

71

Figure 4.12: Disturbance learnt from 13th model

Figure 4.13: RMSE comparison of 13th model

72

This network had the inputs bv, ba, q and u. Although this network could reduce the

model error to 13.7% of the nominal model error, higher instabilities were occurred

when it was used in the simulation. The stability analysis proves that if the accel-

eration is taken as an input to the ANN, the system becomes unstable. Therefore,

among the the ANN models which do not contain ba, the model with the least RMSE

was chosen. This model is consisted of two hidden layers with linear activation, three

hidden neurons and the inputs, bv and u. This model reduced the RMS error to

73.5% of the nominal model.

The unmodelled torque bτa was also learnt using an ANN. After the comparison of

different NN architectures, the network with the least RMSE was chosen as the best

model. The chosen model had two hidden layers with linear activation function and

three hidden neurons. Inputs to the network were q, bω, bα and u. When this model

was added to the nominal model, it could achieve an RMSE of 0.00083Nm, which

was 0.98% of the nominal model error.

In conclusion, the work carried out in this chapter could achieve successful results for

learning bfa and bτa using ANN.

73

Chapter 5

Simulated Multi-rotor Aerial

Vehicle (MAV) Control Using

Learned Unknown Dynamics

This section includes the application of the learnt unknown dynamics in quadcopter

controlling. A trajectory controller was designed with an added disturbance model.

The improvement of the trajectory tracking when the learnt disturbance is included

in the dynamic model was analyzed.

5.1 Overview of the Simulation

The simulated quadrotor control system in this thesis is designed to follow a pre-

defined trajectory. Once the desired trajectory data is given, the controller generates

the desired motor velocities to the four rotors. A disturbance is added to the system

so that the ANN can learn the disturbance model to reduce the trajectory error.

74

The quadcopter control system is designed to have following states.

x = [p,v, wRb,ω]T (5.1)

The process of calculating the next states is as follows. The current states x and the

desired states xdes are incorporated to calculate the desired Euler angles and thrust

(U) from a high-level LQR controller. This controller is described in section 5.2. The

control input u to the quadcopter is then calculated using the desired Euler angles

and thrust by a low-level proportional-derivative (PD) controller. The control input

is referred to the velocities of the four rotors. Then, the desired thrust T along z-axis

in the body frame and the desired torques Γ in the body frame are calculated from

u, according to (4.3). Since this force and torque are subjected to disturbances and

model imperfection in practical scenarios, the disturbances should be modelled. In

this simulation, the application of force disturbance is considered. The disturbance

force in body frame w.r.t. the world frame expressed in body frame bfa is generated

from u and x, using an ANN. Using T , Γ and bfa, the state derivatives are determined

from (5.2).















ṗ

v̇

wṘb

ω̇















=















v

g + (wRb
bT + wRb

bfa)/m

wRb[ω]×

J−1(Jω × ω + b
Γ)















(5.2)

These derivatives and current states are incorporated to estimate the states in the

next time step. The control inputs to the next iteration are computed using the

next states and the desired states. This process is iteratively followed throughout the

75

v = 0.5











0 0 −1 0 1 0

0 1 0 −1 0 1

1 0 0 0 0 0











(5.3b)

Each path segment between two consecutive waypoints were generated as a Bezier

curve. To generate those Bezier curves, two intermediate control points (p1 and p2)

were generated using the end point coordinates and tangents as follows.

p1 = pstart + vstart; (5.4a)

p2 = pend − vend; (5.4b)

where, pstart and pend are the start and end waypoints in each segment and vstart and

vend are the tangent at that point. Using the four control points, a cubic Bezier curve

was formed to obtain 1000 trajectory points in between.

p(t) = (1 − t)3pstart + (1 − t)2tp1 + (1 − t)t2p2 + t3pend (5.5)

Here, t refers to the tth sample. These spline positions were combined to generate

the trajectory position, velocity and yaw direction. This path is indicated in Figures

5.2(a) and 5.3(a).

The quadcopter was controlled in this simulation using a high-level LQR controller

and a low-level PD controller. The low-level controller represents the quadcopter’s

on-board controller. It generates the control inputs to the motors for desired Euler

angles. The desired Euler angles are calculated by the high-level controller, using the

77

dynamic model. We selected the LQR controller as the high-level controller. In the

LQR controller, an optimal control gain K is calculated such that a cost function is

minimized.

The states of the LQR controller was defined as the position p and the velocity v and

the acceleration a was chosen as the input. The system equations are given in (5.6).

x = [p,v]T (5.6a)

ẋ = [v,ηv]T (5.6b)

The state-space model of the LQR controller in the continuous domain is defined as,

ẋ = Ax + Bu (5.7)

where,

A =







03×3 I3×3

03×3 03×3







(5.8a)

and

B =
[

03×3 I3×3

]T

(5.8b)

For the LQR controller, the cost function in (5.9) was defined. We used the MATLAB

in-built lqr() function to calculate the optimal gain K.

J =
∫

∞

0
[(xdes − x)T Q(xdes − x) + uT Ru]dt (5.9)

78

In this simulation, the state error weight matrix Q and the control expenditure weight

matrix R were defined as follows.

Q =
[

100I3×3 10I3×3

]

(5.10a)

R = 0.2I3×3 (5.10b)

The optimal K was computed as,

K =











22.3607 0.0000 0.0000 9.7325 0.0000 −0.0000

0.0000 22.3607 0.0000 0.0000 9.7325 0.0000

−0.0000 0.0000 22.3607 −0.0000 0.0000 9.7325











. (5.11)

The desired acceleration ades at each point in the trajectory was calculated as follows,

using the K and trajectory acceleration a.

ades = a + K(xdes − x) (5.12)

5.3 Performance of Quadrotor Trajectory Track-

ing with the Disturbance

As mentioned in section 5.2, the quadcopter was simulated to follow the defined

trajectory with and without adding the disturbance to the dynamic model in the

controller. In this simulation, the force disturbance was added. According to section

4.3, the ANN with the least RMS error was first selected as the best ANN model

for this task. The system errors increased when using this model, resulting higher

79

instabilities. It was because the predicted ANN disturbance force using ba was used

to generate ba in the next state. Therefore, the acceleration error was propagated

throughout the simulation.

In order to overcome this problem, the ANN model recommended in section 4.3 was

used to model the disturbances. This model had two hidden layers with three hidden

neurons and linear activation. The inputs to the network were bv and u.

The dynamic model for the first controller was designed without adding the distur-

bance. Figure 5.2 presents the trajectory tracking result for this controller. It can be

seen that the actual trajectory has a considerable tracking error in z direction. The

RMSE between actual and desired x, y and z positions were 0.0009m, 0.0014m and

0.1104m, respectively.

(a) Trajectory (b) Position

Figure 5.2: The trajectory followed by the controller without ANN model

In the second controller, the estimated disturbance force bfa was added to the dy-

namic model in the LQR controller. This controller could follow the trajectory with

significantly lesser error than the previous controller. The results are shown in Figure

5.3. Note that the same PD controller was used in both controllers mentioned above

and only the dynamics of the LQR controller were changed.

The actual Euler angles were also compared in Figure 5.4. This figure shows that the

80

(a) Trajectory (b) Position

Figure 5.3: The trajectory followed by the controller with ANN model

simulated quadcopter could follow the desired Euler angles with minimal error.

Figure 5.4: Comparison of actual and desired Euler angles

When the learnt unmodelled force bfa was included in the dynamics, the position

RMSE was 0.0009m, while the controller without bfa had an RMSE of 0.0729m. The

81

plots and RMSE values conclude that the controller with the ANN model showed

superior trajectory tracking performance in comparison to the controller without the

ANN model.

5.3.1 Stability Analysis of the System when ba is Included in

the NN Inputs

Since all the ANN models with ba input caused higher instabilities in the simulation,

a stability analysis was carried out to check whether there is a stability issue when

using ba as an input to ANN.

Since the velocity is coupled with the acceleration, the state propagation of the velocity

and acceleration is considered. The next state propagation of wv and wa can be

expressed as,







wvk+1

wak+1







=







I(3×3) I(3×3)dt

0(3×3) 0(3×3)













wvk

wak







+
1

m
wRb

(

W















bvk

bak

qk

uk















+ b

)

︸ ︷︷ ︸

ANN prediction of bfa

+







wvk,des

wak,des







(5.13)

where, wvk,des and wak,des are desired velocity and acceleration, respectively. Accord-

ing to (5.13), wvk+1 and wak+1 depends on the orientation and motor velocities as

well, but here we are considering the effect of wvk and wak only. Hence, (5.13) was

re-arranged by separating the wvk and wak terms as follows.

82







wvk+1

wak+1







=







I(3×3) I(3×3)dt

1
m

wRbWv
wRT

b
1
m

wRbWa
wRT

b













wvk

wak






+

1

m
wRb

(

Wq,u







qk

uk






+b

)

+







wvk,des

wak,des







(5.14)

Here, Wv and Wa terms represent the portions of the weight matrix W corresponding

to wvk and wak respectively. Similarly, Wq,u term is the weight corresponding to q

and u. The coefficient matrix of [wvk+1,
wak+1]

T is what we are interested in this

stability analysis.

The quadcopter was unstable even at the hovering conditions. When hovering, wRb ≈

I. Therefore, it is possible to simplify the coefficient matrix of [wvk+1,
wak+1]

T by

assuming wRb = I as follows. Note that if it is possible to prove the system is

unstable even when hovering, then the system is obviously unstable when moving as

well.

Mv,a =







I(3×3) I(3×3)dt

1
m

Wv
1
m

Wa







(5.15)

The eigenvalues of this matrix were calculated to check whether the system is stable.

Four of the six eigenvalues were greater than one, as shown below.

83

eig(Mv,a) =























1.5810 + 0.1377i

1.5810 − 0.1377i

0.9984 + 0.0000i

1.0017 + 0.0000i

1.0000 + 0.0000i

1.0001 + 0.0000i























(5.16)

In addition, at least two of the eigenvalues were greater than one when checking the

other models with ba as an input as well. Therefore, we concluded that the system

was unstable when acceleration was used as an input to the NN model.

5.4 Summary

Chapter 5 has evaluated the performance of a simulated quadrotor when the learnt

unmodelled force was applied to the dynamics. A quadrotor trajectory tracking con-

troller was simulated in this work. An arbitrary trajectory generated using Bezier

curves was used as the desired trajectory. The quadrotor high-level and low-level con-

trollers were an LQR controller and a PD controller, respectively. A disturbance was

generated using the same ANN model chosen in Chapter 4. The trajectory tracking

performance of the quadrotor was compared with and without adding bfa to the dy-

namics of the LQR controller. According to the results, the position error is reduced

when using the controller with learnt disturbance force bfa.

84

Chapter 6

Conclusions and Future Directives

This thesis is focused on learning unmodelled dynamics of a quadrotor UAV. Since the

quadcopters are subjected to complex aerodynamic effects during the flight and model

imperfections are present in the physical system, deriving complete dynamics are

challenging. In order to improve the flight performance, these unmodelled dynamics

are included in the dynamic model, so that the controller has a lesser error to minimize.

When estimating these unmodelled dynamics, ML techniques have become a novel

successful approach. The work in this thesis is based on learning the unmodelled

dynamics using GPR and ANN. The following research objectives are identified for

this research.

1. Evaluate GPR and ANN for estimating unmodelled dynamics of a quadcopter.

2. Model the unknown force and torque dynamics using ANN.

3. Demonstrate the improvement of trajectory tracking performance when the un-

known dynamic model is incorporated in the controller.

85

6.1 Research Summery of Objective I

The first objective of this research was to evaluate and compare the application of

GPR and ANN to learn the unmodelled dynamics of a quadcopter. Learning the

unmodelled force error was considered in this comparison. A GPR model and an

ANN model was learnt separately using the same dataset. The results showed that

the GPR model had an RMS error of 0.6128N while the ANN model showed only

0.5273N error. This RMS error was calculated as the error in the force once the learnt

dynamics are added. Although the literature says that GPR outperforms ANN, this

comparison showed that ANN is more suitable than GPR for the work presented

in this thesis. In addition, ANN has more flexibility than GPR. ANN can adapt

to complex models by changing the number of hidden layers and number of hidden

neurons, while the flexibility of GPR depends on the kernel function. Additionally,

the performance of ANN was faster than GPR as well. Considering all the advantages,

ANN was chosen for further analysis.

6.2 Research Summery of Objective II

The next objective was to further analyze the best approach, i.e., ANN for learning

unmodelled force and torque dynamics. Assuming the non-linearity and complexity

of the unknown model, the number of hidden layers, number of hidden layer neurons

and the inputs to the ANN had to be changed. Different ANN architectures were

compared by changing these parameters and the model with minimum RMS error

was chosen as the best model.

For the force, the ANN model consisted of two hidden layers, five hidden layer neurons

and bv, ba, q and u were used as inputs. When adding position and angular velocity

86

as inputs, the RMS error did not change considerably. Therefore, it is reasonable to

say that the disturbance force does not have an effect on these variables. When the

aforementioned model was included to the nominal model, the RMS error in the force

was reduced to 13.8% of the nominal model.

However, when using that model in the simulation, the system showed higher insta-

bilities. Since the learnt force is used to calculate the acceleration, the acceleration

error is increased in each iteration. A stability analysis was carried out to check the

stability of the controller if acceleration was used as an input. The stability analysis

confirmed that instabilities occur when the acceleration was used as an input to the

ANN. Therefore, an ANN model without acceleration input was considered. Among

these models, the model with least RMS error was chosen. This model had two hidden

layers, three hidden layer neurons and linear activation function. Inputs used in this

model were bv and u. It could achieve an RMS error of 73.5% of the nominal model.

The ANN used for learning torque errors had two hidden layers, three hidden layer

neurons and q, bω, bα and u as inputs. The RMS error in the torque model was

reduced to 0.98% of the nominal model, when the disturbance was added. These re-

sults were generated as a ratio of the RMS error between the model with disturbances

and the basic dynamic model. Although the torque error was reduced to a significant

amount, this model uses angular acceleration input. If the learnt unmodelled torque

is used in a controller, a stability analysis must be carried out to avoid instabilities.

6.3 Research Summery of Objective III

Having a more accurate dynamic model, the last objective was set to demonstrate the

performance improvement of the quadcopter when the compound dynamic model was

87

used in the controller. This was carried out by having a trajectory tracking controller

in a quadcopter simulation. An LQR controller, which is a model-based controller

was used as the high-level controller. The trajectory error was compared between

with and without the learnt disturbance force model in the dynamic model of the

controller. According to the results in Chapter 5, the trajectory error was reduced

while using the compound dynamic model than using the basic model. Hence, it is

concluded that the performance of the quadrotor trajectory tracking was improved

by adding the learnt unmodelled components to the dynamic model.

6.4 Contributions

This research could achieve the following contributions.

• Detailed comparison of GPR and ANN to learn unmodelled forces of a quad-

copter.

• Performance comparison of different ANN architectures.

• Extending the ANN approach to estimate the unmodelled torque components.

6.5 Future Directives

This research presented in this thesis can be extended to conduct experiments using

an actual quadcopter. The work in this thesis is carried out assuming that all states

are available from the measurements. This assumption may not valid in practical

scenarios. Therefore, an observer can be modelled from the limited measurements.

The learnt dynamics can be used in the observer to achieve more accuracy.

88

In addition, learning unmodelled quadrotor dynamics can be used in several applica-

tions where the performance depends on the dynamic model. Few of these applications

include model-based control, payload manipulation and accurate trajectory tracking

tasks.

89

Bibliography

[1] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A.
Theodorou, “Information theoretic mpc for model-based reinforcement learning,”
2017, pp. 1714 – 1721.

[2] B. J. Emran, J. Dias, L. Seneviratne, and G. Cai, “Robust adaptive control
design for quadcopter payload add and drop applications,” in 2015 34th Chinese
Control Conference (CCC), 2015, pp. 3252–3257.

[3] S. Islam, P. X. Liu, and A. El Saddik, “Robust control of four-rotor unmanned
aerial vehicle with disturbance uncertainty,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 3, pp. 1563–1571, 2015.

[4] Q. Li, J. Qian, Z. Zhu, X. Bao, M. K. Helwa, and A. P. Schoellig, “Deep neural
networks for improved, impromptu trajectory tracking of quadrotors,” in 2017
IEEE International Conference on Robotics and Automation (ICRA), 2017, pp.
5183–5189.

[5] Y. Wang, H. Zhang, and D. Han, “Neural network adaptive inverse model control
method for quadrotor uav,” in 2016 35th Chinese Control Conference (CCC),
2016, pp. 3653–3658.

[6] F. Berkenkamp and A. P. Schoellig, “Safe and robust learning control with gaus-
sian processes,” in 2015 European Control Conference (ECC), 2015, pp. 2496–
2501.

[7] A. Kourani, K. Kassem, and N. Daher, “Coping with quadcopter payload varia-
tion via adaptive robust control,” in 2018 IEEE International Multidisciplinary
Conference on Engineering Technology (IMCET), 2018, pp. 1–6.

[8] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar, Y. Yue,
and S. Chung, “Neural lander: Stable drone landing control using learned dy-
namics,” in 2019 International Conference on Robotics and Automation (ICRA),
2019, pp. 9784–9790.

[9] C. D. McKinnon and A. P. Schoellig, “Learn fast, forget slow: Safe predictive
learning control for systems with unknown and changing dynamics performing

xi

repetitive tasks,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2180–
2187, 2019.

[10] Y. Liu, J. M. Montenbruck, P. Stegagno, F. Allgöwer, and A. Zell, “A robust
nonlinear controller for nontrivial quadrotor maneuvers: Approach and verifi-
cation,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015, pp. 5410–5416.

[11] A. S. Sanca, P. J. Alsina, and J. d. J. F. Cerqueira, “Dynamic modelling of a
quadrotor aerial vehicle with nonlinear inputs,” in 2008 IEEE Latin American
Robotic Symposium, 2008, pp. 143–148.

[12] P. Kantue and J. O. Pedro, “Nonlinear identification of an unmanned quadcopter
rotor dynamics using rbf neural networks,” in 2018 22nd International Conference
on System Theory, Control and Computing (ICSTCC), 2018, pp. 292–298.

[13] F. Jiang, F. Pourpanah, and Q. Hao, “Design, implementation, and evaluation
of a neural-network-based quadcopter uav system,” IEEE Transactions on In-
dustrial Electronics, vol. 67, no. 3, pp. 2076–2085, 2020.

[14] B. Min, J. Hong, and E. T. Matson, “Adaptive robust control (arc) for an altitude
control of a quadrotor type uav carrying an unknown payloads,” in 2011 11th
International Conference on Control, Automation and Systems, 2011, pp. 1147–
1151.

[15] S. Zhou, M. K. Helwa, and A. P. Schoellig, “Design of deep neural networks as
add-on blocks for improving impromptu trajectory tracking,” in 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), 2017, pp. 5201–5207.

[16] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably safe and robust
learning-based model predictive control,” Automatica, vol. 49, no. 5, pp. 1216 –
1226, 2013.

[17] A. Sarabakha and E. Kayacan, “Online deep learning for improved trajectory
tracking of unmanned aerial vehicles using expert knowledge,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA), 2019, pp. 7727–7733.

[18] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin, “Learning
quadrotor dynamics using neural network for flight control,” in 2016 IEEE 55th
Conference on Decision and Control (CDC), 2016, pp. 4653–4660.

[19] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of quadrotor dy-
namics using barrier certificates,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 2460–2465.

xii

[20] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger, and
C. J. Tomlin, “Reachability-based safe learning with gaussian processes,” in 53rd
IEEE Conference on Decision and Control, 2014, pp. 1424–1431.

[21] A. Punjani and P. Abbeel, “Deep learning helicopter dynamics models,” in 2015
IEEE International Conference on Robotics and Automation (ICRA), 2015, pp.
3223–3230.

[22] A. I. Galushkin, Neural network theory, 2007. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-48125-6

[23] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Net-
works, vol. 61, pp. 85 – 117, 2015.

[24] N. Mohajerin and S. L. Waslander, “Modular deep recurrent neural network:
Application to quadrotors,” in 2014 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), 2014, pp. 1374–1379.

[25] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas, “Efficient and
accurate estimation of lipschitz constants for deep neural networks,” in Advances
in Neural Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 11 427–11 438.

[26] J. Franke and M. Neumann, Bootstrapping neural networks. Technische Univer-
sita¨t Kaiserslautern, Fachbereich Mathematik, 1998.

[27] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the mar-
quardt algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp.
989–993, 1994.

[28] C. Rasmussen and C. Williams, Gaussian processes for machine learning. Mass.:
MIT Press, 2006.

[29] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller optimization for
quadrotors with gaussian processes,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), 2016, pp. 491–496.

[30] W. Neeley, “Design and development of a high-performance quadrotor
control architecture based on feedback linearization,” 2016. [Online]. Available:
https://digitalrepository.unm.edu/ece_etds/190

[31] R. Faragher, “Understanding the basis of the kalman filter via a simple and
intuitive derivation [lecture notes],” IEEE Signal Processing Magazine, vol. 29,
no. 5, pp. 128–132, 2012.

[32] J. Solà, “Quaternion kinematics for the error-state kalman filter,” CoRR, vol.
abs/1711.02508, 2017. [Online]. Available: http://arxiv.org/abs/1711.02508

xiii

[33] J. D. J. Solà and D. Atchuthan, “A micro lie theory for state estimation in
robotics,” arXiv:1812.01537 [cs], 2018.

xiv

