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Abstract

This thesis develops an indoor localization system for mobile robots using Google
indoor street view.

The proposed localization system consists of two main modules. The first is a place
recognition system based on Google’s indoor street view. Its purpose is to determine
the position of the robot in terms of the node on the street view map that is closest
to the robot’s actual location. It is achieved by comparing an image captured by the
robot’s camera against the indoor street view images. In order to achieve the best
accuracy possible, the input image is compared to every street view image. The system
employs two verification stages. The first stage is based on the visual similarity among
the images. The best five images that qualified through this stage become candidate
images for the second verification stage. In this stage, the geometric consistency
between the images is assessed. The image that passes this test with the highest
similarity score is considered a match with the input image. The proposed place
recognition system is tested on different data sets and the performance is assessed
using standard evaluation metrics.

The second part is the main module of the proposed localization system. It is a graph-
based estimation module that incorporates the odometry data, visual feedback, and
motion data that eventually is solved via optimization techniques. The result is the
estimates of the robot’s locations at specified intervals along its journey. It uses
odometry data to interpret connections among successive poses. Also, it uses visual
information from the robot’s camera to establish constraints between the robot’s poses
and the map. It is achieved through constraints derived using two images, one from
the robot’s camera and one from the node in the map that matches best with the
image from the robot’s camera. The localization system is designed to minimize the
drift caused by the odometer. The system is simulated and then tested for a data set
captured at the Memorial University of Newfoundland engineering building basement.
The performance of the system is evaluated using standard error metrics.
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Chapter 1

Introduction

In this chapter, the motivation for this study is presented, followed by an overview
of the available place recognition based localization methods and their associated
limitations. The thesis’s problem statement is formulated, and the sub-problems
that are addressed in this thesis are introduced. Finally, the objectives and expected
contributions are highlighted, followed by the organization of the thesis.

1.1 Motivation

Mobile robots have proven success in several application areas that are considered
safety critical for human operators. Examples include first response squads in emergency
situations [1], search and rescue [2], exploration of abandoned mines [3–5], investigating
pipelines [6–8], autonomous planetary exploration [9–11], surveillance [12, 13] and
neutralization of explosives [14–16]. Another avenue is assisting tasks that humans
alone take a long time to accomplish, such as construction of structures [17–19],
mapping sites [20, 21] transportation of goods [22], building material [23, 24], visual
yield mapping and precision farming [25,26].

An interesting development of robotic localization and mapping is what is known as
Simultaneous Localization And Mapping (SLAM). It refers to the case where a robot
continuously builds a map of its surroundings while simultaneously determining its
location in it. When visual information obtained through cameras is used for SLAM,
it is referred to as Visual Simultaneous Localization And Mapping (V-SLAM) [27].
The availability of visual information proves to be a considerable advantage due to the
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richness of the data provided. It, when combined with the low cost of cameras and the
advancement of camera technology over the years, makes them excellent candidates as
sensors for robots engaged in SLAM. Besides, adding a camera to a robot minimizes
the necessity of other high-cost localization support sensors, reducing the weight
and power consumption, and enhancing its operating time. It has been shown that
visual-SLAM can be autonomously executed even in Global positioning system (GPS)
denied environments [28]. Several V-SLAM systems has been since developed in both
research and commercial applications, hence V-SLAM can be now considered as a
better alternative when executing SLAM indoors [29, 30], when compared with Light
Detection and Ranging (LIDAR) based [31], or external positioning aid based [32,33]
systems.

The topic of SLAM can be categorized based on the underlying architecture. Discussed
in sections 2.1.1, 2.1.2, 2.1.3 and 2.1.4 are the principal branches along which SLAM
has evolved over the years.

1.1.1 ISL building wide localization system

The intelligent systems lab (ISL) of Memorial University of Newfoundland (MUN)
is developing a building-wide navigation system for multi-robot applications. The
system comprises ofMicro-aerial vehicles (MAVs) equipped with embedded low complexity
stable Visual Inertial Navigation System (VINS) which serve as the odometers, and
external navigation aids (Ultra Wide Band (UWB) and place recognition) to assist
with periodic corrections of the platforms. The system requires a stable and robust
back end[1] that is simple, quickly deployable, and can incorporate a multitude of
different sensors with minimal reconfiguration. As an example, if the robot is to enter
an area with poor lighting, or lack of UWB coverage, and perhaps outdoor transitions
where GPS becomes available for a while the localization method should be able to
capture all this information in a common framework easily.

This thesis’s main objective is to develop a visual loop closure back end and establish
it in an autonomous platform to be used as a research tool for mobile robot research

[1]The back end is where the estimation and loop closure take place. The front end acquires data
from the sensors and abstracts them into mathematical forms the back end can use. For further
details, refer section 2.2.2
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activities. This thesis is specifically targeted for the development of the mobile robot
navigation system discussed above. For this purpose, the problem can be simplified
by assuming a pre-existing map from Google street view. Hence, visual localization
in the presence of a pre-existing map applies. The details of the system are discussed
in section 2.2.

1.2 Problem Statement

Developing a place recognition and factor-graph based indoor localization system
using Google indoor street view presents several challenges. When the system is built
around a monocular camera, the complexity of the task increases further. Some of
the challenges encountered can be listed as follows.

1. Absence of indoor maps that satisfies the requirements of the desired system,
since Google’s indoor street view is not well established as its outdoor counterpart

2. The equirectangular[2] [34] projection of the street view images makes all the
conventional feature matching methods not directly transferable.

3. The abundance of repetitive and self-similar structures increases the possibility
of perceptual aliasing.

4. Lack of robust, unique features makes feature matching a challenge.

5. Frequent changes in indoor environments due to human movement and displacement
of objects make a comparison against a pre-constructed map challenging.

6. Conventional camera calibration methods are not directly transferable since the
intrinsic parameters (especially the focal length) obtained through such methods
do not relate well to equirectangular images.

[2]Equirectangular projection is a way of representing spherical images as rectangular panoramas.
It converts a sphere into a rectangular Cartesian grid where the rectangular grid cells are of the same
size, shape, and area. Equirectangular images are severely distorted towards the periphery, and the
amount of distortion decreases radially towards the center. It is also known as simple cylindrical,
equidistant cylindrical and rectangular projection.

3



7. Using monocular cameras leaves no way of extracting depth information from
the images. It makes utilizing the image data for imposing constraints on the
factor graph complicated.

8. Searching through large databases of images is exhaustive and time-consuming,
thus, directly impacting the localization and loop closure detection.

9. Performing Structure From Motion (SFM) on all the available images presents
computational resource limitations and thus is an overkill in this research.

In this thesis, we focus on the following three problems.

1.2.1 Problem I: Factor graph localization with Google street
view

Using factor graphs has become a preferred method in mobile robot localization
[35, 36], mainly because both measurement and motion models can be incorporated
into a single graph. It is a systematic approach in using and can be solved by
conventional graph solvers such as g2o [37]. A majority of localization studies based
on using factor-graphs, rely on constructing the topological map on the fly. As an
example, the popular VINS-Mono [38] system builds its visual map during navigation.
Building a map in itself is a computationally demanding procedure which can be
minimized by using pre-existing public maps of an environment.

This thesis proposes using a factor-graph for localization, which exploits Google
street view by using it for topological place recognition. The thesis establishes the
constraints on the factor graph using two image views between the map and the robot.
Using an already available map is much more efficient for our concerned application.
The visual updates necessary for corrections should be made efficiently using image
views between robot poses and map nodes.

1.2.2 Problem II: Place recognition using Google street view

Using Google street view for localization is a recent trend in localization [39–45]. Many
of the studies conducted are focused on the aspect of place recognition [44–46] whereas
several other studies have considered autonomous localization of a robot [39,40].
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One of the studies is the Google street view based urban localization study by Salarian
et al. [46]. Their primary focus is accurately localizing a mobile device using a
monocular camera, GPS module, an IMU, and Google street view. The key underlying
idea of the method is image feature-based scene recognition.

The urban localization study by Yu et. al [43] uses a monocular camera and street view
for localization. This approach exploits the topometric nature of Google street view
for localization. This approach proposes place recognition as a primary selection step,
which is then directed to a metric localization step. It also modifies the conventional
Bag-of-Words (BoW) matching process by considering multiple database constraints.

Majdik et al. [40] studies Google street view for autonomous robot localization. The
work presents a solution to urban localization by solving the air-ground matching
problem. It identifies the failure of conventional image feature matching due to
substantial distortions present in the equirectangular street view images and proposes
a solution by generating virtual views. This study also identifies the limitations of
Random Sample And Consensus (RANSAC) for outlier rejection and proposes an
alternative approach based on k-Virtual Line Descriptors (VLD).

Agarwal et al. [39] present a similar study for ground robot applications. This study
addresses the problem of significant distortions in Google street view images through
the use of perspective images downloaded directly from Google’s servers.

The above studies are all considering outdoor applications. Work in [41] proposes
an approach for indoor localization using google street view, but the study uses a
strategy other than visual place recognition.

Direct adoption of an outdoor localization system to an indoor environment is not
trivial since indoor localization involves challenges that are not encountered in outdoor
localization. It includes the unavailability of GPS due to the loss of signal strength
[47], inability to use the compass due to distortions (Hard-iron and soft-iron) [48],
lack of unique landmarks, the abundance of repetitive and self-similar structures,
illumination deficits, and frequent changes in the environment. There are no performance
evaluations conducted for Google indoor street view based visual topological localization
to the best of the author’s knowledge. Therefore, evaluating such a system’s performance
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for an indoor environment is the main emphasis of this thesis.

1.2.3 Problem III: Limitations in benchmark datasets for
Google indoor street view localization

As was discussed earlier, few studies have focussed on using Google street view for
indoor localization [41]. There are datasets for validating visual topological indoor
localization systems such as the COSY Localization Database (COLD) [49], which has
been used for studies such as the recent study by Thoma et al. [50]. The images it
constitutes are either perspective or omnidirectional. Hence, this work opts to create
and upload our own Google street view dataset with ground truth since Google’s
indoor street view is of limited and sparse availability for MUN engineering. As
we expect to perform mobile robot localization studies at this location, a reliable
map upload to Google servers is necessary. With the rapid growth of Google indoor
mapped sites, we expect that the proposed localization architecture will find broader
applicability. Furthermore, the experimental procedure followed for creating reliable
reference maps can be replicated at different sites to update the indoor street view
database periodically.

1.3 Objectives and Expected Contributions

In order to address the three problems regarding visual topological indoor localization
discussed under section 1.2, the thesis considers the following main objectives.

1.3.1 Objective I : Developing a factor-graph for a visual
topological localization system

Task 1 Proving the concept underlying the proposed strategy through
MATLAB simulations.

Task 2 Developing a ROS C++ based simulator that is capable of exploiting
the established software libraries yielding the full potential of the
proposed system. Developing a visualization platform, along with
the necessary software tools.

6



Task 3 Developing a pose recovery system capable of estimating the relative
change in camera pose between two image views.

1.3.2 Objective II : Developing a place recognition system

Task 1 Developing a Google street view based brute force place recognition
system that predicts the node in the topological map that closely
resembles an input query image.

Task 2 Evaluating the performance of the place recognition system through
standard performance metrics by executing it on a set of street view
snippets, for an outdoor scenario.

Task 3 Testing the place recognition system on a data set of MUN engineering
basement, analyzing the performance indoors, and assessing viable
improvements.

1.3.3 Objective III : Validating the factor-graph based localization
system for an indoor data set

Task 1 Configuring Seekur Jr. to suit the experiments conducted by installing
necessary software libraries.

Task 2 Collecting a validation data set by traversing Seekur Jr. around
the corridor of the MUN Engineering building basement.

Task 3 Validating the performance of the factor-graph based localization
system under simulated essential matrix constraints.

Task 4 Validating the performance of the factor-graph based localization
system under actual essential matrix constraints.

Accomplishing these three objectives results in a Google street view based topological
place recognition system and factor-graph based visual localization system, with
preliminary module wise validation for an indoor environment. Combining the necessary
sensor modules completes the initial step towards the building-wide indoor navigation
system for mobile robots that the intelligent systems lab (ISL) of Memorial University
of Newfoundland (MUN) is developing.
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1.4 Organization of the Thesis

This section illustrates how the thesis is organized. The main chapters and a briefing
on their content provide insight to a reader interested in delving into the details.

Chapter 1 : Introduction presents an overview of the research area, highlights
the research statement, and elaborates on the objectives and critical
contributions of the study.

Chapter 2 : Background presents a literature review of similar or related work in
topological SLAM and localization.

Chapter 3 : Factor Graph presents the work carried out in developing an optimization-
based back end to the localization system.

Chapter 4 : Place Recognition System presents the work carried out in producing
a visual topological place recognition system.

Chapter 5 : Experimental Evaluation presents experimental evidence substantiating
the validity and quality of the work produced throughout the research.

Chapter 6 : Conclusion presents the conclusions rested upon from the conducted
study, viable improvements identified, future directions to pursue, and
the contributions made by the author.
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Chapter 2

Background

In this chapter, several branches of SLAM are presented, which is followed by a
description of the overview of a visual-topological SLAM system, its back end, and
the front end. The rest of the chapter presents the state of the art related to visual-
topological localization and visual place recognition.

2.1 Principal branches of SLAM

2.1.1 Outdoor vs Indoor SLAM

Based on the operating environment, SLAM divides into two main domains: outdoor
SLAM [51], and indoor SLAM [52, 53]. Indoor SLAM primarily differs from outdoor
SLAM due to particular challenges that are associated with indoor SLAM. Some
examples are unavailability of GPS, inability to use the compass (due to high magnetic
disturbance inside structures), high abundance of repetitive and self-similar structures,
lack of features of the environment, and frequent changes in the background (e.g.,
movement of people and re-location of objects). Often more than one of these
challenges co-occur.

2.1.2 Filter-based vs Optimization-based SLAM

Based on the method of estimation used, SLAM can be categorized as filter-based
methods and optimization-based methods. Filter based methods tend to distinctly
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separate the motion model and the measurement model of the problem. Since filter-
based methods are usually application-specific, they require re-tuning every time they
come across new applications. Filter based methods often tend to be unstable during a
lack of sensor data and sometimes completely fail in the absence of it. Over the years,
Extended Kalman filter (EKF)-based methods such as the Multi State Constraint
Kalman Filter (MSCKF) [54] have produced results almost as accurate as those of
optimization-based methods. But it is not to mention that the salient snags of filter-
based methods are inevitable in them as well. However, filter-based methods are still
preferred despite the shortcomings they involve. As filter-based methods estimate one
pose at a time (figure 2.1(a)), unlike optimization methods, an increase in the number
of variables has minimal impact on the speed of execution and computational cost.
Therefore, filter-based methods, in general, are favored for applications that involve
relatively fast dynamics but posses lower computational capacities.

Conversely, optimization-based methods represent the SLAM problem as a least-
squares minimization problem. The advantage of optimization-based methods is
that the implementations are more stable to execute than filtering based techniques
with minimal needs for tuning of the system, resulting in better accuracy than the
filter-based methods. Unlike filter-based methods, optimization methods consider
both the measurement and observation models as factors of specific forms, which
equally contributes to the optimization process. A factor in this regard, represents
probabilistic information about the variables derived from measurements and prior
knowledge, which imposes a constraint between two variables (poses of the robot).

Maximum A Posteriori (MAP) estimation has been proven to be more accurate
than conventional methods of non-linear filtering. MAP estimation can be performed
following two methods. In the first type, the estimation is performed on a window
of data selected from all the data available (figure 2.1(b)). The data within the
estimation window is changed at every iteration by shifting the window (estimation
horizon) forward in time. This method is known as Moving Horizon Estimation
(MHE). In the second type, the estimation is performed on all the data that is available
(figure 2.1(c)). Factor graph optimization and bundle adjustment are examples for
the latter [55,56]

Figure 2.1 illustrates the difference between a filter, MHE, and an optimization
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method acting on the same set of variables over time. xtm represents the actual
state observed at time tm and xtm |tn represents the value of xtm estimated at time tn.

(a) Filter based estimation (b) Moving horizon estimation

(c) Optimization based estimation

Figure 2.1: Filter based, moving horizon and optimization based estimation performed
on the same set of state variables. In the above figures, black colour indicates the
actual states vs time. In figure 2.1(a), every state is estimated at a time specific for
it and only one variable is estimated at a given time as indicated by the red coloured
points. Also, the estimations are made in the order the variables occur in time. In
figure 2.1(b), the red and blue rectangles indicate the estimation window (horizon) at
time tk and tk+1 respectively, while red and blue points indicate the estimations made
at tk and tk+1 respectively. Here, the points contained withing the estimation window
are estimated at the same instance. Hence, variables xt2 and xt3 are re-estimated at
time tk+1. In figure 2.1(c), red and blue colours indicate the estimates made during
the iterations n and n + 1 which occurs at times tk and tk+1 respectively. Here,
every variable is re-estimated within every iteration. Hence, variables xt0 - xt3 are
re-estimated
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Note
In the above figures, the positions of the points above the time-axis
do not reflect their values. The points are located within the figures
to maximize clarity. However, the positions along the time-axis do
reflect their position in time.

2.1.3 Metric vs Topological vs Semantic SLAM

In SLAM, a map can be loosely defined as a geometric representation of the landmarks
within a robot’s surroundings and the relationships among them. In general, maps
used for SLAM do not portray the geometric or visual attributes of the landmarks
itself. Instead, they indicate the boundaries of the objects present, space they occupy
in the surrounding or the positions of the landmarks, and the connectivity among
them. It serves as an aid for the robot to determine its position within its surroundings.
It also helps to identify the revisiting of locations that have already been visited once.
The latter scenario is known as loop closure.

Maps generated in SLAM are fourfold. They are metric maps, topological maps [57],
topometric (a hybrid of metric and topological maps also known as topological-metric)
maps [58], and semantic maps [59]. On the basis of the map involved, SLAM has
evolved into four sub-fields, namely Metric SLAM [60], Topological SLAM [61–63],
Topometric SLAM [64] and Semantic SLAM [65,66].

Metric maps (figure 2.2(a)) represent the environment exactly as it is in terms of
geometry. The distances, angles, shapes, areas, and other geometric information of
the environment are stored in the map. Topological maps represent the environment
as a collection of distinguishable landmarks at selected locations and the connectivity
among those. These are referred to as nodes and edges respectively. Topometric maps
use the best of both worlds by having their upper level as a topological map with their
nodes directed to metric maps at a lower level. Google maps are a well-known example
for this category (Depending on how it is used, Google maps can be considered as a
topological map as well). Semantic maps capture the geometric information in the
environment and classify them under semantic labels.
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Metric maps used for SLAM are either landmark-based maps or occupancy-grids.
Landmark-based maps represent the environment as a set of sparse landmarks. In
contrast, occupancy grids’ representation is in the form of a cluster of discrete cells,
each to which a probability of occupancy is assigned. They are more difficult to
build and maintain. The abundance of information in metric maps turns out to be
advantageous for tasks such as obstacle avoidance. But, it comes at the cost of large
storage requirements, increased search time, and prone to incorrect matches during
loop closure detection.

On the contrary, topological maps (figure 2.2(b)) are much simpler, compact, requires
less storage space, and scales better. The presence of topological information improves
the number of correct matches during loop closure detection with a reduction in search
time. In the presence of location priors, the search time can be reduced further.
Topological maps are often preferred in V-SLAM, in which loop closure detection
is based on vision-based place recognition. Although the lack of metric information
seems a disadvantage, topological maps have proven its practical applicability by
facilitating successful place recognition even with weak image data [67,68].

Semantic maps (figure 2.2(c)) are constructed by overlaying the geometric and visual-
appearance information of the objects in the environment onto a map built similar to a
metric map. The additional geometric information improves the accuracy of the map,
while the visual-appearance information makes it a better qualitative representation
of the surrounding. These maps are beneficial in applications for which the geometric
information contained in a traditional map may become insufficient.

Google Street View is a topological map spanning the entire earth. Google Indoor
Street View provides its users the freedom to create their indoor maps and uploading
them to the Google server. Thus, it can serve visual topological SLAM as a pre-
existing or third-party map. Google Street View and other third-party map-based
localization have been a topic of interest in recent literature [39,40,69]. A pre-existing
map eliminates the mapping module from the SLAM problem. It relieves a portion
of the computational burden imposed on the system providing it with more room
for accurate localization. Eliminating the mapping module transforms the SLAM
problem into a localization problem, i.e., finding the platform’s location, using the
sensor measurements, and a pre-existing map of the environment.
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(a) Metric map (b) Topological map

(c) Semantic map

Figure 2.2: Metric, topological and semantic maps of the same environment
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2.1.4 Graph-based SLAM

Figure 2.3: Structure of a typical factor graph

In graph-based SLAM [70], the robot’s trajectory is considered as a sequence of
distinct poses constrained via measurements obtained by various sensors (figure 2.4(a)).
The unknown robot poses or landmark positions are represented as the nodes of a
directed graph. The edges of the graph represent spatial constraints among the robot
poses and landmark positions. These graphs, in general, appear as factor graphs
(figure 2.3). A variant of this is a pose graph, in which the variables are the unknown
poses along the robot’s trajectory with factors denoting the constraints among poses
(figure 2.4(b)). Due to the similarity in the representation, topological maps suit well
for graph-based SLAM.

15



(a) Actual trajectory, odometry and landmarks

(b) Construction of the factor graph

Figure 2.4: The complete factor-graph process. In figure 2.4(b) the unknown robot
poses and known landmark positions are indicated by x0 - x5 and l0 - l4 respectively.
Although the constraints between x2-l1 and x2-l2 seems to be approximately equal,
in figure 2.4(a) x2-l1 is shorter than x2-l2. Thus, x2 is pulled towards l2 while being
pushed away from l1. During the solution process node x2 displaces to a position at
which this push-pull effect is neutral. In this process node x2 pulls nodes x1 and x3
towards l2 and away from l1. This is known as relaxation. The new positions of the
nodes represents the estimated poses of the robot. From figure 2.4(c) (page 17), it
can be seen that node x2 which experiences the highest number of constraints results
in the best estimate while node x4 which has no constraints other than odometry
experiences the highest deviation. Node x0 which is a prior is identical to the actual
robot pose.
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(c) Relaxation of a factor graph

Figure 2.4: The complete factor-graph process

Optimization techniques are used in solving/relaxing (figure 2.4(c)) graph-based SLAM
problems. Over the years a number of graph solvers GTSAM [71], Olson [72], TreeMap
[73], Square Root SAM [74], iSAM [75], TORO [76], Sparse Pose Adjustment [77],
iSAM2 [78], g2o [37], SLAM++ [79] and Ceres [80] have come into existence. Those
are capable of solving graphs with very large numbers of nodes (variables) within a
modest time that is suitable for robotic implementations. These algorithms are also
capable of receiving topological maps as inputs.

Note
For the rest of the thesis, all discussions related to SLAM will be
made in the context of visual topological SLAM.
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2.2 Overview of a visual-topological-SLAM system

Figure 2.5: Structure of a visual topological SLAM system

A graphical overview of a SLAM system is presented in figure 2.5. It can be seen,
that the architecture of a SLAM system, can be broadly classified into one of two
categories, namely the front end and the back end. The front end is responsible for
collecting data received from the sensors and fitting those into models that can be
used for MAP estimation in the back end. Also, the front end is responsible for taking
care of odometry. In the case of a wheeled robot, odometry can be achieved using the
wheel encoders, and in the case of an aerial platform, a VINS can be used to serve
the function of an odometer. The back end, on the other hand, performs inference
on the processed data, deriving estimations. The following is a detailed discussion of
the above.

2.2.1 The front end

The purpose of the front end is to capture the data received through the sensors,
extract relevant types and amounts of data, and abstract those into mathematical
forms that the back end can easily manipulate. It also handles the task of associating
the sensor measurements to landmarks in the surrounding, where necessary. This
task, in particular, is known as data association. In graph-based SLAM methods, the
front end is also responsible for constructing, updating, and pruning the graph as well
as estimating odometry factors using filters such as VINS, INS, and odometers. In
visual SLAM, the front end has to execute additional tasks such as feature extraction,
feature tracking, place recognition. Concerning optimization, the front end does the
job of initializing the estimator functioning in the back end.
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The data association task entails two distinct phases; short-term data association and
long-term data association [81]. Short term data association deals with consecutive
sensor data. Feature tracking and odometry belong to this category. In contrast, long
term data association connects freshly obtained measurements to previously identified
landmarks. This procedure is referred to as loop closure. It is the most crucial, yet it is
the most challenging step to accomplish. There often exists a feedback loop connecting
the back end to the front end, aiding the tasks such as loop closure detection, map
updating, and factor-graph construction.

2.2.2 The back end

The SLAM back-end [82] is where a solution to a factor graph is determined. As
mentioned earlier, the SLAM problem is formulated as a Maximum A Posteriori
estimation problem. Maximum A Posteriori refers to, the "set of variables that
maximizes their belief, for a given a set of measurements and priors". It can also
be described as the set of variables that the conditional probability of the variables
for a given set of measurements and priors is maximum. In the case of SLAM, the
variables are the robot poses and the landmark positions. In the case of localization,
the variables are only the robot poses. The prior knowledge and relative measurements
(between previous poses or landmarks) available are represented as the factors of
the factor graph. Once the measurement and motion models of the system are
known, the MAP estimation problem can be described as a least-squares minimization
problem, which can then be solved using an optimization algorithm such as Lavenberg-
Marquardt (LM) [83] or Powell’s Dog Leg (PDL) [84].

2.3 Visual topological localization

Vision-based topological localization and mapping method employ visual place recognition
as the mechanism for loop closure. A camera extracts useful visual information from
the environment, and then those are compared against a known set of information that
belongs to the same environment the robot navigates. Visual topological localization
and mapping has appeared in different forms depending on the type of feature descriptor
used, the detector- descriptor combination used, search method used, and by the kind
of third-party map employed for the purpose.
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Singh and Kosecka [85], in their work, have used the Generalized Search Tree (GiST)
descriptors with images of urban environments captured through an omnidirectional
camera. The panoramas they obtained are represented by four perspective images
with a Field of view (FOV) of 90◦. The gist descriptors of the panoramas are extracted
by applying the algorithm on these four images. They have introduced a novel
similarity measure for assessing the similarity between the image panoramas when
using the gist descriptor and evaluated its efficiency in loop closure detection. Murillo
et al. [86] have conducted a similar system by incorporating a version of gist descriptor
known as Omni-gist with catadioptric cameras. They have made improvements on
the similarity measure of the descriptors proposing a hierarchical topological mapping
and localization system. Rituerto et al. [87], in their work, have used Omni-gist for
semantic labeling in building indoor topological maps. They have classified the nodes
and the edges of the map as places or transitions, respectively. This place classifier
was later integrated with a Hidden Markov Model (HMM). Liu et al. [88] used a
dimensionality reduction on the Gist descriptor using Principal Component Analysis
(PCA), which improved the efficiency of the system. The loop closure detection was
based on a particle filter that used these descriptors for the update step. They have
shown that using only a few particles, a high recall at 100% precision can be achieved.

Liu et al. [89] applied the Fast Adaptive Colour Tags (FACT) descriptor for indoor
topological mapping using omnidirectional cameras. The observation that the vertical
edges in indoor environments divide the environment into meaningful cuts was used
to introduce a region descriptor known as a tag. It is dictated by the average color
value of each cut and the width of the region. These tags are then concatenated into
a vector known as a scene descriptor. The 2D Euclidean distance between the color
descriptors and recursive comparison among the region widths was used for scene
matching. The authors presented an upgraded version of FACT known as DP-FACT
in [90].

Milford et al. [91], in their work, presented a novel method named SeqSLAM, which is
based on Sum of Absolute Differences (SAD), which they showed invariant to weather
and over season changes. In [67], they showed that route recognition is achievable
even by using as low as few bits per image. They also conducted studies as to
how the length of the sequences affected the performance if SeqSLAM. Pepperell
et al. [92] proposed a method named Sequence Matching Across Route Traversals
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(SMART), which was better at handling substantial changes in perceptual change and
translational pose. This improvement was achieved through a development made to
seqSLAM by incorporating self-motion information and new image matching methods.

An exciting contribution is a work by Wu et al. [93]. They introduced a novel method
for loop closure, which they claim can detect loop closures in a map of 20 million
key locations. Surprisingly, the underlying methodology was a straightforward image
representation which was based on Gaussian smoothing and Otsu’s thresholding.

Among the recent work based on local descriptors, Zhang et al. [94] introduced a
method known as Bag-of-Raw-Features (BoRF). It was a scale based feature selection
method, where sets of such features that can be matched among consecutive images
provided a representation of a location. Nevertheless, this method had a drawback
that the number of features escalated with every added image, which was arduous
for the linear search process. The authors later had overcome this by introducing a
kd-tree-based indexing structure. Johns et al. [95] presented a method of constructing
maps spanning the space between nodal images by detecting landmarks across multiple
images. This method was capable of generating dense continuous topological indoor
maps without compromising speed. The authors also presented a probabilistic indoor
localization system based on the properties of the landmarks recognized.

Kawewong et al. [96] presented an incremental appearance-based SLAM method
known as PIRF-Nav, which was based on a novel type of features called Position-
Invariant Robust Features (PIRF), that the authors had invented as part of their
previous work [97]. Despite the improvements made, it had a significant setback in
terms of high computational cost. The work of Tongprasit et al. [98] too involved
PIRF, but with some modifications to improve computational cost. They came with
an improved SLAM algorithm called PIRF-Nav 2, which proved to be 12 times faster
than the original version, but with a minor decline in recall percentage. All the above
work on PIRF was based on omnidirectional images.

Valgren et al. [99] made an importing discovery while investigating on long-term
outdoor topological localization. In their comparison between SIFT and SURF, they
figured out that SURF was the better option for outdoor topological localization.
In a similar study, Ascani et al. [100] concluded that in terms of indoor topological
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localization, SIFT was the better option.

Bacca et al. [101] used a model that was influenced by human memory. The models
were implemented using Feature Stability Histogram (FSH), which records the frequency
in which each feature has been observed. An improved version of this is presented
in [102], applying it for SLAM.

Romero et.al [103] proposed a method based on Graph Transformation Matching
(GTM) for constructing topological maps. In this approach graphs of grouped invariant
features, extracted from image segments, are matched considering the description and
structure of the features.

Garcia et al. [104] proposed an appearance-based visual mapping and localization
method with a discrete Bayes filter running in its core. They came up with a
new image similarity measure based on the number of feature matches and the
associated distances. They improved the running time of their method by utilizing a
randomized kd-tree-based indexing system. The redundancies of the generated maps
were eliminated using a framework they presented in [105], which saved storage spaces
and boosted the speed of the localization system.

Upon understanding the pros and cons of each feature detector and descriptor, some
researchers have made attempts to use the best of both worlds by combining different
detectors and descriptors. Wang et al. [106] combined Harris-Laplace features and
Scale Invariant Feature Transform (SIFT) descriptors in creating a global descriptor
named Orientation Adjacency Coherence Histogram (OACH). Their approach was
creating two separate databases for OACHMoreover, SIFT, for coarse and fine localization,
respectively. The procedure was to isolate a set of candidate images during the
global localization phase and use those in the fine localization phase. The verification
step involved the typical RANSAC based fundamental matrix estimation. Another
approach by Chapoulie et al. [107] developed an outdoor loop closure detection algorithm
by using SIFT as local features and their distribution histogram as local features.
These were then merged within a Bayes filter to detect loop closure candidates.
This approach stands out from the rest since the images used in the localization
process were spherical. Similar work was carried out by Wang et al. [108], where they
combined Harris detector and SIFT the descriptor in their proposed local recognition
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system, which was instead designed for monocular cameras. Korrapati et al. [109]
presented an outdoor topological mapping module by usingVector of Locally Aggregated
Descriptors (VLAD), which allowed them to create maps consisting of over 11,000
images.

2.4 Visual place recognition

Visual Bag-of-Words based methods are another category under which localization
and mapping techniques can be studied. Bag-of-Words is a text-retrieval technique
that was adapted to robotics. It works by extracting features from images, retaining
only the feature descriptors by dropping the image representation, and quantizing the
descriptors into clusters to which a number is assigned. This number is referred to
as a visual word. Bag-of-Words is used as a technique for improving the execution
time of localization systems. By using kd-tree-based search methods and optimized
search methods such as Fast Library for Approximate Nearest Neighbors (FLANN),
the execution time can be improved further. Therefore, this concept has been adapted
in a considerable amount of work-related to localization [95,105,110–126].

A recent trend in localization is the use of third-party maps. A unique case among
these is the use of Google Street View. Although Google Street View has been used
for place recognition related research, to the best of our knowledge, Majdik et al. [40]
was the first of its kind in localization. They successfully conducted an outdoor
localization in an urban environment using a MAV. This study resulted in a couple
of crucial discoveries.

Although feature descriptors such as SIFT [127], Binary Robust Invariant Scalable
Keypoints (BRISK) [128] and Binary Robust Independant Elementary Features (BRIEF)
[129] are invariant to scale, rotation, and a certain degree of affine transformation, they
are vulnerable to large viewpoint changes (θ > 45◦). Due to the significant distortions
present in Google Street View images, those cannot be used directly in creating visual
vocabularies. Work in [40] provided a solution to this by using virtual views out of
the Street View images. Another observation was the issue of using RANSAC for
outlier rejection. The authors claim that algorithms such as RANSAC [130] works
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robustly, only for outlier ratios less than 50%. But, in the case of Google Street View,
the outlier ratio can be as high as 90%. They concluded that a solution to this is
to use modified versions of RANSAC such as Optimized Random Sampling Algorithm
(ORSA) [131] or Virtual Line Descriptors (VLD) [132].

Another application of Google Street View in localization is the work by Agarwal et
al. [39], in which they used a ground robot for metric localization. Their approach
was to download perspective images of known heading and FOV from Google Street
View images in such a way that the images did overlap at their boundaries and
spanned 360◦. They had used a Google provided Application Programming Interface
(API) [133] for this. Their solution was modeled a two-phase non-linear least squares
estimation, which resulted in sub-meter accuracy. Similar work can be seen in [42,43].

The method proposed in this thesis uses SIFT + BRIEF as the detector-descriptor
combination. SIFT features were chosen due to its invariance to translation, scale, and
rotation. BRIEF descriptor was chosen, as it is one of the fastest feature descriptors
in existence. Georgia Tech Smoothing And Mapping (GTSAM) library was used to
construct the factor-graph underlying the system since it is equipped with all the tools
necessary to implement the intended system.

To summarize, SLAM can be discussed under different branches based on the environment
of operation, the method of estimation used, the type of map used and graph-
SLAM. Visual-topological SLAM has become an interesting domain for many in the
research community over the years. A recent trend in this area is the use of third
party maps to eliminate the mapping module, converting the SLAM problem into a
localization problem. Several attempts have been made in utilizing Google street view
for localization. But these are mainly outdoor studies. Besides, the most successful
use of Google street view has been achieved for visual place recognition. However,
using Google indoor street view for visual-topological localization appears to be an
area that has not been adequately studied. The method proposed in this thesis is
to use visual place recognition and factor-graphs together with Google indoor street
view in developing an indoor localization system.
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2.5 Camera - Camera pose transformation

Shown in figure 2.6 are two tripods placed apart from one another, each to which
a camera is attached. T1, T2, C1 and C2 are the body-fixed frames of the tripod
1, tripod 2, camera 1 (mounted on tripod 1) and camera 2 (mounted on tripod 2)
respectively. Figure 2.7 provides a simplified version of figure 2.6 indicating all the
coordinate frames and the transformations among those.

Figure 2.6: Tripod 1 (Left), tripod 2 (Right) and the cameras

Figure 2.7: Coordinate frames and transformations

T1RT1,C1 , T1RT1,T2 , T2RT2,C2 , T1tT1,C1 , T1tT1,T2 , T2tT2,C2 , C1RC1,C2 and C1tC1,C2 are defined
as follows.

T1tT1,C1 - The position of C1 w.r.t T1 expressed in T1.
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T1tT1,T2 - The position of T2 w.r.t T1 expressed in T1.

T2tT2,C2 - The position of C2 w.r.t T2 expressed in T2.

C1tC1,C2 - The position of C2 w.r.t C1 expressed in C1.

T1RT1,C1 - The orientation of C1 w.r.t T1 expressed in T1.

T1RT1,T2 - The orientation of T2 w.r.t T1 expressed in T1.

T2RT2,C2 - The orientation of C2 w.r.t T2 expressed in T2.

C1RC1,C2 - The orientation of C2 w.r.t C1 expressed in C1.

The position and orientation of the cameras w.r.t to the tripods are known, and
the relative position and orientation of the tripod two w.r.t to tripod one can be
measured. Thus, the position and orientation of the camera two w.r.t the camera
one as expressed in camera 1 (indicated by the red color arrow in figure 2.6) can be
derived from equations 2.1 and 2.2 respectively.

C1tC1,C2 = C1tC1,T1 +C1 tT1,C1 +C1 tT1,C1 (2.1)
C1RC1,C2 =

(
T1RT1,C1

)T(T1RT1,T2

)(
T2RT2,C2

)
(2.2)

where,

C1tC1,T1 = −
(
T1RT1,C1

)T(T1tT1,C1

)
C1tT1,C1 =

(
T1RT1,C1

)T(T1tT1,T2

)
C1tT2,C2 =

(
T1RT1,C1

)T(T1RT1,T2

)(
T2tT2,C2

)

2.6 Equivalent intrinsic matrix

In the pinhole camera model shown in figure 2.8, θH is is the horizontal field-of-view,
θV is the vertical field-of-view, f is the focal length, WFOV is the horizontal field-of-
view in length units, dFOV is the object distance(distance to the object from the optic
center) in length units and W and H be the width and height of the image formed
respectively [70].
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Figure 2.8: Image formation in a pin hole camera model

From basic trigonometry,

tan
(
θH
2

)
=

W
2
f

= WFOV

dFOV
(2.3)

rearraging the terms,

f = W

2 tan
(
θH

2

) (2.4)

If the focal length of the camera is the same for both vertical and horizontal directions
(i.e. fx = fy), similar to equation 2.4,

f = H

2 tan
(
θV

2

) (2.5)

Thus, from equations 2.4 and 2.5, the constraint between θH and θV , for having the
same focal length can be derived to be that shown in equation 2.6.

θV = 2.tan−1
[(

H

W

)
tan

(
θH
2

)]
(2.6)

Let r =
(
H
W

)
be the aspect ratio of the image. Then, from equation 2.6,

θV = 2.tan−1
[
r.tan

(
θH
2

)]
(2.7)

Thus, the intrinsic matrix equivalent to a given image, K can be represented in matrix
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form, as shown by equation 2.8.

K =


f 0 cx

0 f cy

0 0 1

 (2.8)

where cx = W
2 and cy = H

2 .
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Chapter 3

Factor Graph

The success of a navigation system depends on its ability to utilize the available
measurements in combination with prior knowledge, producing an accurate estimation
of its current state. This chapter presents the process of correcting the trajectory
traced by a robot, that is different from the actual trajectory due to sensor noises and
odometer drift. The problem is very similar to a PoseSLAM, except for the availability
of a pre-constructed map.
Here, an overview of factor graphs is presented, which is to be followed by a couple
of underlying principles of factor-graph based methods. Next, a detailed discussion
of the followed procedure is presented, followed by its algorithm structure. Then,
two custom-built simulators are presented which is succeeded by the results of the
simulations conducted through each of them, and the conclusions rested upon those.
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3.1 Introduction

3.1.1 Bayesian Networks

Figure 3.1: Bayes’ net of a general SLAM problem

Bayes net is a directed graphical model in which nodes represent variables θj. If an
entire set of random variables of interest is denoted by Θ = {θ1, θ2, . . . θn}, a Bayes
net defines a joint probability density p(Θ) over the entire set Θ is given by,

p(Θ) ,
∏
j

p(θj|πj) (3.1)

where p(θj|πj) is the conditional density associated with node θj and πj is the assignment
of values to the parents of θj. Factorization of the joint density can be achieved by
exploiting the graph structure (the node-parent relationship). For a SLAM problem
the random variable of interest are Θ = {X,Z}, where X is the unknown poses and
landmarks and Z are the measurements. Thus, the joint density p(X,Z) can be
represented as a product of conditional densities.
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p(X,Z) = p(x1, x2, . . . xn, l1, l2, . . . , lm, z1, z2, . . . , zk)

= p(x1)p(x2|x1)p(x3|x2) . . . p(xn|xn−1)

× p(l1)p(l2) . . . p(lm)

× p(z1|x1)

× p(z2|x1, l1)p(z3|x2, l1) . . . p(zk|xn, lm) (3.2)

The factorization shown in equation 3.2 represents four distinct types factors.
p(x1)p(x2|x1)p(x3|x2) . . . p(xn|xn−1) is a Markov chain on x1, x2, . . . , xn. The conditional
densities p(xt+1|xt) can represent either prior knowledge or can be derived through
control inputs. p(lm) on the landmarks are Prior densities. This is an important factor
in cases where a prior map is available, but can be ignored if not. The conditional
denisty p(z1|x1) corresponds to the absolute pose measurement of the first pose x1.
This ties the graph structure to the physical environment preventing a floating graph
structure. It does not necessarily have to be the first pose measurement although in
most of the practical cases it is. p(z2|x1, l1)p(z3|x2, l1) . . . p(zk|xn, lm) represents the
bearing factors on the landmarks l1, l2, . . . , lm from the poses x1, x2, . . . , xn

3.1.2 Factor Graphs

Figure 3.2: Factor graph of the Bayes net in figure 3.1
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A factor graph is a graph structure that represents unknown variables connected to
factors that encode probabilistic information. Factor Graphs can be used to represent
the joint probability as a product of factors. They can be used to represent any
factored function over a set of variables. Generally, any Bayes net can be converted
into a factor graph.

In Factor graphs, unkonwn variables (Poses and landmarks) and measurements are
represented using two distinct types of nodes. Factor graph is a bipartite graph
F = (U ,V , E) with two types of nodes which are factors φi ∈ U and variables xj ∈ V .
Edges eij ∈ E always lie between a facor node and a variable node. The set of
variable nodes adjescent to a factor φi is denoted ny N (φi). The factorization of a
global function φ(X1, X2, X3, . . . , Xn) by a factor graph can be represented as follows.

φi(X1, X2, X3, . . . , Xn) =
∏
φi(Xi) (3.3)

The Maximum A Posteriori inference on a factor graph, is to maximize the product
given by equation 3.3, which is nothing but the value of the factor graph.
Thus, similarly equation 3.2 can be rewritten as a factor graph factorization as in
equation 3.4.

φ(l, x) = φ(x1)φ(x2|x1)φ(x3|x2) . . . φ(xn|xn−1)

× φ(l1)φ(l2) . . . φ(lm)

× φ(z1|x1)

× φ(z2|x1, l1)φ(z3|x2, l1) . . . φ(zk|xn, lm) (3.4)

where, φ(l, x) , φ(l1, l2, . . . , lm, x1, x2, . . . , xn)
The mathematical formulation of the 2D Pose SLAM problem can be divided into
four parts: Derivation of the measurement function, formulation of SLAM as an
optimization problem, Linearization, and Solving.

3.1.3 PoseSLAM

In PoseSLAM [71], the concern is regarding all the poses in the trajectory of the
robot that needs to be reconstructed. In such cases, typically, two types of factors
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are involved: unary factors and binary factors. Unary factors depend only on the
current pose, whereas binary factors depend on two successive poses. Pose priors
and absolute pose measurements such as GPS are examples of unary factors, while
relative pose constraints derived through vision and odometry are examples of binary
factors. In the factor graph shown in figure 3.3, f0(x1) represents a unary factor.
It is an absolute measurement and anchors the factor graph to the physical world.
Such factors are known as prior factors. Factors represented as f(xt, xt+1) are relative
measurements obtained through odometry. An important constraint in a PoseSLAM
problem is the loop closure. In figure 3.3, this is denoted by f(x5, x2). It occurs when
the robot recognizes a previously visited location through vision or laser range finders
and computes the pose constraint between the initial and current poses.

Figure 3.3: The trajectory which was optimized using unary factors.

The objective function of a PoseSLAM encodes both the measurement model and the
motion model of the system, and can be written as,

Ξ∗ = argmin
Ξ

∑
i

‖h(xi) +Hiξi − z‖2
Σ

+
∑
k

‖g(xi, xj) + Fiξi +Gjξj − z‖2
Σ

 (3.5)

where Ξ , {ξi} is the set of incremental pose coordinates, h is the unary measurement
function, g is the binary measurement function, and Hi, Fi and Gj are the respective
jacobians.
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The solver minimizes the objective function over local coordinates of all the poses to
determine the optimal value for Ξ.

3.2 Preliminaries

3.2.1 The measurement function

Consider two poses ξ1 = (x1, y1, θ1)T and ξ2 = (x2, y2, θ2)T . Let ∆ξ = (∆x,∆y,∆z)
be the relative pose measurement resulting from the difference between ξ1 and ξ2.
Also, let ξ1, ξ2 ∈ GL(3). Let,

Tw1 =
R1 t1

0 1



Tw2 =
R2 t2

0 1


where the translation ti = (xi, yi) and the rotation matrix Ri,

Ri = Rot(θi) ,
cos(θi) −sin(θi)
sin(θi) cos(θi)


The relative pose between ξ1 and ξ2 is,

T 1
2 = (Tw1 )−1Tw2

=
R1 t1

0 1

−1 R2 t2

0 1


=

RT
1 −R1t1

0 1

−1 R2 t2

0 1


=

RT
1R2 RT

1 (t2 − t1)
0 1

−1

From RT
1 = Rot(−θ1) and RT

1R2 = Rot(θ2 − θ1), the measurement function h(ξ1, ξ2),

∆̂ξ = h(ξ1, ξ2) =
Rot(−θ1)(t2 − t1)

θ2 − θ1

 (3.6)
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Thus, equation 3.6 can be used to used to determine the relative pose measurement
between ξ1 and ξ2 when imposing constraints among them.

3.2.2 SLAM as an optimization problem

Suppose there are many relative pose measurements, ∆ξi. To determine the optimal
set of poses, the following objective function can be defined.

E(X) = 1
2
∑
i

‖h(ξ1, ξ2)−∆ξi‖2 (3.7)

where ∆ξi is the measured relative pose beteween ξ1, ξ2.
By minimizing this cost function the optimal set of poseX = {ξj}nj=1 can be determined.

3.2.3 Linearization

The cost function 3.7 cannot be optimized as it is due the non-linear nature of h(, ).
Thus, using Taylor series expansion h(, ) can be linearized as shown below.

h(ξ1 ⊕ δ1, ξ2 ⊕ δ1) = h(ξ1, ξ2)⊕ {H1δ1 +H2δ@} (3.8)

where δ1, δ2 ∈ R3 are pose updates and H1 and H2 are 3 × 3 Jacobian matrices, where
as ξ ⊕ δ is defined in the coordinate frame of ξ such that,

ξ ⊕ δ =
t+Rot(θ)δt

θ + δθ


Rot(θ + δθ t+Rot(θ)δt

0 1

 =
Rot(θ) t

0 1

Rot(δθ) δt

0 1


It can be shown that the Jacobians,

H1 =
RT

2R1 Rot(−π
2 )RT

2 (t1 − t2)
0 1

 (3.9)

H2 =
I 0

0 1

 (3.10)
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3.2.4 Solution

From equations 3.8 and 3.7, a linar objective function of δ , E(δ) can be derived.

E(q) = 1
2
∑
i

‖h(ξj1, ξj2) +Hj1δj1 +Hj2δj2 −∆ξi‖2

= 1
2
∑
i

‖Aiδ − bi‖2

= 1
2‖Aδ − b‖

2

where A3m×3n is the measurement Jacobian matrix such that

A = [ A1 A2 . . . Ai . . . An ]T

where Ai is a 3 × 3m matrix such that,

Ai = [ . . . Hj1 . . . Hj2 . . . ]T

and b is a 3m × 1 matrix consisting of n no. of 3 ×1 prediction errors bi where,

bi = h(ξj1, ξj2)−∆ξi

Two popular optimization algorithms are used to solve problems of this nature: LM
optimizer and the PDL optimizer. In general PDL is a better option than LM since
the computational cost of LM algorithm increases if a step gets rejected. However, on
the other hand, for applications where the system is under-constrained (insufficient
measurements) or numerically poorly constrained, LM is a better option [71].
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3.2.5 Covariance ellipsoid

Figure 3.4: Semi-axes of an ellipsoid

Let WΣ be covariance matrix for the position of the robot expressed in the world frame
and σx, σy, σz be the standard deviation in position along X, Y and Z coordinate axes
respectively.

WΣ =


σx

2 σxσy σxσz

σyσx σy
2 σyσz

σzσx σzσy σz
2


An axis aligned origin centered ellipsoid can be geometrically represented as,

(
x

a

)2
+
(
y

b

)2
+
(
z

c

)2
= 1 (3.11)

where a, b and c be the semi-axis lengths(radii) along X, Y, Z axes respectively(figure
3.4). If the ellipsoid represents positional uncertainty, the semi-axis lengths will be
the standard deviations parameterized by a scale factor k.

∴
(
x

σx

)2
+
(
y

σy

)2

+
(
z

σz

)2
= k (3.12)

Here, k is referred to as the Mahalanobis radius of the ellipsoid. Since k is the sum
of the squares of three Gaussian distributed data samples, if follows a chi-square(χ2)
distribution. Thus, the value of k corresponding to a confidence of p satisfies

P (z > k) = p (3.13)

with the number of degrees of freedom equal to 3 [134]. It can also be shown that the
eigenvalues of it give the semi-axis lengths of the covariance ellipsoid for an unscaled
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covariance matrix. In contrast, the directions of its axes are given by the corresponding
eigenvectors.
Therefore, if the eigenvalues and eigenvectors of WΣ are λ1, λ2, λ3 and v1, v2, v3

respectively, the semi-axis lengths of the covariance ellipsoid of WΣ for a confidence
of p are given by k.

√
λ1, k.

√
λ2 and k.

√
λ3 and its orientation can be represented by

the rotation matrix [v1 v2 v3]T .
If the covariance matrix of the robot position is expressed in the body frame as BΣ
and the robot’s orientation at that position with respect to the world is WRB, then,
WΣ and BΣ are related as shown by equation 3.14

WΣ = (WRB) (BΣ) (WRB)T (3.14)

3.3 Methodology

The approach taken relied on a couple of requirements. First, the existence of a pre-
constructed map was assumed. Next, it was assumed that the starting position of the
robot is known. In terms of measurements, the existence of odometric measurements,
either by wheel encoders of a VINS, was assumed. For the simulations, a trajectory
similar to that of figure 3.5 was used. These contributed to the factor graph as prior
factors and between factors, respectively.

First, a non-linear factor graph comprised of map nodes and robot poses was created.
These can be seen in figures 3.7 and 3.8 respectively. The graph was initialized
with the robot poses with appropriately tuned odometer noise figures to simulate the
drifted odometer path. These were utilized to initialize the factor graph to simulate
the robot motion with odometric measurements.
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Figure 3.5: The trajectory used in simulations

In order to enforce a correction on the robot trajectory, some form of feedback is
required. Given the fact that not many sensors are reliable for indoor applications
and operate indoors and outdoors alike, a camera is used to obtain visual feedback
of the robot’s location. The visual feedback is passed through the place recognition
algorithm discussed in chapter 4 and the map node to which it shows the closest
resemblance is identified. The essential matrix constraint was identified as the most
appropriate constraint that would tie up visual feedback between a map node and
a robot pose since this is one of the more straightforward means of achieving this
without solving for the structure, i.e., the map.

The relative translation being up to a scale does not affect at all since the Essential
Matrix Constraint in GTSAM, uses the translation unit vector and not the translation
vector by itself.

Although prior factors, between factors and initial values, are added at every node
along the way, that is not the case for the Essential Matrix constraint. Since its
purpose is not to define the connections among the nodes of the graph, but to tie the
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robot poses to the map nodes, taking visual feedback at every couple of nodes seems
more than sufficient(figure 3.9).

Overall, the factor graph functions as follows. The factor graph begins by adding
all the pre-known map nodes , defining their poses as prior factors, and then adding
the starting pose of the robot as a prior factor, for both of which the noise models
are predefined. Next, it initializes the map nodes and the starting pose of the robot.
Then, as long as the robot is moving and the sensor information is available, it keeps
adding nodes at robot poses and initializing them at frequent intervals, while defining
between factors among consecutive nodes. The decision to add a node is based on
whether the robot has traveled a threshold distance or turned by a threshold angle,
relative to the previous consecutive node. At predefined intervals, an image is captured
through the robot’s camera, which is then passed onto the place recognition system.
The place recognition system determines the map node closest to the current robot
pose, as described in chapter 4. The essential matrix between the captured image and
the Street View image of the closest node is computed using SFM (Figure 3.6). By
decomposing this essential matrix, the relative pose between the map node’s camera
and the robot’s camera is determined. This pose is then transformed into a pose
between the robot and the map node. Using this relative pose an Essential Matrix
Constraint is established between the two. As soon as this step is completed, the
factor graph is solved, and the corrected robot poses are determined.

40



Figure 3.6: Establishing an essential matrix constraint between the robot and the map
using SFM. B1 and B2 are two robot poses as determined using odometry. OB1B2 is
the odometry between B1 and B2. M1 and M2 are the map nodes closest to B1 and
B2 respectively. B′2 is the ground truth of pose B2. P1-P6 are the triangulated feature
points between the respective image views.

3.4 The Algorithm

The procedure discussed under section 3.3 can be represented as an algorithm as
presented in algorithm 3.1 below.
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Algorithm 3.1 Factor Graph
Require: Map - the set of map poses

Odom - Odometry data
Cam - Camera image feed
NM - Noise models of Map, Odom and Cam

1: create FG . Create non-linear factor graph
2: FG prior factor←−−−−−−−−− Map nodes . Add map nodes as prior factors
3: FG prior factor←−−−−−−−−− Robot initial pose . Add robot’s initial pose as a prior factor
4: initialize FG . Define initial values for map nodes and the robot pose
5: Nrobot poses ← 0
6: while (Odom & Cam & NM are avaialable) do
7: d ← Odom . Calculate translation w.r.t previous pose
8: θ ← Odom . Calculate rotation w.r.t previous pose
9: if (d ≥ dthresh or θ ≥ θthresh) then

10: FG Pose←−−−−− Robot pose . Add the robot’s current pose
11: FG between factor←−−−−−−−−−−− (d,θ) . Add the relative pose between the current

and previous poses as a between factor
12: initialize FG . Define an initial value for the new robot pose
13: Nrobot poses ← Nrobot poses + 1
14: end if
15: if (Nrobot poses = 5) then
16: image ← Cam . Capture an image from the robot’s camera
17: Place Recognition System ← image
18: Essential_Mat ← Place Recognition System
19: Cam1PoseCam2 ⇐ Essential_Mat . Extract the relative pose between the

map and robot cameras
20: RobotPoseMap ⇐ Cam1PoseCam2 . Compute the relative pose between

the robot and the closest map node
21: FG essential matrix constraint←−−−−−−−−−−−−−−−−− RobotPoseMap . Add the relative pose as an

essential matrix constraint
22: calculated robot poses ← solve FG
23: return calculated robot poses
24: Nrobot poses ← 0
25: end if
26: end while
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3.5 MATLAB simulator

In order to verify the concept described under section 3.3, a simulation study was
carried out. For that, a simulator was created. MATLAB became the choice for this,
for several reasons.

1. It is easier to work with in comparison to other options.

2. It is easier to debug the systems in MATLAB.

3. It has many options for visualization with a variety of built-in drawing and
plotting tools.

4. A MATLAB wrapper for the GTSAM library was already available which has
built-in functions for visualization

The map discussed under section 4.5.1 was generated in MATLAB as shown in figure
3.7. The robot trajectory once reproduced in MATLAB, appeared as in figure 3.8.
The procedure discussed under section 3.3 was executed just as explained, with the
only exception being the Essential Matrix Constraint. Once this was completed, the
factor graph resembled that shown in figure 3.9.

Figure 3.7: The map of Memorial University of Newfoundland (MUN) Engineering
basement as seen in the MATLAB simulator
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Figure 3.8: The hypothetical robot trajectory as seen in the MATLAB simulator

Figure 3.9: The complete factor graph as seen in the MATLAB simulator

The exception mentioned earlier was due to the absence of the Essential Matrix
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Constraint in the MATLAB wrapper for GTSAM at the time. It was mitigated by
utilizing the Between Factor. According to the GTSAM documentation, the Essential
Matrix is parameterized similar to Pose3, with the translation being a unit vector.
The relative pose between the map and robot nodes were placed between the two
nodes, as a between factor. It is not entirely accurate but serves its purpose in proving
the concept. Since place recognition was tested on its own as a separate system, this
step was bypassed using manually generated Essential matrices. The simulator was
initially developed as a 2D simulator, but once things were adequately figured out, it
was upgraded into a 3D simulator.

3.6 ROS C++ simulator

GTSAM has a complete and well-established library written in C++, which comprises
all the necessary data types and factors, including the Essential Matrix constraint.
The limitations of the MATLAB version discussed under section 3.5 compelled testing
the system in C++ as well. After figuring out the structure of the system using
MATLAB, a similar simulator was developed using C++. A fundamental limitation
of C++ is the lack of visualization tools. Neither did the C++ version of GTSAM offer
any options for visualization, unlike its MATLAB counterpart. Thus, the attention
was turned towards Robot Operating System (ROS) for the following reasons.

1. A catkin wrapper for GTSAM was available.

2. ROS has a visualization tool(rviz) with numerous features.

3. The simulator can later be converted into implementation with minimal modifications.

Initially, the simulation that was conducted in MATLAB was replicated line-for-
line in ROS kinetic C++. Once the things were figured out such that the results
produced were identical to those by the MATLAB simulator, the between factors
simulating the Essential Matrix constraints were replaced by actual Essential Matrix
constraints. Once everything was in order, the simulator has upgraded a level by
making it modular. The critical steps in the factor graph process were separated
into individual nodes to function parallelly. The nodes were connected through ros-
topics. Important repetitive tasks, such as the addition of factors and solving the
factor graph, were introduced as ros-services. When necessary, they are triggered by
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sending service-requests to the servers. A central node was set in charge of handling
the complete system. A schematic of the upgraded system is presented in figure 3.10.

Figure 3.10: The schematic of the ROS C++ simulator

This upgrade proved useful for the following reasons.

1. The nodes can be reconfigured without impacting the rest of the system
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2. New sensors and functionalities can be added to the system without sabotaging
the existing system

3. The system can be easily extended onto a robotic platform, with minimal
changes

4. Debugging the system becomes comparatively easier.

The rosgraph of the simulator is shown in figure 3.11

Figure 3.11: rosgraph of the simulator

The Visualizer

Although ROS has a visualization package(rviz) and the data types necessary for
visualization, a custom visualizer that meets the requirements had to be created from
scratch. Using the basic shapes from the ros-visualization-msg package, geometries
from the ros-geometry-msgs package, geometric operations (such as transformation,
rotation, angle conversions) from the ros-tf package and the sensor datatypes from
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the ros-sensor-msgs package, a visualizer that is capable of displaying the map, robot
trajectory, odometer, visual feedback, camera image feed and the solution to the factor
graph, including the poses, connections and covariance ellipsoids were created. The
ros-graph of the visualizer is shown in figure 3.12.

Figure 3.12: rosgraph of the visualizer
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The Covariance Ellipsoids

Although the visualization tools in ROS provided a couple of options for visualizing
covariance ellipses, it does not provide an option to visualize multiple ellipses. Hence,
a custom covariance ellipsoid feature had to be developed. The MATLAB version of
GTSAM included an option for plotting 3D trajectories together with the covariance
ellipsoids. The MATLAB function for plotting the mentioned covariance ellipsoids
was used as a reference [135]. ros-visualization-msgs and ros-ecl-statistics packages
were used in the process. The ellipsoids are scaled to represent a 3σ(3 standard
deviations) confidence boundary, which corresponds to 99% uncertainty. The scaling
factor for 99.74% uncertainty was found to be 11.82 [136].

Figure 3.13: The covariance ellipsoid as seen in the ROS simulator

3.7 Results

3.7.1 MATLAB simulation

The result of the MATLAB simulation is presented in figure 3.14. It can be seen
that, for the most part, the solution to the factor graph closely resembles the actual
trajectory. Thus, it supports the proposed concept of factor graph and place recognition
based indoor localization.

49



Figure 3.14: Solution of the factor graph

3.7.2 ROS C++ simulation

A graphical comparison of the ground truth and the odometry of the simulated
trajectory is presented in figure 3.15. It represents the drift in odometry in comparison
to the ground truth. Essential Matrix Constraints were added to the factor graph at
every other robot pose along the robot’s trajectory and are represented by the red
color arrows shown in figure 3.16, connecting a robot pose to its relevant node in the
map.

Figure 3.18 provides a visual comparison between the ground truth and the solution to
the factor graph. The solution is in good agreement with the ground truth. The error
ellipsoids corresponding to the solved poses represents a confidence region of 99%. It
can be observed that the actual robot poses lies within the confidence region of the
solved robot poses. It signifies that, with the proper essential matrix constraints, the
factor graph estimates the actual robot pose with significant accuracy. The degree of
correction on odometry drift by the factor graph is shown in figure 3.17.

Table 3.1 presents a quantitative picture of the localization process. The maximum
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error in position is close to 2 m, a significant contributor to this could be the last robot
pose (45th pose), which is constrained only through odometry. A similar explanation
can be provided regarding the maximum error in orientation as well. The Root Mean
Square Error (RMSE) for both position and orientation is less than 1 m and 2◦,
respectively. If necessary, these errors can be further reduced by utilizing better
quality equipment in the case of practical implementation.

Figure 3.15: Odometry (orange) and ground truth (blue)
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Figure 3.16: Robots poses (orange), map nodes (black) and Essential Matrix
Constraints (red arrows)

Figure 3.17: Odometry (orange), ground truth (blue) and the solution[1] (green)
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Figure 3.18: Ground truth (blue) and the solution (green)

Figure 3.19: Error ellipsoids for a confidence of 99% (3 standard deviations)

[1]The solution is almost invisible since it overlaps with the ground truth
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Table 3.1: Overall localization error

Error Position (m) Orientation (◦)

Min 0.0195 0.001 24

Max 1.836 11.183

RMSE 0.906 1.683

3.8 Conclusion

The MATLAB simulation result shown in figure 3.14 suggested that using factor
graphs and place recognition for indoor localization is possible. However, since this
simulation’s objective was to understand the behavior of the factor graph, a separate
place recognition system was assumed. It can be seen that the uncertainty of the
solved poses gradually increases halfway along the robot’s trajectory and gradually
decreases as the robot completes the loop. It can be seen that the uncertainty along
the Y-axis has propagated faster than that along X-axis and Z-axis. It is due to
the yaw of the robot being the only rotation, whereas the roll and pitch along the
trajectory are assumed to be zero. It can also be seen that the solution to the factor
graph shows a deviation from the actual trajectory[2] towards the beginning and the
end. There are a few possible causes for this. The factor graph is pivoted near map
node 3, although the trajectory begins at map node 1. Hence, the solution is fixed at
node 3. Visual feedback constraints are added at every fifth node. The result could
have been better if more constraints were added. The starting point of the trajectory
is not constrained despite it been a prior. Finally, a loop closure constraint has been
added between nodes 47 and 3. However, according to the odometry of the robot, the
loop is not closed. In satisfying all of the above constraints during optimization, the
solution might have deviated from the actual.

However, for the ROS C++ simulation, the factor graph is pivoted at node 1. Visual
feedback constraints between robot poses and map nodes are added at every other

[2]The actual trajectory begins at map node 1, goes through node 3, and completes an anti-
clockwise loop returning to node 3.
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node, and no loop closure constraint is added. Besides, the trajectory used for the
simulation is much more accurate than that used for the MATLAB simulation. It
is because the former was derived via a simulation whereas the latter was derived
hypothetically.
Hence, the results for the ROS C++ simulation is much more consistent and closely
resembles the robot’s trajectory.

The uncertainty along the trajectory in the ROS C++ simulation has propagated
along the X-axis compared to the MATLAB simulation. The reason for this might
be the uncertainty of the essential matrix constraint added. Since the translation
component of the essential matrix is correct only up to a scale, the uncertainty along
the direction of translation (in this case the X-axis) is comparatively higher.

Throughout the first half of the trajectory, the uncertainty ellipsoids at the nodes
where the visual feedback constraints are added, are very small and slim. However,
throughout the rest of it, a stark difference in size and shape can be seen. Although
the result has not been significantly affected by this, it is worthwhile looking into.

The uncertainty of the last pose is the largest as the only constraint on it is the
between factor with its previous pose.
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Chapter 4

Place Recognition System

An essential step in the provision of visual feedback is establishing a clear sense of the
current position. In robotics literature, this process is termed as Place Recognition.
This chapter provides an overview of Place Recognition, followed by the preliminaries
of place recognition. Next, the proposed place recognition system is presented in
detail. Finally, the results of the conducted tests are presented, followed by the
conclusions that were derived upon those.

4.1 Introduction

Place recognition also known as Place Localization has been an active research area
for years due to its potential applications in numerous domains of engineering.
There are two main methods for image retrieval process: Brute-force method and the
Visual BoW [137] method. In the brute-force method, each query image is compared
with each reference image available in the database for visual similarity. The accuracy
of this method is very high and results in the best accuracy that can be achieved by
any image retrieval method. The downside of this method is the high computational
cost and the time associated with the retrieval process. Also, both the computational
cost and the retrieval time increases linearly with the number of reference images.

Visual BoW is a popular image representation method where feature descriptors are
used to denote salient features that occur in an image. This method has gained
popularity due to its simplicity and the improvement in the speed of the comparison
process. The general practice is to quantize these descriptors into clusters and assign a
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Figure 4.1: Schematic of a typical place recognition system

label to each cluster known as the Visual Word. The advantage of doing this is that it
improves the speed of comparison at a slight loss of accuracy. However, the drawback
is that the quantization errors (due to quantization artifacts during clustering), creates
a potential for error in the retrieval process. These errors may even cause perceptual
aliasing. Using smaller bin sizes and using raw features as visual words are two ways
of minimizing this issue.

Two kinds of images are involved in the retrieval process, namely, reference images
and query images (query images used that are used for testing are referred to as
test images). Reference images refer to a set of pre-existing images that represents
the environment of interest. These images can be perspective, omnidirectional, or
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equirectangular. It is against the reference images that a query image is compared to
estimate the location that it represents in a map. A query image is an image of an
environment, captured using the active camera (the camera that is handheld or fixed
onto a robot, which is used to capture images of the environment it exists), of which
the location while capturing the image needs to be estimated for a map of the same
environment.

The retrieval of images that match a given query image can be done either through
a linear search or tree data structure. Linear search algorithms (e.g., search using
the inverted table [40]) shows better accuracy at the cost of computation time. On
the other hand, using tree data structures result in fast algorithms at a slight cost
of accuracy. K-d tree is the most used tree structure for image retrieval due to its
simplicity. Both online and offline k-d trees can be seen in applications. Online k-d
trees build the tree simultaneously with the localization process. Offline k-d trees
build the tree before the localization process begins.

The objective here is to predict the node of the pre-existing map , which is closest to
a given query image. The approach taken here is "brute force," i.e., each query image
is compared with every reference image. The set of reference images comprises 30
equirectangular street view images that correspond to the 30 nodes of the considered
map. The comparison is performed through the extraction and matching of image
features by using the SIFT detector. The preferred feature detector-descriptor combination
is SIFT detector with BRIEF descriptor. SIFT features are preferred due to its
invariance to translation, scale, and rotation. BRIEF descriptors are preferred over
other options as they are faster and performs better in matching, due to its series of
optimizations.

4.2 Preliminaries

4.2.1 Performance Indicators

In literature, the performance of classification algorithms is evaluated using several
indicators. The performance of the place recognition system was evaluated using
precision, recall, and F1-score. These indicators are calculated from specific values
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related to a data point of interest extracted from the confusion matrix of the classification.

Confusion Matrix

The confusion matrix of the place recognition test takes the following form.

Table 4.1: The confusion matrix of the place recognition test

Node 1 Node 2 . . . Node n

Node 1 c1,1 c1,2 . . . c1,n

Node 2 c2,1 c2,2 . . . c2,n

... ... ... . . . ...

Node n cn,1 cn,2 . . . cn,n

As shown in table 4.2, from the Confusion Matrix shown under table 4.1, four
parameters can be defined with regards to a node of interest, node i.

Table 4.2: The confusion matrix of Node i

Node i Not Node i

Node i TP FN

Not Node i FP TN

True Positives(TP) Total number of test images from node i, that has been
classified under the node i.

False Positives(FP) Total number of test images from all other nodes, that has
been classified under the node i.
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True Negatives(TN) Total number of test images not from from node i, that has
not been classified under node i.

False Negatives(FN) Total number of test images from node i, that has not been
classified under the node i.

Accuracy

Accuracy indicates the number of true classifications as a fraction of the total number
of classifications. The total number of true classifications contains consists of both
true positive predictions and false-negative classifications. Hence, accuracy alone does
not represent a fair indication of performance.

Accuracy = TP + FN

TP + FN + FP + FN
(4.1)

Precision

Precision indicates the number of actually positive classifications (True Positive) as a
fraction of the total number of positive classifications. The total number of positive
classifications consists of both True Positive and False Negative classifications.

Precision = TP

TP + FP
(4.2)

Recall

Recall indicates the number of actually positive labels as a fraction of the total number
of positive labels.

Recall = TP

TP + FN
(4.3)

F1 Score

F1 Score is the Harmonic mean between precision and recall values. The following
formula defines the F1 Score.

F1 Score = 2×Recall × Precision
Recall + Precision

(4.4)
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4.3 Methodology

4.3.1 Brute force place recognition algorithm

First, a maximum of 100 feature points of the query image is extracted and are
matched against the feature points of every reference image. It is followed by Lowe’s
ratio test[1] on every feature match. By the end of this step, only the strong feature
matches are retained, and the rest is filtered out. Next, the five reference images that
exhibit the highest number of strong feature matches are chosen as putative matches.
As the number of images chosen as putative increases, the possibility of the correct
match being a putative too increases. However, with a higher number of putative, the
computational cost increases unnecessarily. Hence, the number of putative images
should be chosen such that an acceptable trade-off between the two is established.
Thus, the number of putative images was empirically determined as five.

Table 4.3: Thresholds used for RANSAC

Parameter Value

Confidence threshold(%) 99.9

Max. re-projection error(px) 1

Maximum iterations 2000

Next, a second stage verification is performed on the putative matches, where a
RANSAC based homography check is conducted on each putative match, and the
number of inliers is determined. The parameters and values used for RANSAC
are presented in table 4.3. The geometric similarity between the two images is
assessed using the 5-point algorithm [138], which is faster and more accurate than
the widely used 8-point algorithm [139]. It requires a minimum of five points for a
successful calculation. But, the more points used, the better the result gets. However,
setting a significantly high value as the minimum threshold for the number of inliers

[1]The best match and the second-best match of each query feature (feature points of the query
image) are compared with one another based on distance. If the best match is 0.7 (as empirically
determined by David.G.Lowe in [127]) times closer than the second-best match, then the best match
is considered to be a strong feature match. Otherwise, it is considered a weak feature match.
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is impractical since it may end up rejecting specific images that display sufficient
geometric resemblance. Thus, ten was empirically determined as a suitable minimum
threshold, i.e., a putative match qualifies as a valid match only if it comprises a
minimum of 10 inliers. For those putative matches that qualify, a similarity score is
calculated using equation 4.5.

Similarity score = 2× no. of inliers
no. of images + no. of matches

(4.5)

Then, the putative matches that score less than a pre-determined threshold are filtered
out. Out of the remaining, the node corresponding to the putative match, which
records the highest similarity score is predicted as the node closest to the considered
query image.

The place recognition system was tested for outdoor and indoor environments using
snippets[2] from outdoor and indoor street view images, respectively. Snippets of
varying sizes were selected so as not to capture similar regions of the images. e.g., the
sky, which is visually consistent within an image as well as between images.

As the outdoor test dataset, a total of 300 snippets comprised of 10 snippets from
each outdoor street view image were used. The snippets are well illuminated, have no
self-similar structures, and have a significant amount of unique features. Hence, this
dataset helped assess the performance of the place recognition system under more
favorable conditions.

As the indoor test dataset, a total of 1470 snippets comprising 30 snippets from each
indoor street view image were used. These snippets contain illumination variations,
repetitive and self-similar structures, and lack unique features. Hence, this dataset
helped in assessing how the place recognition system behaved under less favorable
conditions common in indoor environments.

Finally, two sets of perspective images captured from an iPhone SE were used to
test the algorithm. A confusion matrix similar to 4.1 was created from which the
performance indicators presented under section 4.2.1 were computed.

[2]Rectangular sub-images cropped from the original image
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4.4 The Algorithm

The procedure discussed under section 4.3.1 can be represented as an algorithm is
presented in algorithm 4.1

Algorithm 4.1 Place Recognition
Require: Map = {m1,m2, . . . ,mn} . Reference images

Test = {q1, q2, . . . , qi, . . . , qn} . Query (test) images
1: for qi ∈ Test do
2: dq ← SIFT + BRIEF of qi . Extracting descriptors
3: for all mi ∈Map do
4: dm ← SIFT + BRIEF of mi . Extracting descriptors
5: Nmatch{mi} ← Ratio test ← Match dq and dm . Matching features and

determining the no. of
strong feature matches

6: end for
7: Mputatives ← {mi ∈Map | argmax

mi

Nmatch{mi}} . Selecting mi with the
highest number of
matching features

8: for all mi ∈Mputatives do
9: inliers ← RANSAC + Homography . Outlier rejection using

RANSAC
10: if inliers ≥ 10 then
11: Compute Pmatch(mi) . Using equation 4.5
12: if Pmatch(mi) ≥ θransac then
13: Mbest ← mi . Selecting mi’s that are

potential best matches
for qi

14: end if
15: end if
16: end for
17: return {mi ∈ Mbest |argmax

mi

Pmatch(mi)} . Selecting mi with the
highest Pmatch as the
best match for qi

18: end for
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4.5 Results

4.5.1 Map of MUN Engineering building basement

A Google Indoor Street View map was created using fourty seven 360◦ images (figure
4.2) that were captured by a Samsung Gear 360 camera, along the MUN Engineering
basement corridor, at pre-selected locations which are approximately 4.5 m (15 feet)
apart from one another. The locations later become the nodes for this topological
map. These images were uploaded to the Google server thus creating a map that
would later serve as the pre-constructed map that is used for Localization. As the
nodes were selected premeditatively, approximate positions of the nodes relative to
the map’s origin are known. For simplicity, the absolute position of the origin was
selected to be (0, 0, 0). The origin was also chosen as the first node (Node 1) of the
map.

Figure 4.2: 360◦ image corresponding to node1 captured by Samsung Gear 360

A node map of theMemorial University of Newfoundland (MUN) Engineering basement
similar to that shown in figure 4.3 created. All the map nodes were declared as prior
factors with Node 1 as the origin.
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Figure 4.3: The node map of the MUN Engineering building basement.

4.5.2 Place recognition

By looking at the precision and recall values for the outdoor test case, in table 4.4, it
can be seen that when using snippets, the algorithm has performed well in predicting
the closest node. The high accuracy of 96.74% substantiates this. The precision values
suggest that almost all the predicted nodes were correct. However, a precision value
for row number 6 cannot be calculated.
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Table 4.4: Performance of the place recognition algorithm for outdoor images

Node Precision Recall F1 Score Node Precision Recall F1 Score

1 1·000 0·1 0·182 16 1·000 0·2 0·333
2 1·000 0·1 0·182 17 1·000 0·2 0·333
3 1·000 0·3 0·462 18 1·000 0·2 0·333
4 1·000 0·5 0·667 19 1·000 0·1 0·182
5 1·000 0·7 0·824 20 1·000 0·5 0·667
6 − 0·0 − 21 1·000 0·6 0·750
7 0·750 0·3 0·429 22 1·000 0·1 0·182
8 1·000 0·5 0·667 23 1·000 0·8 0·889
9 1·000 0·2 0·333 24 0·800 0·4 0·533
10 1·000 0·3 0·429 25 0·750 0·3 0·429
11 1·000 0·4 0·571 26 1·000 0·3 0·462
12 1·000 0·2 0·333 27 1·000 0·1 0·182
13 1·000 0·2 0·333 28 1·000 0·1 0·182
14 1·000 0·4 0·571 29 1·000 0·3 0·462
15 1·000 0·2 0·333 30 1·000 0·3 0·462

In figure 4.4, it can be seen that for true label 6, there are no predicted labels.
Therefore, both the true and false positive values become zero causing the value of
precision to become indeterminate.
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Figure 4.4: Confusion Matrix for outdoor snippets. The values along the leading
diagonal indicate the number of true positives. The last column indicates the number
of images for each case, which is inconclusive. However, in this case, inconclusive
is not considered as an incorrect match. Hence, inconclusive cases are excluded in
computing the overall accuracy, i.e., the total number of true positive matches as a
fraction of the total number of matches.

However, for the indoor test case, the accuracy has drastically dropped to 34.75%.
From table 4.5, it is obvious that for most of the nodes, the precision, recall, and
F1-score values are significantly lower in comparison to the outdoor case.
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Table 4.5: Performance of the place recognition algorithm for indoor images

Node Precision Recall F1 Score Node Precision Recall F1 Score

1 0·500 0·100 0·167 31 − 0·000 −
2 0·800 0·133 0·229 32 1·000 0·133 0·235
3 0·105 0·067 0·082 33 0·200 0·033 0·057
4 1·000 0·133 0·235 34 0·132 0·167 0·147
5 − 0·000 − 35 1·000 0·100 0·182
6 1·000 0·067 0·125 36 0·429 0·100 0·162
7 − 0·000 − 37 0·667 0·200 0·308
8 0·222 0·067 0·103 38 1·000 0·233 0·378
9 0·667 0·067 0·121 39 0·000 0·000 −
10 − 0·000 − 40 1·000 0·067 0·125
11 0·000 0·000 − 41 − 0·000 −
12 0·091 0·033 0·049 42 1·000 0·033 0·065
13 − 0·000 − 43 0·047 0·200 0·076
14 − 0·000 − 44 0·550 0·367 0·440
15 0·600 0·100 0·171 45 1·000 0·033 0·065
16 0·250 0·067 0·105 46 0·000 0·000 −
17 0·500 0·233 0·318 47 1·000 0·367 0·537
18 0·909 0·333 0·488 48 1·000 0·067 0·125
19 0·538 0·233 0·326 49 0·500 0·033 0·062

20 0·571 0·133 0·216
21 0·857 0·200 0·324
22 1·000 0·067 0·125
23 0·357 0·167 0·227
24 − 0·000 −
25 0·429 0·100 0·162
26 0·333 0·033 0·061
27 0·667 0·067 0·121
28 1·000 0·033 0·065
29 1·000 0·033 0·065
30 1·000 0·033 0·065
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From the confusion matrix presented in figure 4.5, it can be seen that apart from
predicted label 43 for a majority of the test cases, the algorithm has either produced
the correct prediction or rejected the incorrect ones. The visible pattern along the
leading diagonal and the last column of the confusion matrix substantiates this.
Although a few mismatches can be noticed scattered throughout the confusion matrix,
a stark trend can be seen for predicted label 43.

Figure 4.5: Confusion Matrix for indoor snippets

Upon investigation, it was determined to be a consequence of perceptual aliasing.
The trial image corresponding to node 43 consists of elements similar in appearance
to elements present in other nodes. These contribute towards visually correct yet
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physically incorrect predictions. A few examples of this is shown in figures 4.6(a),
4.6(b), 4.6(c) and 4.6.

(a) The reference image matches incorrectly to a snippet 7 nodes ahead of it

(b) The reference image matches incorrectly to a snippet 10 nodes ahead of it

Figure 4.6: Feature matching between different snippets (left) and reference image of
node 43 (right)
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(c) The reference image matches incorrectly to a snippet 14 nodes ahead of it

(d) The reference image matches incorrectly to a snippet 15 nodes ahead of it

Figure 4.6: Feature matching between different snippets (left) and the reference image
of node 43 (right). The matches are a result of the features present in the environment
of a certain node showing closer resemblance to that of node 43. This phenomenon
is known as perceptual aliasing and is an inevitable challenge faced during indoor
localization.

When tested using the perspective images captured by an iPhone SE, the algorithm
has failed to produce correct predictions in both outdoor and indoor cases. The reason
behind this is that the significant distortions present in the reference images (street
view images) causing even the scale and rotation invariant feature detectors to fail.
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A solution for this is virtual view generation and to use feature extractors that focus
on unique features that occur across images. Such a feature extractor that suits an
indoor environment better can be constructed by utilizing net-VLAD [140] or a similar
Convolutional Neural Network (CNN)-based feature extractor.

4.6 Conclusion

The reasonably low values for recall in table 4.4 suggests that the number of false
negatives is substantially high. It implies that most of the input images corresponding
to a particular node are not identified as belonging to that node. However, from the
confusion matrix in figure 4.4, it is evident that these are not incorrectly predicted
either. The algorithm was unable to predict a node for those images. The lack of
strong features in the image and the failure of the second stage verification could be
contributing factors toward it. However, the low values for both precision and recall
values for the indoor test case (table 4.5) signify that the number of true positives
is low, and the number of false positives being high. But, as discussed under section
4.5.2, this is mainly due to perceptual aliasing. Thus, it can be concluded that the
algorithm is capable of predicting the node closest to a given query image.

Nevertheless, when using actual images instead of snippets, the majority of the results
are mismatched. The reason for this is the difference in nature between the query and
the reference images. The query images are perspective while the reference images
are equirectangular. Hence, direct feature matching between the two would result
in errors, as shown in figure 4.7. Figures 4.7(a), 4.7(b), and 4.7(c) clearly illustrate
how directly matching the two can result in the same query image being matched to
different reference images. It is known as perceptual aliasing.

A solution to address the massive difference in viewpoint among the actual and street
view images is to generate a perspective image (virtual view) out of the equirectangular
reference image and then match it against the query image. Another reason for the
erroneous results is the tremendous difference in scale between the query and the
reference images (figure 4.8). The scale difference could be too much for the BRIEF
descriptor to handle. A solution to this could be to re-scale the query image and the
region of interest of the reference image to a comparable scale before matching. Using
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image feature detectors such as Affine Scale Invariant Feature Transform (ASIFT)
that are invariant to affine transformation can improve the performance further. The
performance of the place recognition system for indoor environments can be improved
by training a place recognition feature extractor suitable for indoor environments such
as net-VLAD. This work is currently under progress and will also be addressed as part
of future work.

(a) The query image matches incorrectly to a reference image 5 nodes behind the actual

(b) The query image matches incorrectly to a reference image 2 nodes behind the actual

Figure 4.7: Incorrect matches of the same actual image (left) with multiple street
view images (right)
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(c) The query image matches incorrectly to a reference image 9 nodes ahead of the actual

Figure 4.7: Incorrect matches of the same actual image (left) with multiple street
view images (right)

Figure 4.8: Illustration of the disparity between a query image(left) and a reference
image(right)
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Chapter 5

Experimental Evaluation

This chapter presents experimental evidence as a validation of the facts presented in
the preceding chapters. Starting with an introduction to the conducted experiments
followed by a few preliminaries related to the experiments, this chapter provides
a complete description of the equipment and resources used, the methodology, the
generated results and the derived conclusions in succession.

5.1 Introduction

Experimental evaluation is a crucial step in developing any robotic system. It is how
the validity of that system under real-world conditions can be assessed. The way to
accomplish it by executing the system on a data set relevant to the scenario is captured
in the desired environment, under the required conditions. The ground truth for the
data set must be available. It is against the ground truth to which the result from
the test is compared against. The closer the result resembles the ground truth, the
better, and vice-versa.

A quantitative analysis of any deviations from the ground truth and the confidence
region of the outcome is necessary for deciding how accurately the result resembles
the ground truth. In localization studies, the degree of deviation or the localization
error is expressed in terms of Root Mean Square Error (RMSE). It is a valuable
indicator of the mean localization error along a robot trajectory. A smaller value
for RMSE indicates an accurate localization system. However, a higher value for
RMSE has two possible causes. Either the entire result has more or less deviated
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from the ground truth. Otherwise, most of the result is fairly accurate, while a couple
of massive deviations contribute to the overall error. Therefore, often it helps to have
an understanding of the maximum and minimum values for the localization error as
well.
In terms of the confidence region, the robot’s estimated locations must lie well within
the estimation’s confidence region. It can be easily evaluated by using the covariance
information of the estimations. The confidence region is generally defined for three
confidence levels based on the assumption that the error distribution is a zero-mean
Gaussian-normal distribution. They are 68.3% confidence or one-standard deviation
(σ), 95.4% confidence or two-standard deviations (2σ), and 99.7% confidence or three-
standard deviations (3σ) as shown in figure 5.1. For a successful localization, the
actual robot position should at least lie withing a 3σ confidence region.

Figure 5.1: Confidence regions of a robot’s location

5.2 Equipment and Resources

5.2.1 RICOH THETA S 360◦ camera

The RICOH THETA S(figure 5.2) is a commercially available 360◦ camera. Among
many other options, this became the choice of interest mainly since it is ROS compatible.
Besides, it is compact and mobile. The specifications of the camera, too, met the
requirements for the conducted experiments. A couple of relevant specifications of
the camera can be found in table 5.1. Further information on the product can be
found at [141]
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Figure 5.2: RICOH THETA S 360◦ camera

Table 5.1: Specifications of RICOH THETA S

Specification Value

Resolution 1.5 MP

Sensor size 1/2.3 inch(6.2mm × 4.6mm)

Lens 7.3mm eq. Non-Zoom

ISO range 100 - 1600

Shutter 1/6400 - 60 sec

Max. aperture 2.0

ROS compatible Yes
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5.2.2 Seekur Jr.

Seekur Jr. (figure 5.3) is a 4-wheel drive skid steer differential drive robot. It comes
equipped with an assortment of sensors and software making it an excellent platform
for localization, Mapping and SLAM related research. It can be controlled wirelessly
through a computer or a tethered joystick. Several safety features such as obstacle
avoidance, drive-safe mode, and emergency stop make it compliant and safe for indoor
use. A couple of Seekur Jr. specifications specific and important in this research can
be found in table 5.2. Further information on the Seekur Jr. can be found in [142].

Figure 5.3: Seekur Jr. mobile robot
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Table 5.2: Important specifications of Seekur Jr. Mobile robot

Specification Value

Dimensions 105mm × 840mm × 500mm (lwh)

Weight 70 kg (1 battery)

Steering and Suspension 4-wheel skid steering

Maximum Speed 1.2 mph

Runtime 3 hrs

Payload 50 kg

Sensors SICK LMS 100 Laser rangefinder

840-tick/rev Hall effect sensors on traction motors

MobileRanger C3D obstacle avoidance system

Software Seekur server operating system

ARIA API(Custom modified version of ARIA)

Mapper3 indoor mapping software

5.3 Methodology

5.3.1 Setting up the 360◦ camera, Seekur Jr. and the Visualizer

The 360◦ camera

A ROS node was written for the camera to acquire a stream of images in real-time in
equirectangular form. It was later used to acquire the visual feedback necessary for
the factor graph.
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Seekur Jr.

The libraries AriaClientDriver [143] (A custom made driver based on ARIA APL),
Mapper3, ARNL server and gmapping necessary for controlling and remotely operating
Seekur Jr, and generating maps using it, were installed. The ros package ros-amcl
was installed to obtain the ground truth from laser scan data.

The Visualizer

The visualizer described under section 3.6 was upgraded by introducing the following
features.

1. Display maps created using Seekur Jr. in the form of Occupancy Grids.

2. Display raw Odometry data of Seekur Jr. captured through the wheel encoders.

3. Display laser scan data from Seekur Jr. in the form of point clouds.

4. Display the ground truth of Seekur Jr.calculated through the ros-amcl package

5. Display the particle cloud of the particle filter used by amcl.

6. Display the map frame, Odom frame, and all other coordinate frames present
in the system(e.g., Seekur Jr.’s base coordinate frame, the laser rangefinder’s
coordinate frame), in the form of a transformation tree (tf tree).

Using this upgraded version of the visualizer and actual data obtained via Seeker Jr.’s
sensors, the simulator discussed under section 3.6 was turned into an implementation
of the system discussed under section 3.3.

5.3.2 Developing and Testing the experimentation platform

In order to conduct experiments on Essential Matrix accuracy, an experimentation
platform was required. Thus, a system to calculate the relative pose among two given
was developed. The system is based on the principle of structure-from-motion.
First, an intrinsic matrix for the images is formed using intrinsic parameters, either
pre-known, calculated, or obtained through camera calibration. Next, using the lens
distortion parameters, the images are undistorted. Then, from the undistorted images,
a maximum of 1500 SIFT features are extracted and matched. It is followed by
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Lowe’s ratio test on the matching features, retaining the strong feature matches ,
and filtering out the rest. Then, the retained features are normalized[1] [144] using
the intrinsic matrix formed earlier. The normalized features are then subjected to a
RANSAC + Homography test, through which the Essential Matrix for the two images
is determined. The parameters and values used for RANSAC are presented in table
5.3. The number of inliers and the inlier ratio was carefully monitored to ensure that
they are more than ten and 20%, respectively. Finally, by decomposing this Essential
Matrix into a rotation matrix and an up-to-scale translation (or a translation unit
vector), the relative pose between the two camera poses that correspond to the input
images can be determined.

Table 5.3: Thresholds used for RANSAC

Parameter Value

Confidence threshold(%) 99.9

Max. reprojection error(px) 0.0001

Maximum iterations 2000

Testing the system

Two images of the same location in the MUN Engineering basement was acquired at
two different points that were Eight feet apart, with a relative turn of 30◦ between the
points. It was performed using an iPhone SE attached to a tripod. A major concern
was that the camera and the tripod axes were non-intersecting as seen in figure 5.4.

[1]Normalization refers to transforming the feature point coordinates to have a mean equal to zero
and a variance equal to one. It is done in order to make the tasks involving the feature points robust
to image noise

81



Figure 5.4: The tripod-camera arrangement

Thus, the relative pose between the camera instances was quite different from that of
the tripod poses, as shown in figure 5.5

Figure 5.5: The camera and tripod poses between the points

The relative pose between the camera instances was calculated using equations 2.1
and 2.2. The measured and the calculated relative poses presented side-by-side in
table 5.4 with the inliers between the images illustrated in figure 5.6.
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Table 5.4: Comparison between measured and calculated values

Parameter Measured Calculated[2]

x translation 2.463 m 1.000

y translation 0.000 m 0.000

z translation −0.023 m 0.000

Roll 0.0 ° 0.2 °

Pitch −30.0 ° −30.4 °

Yaw 0.0 ° 0.5 °

Figure 5.6: Inliers and Outliers between the test images

The test run results provided significant proof regarding the system’s accuracy, deeming
the suitability of it for the upcoming experiments.

5.3.3 Camera Calibration

For the test described under section 5.3.2, the intrinsic parameters of the iPhone SE
used were required. Thus, it was calibrated using a checkerboard target (figure 5.7).
The intrinsic parameters and distortion coefficients obtained are tabulated in table

[2]The calculated translation is in the normalized form
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5.5. The extrinsic parameter visualization and the reprojection error plot for the
calibration are shown in figures 5.8 and 5.9.

Figure 5.7: The checkerboard target used for calibration

Table 5.5: Intrinsic parameters and distortion coefficients of the iphone SE

Parameter Value

Focal length(fx) 3431.7

Focal length(fy) 3429.3

Image centre (2009.8 , 1517.9)

Tangential distortion coeffcients (0.0 , 0.0)

Radial distortion coeffcients (0.0869 , -0.0761)
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Figure 5.8: Extrinsic parameter visualization
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Figure 5.9: Reprojection error for the images

5.3.4 Mapping the MUN Engineering building basement and
collecting ros-bags

A map of the MUN Engineering basement in the form of an Occupancy Grid was
required for calculating the ground truth. Using Seekur Jr., its laser rangefinder and
Mapper3 software, a map of the basement shown in figure 5.10, was generated. This
map was further refined such that it overlaps correctly with the node map of the
basement (figure 4.5.1), and the map shown in figure 5.11 was obtained.
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Figure 5.10: Map of the MUN Engineering basement generated using Seekur Jr.
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Figure 5.11: Map of basement after refinement

Once this was complete, a rosbag was captured while navigating the Seekur Jr. around
the corridor, returning to the starting point, thus making an anti-clockwise loop. The
rosbag captured consists of the odometry data, laser scan data and a 360◦ image
stream captured using the RICOH THETA camera mounted on top of it.

5.3.5 The place recognition module

The place recognition module required to determine the node on the map closest to
a given robot pose is being developed separately. At this stage, it is not yet at a level
to effectively combine with the rest of the system. Therefore, the place recognition at
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the current stage is performed manually.

5.3.6 Evaluating Essential Matrix accuracy

To evaluate the accuracy of the Essential matrix derived using virtual views, two
virtual views, generated from two different Google Street View images were required.
Using a freely available online tool [145], two virtual views, 640 px × 640 px in size and
differ by 60◦ in viewpoint, were generated from the Street View images of two adjacent
nodes of the MUN Engineering basement. Next, the field-of-view of the images was
determined to be 90◦ using equation 2.3. Then, an equivalent intrinsic matrix for the
images were determined using equations 2.4 and 2.8. Finally, the images were fed to
the platform discussed under section 5.3.2. In this case, however, since the rotation
of the camera(viewpoint) was about its axis, correcting the poses were unnecessary.

5.3.7 Evaluating Factor Graph with simulated measurements

After a series of successful simulations, the next step was to evaluate how well the
factor graph responds to actual data. Since a ros-bag of the Seekur Jr. navigating
the MUN Engineering basement was already available (section 5.3.4), it was utilized
as a dataset to run a a couple of offline tests. The distance and angle thresholds for
the factor graph, i.e., the minimum distance and angle by which the robot should
move relative to the preceding node, for a new node to be added to the factor graph,
was arbitrarily fixed at 5m and 45◦ respectively. The ground truth of the robot was
estimated using the laser scan data from the ros bag, and a particle filter from the
ros-amcl package. As the objective here was to test how well the factor graph itself
performs under actual data, the Essential Matrix constraints were computed manually
and emplaced in the graph, rather than having them computed automatically using
the feedback captured from the image stream.

5.4 Results

5.4.1 Essential Matrix accuracy

Figure 5.12 shows the resulting inliers and outliers when the two virtual views mentioned
under section 5.3.6 are used to estimate the relative pose shift among the two views.
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It provides insight as to how the algorithm has filtered outliers and retained inliers.
Additionally, table 5.6 presents a comparison between the measured and calculated
relative translation and rotation. The algorithm has been capable of estimating the
relative pose with decent accuracy. However, this should be further verified using
several repeatability studies. The translation unit vector has been precisely estimated
while the orientation is accurate to within 2 ◦, which would more than suffice for all
practical purposes.

Figure 5.12: Inliers (green) and Outliers (red) between the matched virtual views
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Table 5.6: Comparison between measured and calculated values

Parameter Measured Calculated

x translation[3] −1.0 −1.0

y translation 0.0 0.0

z translation 0.0 0.0

Roll 0.0 ◦ 1.5 ◦

Pitch 60.0 ◦ 59.0 ◦

Yaw 0.0 ◦ 1.4 ◦

5.4.2 Factor Graph with simulated measurements

A visual comparison between the odometry and the ground truth of Seekur Jr. is
presented in figure 5.13. In comparison to the ground truth, the drift in the odometer
is evident in the figure, which is the one outlined in blue.

Figure 5.13: Odometry (blue) and ground truth (red)

[3]The x, y, z translations are in the normalized form
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Like the simulations, essential matrix constraints were administered at every other
node, as illustrated in figure 5.14.

Figure 5.14: Robots poses (orange), map nodes (black) and essential matrix
constraints (red arrows)

Figure 5.15 compares the factor graph solution with the ground truth of Seekur Jr.
The solution is in good agreement with the ground truth in this particular experiment.

Figure 5.15: Odometry (orange), ground truth (red) and the solution[4] (green)
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The error ellipsoids for 99% confidence illustrated in figure 5.16 shows a consistent
estimation of the poses, i.e., the error ellipsoids are significantly smaller, yet, the
actual robot poses are situated within the confidence region of the estimated robot
poses.

Figure 5.16: Error ellipsoids for a confidence of 99% (3 standard deviations)

Furthermore, the error statistics presented under table 5.7 provides quantitative performance
results regarding the performance of the factor graph for the considered experimental
scenario.

Table 5.7: Overall localization error

Error Position (m) Orientation (◦)

Max 0.899 8.292

Min 0.0244 0.002 52

RMSE 0.382 1.783

[4]The solution is almost invisible since it overlaps with the ground truth
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5.5 Conclusion

Figure 5.12 shows the inliers and outliers between the two virtual views used to
verify the essential matrix accuracy. It is obvious that the pose recovery system
has successfully filtered out the outliers and estimated the relative pose between the
two images accurately. However, the rotation recovered has a maximum error of
2◦. There are a couple of factors contributing to this error. Although figure 5.12
consists of a decent number of inliers, when examined carefully, it is visible that a
significant number of feature matches that are inliers have been incorrectly categorized
as outliers. For an accurate pose recovery, the number of strong feature matches has
to be high in addition to the inlier ratio being high. It ensures that the inlier ratio is
more reliable and less sensitive to perturbations, thus, providing a much better insight
into the pose recovery process. It can be accomplished by extracting and matching
dense features rather than sparse features. It is an aspect that can be worked on as
future work.

Figures 5.15, 5.16 and table 5.7 show that factor graphs can be successfully used
for indoor localization of mobile robots when an accurate place recognition system is
available.

For this study, the essential matrices are simulated since the results presented are a
module wise evaluation. The accuracy of the essential matrix is evaluated separately
under section 5.3.6. However, a system-level evaluation combining everything is
needed for a reasonable validation of the performance. It remains as an activity
to be continued as part of future work.
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Chapter 6

Conclusion

The objectives of this thesis were developing a factor-graph for a visual topological
localization system, developing a place recognition system and validating the factor-
graph based localization system for an indoor data set.

For the first objective, a proof of concept was made through MATLAB simulations,
which was later developed into a ROS C++ based simulator constituting of all the
necessary tools and features. The conducted simulations established a firm ground for
the proposed indoor localization system. Also, a pose recovery system was developed
for estimating the relative pose shift of a camera between two image views. The
simulations provided significant insight regarding when to add new nodes to the factor
graph, when to establish constraints using visual feedback, how to do it, and how
frequently, and when to solve the factor graph. Besides, it also served in determining
the threshold values for specific parameters of the system.

Under the second objective, a Google street view based brute-force place recognition
system was developed. The performance of the place recognition system was assessed
by applying it for a street view snippets and evaluating the precision, recall, and
F1-score values. The system was tested further by applying it to outdoor and indoor
environments using both snippets and actual images. The results obtained for snippets
achieved an accuracy of 96.74% for outdoor datasets, while for indoor datasets, an
accuracy of 34.75% was achieved. However, the results for the actual images suggested
that matching them directly against equirectangular street view images mostly causes
the closest node to be unidentified and seldom results in incorrect matches. Thus, a
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necessity for virtual views of the street view images was observed. A place recognition
feature extractor for indoor environments such as net-VLAD is required to improve
the performance in indoor environments.

Under the third objective, the factor-graph was validated using a custom data set,
and the pose recovery system was validated using virtual views of indoor street view
images. The pose recovery system exhibited an acceptable performance, and so did
the factor-graph. The solution to the factor graph was in close agreement with the
ground truth, and the actual robot poses were located within the confidence region
of the solved poses.

Numerous challenges were encountered in accomplishing the above objectives. The
lack of indoor street view maps and proper testing and validation datasets was one of
the significant limitations identified. Thus, custom street view maps and validation
data sets had to be created, which were long and tedious processes.

Another limitation encountered was the absence of sufficient documentation and
examples for specific software libraries used in this research, which was under development.
Besides, the version incompatibilities of specific dependencies of those libraries consumed
a significant amount of time to get familiar with the library. Also, the unavailability
of some required functionalities in the MATLAB versions of the libraries imposed
limitations on the initial simulations conducted.

The laptop’s hardware limitations for the simulations and experiments caused the
simulations to run for hours and, on some occasions, days. Specific alterations had to
be made to the operating system, which on a couple of occasions resulted in system
crashes which required reinstalling the operating system and all the required software
libraries and drivers.

The lack of visualization tools for C++ was one of the most significant limitations
encountered in this research. Thus, own visualization tools had to be created along
with a few other function libraries. It too consumed a significant amount of time

Finding the proper drivers for Seekur Jr. was another hurdle that was faced during
this research. The company that manufactured Seekur Jr no longer exists. Hence,
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obtaining the drivers necessary for Seekur Jr. was a hectic task which required days
of surfing the internet.

Another limitation was the lack of tools to convert equirectangular images into perspective
images. Although a couple of software tools were available, the perspective images
they produced contained a substantial amount of noise

The lack of studies that use Google street view for indoor localization created a
deficit for benchmark results to compare against. Hence, it was unable to obtain a
comparative evaluation regarding the performance of the system.

The university’s lockdown due to COVID-19 pandemic imposed limitations on university
access, which caused difficulties in obtaining certain measurements related to the
Seekur Jr. and the MUN engineering basement corridor. Thus, the values for these
measurements were estimated where necessary. It also hindered the use of alternate
methods that could have otherwise be used to replace the simulated essential matrix
constraints with actual ones.

The objectives of this thesis were achieved up to a certain extent. The following
limitations of the proposed approach can be identified.

1. The place recognition is not accurate enough to be combined with the rest of
the system. Virtual views, better descriptors, and Bag-of-Words (BoW) should
be used for execution.

2. The factor graph should be evaluated with the inputs coming from a place
recognition system.

3. Performance on changing conditions of lighting and dynamic environments should
be evaluated along with metrics on the computational time required for graph
solutions.

However, a significant challenge that still prevails is combining the place recognition
system, the factor-graph, and the pose recovery system into a single autonomous
system. Additionally, incorporating virtual views and visual bag-of-words based
search methods are potential improvements towards a better system. It poses a
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directive for future work related to the proposed indoor localization system. Furthermore,
applications of the localization system in automating tasks such as indoor patrol and
creating indoor street view maps are some other areas that are worth looking into.

The author addresses the challenges encountered while developing a fully autonomous
indoor localization as part of his doctoral studies. Upon its completion, the author
intends to forward a paper for a journal publication. The software, hardware, and
visualization tools developed for this project can be re-used for future research. The
knowledge and skills acquired during the project will act as a stepping stone for the
future work by the author.

Ultimately, developing a Google indoor street view and factor graph-based fully
autonomous indoor localization system would open numerous avenues in the future,
such as building-wide localization, indoor mapping, indoor patrolling, security, and
surveillance. The ease of extending to use a multitude of sensors, efficient use of
hardware, reduced requirement for tuning, ability to easily migrate between indoor
and outdoor environments, and ability to effectively utilize sensor information available
at any given time can be seen as advantages of using such a system for indoor
localization.
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