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Abstract

Several simple applications of timed Petri nets to
modeling and performance analysis of concurrent sys-
tems are presented as an illustration of a uniform ap-
proach to analysis of a wide class of discrete–event sys-
tems. Such a unified approach is used in a graduate
course on performance evaluation of systems at Memo-
rial University.

1. INTRODUCTION

A graduate course on modeling and performance
evaluation of systems, offered by the Department of
Computer Science at Memorial University (CS–6726),
covers a number of “standard” topics, including a brief
introduction to discrete–event simulation and basics of
queueing theory. It also contains a module (approxi-
mately two weeks) on modeling and evaluation of sys-
tems using timed Petri nets. Since this module is usu-
ally at the end of the course, it relies quite heavily
of many concepts introduced earlier, like Markov and
semi–Markov chains, stationary probabilities of states,
solutions techniques, etc. The focus of this module is
on modeling with Petri nets and then analysis and eval-
uation of the models.
Elemets of Petri net theory which are usually covered

in this module include:

• basic concepts of ordinary Petri nets [1, 10, 12],
bounded and unbounded nets, liveness and dead-
locks, reachability graph;

• place and transition invariants [12], properties of
nets based on invariants;

• inhibitor arcs and priorities;

• introduction to colored nets [9], token at-
tributes and transition occurrences, unfolding into
place/transition nets;

• timed [14, 8] and stochastic [3] nets, states and
state transitions, deterministic and stochastic fir-
ing times; performance analysis.

Examples of timed Petri net models used for illustra-
tions cover a wide range of systems:

• simple models of interactive systems; exhaustive
reachability analysis, repeated for different values
of model parameters, produces well–known charac-
teristics of response time or throughput as a func-
tion of the initial marking;

• models of simple communication protocols with
failures and timeouts used for recovery; the perfor-
mance characteristics are obtained by reachability
analysis and also by net reductions;

• models of multiprocessor systems; model symme-
tries are used for a straightforward conversion to
colored nets; because of the size of the model, re-
sults are obtained by discrete–event simulation of
the net model.

Evaluation of net models can be quite involved as
it requires maintaining and updating detailed state de-
scriptions of the model. It is, therefore, not surprising
that many different tools have been developed for anal-
ysis of a variety of net types [7]. A collection of software
tools developed for analysis of timed Petri net models,
TPN–tools [15, 16], has a modular structure with com-
mon internal representation of models and a common
‘language’ for the specification of modeling nets. TPN–
tools support reachability analysis (with a simple inter-
preted language for extracting performance information
from the generated state space), analysis of place and
transition invariants, and also net simulation (with an-
other simple interpreted language for post–processing
of simulation results). TPN–tools accept a broad class
of timed place/transition nets with arc weights, and
also with inhibitor and interrupt arcs, as well as timed
colored nets [15].

The remaining part of this paper discusses in greater
detail several typical examples of timed net models.
Section 2 provides a very brief overview of basic con-
cepts of Petri nets and timed nets. Section 3 discusses
a simple model of an interactive system; it also iden-
tifies some of many variations of this model including
job classes and scheduling with and without preemp-
tion, unreliable and multiple processors. A model of a
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simple communication protocol is presented in Section
4, while Section 5 discusses a model of a more complex,
distributed memory multithreaded architecture.

2. BASIC CONCEPTS

Petri nets have been proposed as a simple and con-
venient formalism for modeling systems that exhibit
parallel and concurrent activities [1, 11, 12, 10]. In
Petri nets, these activities are represented by the so
called tokens which can move within a (static) graph–
like structure of the net. More formally, a marked
(place/transition) Petri net M contains two basic com-
ponents, M = (N ,m0), the structure N which is a
bipartite directed graph, N = (P, T,A), where P and
T are two disjoint classes of nodes, and A is a set of
directed arcs, A ⊆ T ×P ∪P × T , and an initial mark-
ing function m0, which assigns nonnegative numbers
of tokens to places of the net, m0 : P → {0, 1, ...}.
Place/transition Petri net models are also known as
‘condition/event’ systems as places usually represent
conditions (in the most general sense), while transitions
– events. If a nonzero number of tokens is assigned to
a place, the place is ‘marked’, which means that the
condition represented by it is satisfied. If all places con-
nected by directed arcs to a transition are marked, the
transition is ‘enabled’ and can fire (i.e., the event rep-
resented by this transition can occur). Firing a transi-
tion removes (simultaneously) a single token from each
of the input places of the transition and adds a single
token to each of the transition’s output places. This
creates a new marking in a net, a new set of enabled
transitions, and so on. The set of all possible marking
functions which can be derived in such a way is called
the set of reachable markings (or the forward marking
class) of a net. This set can be finite or infinite.
An important extension of the basic net model is ad-

dition of inhibitor arcs [2, 13]. Inhibitor arcs (which
connect places with transitions) provide a ‘test if zero’
condition which is nonexistent in the basic Petri net.
Nets with inhibitor arcs are usually called inhibitor
nets. In inhibitor nets, a transition is enabled only if
all places connected to it by directed arcs are marked
and all places connected by inhibitor arcs are empty
(i.e., not marked). Formally, the set B of inhibitor
arcs is an additional element of the net structure,
N = (P, T,A,B), B ⊂ P × T , and usually the same
place cannot be connected by a directed and inhibitor
arc with the same transition, A ∩B = ∅.
In order to study performance aspects of Petri net

models, the duration of activities must also be taken
into account and included into model specifications.
Several types of Petri nets ‘with time’ have been pro-
posed by assigning ‘firing times’ to the transitions or
places of a net. In timed nets [14], firing times are

associates with transitions, and transition firings are
‘real–time’ events, i.e., tokens are removed from input
places at the beginning of the firing period, and they
are deposited to the output places at the end of this
period (sometimes this is also called a ‘three–phase’ fir-
ing mechanism as opposed to ‘one–phase’ instantaneous
firings of transitions). All firings of enabled transi-
tions are initiated in the same instants of time in which
the transitions become enabled (although some enabled
transitions cannot initiate their firings). If, during the
firing period of a transition, the transition becomes en-
abled again, a new, independent firing can be initiated,
which will ‘overlap’ with the other firing(s). There is
no limit on the number of simultaneous firings of the
same transition (sometimes this is called ‘infinite firing
semantics’). Similarly, if a transition is enabled ‘sev-
eral times’ (i.e., it remains enabled after initiating a
firing), it may start several independent firings in the
same time instant.
In timed nets, the initiated firings continue until their

termination. A special type of inhibitor arcs, called in-
terrupt arcs, provides a convenient extension which can
discontinue transition firings. If, during a firing period
of a transition, any place connected to this transition
by an interrupt arc becomes marked, the firing discon-
tinues, and tokens removed from the transition’s input
places at the beginning of firing are returned to these
places. Interrupt arcs do not increase the “modeling
power” of net models, but they provide a very conve-
nient addition.
In timed nets, the firing times of some transitions

may be equal to zero, which means that the firings are
instantaneous; all such transitions are called immediate
(while the other are called timed). Since the immediate
transitions have no tangible effects on the (timed) be-
havior of the model, it is convenient to ‘split’ the set of
transitions into two parts, the set of immediate and the
set of timed transitions, and to fire first the (enabled)
immediate transitions, and then (still in the same time
instant), when no more immediate transitions are en-
abled, to start the firings of (enabled) timed transitions.
It should be noted that such a convention effectively in-
troduces the priority of immediate transitions over the
timed ones, so the conflicts of immediate and timed
transitions should be avoided.
The firing times of transitions can be either determin-

istic or stochastic (i.e., described by some probability
distribution function); in the first case, the correspond-
ing timed nets are referred to as D–timed nets, in the
second, for the (negative) exponential distribution of
firing times, the nets are called M–timed nets (Marko-
vian nets). In both cases, the concepts of state and
state transitions have been formally defined and used
in the derivation of different performance characteris-
tics of the model [14].
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3. M–TIMED NET MODELS

A very simple model of an interactive computer sys-
tem is shown in Fig.1, in which place p1 represents the
(idle) processor, transition t1 models a processor exe-
cuting a job, place p2 is the queue of jobs waiting for
execution, transition t2 represents the ‘thinking time’
of users, and place p3 is simply a termination of job ex-
ecution (which immediately initiates thinking phase be-
cause there is no other condition of t2’s firing). The ini-
tial marking function indicates one processor (p1) and
three jobs waiting for execution in p2 (the number of
active users in this model is equal to the sum of initial
marking of p2 and p3).

p1t1t2

p2

p3

Fig.1. A simple model of an interactive system.

If the queue of waiting jobs (p2) is nonempty and the
processor is available (i.e., p1 is marked), t1 is enabled,
and a job from p2 can start its execution by firing t1 and
removing single tokens from p1 and p2. The job execu-
tion time is an exponentially distributed random vari-
able; its average value is associated with t1 as the firing
time. When the firing of t1 ends, a token is deposited
into p3 (the completed job) and into p1 (the processor
becomes available for the execution of another job); if,
at this instant of time, p2 contains a token, another
firing of t1 is initiated (again by removing tokens from
p1 and p2). The token deposited in p3 initiates firing
of t2; the job just completed enters its ‘thinking phase’,
which is another exponentially distributed random vari-
able with its average value associated with t2. When
the firing of t2 is finished, a token is deposited into p2
as a new job waiting for execution.
It should be observed that, in the net shown in Fig.1,

t2 can have any number of simultaneous firings (actu-
ally this number is limited by the initial marking of
p2 and p3), while t1 can be firing at most once at any
instant of time (because of one initial token in p1).

If the initial marking function assigns more than one
token to p1, the model changes to an interactive system
with several parallel processors, in which several jobs
can be executed at the same time.

The exponentially distributed firing times of tran-
sitions can be combined into hypo- and hyper-
exponential distributions (and thus approximate other

distributions). Fig.2(a) shows a model of a two–
stage hypo–exponential server, and Fig.2(b) a two–
stage hyper–exponential server in which the two tran-
sitions form a free–choice structure, with ‘choice’ prob-
abilities describing random selections [14].

(a)
(b)

Fig.2. A model of a hypo-exponential (a) and
hyper–exponential (b) server.

A modification of the model from Fig.1, in which the
processing time is hyper-exponentially distributed, and
the thinking time is hypo-exponentially distributed, is
shown in Fig.3. Many other variations of this model
can easily be derived.

p1

p2

p3

p4

t2’

t2"

t1"t1’

Fig.3. Another model of an interactive system.

A different type of modification of the basic interac-
tive model is shown in Fig.4; in this case, there are two
classes of jobs (and users), say A and B; class A is rep-
resented by t1, p3, t2 and p2, class B by t3, p5, t4 and p4.
The processor is shared by both classes; either t1 can
fire or t3, but not both. Jobs of class A have priority in
accessing the processor; the inhibitor arc from p2 to t3
disables t3 if there are any waiting jobs of class A (p2),
so class A jobs are selected for processing (t1) before
class B jobs (non-preemptive priority scheduling).

p1

t1t2

p2

p3

t3 t4

p4

p5

Fig.4. A system with two classes of jobs.

It should be noted that if the inhibitor arc in Fig.4
is replaced by an interrupt arc (interrupt arcs have a
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black dot instead of the arrowhead), the model will rep-
resent preemptive scheduling of class A jobs, in which
executing jobs of class B will be interrupted (and pre-
empted of the processor) if a job of class A is ready for
execution.

Yet another modification of the basic model of an in-
teractive system is shown in Fig.5; in this case the pro-
cessor is assumed to be unreliable, so it goes through
‘operative’ – ‘inoperative’ cycle, with both ‘operative’
and ‘inoperative’ periods of time that are exponentially
distributed (but – most likely – with different average
values). The ‘operative’ – ‘inoperative’ cycle is repre-
sented by the subnet t4, p4, t3 and p5, in which the fir-
ing time of t4 represents the ‘operative’ periods of time,
and the firing time of t3 – the ‘inoperative’ periods of
time; it should be observed that whenever t3 fires, the
‘processor’ token is removed form p1, so no job can be
executed during the firing periods of t3. The interrupt
arc from p4 to t1 is used for processor failures during
execution of (user) jobs; if a token is deposited into p4
during t1’s firing, the firing is interrupted by the arc
(p4, t1), the job token is returned to p2, the processor
token returns to p1, from where it is removed by firing
t3.

p1

t1t2

p2

p3

t3 t4

p4

p5

Fig.5. A system with unreliable processor.

It should be observed that the net shown in Fig.5 is
structurally similar to the net shown in Fig.4 (with an
interrupt arc instead of the inhibitor arc); the model
of processor failures is thus similar to a higher priority
class of jobs that (conceptually) preempt the processor
(for a failure and its repair).

4. D–TIMED NET MODELS

A model of a simple communication protocol with
a timeout mechanism, shown in Fig.6, is used as an
illustration of timed nets with deterministic firing times
[16].
The token in p1 represents a message which a ‘sender’

(p1) sends to a ‘receiver’ (p3) and which is confirmed
by an acknowledgement sent back to the sender. The
message is sent by firing t1, after which a single token is

t1

t2

t3

t5

t4

t6

p1

p2

p3

p4p6

p5

t7

Fig.6. A model of a simple communication protocol.

deposited in p2 (the message) and in p5 (the timeout).
Firing time of t2 represents the ‘communication delay’
of sending a message, and firing time of t6, the timeout
time. When the firing of t2 is finished, a token is de-
posited in p3, the receiver. p3 is a free-choice place, so t3
and t4 are enabled simultaneously, but only one of them
can fire; the random choice is characterized by ‘choice
probabilities’ assigned to t3 and t4. t3 represents (in a
simplified way) the loss or distortion of the message or
its acknowledgement; it t3 is selected for firing (accord-
ing to its free–choice probability), the token is removed
from p3 as well as from the model (t3 is a ‘token sink’).
In such a case the timeout transition t6 will finish its
firing with no token in p6; the termination of t6’s firing
regenerates the lost token in p1, so the message will be
retransmitted. If the message is received correctly, t4 is
selected for firing rather than t3, and after another com-
munication delay (modeled by t5), tokens are deposited
in p6 and p1 (so another message can be sent to the re-
ceiver). The token in p6 interrupts the firing of t6, so
the ‘timeout token’ is returned to p5 and immediately
removed by firing t7.
All immediate transitions (i.e., transitions with zero

firing time) are represented by (thin) bars, while timed
transitions are represented by (black) rectangles. The
firing times of timed transitions must be selected in
such a way that the timeout time (t6) is greater than
the sum of the delays of sending a message (t2) and an
acknowledgement (t5).
The transition t4 may seem redundant in this model

but in fact is required due to the restriction that all
free–choice classes of transitions must be uniform, i.e.,
each free–choice class must contain either immediate or
timed transitions but not both [14].
It should be noted that only a small modification of

the net in Fig.6 is needed to represent a ‘sliding win-
dow’ protocol, i.e., a protocol with several messages
in different stages of transmission/acknowledgement or
recovery.
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Fig.7. An outline of a 16–processor system (a) and a model of a distributed memory multithreaded system (b).

5. COLORED NET MODELS

In colored Petri nets [9], tokens have attributes called
colors. Token colors can be modified by (firing) tran-
sitions and also transitions can have several different
occurrences (or variants) of firing. The basic idea of
colored nets is to ‘fold’ identical parts of an ordinary
Petri net. The original set of places is partitioned into
a set of disjoint classes, and each class is replaced by
a single place with token colors indicating which of the
original places the tokens belong to. Similarly, the orig-
inal set of transitions is partitioned into a set of disjoint
classes, and each class is replaced by a single transition
with occurrences indicating which of the original tran-
sitions the firing corresponds to.
A timed net model of a distributed memory multi-

threaded architecture is used as an illustration of col-
ored net models [17]. The distributed memory system
is composed of a number processors connected by an in-
terconnection network; Fig.7(a) outlines a 16–processor
system with a two–dimensional torus–like interconnec-
tion network.
Each node in Fig.7(a) is a multithreaded processor.

Fig.7(b) shows a model of a processor as well as its con-
nection with the interconnection network (using two
switches, Tsinp and Tsout), and the network itself
(transitions TnetN , TnetE, TnetS and TnetW ). The
processor shown in Fig.7(b) performs context switching

(i.e., switching from one thread to another) for each
long–latency memory access (local or remote).

The execution of threads is modeled by transition
Trun with place Proc representing the (available) pro-
cessor (if marked) and Ready – the pool of threads wait-
ing for execution. The initial marking of Ready repre-
sents the average number of threads. It is assumed that
this number does not change in time.

The firing time of Trun is exponentially distributed
(all other firing times are deterministic) and its aver-
age value represents the runlength of threads, i.e., the
average number of instructions executed before context
switching occurs. Context switching is represented by
transition Tcsw (with its firing time).

Mem is a free–choice place, with a random choice of
either accessing local memory (T loc) or remote mem-
ory (Trem); in the first case, the request is directed to
Lmem where it waits for availability of Memory, and
after accessing the memory, the thread returns to the
pool of waiting threads, Ready. Memory is a shared
place with two conflicting transitions, Trmem (for re-
mote accesses) and T lmem (for local accesses); the res-
olution of this conflict (if both accesses are waiting)
is based on marking–dependent (relative) frequencies
determined by the numbers of tokens in Lmem and
Rmem, respectively.

Requests for remote accesses are directed to Rem,
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and then, after a sequential delay (the switch modeled
by Sout and Tsout), forwarded to Out, where a random
selection is made of one of the four (for this intercon-
nection network) adjacent nodes (transitions TnetN ,
TnetE, etc. represent links north, east, south and
west in Fig.7(a)). Similarly, the node incoming traffic
is collected from all neighboring nodes in Inp, and, af-
ter a sequential delay (Sinp and Tsinp), forwarded to
Dec. Dec is a free–choice place with three transitions
sharing it: Tret, which represents the satisfied requests
reaching their ‘home’ nodes; Tgo, which represents re-
quests as well as responses forwarded to another node
(another ‘hop’); and T local, which represents remote
requests accessing the memory at the destination node;
these remote requests are queued in Rmem and served
by Trmem when the memory module Memory becomes
available.
Colors are used to ‘fold’ processors into a single model

shown in Fig.7(b). Since transitions TnetN , ..., TnetW
pass messages between processors of the system, they
must transform the colors of tokens. A more detailed
description of colors and their transformations is given
in [17]; some performance results are also shown there.

6. CONCLUDING REMARKS

Timed Petri nets provide a high–level formalism (at
the level of abstraction similar to queueing systems) for
modeling a wide class of discrete–event systems. The
models usually correspond very closely to the real, mod-
eled systems, so the selection of parameters and inter-
pretation of results is quite straightforward.
Since the evaluation of net models can be automated,

it is not discussed in this paper. However, it should be
indicated that the evaluation of complex models can be
quite involved, and therefore systematic methods that
can deal with complex models are needed. Hierarchical
approach [4, 5, 6] may provide a satisfactory solution
once it is better understood.
At Memorial, Petri nets are also used in several other

(undergraduate and graduate) courses, for example, op-
erating systems (for modeling systems of interacting
processes) and computer architecture (for representing
concurrent activities).
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