
1987 Int. Conference on Parallel Processing (ICPP’87); St.Charles, IL, 17–21 August 1987, pp.695–698.

Copyright c© 1987 IEEE/Penn State University (DOI 10-1007/0-271-10060-0).

TIMED PETRI NETS IN MODELLING AND EVALUATION

OF MULTIPROCESSOR SYSTEMS

W.M. Zuberek

Department of Computer Science, Memorial University of Newfoundland

St.John’s, NL, Canada A1C 5S7

Abstract

Timed Petri nets discussed in this paper are extended Petri
nets with exponentially distributed firing times. Interrupt arcs
are introduced as an extension of inhibitor arcs to allow mod-
elling of preemptions. Since the behavior of extended free-
choice timed Petri nets can be represented by probabilistic Qs-
tate graphs, stationary probabilities of states can be obtained
by standard techniques used for analysis of continuous-time
homogeneous Markov chains. An immediate application of
such a model is performance analysis of queueing systems with
exponentially distributed service and interarrival times, and in
particular distributed computer systems. Places of Petri nets
model systems queues, transitions represent servers, inhibitor
arcs are used to model priorities of simultaneous events, and
interrupt arcs provide preemption of servers. Simple models of
multiprocessor systems are used as an illustration of modelling
and performance evaluation.

1. INTRODUCTION

There are three basic methods for evaluating the perfor-
mance of a complex system: (1) measuring the system during
its operation, (2) generating the results by a simulation pro-
gram that imitates the behavior of the system, and (3) solv-
ing a mathematical model that captures the essential features
of the system. The last of these methods is in many ways
the most satisfying since it provides many insights into de-
pendencies and relationships between system parameters and
performance characteristics. On the other hand, it is often
necessary to make simplifying assumptions to ensure numer-
ical or analytical tractability of a mathematical description,
and therefore a number of tools and techniques have been de-
veloped that simplify and automate mathematical modelling
[2,11,12]. Stochastic Petri nets and timed Petri nets are two
examples of such techniques. Application of timed Petri nets
to the modelling and evaluation of multiprocessor systems is
the subject of this paper.

Petri nets [1,4,11] are abstract, formal models of systems
with interacting, concurrent or parallel components. Multi-
processor systems, distributed databases, communication and
computer networks are just a few examples of such systems.
Petri nets, however, do not take into account the duration of
modelled activities and therefore they are not complete enough
for the study and evaluation of systems performance. Several
different concepts of timed Petri nets [7,12,13,14] and stochas-
tic Petri nets [2,3,10] have been proposed by assigning (deter-
ministic or stochastic) firing or enabling times to the transi-
tions or places of Petri nets.

The approach used in this paper is a continuation of the
approach originated by Ramchandani [12], however, the firing
times assigned to transitions of a net are independent, expo-
nentially distributed random variables, similarly as in stochas-
tic nets [2,10]. The description of firing transitions is, however,
quite different than in stochastic nets, and this results in a sig-
nificantly different class of models. It appears, that in many
cases timed Petri models are much simpler than stochastic
models of the same system [16].

2. EXTENDED M-TIMED PETRI NETS

A marked (extended) Petri net is a 6-tuple, M =
(P, T,A,B,C,m0) where P is a finite, nonempty set of places,
T is a finite, nonempty set of transitions, A is a nonempty
set of directed arcs which connect places with transitions and
transitions with places, A ⊆ P × T ∪ T × P , such that for
each transition t there exists at least one input and one out-
put place of t, B is a (possibly empty) set of inhibitor arcs
which connect places with transitions, B ⊂ P × T , and A and
B are disjoint sets, C is a (possibly empty) set of interrupt
arcs, C ⊆ B, and m0 is an initial marking function which as-
signs a nonnegative number of so called tokens to each place
of the net, m0 : P → {0, 1, ...}.

A place p of a net is shared if it is an input place for more
than one transition. A (marked) Petri net is free-choice (or ex-
tended free-choice [4]) iff the sets of input and inhibitor places
of transitions sharing p are identical (which means that all
transitions sharing p are either simultaneously enabled or dis-
abled. A shared place p is guarded iff for each two transitions
sharing p there exists another place which is an input place for
one of these transitions, and an inhibitor place for the other
one (which means that no two transitions sharing p can be
enabled simultaneously. A net is free-choice iff all its shared
places are either guarded or free-choice. In a free-choice net,
the relation of sharing a free-choice place is an equivalence re-
lation, hence it determines a partition of the set of transitions
into equivalence classes denoted by Free(T ) = T1, T2, ..., Tk.

In timed Petri nets [7,12,13,14,15] each transition t takes a
real time to fire. When a transition t is enabled, a firing can be
initiated by removing tokens from t’s input places. The tokens
remain in the transition t for the firing time, and then the firing
terminates by adding tokens to each of t’s output places. Each
of the firings is initiated in the same instant of time in which
it is enabled. If a transition is enabled while it fires, a new,
independent firing can be initiated. If a net contains conflicts,
and there are several different possibilities of firings for the
same marking, the selection of firing transitions is assumed to
be a random process.

In extended timed Petri nets, firing transitions may be in-
terrupted by a special type of inhibitor arcs which are called in-
terrupt arcs. If, during a firing period of a transition t, any one
of places connected with t by interrupt arcs becomes nonempty
(i.e., it receives at least one token), the firing of t ceases and
the tokens removed from t’s input places at the beginning of
firing, are returned to their original places. It should be no-
ticed that a firing of transition t can be interrupted only as a
result of the termination of another firing; since interrupt arcs
are inhibitor arcs, all places connected with t by interrupt arcs
must be empty to enable t and to initiate its firing.

An (extended) M-timed Petri net is a triple, T =
(M, c, r), where M is a marked (extended) Petri net, M =
(P, T,A,B,C,m0), c is a choice function which assigns a free-
choice probability to each transition of a net in such a way
that

∀(Ti ∈ Free(T ))
∑

tinTi

c(t) = 1,



Timed Petri nets inmodeling and evaluation of multiprocessor systems 696

and r is a firing rate function which assigns a positive real
number r(t) to each transition t of the net, r : T → R+, and
R+ denotes the set of positive real numbers; the firing time of
a transition T is a random variable v(t) with the probability
distribution function:

Prob(v(t)) = ex∗r(t), x > 0.

In timed Petri nets tokens are distributed in places as well
as in (firing) transitions. The description of states or con-
figurations of such nets is thus composed of two functions, a
marking and a firing function. Firing functions indicate all
active firings of transitions.

A state s of an M-timed Petri net T is a pair s = (m, f)
where m is a marking function, m : P → {0, 1, ...}, and f
is a firing function which indicates (for each transition of the
net) the number of active firings, i.e., the number of firings
which have been initiated but are not yet terminated, f : T →
{0, 1, ...}.

For extended free-choice M-timed nets, a discrete-state
continuous-time description has been introduced in [14,15]
which represents the behavior of nets by equivalent continuous-
time homogeneous Markov chains that can be generated di-
rectly from net specifications. Stationary probabilities of sys-
tem states can thus be obtained by standard techniques and
this provides many performance measures such as utilization
of systems components, average queue lengths, average wait-
ing times, etc. Consequently, the modelling can be performed
at the Petri net level rather than at the state level of the sys-
tem, and the net models are usually much simpler than the
corresponding state spaces. Moreover, Petri net models are
directly related to the modelled system while the state space
is an indirect representation since it models the behavior of the
system.

3. MODELLING AND EVALUATION

The widespread acceptance that Petri nets have gained in
modelling of systems is due to very simple representation of
concurrency and synchronization of systems activities. In
the case of queueing system models, places represent systems
queues, transitions servers, directed arcs model flow of activ-
ities, and inhibitor arcs are used to indicate priorities of si-
multaneous events. In extended Petri nets, servers may be
preempted by interrupt arcs.

A very simple central server model of an interactive mul-
tiprocessor system is shown in Fig.1 (as usual, places are de-
noted by circles, transitions by bars, and the firing rates and
free-choice probabilities are given as additional descriptions of
transitions). The central server is modelled by the transition t1
with p3 representing a pool of available processors (or server’s
channels). The terminals are modelled by t2, while p1 repre-
sents the queue of jobs submitted for execution. The initial
number of tokens in p3 determines the number of processors
(in this case 2), and the total initial number of tokens in p1
and p2 is equal to the number of (active) terminals (in this
case 5). Suppose that all jobs submitted for execution at the
central server are of the same type, i.e., they are statistically
identical, and that their execution times are exponentially dis-
tributed with the average equal to 0.5 time units (i.e., the
corresponding firing rate is equal to 2.0, r(t1) = 2.0). More-
over, suppose that the terminal (or thinking) times are also
exponentially distributed, but with the rate equal to 1.0 (i.e.,
r(t2) = 1.0). The system is then a Markovian queueing system
M/M/n//k (in Kendall classification) with n = 2 and k = 5.

There are six states of this system determined by the num-
ber of jobs in the service station (i.e., in the central server
and its queue of waiting jobs) [6,8], and the derivation of these
states is shown in Tab.1 which also contains stationary prob-
abilities of the states. It can be observed that the central
server is idle in the state s6 only (f6(t1) = 0). The stationary

Fig.1. M-timed Petri net T1. Fig.2. M-timed Petri net T2.

probability of this state, x(s6), is equal to 0.111 or 11.1server
are busy in the states s1, s2, s3 and s5 (since fi(t1) = 2 for
i = 1, 2, 3, 5), so the utilization of dual processor capabilities of
this system is equal to 0.613 or 61.3The throughput of the sys-
tem is equal to the total utilization of processors divided by
the average service time [5,6] or (0.276+2*0.613)/0.5=3.004
jobs per time unit, and then the average turnaround time of a
single job is equal to 5/3.004=1.664 time units.

It is known [9] that for such systems the performance dete-
riorates when the number of processors increases in such a way
that the processing capacity of the system (or the total service
rate, i.e., the sum of service rates of individual processors) is
preserved. In other words, for a given processing capacity, the
best solution is to use one, fast processor. In terms of Petri
net models, since the processing capacity of T1 from Fig.1 is
equal to 4.0, the ’em best model will contain one processor
(m0(p3) = 1), with the service rate equal to 4.0 (r(t1) = 4.0).
It can be shown [15] that the corresponding throughput is
equal to 0.801/0.25=3.204 jobs per time unit, and the average
turnaround time is equal to 5/3.204=1.561 time units. Sim-
ilarly, for the central server with four processors and service
rates equal to 1.0, the throughput decreases to 2.481 jobs per
time unit, and the average turnaround time increases to 2.015
time units.

mi fi
si x(si) 1 2 3 1 2 sj u(si, sj)

1 0.207 1 0 0 2 2 2 4.00
3 2.00

2 0.276 0 0 0 2 3 4 4.00
1 3.00

3 0.104 2 0 0 2 1 1 4.00
5 1.00

4 0.276 0 0 1 1 4 6 2.00
2 4.00

5 0.026 3 0 0 2 0 3 4.00
6 0.111 0 0 2 0 5 4 5.00

Tab.1. The set of reachable states for T1.

Now consider a more interesting case when the processors
are not completely reliable. Each processor goes through al-
ternating periods of being operative and broken down, inde-
pendently of other processors. If the operative and inoperative
periods are distributed exponentially with means a and b, re-
spectively, the average probability that a processor is operative
is equal to a/(a+ b). This means that for the total number of
processors equal to N , the effective number of available proces-
sors is reduced to N ∗a/(a+b). It turns out that, in presence of
this type of unreliability, the optimal number of processors is
no longer 1; in general it is greater than 1, and the closer is the



Timed Petri nets inmodeling and evaluation of multiprocessor systems 697

system to the saturation, the greater is the optimal number of
processors [9].

A Petri net model of a central server system with unreliable
processors is shown in Fig.2 (in fact, T2 models central server
with one processor, m0(p3) = m0(p4) = 1). The circuit p4, t3,
p5, t4 models exponentially distributed operative and inoper-
ative periods of time with rates r(t3) = 0.1 and r(t4) = 0.9,
respectively. During inoperative periods, the tokens represent-
ing processors are removed from the central server (i.e., from
p3). If a processor becomes inoperative while it is processing
one of jobs, the arc (p5, t1) interrupts the firing transition t1
(and returns the tokens to p1 - the job token, and p3 - the pro-
cessor token), after which t4 initiates its firing removing the
token from p3 for an inoperative period.

The derivation of the state space S(T2) is shown in Tab.2.
The throughput of this system is equal to 2.54 jobs per time
unit, and the average turnaround time is equal to 1.575 time
units. For two processors (m0(p3) = m0(p4) = 2) and for
the same processing capacity as before (i.e., r(t1) = 2.0) the
throughput increases to 2.798 jobs per time unit, and the aver-
age turnaround time decreases to 1.430 time units. For three
processors, the throughput decreases to 2.191 and the average
turnaround time increases to 1.825 time units.

mi fi
si x(si) 1 2 3 4 5 1 2 3 4 sj u(si, sj)

1 0.036 3 0 0 0 0 1 0 1 0 2 4.00
3 0.10

2 0.116 2 0 0 0 0 1 1 1 0 4 4.00
1 1.00
5 0.10

3 0.034 4 0 0 0 0 0 0 0 1 1 0.90
4 0.212 1 0 0 0 0 1 2 1 0 6 4.00

2 2.00
7 0.10

5 0.027 3 0 0 0 0 0 1 0 1 3 1.00
2 0.90

6 0.271 0 0 0 0 0 1 3 1 0 8 4.00
4 3.00
9 0.10

7 0.020 2 0 0 0 0 0 2 0 1 5 2.00
4 0.90

8 0.265 0 0 1 0 0 0 4 1 0 6 4.00
10 0.10

9 0.012 1 0 0 0 0 0 3 0 1 7 3.00
6 0.90

10 0.005 0 0 0 0 0 0 4 0 1 9 4.00
8 0.90

Tab.2. The set of reachable states for T2.

Quite often jobs arriving to a multiprocessor system belong
to several different types (or classes) with (perhaps) different
arrival rates and average execution times. Moreover, some of
the jobs may require better service than the other. A popular
solution is to assign priorities to different classes of jobs and
to select jobs (from the queue of waiting jobs) in order of their
priorities. A very simple Petri net model of a system with
two classes of jobs and with preemptive priority scheduling is
shown in Fig.3 (it should be observed that the net from Fig.3
has the same structure as the net from Fig.2; the two nets differ
in the initial marking functions and the firing rate functions).

The central server is represented by p1, t2 and t3. The first
class of jobs (or users) is modelled by the subnet t1, p2, t2
and p3, and the second class by the subnet p4, t3, p5 and t4.
The interrupt arc (p2, t3) performs preemption of processors
executing class-2 jobs when there is any waiting class-1 job.
For n1 = 1 user in class-1 and n2 = 3 users in class-3, the
derivation of the state space is shown in Tab.3.

Fig.3. M-timed Petri net T3. Fig.4. M-timed Petri net T4.

mi fi
si x(si) 1 2 3 4 5 1 2 3 4 sj u(si, sj)

1 0.023 0 0 0 2 0 0 1 1 0 2 3.00
3 2.00

2 0.048 0 0 0 1 0 1 0 2 0 1 1.00
4 4.00

3 0.068 0 0 0 1 0 0 1 1 1 4 3.00
5 2.00
1 1.00

4 0.173 0 0 0 0 0 1 0 2 1 3 1.00
6 4.00
2 1.00

5 0.093 0 0 0 0 0 0 1 1 2 6 3.00
7 2.00
3 2.00

6 0.320 1 0 0 0 0 1 0 1 2 5 1.00
8 2.00
4 2.00

7 0.066 1 0 0 0 0 0 1 0 3 8 3.00
5 3.00

8 0.209 2 0 0 0 0 1 0 0 3 7 1.00
6 3.00

Tab.3. The set of reachable states for T3.

Using the same relationships as before, the performance is
evaluated independently for each class of jobs. Since the class-1
jobs are executed in the states s1, s3, s5 and s7, the utiliza-
tion of processors for class-1 jobs is equal to the sum of x(si),
i = 1, 3, 5, 7. The utilization of processors for class-2 must
take into account the fact that in the states s2 and s4 both
processors execute class-2 jobs. It should be noticed that due
to preemption of class-2 jobs, the increasing number of class-1
jobs will effectively block class-2 jobs from execution, i.e., the
limiting values of throughputs (when n1 increases to infinity)
are 6.0 and 0.0 for class-1 and class-2, respectively. Several
performance measures for different values of n1 and for n2 = 3
are as follows:

n1 = 1 n1 = 3 n1 = 5

class-1 utilization of processors 0.250 0.744 1.194
average class-1 throughput rate 0.750 2.232 3.582
average class-1 turnaround time 1.333 1.344 1.395
average class-1 waiting time 0.000 0.011 0.062
class-2 utilization of processors 0.946 0.808 0.602
average class-2 throughput rate 1.892 1.616 1.204
average class-2 turnaround time 1.586 1.856 2.492
average class-2 waiting time 0.086 0.356 0.992



Timed Petri nets inmodeling and evaluation of multiprocessor systems 698

In order to avoid blocking of jobs and to guarantee certain
levels of processing in all job classes, another strategy is used
in which the set of N processors is subdivided into groups of
Ki processors designated to class-i jobs, N = K1 + ... + Km,
where m is the number of job classes. Class-i jobs are then
given preemptive priority on designated Ki processors. The
processing capacity for class-i jobs is Ki if there are at least
Kj class-j jobs in the server, j 6= i, and it rises up to N when
the number of other jobs decreases. Fig.4 shows a Petri net
modelling such a system with 2 classes of jobs, and with one
processor designated to each class, K1 = K2 = 1. Performance
results for several values of n1 and for n2 = 3 are as follows:

n1 = 1 n1 = 3 n1 = 5

class-1 utilization of processors 0.250 0.681 0.978
average class-1 throughput rate 0.750 2.043 2.934
average class-1 turnaround time 1.333 1.468 1.704
average class-1 waiting time 0.000 0.135 0.361
class-2 utilization of processors 0.946 0.875 0.822
average class-2 throughput rate 1.892 1.750 1.644
average class-2 turnaround time 1.586 1.714 1.825
average class-2 waiting time 0.086 0.214 0.325

In this case, the limiting values of throughputs depend upon
n1 and n2. When both, n1 and n2, tend to infinity, the
throughputs approach 3.0 and 2.0 for class-1 and class-2, re-
spectively. For a fixed value of n2, the limiting value of the
class-1 throughput is between 3.0 and 6.0 (it is equal to 6.0 for
n2 = 0). For n2 = 3, the limiting value of the class-2 through-
put is equal to the throughput of a single processor system
serving only class-2 jobs, i.e., 1.579 jobs per time unit. Then
the limiting class-1 throughput is equal to 3.632. It can be
observed that the results obtained for n1 = 10 are quite close
to the limiting values. ¡p¿ There are many other results that
can be derived in a similar way.

4. CONCLUDING REMARKS

It can be observed that extended M-timed Petri nets pro-
vide a uniform and rather straightforward method for typi-
cal evaluation studies of queueing systems, and in particular
for performance analysis of multiprocessor systems. Petri net
models are usually rather simple, and their parameters directly
correspond to components or activities of the modelled sys-
tems (e.g., the numbers of processors or jobs, different classes
of jobs, service rates, etc.). The state space can be automati-
cally derived from model specifications, and many performance
measures can be obtained from the state equilibrium probabil-
ities using rules derived for operational analysis.

All models presented in this paper belong to the class of
closed-network systems, however, timed Petri nets can also
be applied to modelling and analysis of open-network systems
[15]. Analysis of open-network models is much more difficult
because the corresponding state space is infinite (the modelling
nets are unbounded), and the states must be reduced or folded
in order to perform effective evaluations.

The class of extended timed Petri nets discussed in this pa-
per is restricted in several ways (simple free-choice nets), some
of the restrictions, however, can be removed easily by appro-
priate modifications of the formalism. In fact, nets with more
general conflicts (or random switches [2]) can be handled in a
very similar way provided the probabilities of conflicting firings
are known and included in the state description. Also, non-
simple nets, i.e., net with several levels of interrupts, can be
covered by a rather straightforward generalizations. Moreover,
some further flexibility is offered by enhanced Petri nets [14]
in which the set of transitions is subdivided into two classes,
timed and immediate transitions, and the firing times are as-
sociated with timed transitions only (immediate transitions

fire instantaneously). This allows not only modelling of arbi-
trarily complex selection and scheduling strategies, but it also
reduces many intermediate states which are insignificant for
performance analysis.

Acknowledgement

The Natural Sciences and Engineering Research Council of
Canada partially supported this research through Operating
Grant A8222.

REFERENCES

[1] T. Agerwala, Putting Petri nets to work; IEEE Computer
Magazine, vol.12, no.12, pp.85-94, 1979.

[2] M. Ajmone Marsan, G. Conte, G. Balbo, A class of gener-
alized stochastic Petri nets for the performance evaluation
of multiprocessor systems; ACM Trans. on Computer
Systems, vol.2, no.2, pp.93-122, 1984.

[3] G. Balbo, S.C. Bruell, S. Ghanta, Modeling priority
schemes; Performance Evaluation Review (Proc. of the
1985 ACM SIGMETRICS Conf. on Measurement and
Modeling of Computer Systems), vol.13, no.2, pp.15-26,
1985.

[4] W. Brauer (ed.), Net theory and applications; Proc. of
the Advanced Course on General Net Theory of Processes
and Systems, Hamburg 1979 (Lecture Notes in Computer
Science 84), Springer Verlag 1980.

[5] J.P. Buzen, Fundamental operational laws of com-
puter system performance; Acta Informatica, vol.7, no.2,
pp.167-182, 1976.

[6] D. Ferrari, Computer systems performance evalua-
tion; Prentice-Hall 1978.

[7] M.A. Holliday, M.K. Vernon, A generalized timed Petri
net model for performance evaluation; Proc. Int. Work-
shop on Timed Petri Nets, Torino, Italy, pp.181-190,
1985.

[8] L. Kleinrock, Queueing systems, vol.1: Theory, vol.2:
Computer applications; J. Wiley & Sons 1975, 1976.

[9] I. Mitrani, Probabilistic modelling of distributed comput-
ing systems; in: Distributed Computing Systems
Programme, D.A. Duce (ed.), pp.139-153, Peregrinus
Ltd., London 1984.

[10] M.K. Molloy, Performance analysis using stochastic Petri
nets; IEEE Trans. on Computers, vol.31, no.9, pp.913-
917, 1982.

[11] J.L. Peterson, Petri net theory and the modeling
of systems, Prentice-Hall 1981.

[12] C. Ramchandani, Analysis of asynchronous concurrent
systems by timed Petri nets; Project MAC Technical Re-
port MAC-TR-120, Massachusetts Institute of Technol-
ogy, Cambridge MA, 1974.

[13] J. Sifakis, Use of Petri nets for performance evalua-
tion; in: Measuring, modelling and evaluating com-
puter systems, pp.75-93, North-Holland 1977.

[14] W.M. Zuberek, M-timed Petri nets, priorities, preemp-
tions, and performance evaluation of systems; in: Ad-
vances in Petri Nets 1985 (Lecture Notes in Computer
Science 222), G. Rozenberg (ed.), pp.478-498, Springer
Verlag 1986.

[15] W.M. Zuberek, On modelling and evaluation of mul-
tiprocessor systems using extended M-timed Petri nets;
Technical Report #8605, Department of Computer Sci-
ence, Memorial University of Newfoundland, St. John’s,
Canada A1C 5S7, 1986.

[16] W.M. Zuberek, On modelling and performance evalua-
tion using stochastic and M-timed Petri nets; Technical
Report #8601, Department of Computer Science, Memo-
rial University of Newfoundland, St. John’s, Canada A1C
5S7, 1986.


