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A b s t r a c t

Linearly unbounded timed Petri nets are free-choice
place/transition nets with exponentially distributed firing
times associated with transitions of a net, in which the infinite
state space is generated by a finite set of linear equations. This
linear description can be used for reduction of the infinite state
space into an equivalent finite representation that can easily
be solved for stationary probabilities of states. Many perfor-
mance measures can be obtained directly from the stationary
solution.

1. INTRODUCTION

The three basic methods for evaluating the performance of a
complex system are [Ferr]: (1) measuring the system during its
operation, (2) generating the results by a simulation program
that “imitates” the behaviour of the system, and (3) solving
a mathematical model that captures the essential features of
the system. The last of these methods is in many ways the
most satisfying one since it may provide many insights into de-
pendencies and relationships between system parameters and
performance characteristics that are not easily produced by
the other methods. However, mathematical modelling is also
the most difficult approach as it quite often uses advanced
mathematical theories to derive the exact or approximate re-
sults. Therefore a number of techniques have been proposed
to simplify and “automate” mathematical modelling. Stochas-
tic Petri nets and timed Petri nets are two examples of such
techniques in which the basic Petri nets [Ager,Mura,Pete,Reis]
are augmented (in two different ways) by “time” attributes in
order to represent the behavior of the system accurately.

Petri nets are abstract models of systems with interacting,
concurrent or parallel components. Multiprocessor systems,
distributed databases, communication and computer networks
are just a few examples of such systems. However, the orig-
inal approach to Petri nets does not take into account the
duration of modelled activities; the changes of “states” (or
markings) of a net are instantaneous events which can repre-
sent the “causality” of events, but which neglect any temporal
considerations. Consequently, such a model (called an “or-
dinary Petri net”) is not complete enough for analysis and
evaluation of systems performance. Several different concepts
of “timed” Petri nets [HoVe,RaPh,Sif] and “stochastic” Petri
nets [AMCB,DBCT, Moll] have been proposed by assigning
(deterministic or stochastic) firing or enabling times to places
or transitions of Petri nets.

Timed Petri nets considered in this paper are unbounded
free-choice place/transition nets with stochastic firing times
associated with transitions of a net. In timed Petri nets, the
firing of an enabled transition is composed of three “concep-
tual” steps; the first (instantaneous) removes tokens from the
input places, the second (temporal) “holds” the removed to-
kens within the transition for the duration of the firing time,
and the third step (instantaneous) moves tokens to all transi-
tion’s output places [Zub1]. The stochastic firing times mean
that the firing time of each transition is a random variable with
the (negative) exponential distribution. It can be shown that

then the holding times of “states” [Zub1] (which describe dis-
tributions of tokens in places as well as firing transitions of a
net) are also exponentially distributed random variables. The
state transition system representing the behavior of a timed
Petri net (or the state graph of a net) is thus a discrete-state
continuous-time Markov process which, for an unbounded net,
has infinitely many states. Therefore, in order to effectively
find the stationary properties of states, this infinite state space
must be somehow reduced to an equivalent finite representa-
tion. For linearly unbounded nets, the infinite state space is
generated by a finite number of linear equations each of which
represents a class of “similar” states. The classes of “similar”
states are infinite, however, the stationary probabilities are ge-
ometrically distributed in such classes, so each class can easily
be aggregated into a single “superstate”. Since the number
of classes is finite, known methods can be used to find the
stationary probabilities for “aggregated” states, and this also
determines the stationary probability distributions within the
classes.

Many probability measures can easily be derived from sta-
tionary probabilities of the states.

The main part of the paper contains three sections. Section
2 recalls the most important concepts and definitions for ordi-
nary and timed Petri nets. Some properties of unbounded nets
are presented in section 3, and illustrated in section 4 with a
simple model of an open queueing network. A few conclusions
are given in section 5.

2. TIMED NETS

An (ordinary) place/transition net N is a triple N =
(P, T,A) where P is a (finite, nonempty) set of places, T is
a (finite, nonempty) set of transitions, and A is a set of di-
rected arcs, A ⊂ P × T ∪ P × T . For each element of P (and
T ), the input and output sets denote all those elements of T
(and P ) which are connected by directed arcs to and from this
element, respectively, i.e., Inp(p) = {t ∈ T |(t, p) ∈ A}, etc.

A place p is shared if its output set contains more than one
transition. A shared place p is free-choice (or extended free-
choice) iff all transitions sharing it have identical input sets,
i.e., iff:

∀(ti, tj ∈ Out(p)) Inpt(ti) = Inp(tj)

A net is free-choice iff all its shared places are free-choice.
Only free-choice net are considered in this paper.

A marked net M is a pair M = (N,m0), where N is a
place/ transition net and m0 is the initial marking function
which assigns a nonnegative number of so called “tokens” to
each place of a net, m0 : P → {0, 1, 2, ...}. In a marked net a
transitions t is enabled if all its input places contain at least
one token.

Each enabled transition can fire. When a transition t fires,
a token is removed from each of its input places (simultane-
ously), and a single token is added to each t’s output place.
This determines a new marking function of a net, a new set of
enabled transitions, etc. The set of all marking functions that
can be generated by a net is denoted by M(M).
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A place p of a marked net M is bounded iff there exists a
bound on the number of tokens that any marking function of
the set M(M) can assign to p:

∃(k > 0)∀(m ∈ M(M)) m(p) < k

A marked net is bounded iff all its places are bounded. The
set M(M) of a bounded net is finite.

In marked nets, the firings of transitions are instantaneous
events, and analysis of such nets usually assumes that the fir-
ings are performed “one at a time”. Modeling of “real” systems
must also take into account the duration of systems activi-
ties represented by transition firings. Therefore in timed nets
[Zub1] each transition takes a “real time” to fire, and at any
instant of time the tokens are distributed in places as well as
(firing) transitions of a net. The “state” description is simi-
lar to marking functions of marked nets, but it contains the
second component that describes the firing transitions. More-
over, to provide unambiguous modelling capability, in timed
nets each firing starts at the same instant of time at which
the transition becomes enabled (but some enabled transitions
are disabled without firing, e.g., conflicting transitions in free-
choice classes).

A timed net T is a triple, T = (M, c, f), where M is a
marked place/transition net, c is a choice function, c : T →
[0, 1], such that for each free-choice place p,

∑

t∈Out(p)
c(t) = 1,

and for all transitions t that do not belong to free-choice
classes, c(t) = 1. It is assumed that the choices within free-
choice classes of enabled transitions are independent random
variables with discrete distributions described by correspond-
ing probabilities c(t).

A state of a timed net T is a pair of functions s = (m,n),
m : P → {0, 1, ...}, n : T → {0, 1, ...}, which describe the
distribution of tokens in places (m) and firing transitions (n).
The derivation of the state space of a timed net is described
in [Zub2]; the state space of net T is denoted by S(T).

A timed net T is bounded iff
∃(k > 0) ∀(s = (m,n) ∈ S(T))
∀(p ∈ P ) m(p) < k ∧ ∀(t ∈ T ) n(t) < k.
T is place-unbounded if there is no bound on the marking

component m of states s = (m,n) ∈ S(T), and it is transition-
unbounded if there is no bound on the firing component n of
states.

It can easily be shown that any firing sequence of a timed
net T = (M, c, f) is also a firing sequence in the marked net M
(but the opposite is not true [Zub1]); this is due to the fact that
in timed nets some tokens are associated with firing transitions
and are “inactive” during the firing periods. Consequently, a
bounded timed net can have unbounded marked net, but an
unbounded timed net can never have a bounded marked net.

3. UNBOUNDED NETS

Each place/transition net N = (P, T,A) can be repre-
sented by an incidence (or connectivity) matrix C : P × T →
{−1, 0,+1} in which places correspond to rows, transitions to
columns, and the entries are defined as:

∀(p ∈ P )∀(t ∈ T )C[p, t] =

{

−1, if (p, t) ∈ A ∧ (t, p) 6∈ A,

+1, if (t, p) ∈ A ∧ (p, t) 6∈ A,

0, otherwise.

It can be verified that if a marking function mj is obtained
from another marking functionmi by firing a transition tk then
(in vector notation) mj = mi + C[., k], where C[., k] denotes
the k-th column of C, i.e., the column corresponding to tk.

Incidence matrices disregard “selfloops”, that is pairs of arcs
(p, t) and (t, p); for such a selfloop any firing of a transition t
cannot change the marking of p; selfloops are neutral with
respect to token count of a net. A pure net is defined as a net
without selfloops [Reis].

Furthermore, it can be observed that in an ordinary
(marked) net M, if a marking mj is reachable from another
marking mi by a firing sequence σ = (ti1ti2 ...tik ), and if mj is
(componentwise) greater or equal to mi, mj ≥ mi, then:

• mj = mi + C × Iσ, where Iσ is a nt-element vector (nt

is the number of transintions in the set T) whose j-th
element Iσ[j] is equal to the number of occurrences of
transition tj in the sequence σ.

• σ is a feasible firing sequence in mj , i.e., ti1 is enabled by
mj so it can fire, ti2 is enabled by the marking created
by firing ti1 in mj , etc.

• Consequently, there exists yet another marking mk that
is reachable from mj by σ, so mk = mj +C× Iσ.

• Applying the same reasoning to mk and mj rather than
mj and mi, it follows that the marking mk + C × Iσ is
feasible in mk, as well as mk+2∗C×Iσ, mk+3∗C×Iσ,
etc.

In conclusion, in a marked net M, if a marking mj is reach-
able from another marking mi, and mj is (componentwise)
greater or equal to mi, and mj 6= mi, then M is unbounded.
For marked nets this property is a sufficient as well as neces-
sary condition of unboundedness [Reis].

In timed nets the firing of a transition is not an “instan-
taneous” event, and therefore a different description of net
structure is needed, in which the beginnings and the termi-
nations of firings are separated as this new description must
correspond to state transitions rather than transformations of
marking functions.

A place/transition net N is represented by a pair of np ×nt

matrices, the input incidence matrix C− : P × T → {−1, 0}
which is defined as:

∀(p ∈ P )∀(t ∈ T ) C−[p, t] =

{

−1, if (p, t) ∈ A,

0, otherwise.

and the output incidence matrix C+ : P×T → {0,+1} defined
as:

∀(p ∈ P )∀(t ∈ T ) C+[p, t] =

{

+1, if (t, p) ∈ A,

0, otherwise.

It can be verified that if a state (mj , nj) is reached from
another state (mi, ni by termination of a firing of transition tk
and then initiating firings of transitions til , l = 1, ..., n, than

mj = mi +C
+[., k] +

∑

1≤l≤n

C
−[., il],

nj = ni − 1k +
∑

1≤l≤n

1il
,

where 1k denotes a vector with only one nonzero k-th element
that is equal to 1.

Furthermore, if a state sj = (mj , nj) can be (generally)
reached from another state si = (mi, ni) through a sequence
σ of intermediate states σ = (si1 , ..., sin) such that the total
numbers of transitions that terminate their firings in this se-
quence are described by a vector I+ while another vector I−

describes the numbers of transitions that initiated their firings
in σ (the two vectors may be different), than:

mj = mi +C
+ × I

+ +C
− × I

−
,

nj = ni − I
+ + I

−
.

A timed net is place-unbounded if there exist two nonnega-
tive vectors, an nt-element vector I and an np-element vector
J such that:
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1. (C+ +C−)× I = J,

2. the vectors I and J are t-feasible, that is, there exist a state
si = (mi, ni) and a state sj = (mi + J, ni) reachable
from si by a sequence of state transitions in which the
total numbers of transition firings are described by I. The
vector J is called the marking increment vector.

A timed net is transition-unbounded if there exist two non-
negative nt-element vectors I and J such that:

1. C− × I+C+ × (I+ J) = 0,

2. the vectors I and J are p-feasible, that is, there exist a state
si = (mi, ni) and a state sj = (mi, ni+J) reachable from
si by a sequence of state transitions in which the total
numbers of initiated transition firings are described by I,
and the total numbers of terminated firings correspond to
I− J. The vector J is called the firing increment vector.

A timed netT is linearly unbounded if it is place-unbounded
and its all place increment vectors J contain only one non-zero
element.

The following section illustrates these concepts in greater
detail.

4. PERFORMANCE EVALUATION

Performance evaluation of unbounded nets is illustrated by
a simple net model shown in Fig.1. It is an open network model
of a system in which a “source” with exponentially distributed
interarrival times is represented by p1 and t1 (the arrival rate
r(t1) is equal to 1 arrival per time unit), and the remaining part
of the net models a (single channel) server composed of two
consecutive stages. The first stage (t2 and t3) provides service
with a hyperexponential distribution; the service rate is equal
to 2 with probability 0.25 (t2) and 5 with probability 0.75 (t3);
the place p2 is a free-choice place. Service times of the second
stage (t4) are exponentially distributed with the rate equal to
4. The total service time is thus hypoexponentially distributed
with corresponding parameters.

p1

t1

1
p2

p3

t4

4

p4

t2

2

t3

5

Fig.1. Unbounded M-timed Petri net T.

The incidence matrices C, C− and C+ are as follows:

C t1 t2 t3 t4
p1 0 0 0 0
p2 +1 –1 –1 0
p3 0 –1 –1 +1
p4 0 +1 +1 –1

C− t1 t2 t3 t4
p1 –1 0 0 0
p2 0 –1 –1 0
p3 0 –1 –1 0
p4 0 0 0 –1

C+ t1 t2 t3 t4
p1 +1 0 0 0
p2 +1 0 0 0
p3 0 0 0 +1
p4 0 +1 +1 0

It can be verified that for I=[1,0,0,0], C×I=[0,1,0,0], which
means that each firing of t1 increases the marking of p2 by
one token; p2 is an unbounded place and, consequently, the
marked net shown in Fig.1 also is unbounded.

The timed net is also unbounded, which can be checked by
verifying the feasibility condition. For example, in the state s2
from Tab.1, (m2, n2) = ([0, 0, 0, 0], [1, 0, 1, 0]), the termination
of the firing of t1 deposits single tokens in p1 and p2, and
since p1 is the only input place of t1, t1 immediately starts
its firing again (there are no other enabled transitions). So,
for the firing described by I, the marking increment vector is
equal to J. The timed net is place unbounded, and it is linearly
unbounded.

Because of the unbounded place p2, the state space of this
net is infinite, but the states which are “distant” from the
initial state are not very likely to be active. Since the firing
times of both t2 and t3 are exponentially distributed random
variables, the probability that there will be k firings of t1 before
a termination of t2 or t3 firing is nonzero, and this is true for
any value of k. Therefore, the state space of T will contain a
series of states differing only in the marking of p2.

The initial part of the state graph of T is shown in Fig.2 (the
numbering of states is quite irrelevant; actually it is generated
by a net analyzing program, which uses a rather complicated
scheme for assigning consecutive state numbers.)
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Fig.2. State graph of T.

The state graph has a regular structure which reflects the
unboundedness condition. The state s2, using the feasibil-
ity condition, derives the states s4 = (m2 + J, n2), s7 =
(m4 + J, n2), etc. Similarly, s3 derives s6 = (m3 + J, n3),
s9 = (m6 + J, n3), etc., and s5 derives s8 = (m5 + J, n5),
s10 = (m8 + J, n5), etc. The state space can thus be repre-
sented by a linear form S(T = {s} ∪ {(mi + k ∗ J, ni), i =
2, 3, 4 ∧ k = 0, 1, 2, ...}. Since the “replicated” states are in-
terrelated in the same way as are the “basic” states, state
graph of T contains a regular (three-state) section {s4, s8, s6},
{s7, s10, s9}, ...) that is repeatedly added to a four-state “ba-
sis” {s1, s2, s5, s3}. These added sections form “layers” of the
state graph which can be “folded” or reduced to a single layer
with stationary probabilities that are sums of corresponding
infinite geometric series.

The derivation of the (reduced) state space for T is shown in
Tab.1, in which si and sj are the present and the next states,
respectively, mi and ni describe the distributions of tokens
in places (mi) and firing transitions (ni), h(si) if the average
holding time in the state si, and q(si, sj) is the probability of
transition from the state si to the state sj .

The states in Tab.1 are “automatically” subdivided into
groups. The first group contains all initial states. Whenever
linear unboundedness is detected (by checking “regularity” of
the created state space), the second group of states is formed
which contains repetitions of some states from the first group;
in Tab.1 this second group is indicated by the star symbols (the
states “*7(4)”, “*9(6)” and “*10(8)”) with the corresponding
“first” states given in parentheses. Similarly, the states “**11”,
“**12” and “**13” form the third group, derived from the sec-
ond group, etc.
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mi ni

si 1 2 3 4 1 2 3 4 h(si) tk sj q(si, sj)

1 0 0 1 0 1 0 0 0 1.000 1 2 0.750
3 0.250

2 0 0 0 0 1 0 1 0 0.167 1 4 0.167
3 5 0.833

3 0 0 0 0 1 1 0 0 0.333 1 6 0.333
2 5 0.667

4 0 1 0 0 1 0 1 0 0.167 1 *7 0.167
3 8 0.833

5 0 0 0 0 1 0 0 1 0.200 1 8 0.200
4 1 0.800

6 0 1 0 0 1 1 0 0 0.333 1 *9 0.333
2 8 0.667

8 0 1 0 0 1 0 0 1 0.200 1 *10 0.200
4 2 0.600

3 0.200
7(4) 0 2 0 0 1 0 1 0 0.167 1 **11 0.167

3 *10 0.833
9(6) 0 2 0 0 1 1 0 0 0.333 1 **12 0.333

2 *10 0.667
10(8) 0 2 0 0 1 0 0 1 0.200 1 **13 0.200

4 4 0.600
6 0.200

Tab.1. The set of reachable states for T.

The infinite set of states S(T) can thus be subdivided into
four disjoint classes of states (Fig.2 and Tab.1), S0 that con-
tains all “basic” states of T (i.e., s1, s2, s3 and s5), S1 that
represents the “bottom” layer of folding (s4, s6 and s8), S2 that
represents the “second” layer of folding (s7, s9 and s10), and all
remaining states. Since the stationary probabilities of folded
states in consecutive layers are geometrically distributed, the
infinite sum of probabilities can be replaced be the sums of
corresponding geometrical series with the quotient of these se-
ries (denoted by ρ) as an additional “new” unknown. This
leads to a system of simultaneous nonlinear (in fact, quadratic
for single-place unbounded place nets) equilibrium equations
in which x(s) denotes the (unknown) stationary probability of
the state s:














































∑

sj∈S0∪S1

h(sj) ∗ q(sj , si) ∗ x(sj) = h(si) ∗ x(si); si ∈ S0

∑

sj∈S0∪S1

h(sj) ∗ q(sj , si) ∗ x(sj)+

[0.5in]
∑

sj∈S2

h(sj) ∗ q(sj , si) ∗ ρ ∗ x(sj) = h(si) ∗ x(si); si ∈ S1

(1− ρ)
∑

si∈S0

x(si) +
∑

sj∈S1

x(sj) = 1− ρ

For T this system contains 8 equations (4 for S0, 3
for S1 and the “normalizing” equation), and the solu-
tion is ρ=0.483, x(s1)=0.472, x(s2)=0.093, x(s3)=0.062,
x(s4)=0.032, x(s5)=0.118, x(s6)=0.032 and x(s8)=0.068. The
remaining probabilities can be obtained from recursive formu-
las, e.g., x(s7) = ρ ∗ x(s4), etc.

Many performance measures can be derived from stationary
probabilities of the states. For example, the utilization of the
server corresponds to the probability 1−Prob(serveridle); the
server is idle in all those states si in which mi(p3) = 1. For
the net from Fig.1, the only state with idle server is s1 (see
Tab.1), the utilization of the server is equal to 1-x(s1)=0.528.
The probability that there are at least two jobs waiting for
processing is the sum of stationary probabilities of all those
states in which m2 ≥ 2, which is equal to 0.123 for this model,
and so on.

5. CONCLUDING REMARKS

A systematic approach to analysis of a class of unbounded
timed Petri nets has been presented. The characteristic prop-
erty of this class of nets is that their state spaces can be gener-
ated by a finite set of linear “state” equations. This approach
opens a new direction in applications of timed Petri net models
as all existing approaches [AMCB,DBCT,HoVe,RaPh] assume
that the modelling nets are bounded, and their state spaces
are finite.

The approach can be used efficiently during generation of
the state space of a timed net; whenever a new state is created,
conditions for unboundedness can be checked, an the infinite
classes of states reduced, as shown in Tab.1.

The presented approach may seem rather complicated and
thus impractical, it should be noted, however, that it can eas-
ily be implemented as a computer program, and then all the
detailed state descriptions and state transitions can be “invis-
ible” for users.

Acknowledgement

The Natural Sciences and Engineering Research Council of
Canada partially supported this research through Operating
Grant A8222.

R e f e r e n c e s

[Ager] T. Agerwala, “Putting Petri nets to work”; IEEE Com-
puter Magazine, vol.12, no.12, pp.85-94, 1979.

[AMCB] M. Ajmone Marsan, G. Conte, G. Balbo, “A class
of generalized stochastic Petri nets for the performance
evaluation of multiprocessor systems”; ACM Trans. on
Computer Systems, vol.2, no.2, pp.93-122, 1984.

[DBCT] J.B. Dugan, A. Bobbio, G. Ciardo, K. Trivedi, “The
design of a unified package for the solution of stochastic
Petri net models”; Proc. Int. Workshop on Timed Petri
Nets, Torino, Italy, pp.6-13, 1985.

[Ferr] D. Ferrari, “Computer systems performance evalua-
tion”; Prentice-Hall 1978.

[HoVe] M.A. Holliday, M.K. Vernon, “A generalized timed
Petri net model for performance evaluation”; Proc. Int.
Workshop on Timed Petri Nets, Torino, Italy, pp.181-190,
1985.

[Moll] M.K. Molloy, “Performance analysis using stochastic
Petri nets”; IEEE Trans. on Computers, vol.31, no.9,
pp.913-917, 1982.

[Mura] T. Murata, “Petri nets: properties, analysis and appli-
cations”; Proceedings of the IEEE, vol.77, no.4, pp.541-
580, 1989.

[Pete] J.L. Peterson, “Petri net theory and the modeling of
systems”, Prentice-Hall 1981.

[RaPh] R.R. Razouk, C.V. Phelphs, “Performance analysis
using timed Petri nets”; in: “Protocol Specification, Test-
ing, and Verification IV” (Proc. of the IFIP WG 6.1
Fourth Int. Workshop, Skytop Lodge PA, June 11-14,
1984); Y. Yemini, R. Strom, S. Yemini (eds.), pp.561-576,
North-Holland 1985.

[Sif] J. Sifakis, “Use of Petri nets for performance evaluation”;
in: “Measuring, modelling and evaluating computer sys-
tems”, pp.75-93, North-Holland 1977.

[Zub1] W.M. Zuberek, “M-timed Petri nets, priorities, pre-
emptions, and performance evaluation of systems”; in:
“Advances in Petri Nets 1985” (Lecture Notes in Com-
puter Science 222), G. Rozenberg (ed.), pp.478-498,
Springer Verlag 1986.

[Zub2] W.M. Zuberek, QOn generation of state space for
timed Petri netsU; Proc. ACM Annual Computer Sci-
ence Conf., Atlanta GA, pp.239-248, 1988.


