
IEEE Int. Conference on Computer Design (ICCD’84); Port Chester, NY, October 8-11, 1984, pp.492-496.

Copyright c© 1984 IEEE (DOI 10.1007/0-8186-0563-8).

SPICE-PAC, A PACKAGE OF SUBROUTINES FOR INTERACTIVE

SIMULATION AND OPTIMIZATION OF CIRCUITS

W.M. Zuberek

Department of Computer Science
Memorial University of Newfoundland
St. John’s, NL, Canada A1C–5S7

Abstract. SPICE-PAC is a package (or a set) of sub-
routines which is functionally equivalent to the SPICE
2G circuit simulation program, i.e., it accepts the same
circuit description and performs all the analyses which
are available in the SPICE 2G programs, but also pro-
vides an access to internal values of circuit elements,
dynamic definitions of parameters and outputs, hierar-
chical naming scheme for subcircuit elements, parame-
terized subcircuit expansions, an interface to libraries of
standard modules, and a set of run-time diagnostics to
control the package actions. Two immediate applications
of the package are: (1) interactive circuit simulation in
which an interactive driver controls the simulation sub-
routines according to user commands, and (2) circuit op-
timization in which an optimization package is interfaced
with the simulation package by user-supplied subroutines
that evaluate objective functions, constrains, etc. Some
results of very simple examples are included as an illus-
tration.

1. INTRODUCTION

Computer-aided circuit analysis or circuit simulation,
which matured in the 1970’s, has established itself as
a significant tool for analysis and design of integrated
circuits. The SPICE-2 program [1,3,4] developed at the
Department of Electrical Engineering and Computer Sci-
ences, University of California in Berkeley, has become
one of the most popular ”second-generation” circuit sim-
ulators. It provides several linear and nonlinear analy-
ses, including DC operating point, nonlinear DC transfer
curves, nonlinear transient, small-signal frequency do-
main, noise, distortion and Fourier. Circuits may con-
tain resistors, capacitors, inductors and mutual induc-
tors, independent linear and nonlinear voltage and cur-
rent sources, four types of dependent sources, transmis-
sion lines, and the four most common semiconductor de-
vices: diodes, bipolar junction transistors, junction field
effect transistors and metal-oxide-semiconductor field ef-
fect transistors (MOSFETs). SPICE has built-in models
for semiconductor devices and the users need to specify
only the pertinent model parameter values, moreover, if
different semiconductor devices use the same model, the
model parameters can be specified once only.

The SPICE-2 program execution consists of two basic

phases. The first phase reads all the input data (i.e., the
circuit description and parameters of required analyses),
while the second phase performs all the simulations and
prints the results. The consequence of such a program or-
ganization is that even a minor change in any of element
descriptions or parameter values requires a new, inde-
pendent run of the simulator. This makes optimization
problems almost intractable because of inefficiency and
complexity of interfacing optimization packages with the
SPICE program, which can be done at the input/output
file level only.
To overcome these difficulties a new structure of the

circuit simulator is required, in which different analyses
(for the same circuit) can be performed selectively, and
in which there is an access to internal representation of
circuit elements in order to update their values during
optimization. The simulator should have the structure of
a set (or a package) of subroutines rather than a program
with one, fixed sequence of operations.
SPICE-PAC 2G6a.84.05 is a package of simulation sub-

routines obtained by redesigning the SPICE 2G.6 simu-
lation program.

2. SPICE-PAC 2G6a

The SPICE-PAC version 2G6a provides:

• all the analyses available in the SPICE 2G programs,

• access to circuit variables as required in circuit op-
timization (circuit variables can be defined at the
main circuit level as well as in subcircuits),

• dynamic declarations of output variables (output
variables can be indicated at the main circuit level
as well as in subcircuits),

• dynamic definitions of parameters for all analyses,

• parameterized subcircuit calls (subcircuit element
definitions can be redefined by parameters included
in subcircuit calls),

• an interface to libraries of standard modules (stan-
dard modules are in the form of subcircuits, and can
be accessed by (parameterized) module calls).

SPICE-PAC does not provide the ”main” program
which must be suplied by the user to ”drive” the subrou-
tines, i.e., to call the subroutines which define parameters

SPICE-PAC, a package of subroutins for interactive simulation and optimization of circuits 493

and perform analyses, as required by a particular appli-
cation.
SPICE-PAC contains 25 main (or interfacing) subrou-

tines:

SPICEA - initializes the package and reads circuit de-
scription,

SPICEB - defines circuit variables,

SPICEC - sets internal structures and performs initial
processing,

SPICED - defines parameters for DC analysis,

SPICEE - defines execution-time limit,

SPICEF - defines frequencies for AC, NOISE and DIS-
TORTION analyses,

SPICEG - defines parameters for DISTORTION analy-
sis,

SPICEH - defines parameters for FOURIER analysis,

SPICEI - defines initial conditions (as node and/or de-
vice voltages,

SPICEJ - sets and resets internal flags,

SPICEK - defines parameters for DC TRANSFER
FUNCTION analysis,

SPICEL - activates definitions of parameters and out-
puts,

SPICEM - defines the temperature for subsequent anal-
yses,

SPICEN - defines parameters for NOISE analysis,

SPICEO - defines outputs for different analyses,

SPICEP - determines internal pointers for circuit ele-
ment names,

SPICEQ - defines output variables,

SPICER - performs DC, TRANSIENT, AC, NOISE,
DISTORTION, FOURIER and DC TRANSFER
FUNCTION analyses, and sets OP-POINT data,

SPICES - performs DC SENSITIVITY analysis,

SPICET - defines parameters for TRANSIENT analy-
sis,

SPICEU - updates circuit variables,

SPICEV - retrieves actual values of circuit variables,

SPICEW - retrieves SPICE-PAC execution times,

SPICEX - defines parameters and outputs using sym-
bolic form,

SPICEY - retrieves the names of output variables, cir-
cuit elements and circuit variables.

A more detailed description of the subroutines is given
in [5].

SPICE-PAC follows the SPICE 2G.6 program with the
following exceptions:

• ”.TEMPERATURE” lines, for SPICE-PAC, can de-
fine one temperature only (for subsequent definitions
of the temperature the SPICEM subroutine should
be used),

• ”.DC” lines, for SPICE-PAC, can describe one set
of the DC transfer curve source and sweep limits
(for subsequent definitions of DC analysis parame-
ters the SPICED subroutine should be used),

• ”.ALTER” sections and

• ”.PLOT” lines, in SPICE-PAC, are simply ignored.

It should be noted that all the control lines in circuit
descriptions (”.DC ...”, ”.AC ...”, etc.) are used to de-
fine parameters of the corresponding analyses only, and
the analyses are performed (selectively) by calling the
SPICER and SPICES subroutines with appropriate ar-
guments. Moreover, all the parameters defined by the
control lines in the circuit description can be redefined
by corresponding subroutines of the package (SPICED,
SPICEF, etc.), or can be replaced by parameters ”pre-
defined” in an extended circuit description and activated
(when required) by the SPICEL subroutine.

Extended circuit description is an optional part of the
SPICE input file which can contain:

• definitions of circuit variables,

• definitions of parameters and outputs for different
analyses,

• circuit element names which are converted into
equivalent internal pointers as required by some
SPICE-PAC subroutines (SPICER/OP-POINT,
SPICES),

• definitions of monitoring and break-points.

All information provided by the extended circuit de-
scription can also be obtained by appropriate calls of
SPICE-PAC subroutines. In most cases, however, ex-
tended circuit description can significantly simplify the
use of SPICE-PAC, and, moreover, it allows the ”main”
program to be more general and more flexible since all
the specific information can be placed in the data file
rather than incorporated directly into the program.

Extended circuit description is separated from the (ba-
sic) circuit description by the line:

.END/EXT

and is terminated by the line:

.END

Circuit variables are defined by the lines:

.VAR variable-name

SPICE-PAC, a package of subroutins for interactive simulation and optimization of circuits 494

where ”variable-name” is either a simple element name
for those elements which have one attribute only (usually
it is the ”value” of the circuit element), or a composite
name which is used for multi-attribute circuit elements
to indicate:

• polynomial coefficients of nonlinear conductors and
inductors (e.g. C15’#3),

• polynomial coefficients of dependent voltage and
current sources (e.g. E1’#0),

• DC and AC parameters of independent voltage and
current sources (e.g. VIN’DC),

• parameters of time-dependent source functions of in-
dependent voltage and current sources (e.g., if an
independent voltage source is described as ”VIN 3 0
PULSE(-1,1,2NS,3NS,3NS)” then VIN’#4 denotes a
circuit variable which corresponds to the ”fall time”
of VIN),

• parameters of semiconductor devices (e.g.
Q1’AREA),

• parameters of (common) device models (e.g.
MOD’RB),

• parameters of models associated with (particular)
semiconductor devices (e.g. Q2:RB); in this case
”common” model parameters are not influenced by
changes of ”individual” device model parameters.

Simple and composite variable-names can be direct or
qualified. The direct names are used for those elements
which are at the ”top” (or ”main”) level of circuit de-
scription (i.e., elements not belonging to subcircuits).
The subcircuit elements must be identified by the quali-
fied names in which the element name follows the full se-
quence of the subcircuit names separated by periods ”.”
(starting from the ”top” level, e.g., X1.X3.X2.Q12:RE is
a composite qualified variable-name denoting emitter re-
sistance of the bipolar transistor Q12 in the subcircuit
X2 of the subcircuit X3 of the subcircuit X1).
Definitions of parameters for SPICE-PAC analyses

have the general form:

.PAR/id analysis(parameters)

where ”id” is an unsigned integer number that is used
as an (unique) identifier of the definition, ”analysis” is
”DC”, ”TR”, ”AC”, ”NO”, ”DS”, ”FO”, ”TF” or ”SE”
for DC transfer curve, transient, small-signal AC, noise,
distortion, Fourier, DC transfer function and DC sensi-
tivity analyses, respectively, and ”parameters” is a list
of corresponding parameters separated by commas ”,”,
e.g.:

DC(VIN,-5.0,5.0,21)

AC(LOG(11,1.D2,1.D4),1.D5,LOG(11,1.D6,1.D8))

NO(VIN,V(X2.4),2)

Definitions of outputs for different analyses have the
general form:

.OUT/id analysis(output-list)

where ”id” ana ”analysis” are as before, and ”output-
list” is a sequence of output variables separated by com-
mas ”,”.
Library modules correspond to standard SPICE sub-

circuits stored in individual files within a file system.
They are referenced by (parameterized) subcircuit calls
in which subcircuit names are the names of correspond-
ing module-files preceded by the dollar sign ”$”. To han-
dle hierarchically structured file references, module-file
names indicated in subcircuit calls are concatenated with
library path-names defined by a new directive:

.LIBRARY path-name

where ”path-name” is either a sequence of directory
names separated by ”/” and then the new ”path-name”
redefines the previous one, or a sequence of directory
names preceded by the ”+” sign and then the previous
”path-name” is extended by the new one, or a sequence
of directory names preceded by one or more ”-” signs,
in which case the previous ”path-name” is reduced by
one directory name for each ”-” sign, and then extended
by the new ”path-name” (which may be empty). For
example, the sequence:

.LIBRARY /a/b/c/d

X1 ... $module1

.LIBRARY --x/y

X2 ... $module2

references the module files:

/a/b/c/d/module1

and

/a/b/x/y/module2

Two immediate examples of SPICE-PAC applications
are circuit optimization and interactive circuit simula-
tion.

3. INTERACTIVE SIMULATION

The general structure of an interactive circuit simula-
tor is shown in Fig.1. An interactive driver mainly han-
dles communication with the user, i.e., it enters user com-
mands and displays (in numerical or graphical form) the
results, while interfacing subroutines convert user com-
mands (and parameters) into sequences of SPICE-PAC
subroutine calls.
Because of initial preprocessing performed by SPICE-

PAC, all circuit variables must be defined at the ini-
tial stage of circuit analysis. In interactive simulation
it should be possible to modify values of arbitrary circuit

SPICE-PAC, a package of subroutins for interactive simulation and optimization of circuits 495

Fig.1. General structure of an interactive circuit simulator.

elements. To provide this flexibility, the initial phase of
setting-up internal structures defines all circuit elements
as circuit variables (using the subroutines SPICEY and
SPICEB).
Fig.2 shows a family of frequency-response character-

istics of a simple single-stage amplifier. Different curves
correspond to different values of resistors and capacitors
in the circuit, selected interactively to obtain the required
gain and then the bandwidth of the amplifier. Similar
plots can be obtained for all other SPICE-PAC analyses.

Fig.2. A family of frequency-response characteristics.

4. CIRCUIT OPTIMIZATION

The general structure of interfacing SPICE-PAC with
an (abstract) optimization package OPTIM-PAC is
sketched in Fig.3. MAIN and SUBR are user-supplied
segments; MAIN initializes the packages and sets all

the parameters while SUBR evaluates objective func-
tions and constraints, as required by OPTIM-PAC, using
SPICE-PAC subroutines for updating circuit variables
and performing circuit analyses.
As an optimization example a single-stage CE ampli-

fier in a self-biasing configuration is analysed, and it is
to find the values of R1, R2 and RE such that for the
midband frequency f=50kHz and for BETA.dc=80, 150,
250, the magnitude of the voltage gain is equal to 10
V/V, and the input resistance is not less than 10kohms.
The minimax optimization package WMBG2 used in

this example is a modified version of linearly constrained
minimax optimization technique due to Hald [2] com-
bined with routines for numerical approximation of gra-
dients [6].
In minimax formulation, there are three optimization

variables R1, R2 and RE (additional circuit variable
which corresponds to BETA.dc is used as an optimization
parameter), and seven residual functions:

• the difference between 10K and the input resistance,

• the differences between the magnitude of the voltage
gain and 10 V/V for beta.dc=80, 150, 250,

• the differences between 10 V/V and the magnitude
of the voltage gain for beta.dc=80, 150, 250.

**** SPICE-PAC 2G6a.84.05 DATE : 18 MAY 84 10:27

**** INPUT LISTING TEMP = 27.000 DEG C

* AMPLIFIER OPTIMIZATION *

VCC 5 0 12

VIN 1 0 AC 1

R1 2 5 350K

R2 2 0 40K

RC 4 5 5K

RE 3 0 400

CB 1 2 100UF

Q1 4 2 3 MOD

.MODEL MOD NPN(BF=150 VAF=50 IS=1.E-9 RB=100 CJC=1PF)

.PRINT AC V(4) V(2) I(VIN)

.AC 50K

.END/EXT

.VAR R1

.VAR R2

.VAR RE

.VAR Q1:BF

.END

OPTIMIZATION WITHOUT SCALING

PARAMETER : Q1:BF

8.00d+01 1.50d+02 2.50d+02

VARIABLES :

R1 R2 RE

SPICE-PAC, a package of subroutins for interactive simulation and optimization of circuits 496

STARTING POINT :

3.50d+05 4.00d+04 4.00d+02

LOWER AND UPPER BOUNDS :

1.00d+04 5.00d+03 1.00d+02

5.00d+05 1.00d+05 5.00d+02

ITERATIONS :

R1 R2 RE maxfun

1 3.50d+05 4.00d+04 4.00d+02 2.31d+00

2 3.50d+05 4.00d+04 4.00d+02 2.31d+00

3 3.50d+05 4.00d+04 4.00d+02 2.31d+00

4 3.50d+05 4.00d+04 4.00d+02 2.31d+00

5 2.51d+05 5.09d+04 4.71d+02 1.91d+01

6 3.26d+05 4.63d+04 4.64d+02 3.33d-01

7 3.26d+05 4.74d+04 4.72d+02 1.80d-01

8 3.25d+05 7.13d+04 4.78d+02 1.89d+01

9 3.24d+05 5.21d+04 4.72d+02 1.96d-01

10 3.18d+05 5.06d+04 4.72d+02 1.93d-01

11 3.18d+05 5.06d+04 4.79d+02 1.66d-01

12 3.16d+05 5.03d+04 4.74d+02 1.48d-01

13 3.14d+05 5.02d+04 4.75d+02 1.25d-01

14 3.13d+05 5.01d+04 4.75d+02 1.25d-01

15 3.13d+05 5.02d+04 4.75d+02 1.24d-01

16 3.32d+05 5.10d+04 4.74d+02 1.29d-01

17 2.32d+05 4.67d+04 4.79d+02 1.91d+01

18 3.26d+05 5.80d+04 4.77d+02 1.14d-01

19 3.26d+05 5.80d+04 4.71d+02 1.48d-01

20 3.25d+05 6.76d+04 4.78d+02 1.87d+01

21 3.25d+05 6.04d+04 4.76d+02 1.63d+01

22 3.25d+05 5.84d+04 4.76d+02 1.13d+00

23 3.26d+05 5.84d+04 4.81d+02 1.96d-01

24 3.25d+05 5.80d+04 4.76d+02 1.07d-01

25 3.25d+05 5.82d+04 4.75d+02 9.71d-02

26 3.25d+05 5.83d+04 4.75d+02 7.86d-02

27 3.25d+05 5.83d+04 4.71d+02 6.13d+00

28 3.25d+05 5.86d+04 4.75d+02 4.98d+00

29 3.25d+05 5.84d+04 4.75d+02 7.48d-02

30 3.25d+05 5.84d+04 4.75d+02 1.62d+00

31 3.25d+05 5.85d+04 4.77d+02 1.09d-01

32 3.25d+05 5.84d+04 4.75d+02 4.47d-01

SOLUTION :

3.25d+05 5.84d+04 4.75d+02

TYPE OF SOLUTION : 1

NUMBER OF ITERATIONS : 22

NUMBER OF SHIFTS : 1

The solution, obtained with 32 function evaluations
and 22 iteration steps, corresponds to the maximum
residual function which is less than 0.1 (line 29). Also,
it can be observed that the solution is in rather narrow
”valley” (lines 27, 28, 30) which is quite ”flat” (lines 7,
9, 18). In many cases, a less accurate solution, obtained
in just few iteration steps, should be satisfactory.

5. CONCLUDING REMARKS

Interactive simulation and circuit optimization are the
most straightforward applications of the circuit simula-
tion package which, in a very similar way, can be linked
with many other packages, for example statistical model-
ing, yield analysis and design centering, as well as higher
level language processors, circuit extractors, etc. More-
over, the modular structure of the package allows (at
least potentially) to replace or enhance some of the sub-
routines, and introduce new interfaces to other packages,
or alternative numerical algorithms, or redefine the ex-
isting device models. This also means that a package of
circuit simulation subroutines can be easily used as one of
the basic components of more advanced computer-aided-
design systems.

6. REFERENCES

1. E. Cohen, ”Program reference for SPICE 2”; Univer-
sity of California, Berkeley, Memo ERL-M592, 1976.

2. J. Hald, ”MMLA1Q, a Fortran subroutine for linearly
constrained minimax optimization”; Inst. for Nu-
merical Analysis, Technical University of Denmark,
Lyngby, Denmark, Report NI-81-01, 1981.

3. D.O. Pederson, ”A historical review of circuit simula-
tion”; IEEE Tr. on Circuits and Systems 1984(31)1,
pp.103-111.

4. A. Vladimirescu, K. Zhang, A.R. Newton, D.O. Ped-
erson, A.Sangiovanni- Vincentelli, ”SPICE Version
2G - User’s Guide (10 Aug. 1981)”; Department of
Electrical Engineering and Computer Sciences, Uni-
versity of California, Berkeley CA 94720.

5. W.M. Zuberek, ”SPICE-PAC 2G6a.84.05 - User’s
Guide”; Department of Computer Science, Memo-
rial University of Newfoundland, St. John’s, Canada
A1C 5S7.

6. W.M. Zuberek, ”Numerical approximation of gra-
dients for circuit optimization”, Proc. 27 Midwest
Symp. on Circuits and Systems, Morgantown WV,
1984.

