
32-nd Midwest Symposium on Circuits and Systems (MSCAS’89); Champaign, IL, August 14-16, 1989, pp.985-988.

Copyright c© 1989 IEEE (DOI 10.1109/MWSCAS.1989.102019).

HIGHER-LEVEL MODELLING EXTENSIONS

TO SPICE-LIKE CIRCUIT SIMULATORS

W.M. Zuberek

Department of Computer Science, Memorial University

St. John’s, NL, Canada A1C-5S7

A b s t r a c t

Three different but complementary approaches to higher-
level specification of analog circuits are proposed as a set
of extensions to SPICE-like circuit simulators. They include
table-driven, formula-driven and program-driven generalized
characteristics of (nonlinear) circuit elements as well as whole
“blocks”. Examples of SPICE-PAC enhancements are used
as an illustration of these approaches.

1. INTRODUCTION

Most designers have accepted the need for circuit simu-
lation before the expensive and time-consuming fabrication
of their designs takes place. Even with designs of modest
size, an accurate simulation provides invaluable insight into
the performance of the product. However, the existing trend
in integrated circuit design towards increasing device den-
sities and shrinking circuit geometries results in designs of
increasing complexities. This – in turn – increases the sim-
ulation time and memory requirements, and as they grow
more than linearly with the size of the simulated circuit,
it is practically impossible to satisfy these requirements for
integrated circuits using classical circuit simulators. Sev-
eral techniques have been proposed to counterbalance these
increasing requirements [DeLS,DiNaV,FRS,WSSN], but us-
ing “higher-level abstraction” wherever possible remains the
simplest and the most effective solution to this complexity
problem.

The notion of “abstraction” in this context means a
method to replace an object by a simplified one that only
defines the interaction of the object with its environment,
while deleting the internal organization details of the object
[Niess]; for example, the whole comparator module can be
replaced by a single “block” with input-output characteris-
tics equivalent to those of the original design. The virtue
of abstraction is data reduction, sometimes by one or more
orders of magnitude. For very large systems, one level of
abstraction may not suffice, it has to be applied a number of
times in succession creating “hierarchical abstraction”.

In digital systems, the hierarchy of abstraction seems to
be well established [Niess,ORour,Whar], with the behavioral
level at the top, followed by the functional, gate, and circuit
levels to device or even process level at the bottom. It is char-
acteristic that “lower” levels of abstraction are well defined,
with clear boundaries between levels, while the definitions
of behavioral and functional levels are rather vague and am-
biguous. Perhaps the “best” characterization of behavioral
specification is a “black box” description of a component

[Davis] which indicates how the information leaving a com-
ponent is related to the information that entered it. That
is [Whar], behavioral description characterizes the relation-
ships among the activities of the ports of a node, without
reference to the internal logic or physical structure of that
node; when described behaviorally, a node has no contents.
Behavioral specification is thus an abstract mathematical re-
lationship between activities at the input and output termi-
nals of a component. A variety of techniques have been used
in the past to describe behavior, including simple rules for
mapping inputs to outputs, Petri nets to represent concur-
rency and parallelism, and unrestricted fragments of code;
various combinations of these three have also been explored
[Davis]. More recently, high-level languages have been pro-
posed to specify behavior of systems [Bart]; since such lan-
guages deal with basically mathematical (abstract) specifi-
cations, they share many features with “typical” high-level
algorithmic languages (for example, ADA [Bart]).

The functional description shows how the structure and
components of a system contribute to its overall function
[Kuip]; the functional description of a system should make
explicit not only what behaviors are possible for a system,
but also why. A typical approach to functional description
of a system is to combine functional descriptions of system’s
components according to the structure of a system; for ex-
ample, a functional description of a logic network is a (logic)
equation obtained by a composition of network’s gate func-
tions.

For analog systems the situation is similar; only the bot-
tom levels, i.e., the process, device and circuit levels, are
clearly identified [Getr]. Quite often “macromodelling” is
considered as the functional level, while specification at the
level of differential equations corresponds to the behavioral
level.

For the purpose of this paper, all specification (or descrip-
tion) capabilities that are “above” the circuit level are gen-
erally referred to as “higher levels” of abstraction.

Three different but complementary approaches to higher-
level simulation are proposed in this paper as extensions
to the SPICE program, the most popular circuit simulator
which has become a “de facto” standard in circuit simula-
tion. The extension have been implemented in the SPICE-
PAC simulation package, a simulation tool that is upward
compatible with SPICE; it means that SPICE-PAC accepts
the same circuit descriptions and provides the same set of
circuit analyses as SPICE, but it also offers a number of
enhancements not available in the original SPICE-like simu-

Higher-level modelling extensions to SPICE-like circuit simulators 102

lators [Zub].
The proposed approaches are: (i) table-driven (or numer-

ical); very efficient (if a suitable organization is used) but
rather inflexible, (ii) formula-driven (or analytic) - quite flex-
ible but less efficient if complex evaluations are involved, and
(iii) program-driven, in which user-supplied routines or in-
terfaces to other software tools perform the required evalua-
tions.

These three approaches are discussed in the following sec-
tions in the context of SPICE-like simulators, with some im-
plementation detailes and examples provided by the SPICE-
PAC package.

2. TABLE-DRIVEN SIMULATION

The characteristics of nonlinear elements (capacitors, in-
ductors, dependent sources) as well as “input-output” char-
acteristics of modules (or “subcircuits”) can be specified by
(multidimensional) tables of numerical data with an associ-
ated interpolating method. Typical table-driven description
follows the following syntax (with some small differences for
different classes of elements):

name node+ node- itp(n) arg1 arg2 ... argn x1,x2,...

where name is the unique name of the element; node+ and
node- are element terminals; itp indicates the interpolation
method:

itp: value: derivative:

PWL or PWL1 piecewise linear approximated
PWL2 piecewise linear piecewise linear
PWQ or PWQ1 piecewise quadratic approximated
PWQ2 piecewise quadratic piecewise quadratic
PWC or PWC1 piecewise cubic approximated
PWC2 piecewise cubic piecewise cubic

n is the number of arguments (or controlling voltages and/or
currents); arg1, arg2, ... argn are the arguments (in
the SPICE sense, i.e., each arg is either a pair of nodes that
determine the controlling voltage, or a voltage source name
that indicates the controlling current flowing through this
source); finally, x1,x2,... are the consecutive numerical
data elements describing the characteristic of name.

In the following example, capacitance C (of a nonlinear
capacitor or a “capacitive block”) is an exponential function
of V cap, the voltage over the element, C = a∗(1−b∗e−V cap),
with a = 100pF and b = 0.5, and this characteristic is given
as a table-driven description with a sequence of ordered data
triples composed of the controlling voltage, the correspond-
ing charge and the capacitance:

Cexp 4 0 PWQ2(1) 4 0 (0.00 0.000E+00 5.000E-11,

+ 0.01 4.520E-13 5.050E-11, 0.03 1.010E-12 5.148E-11,

+ 0.05 2.039E-12 5.244E-11, 0.07 3.088E-12 5.338E-11,

+ 0.10 5.242E-12 5.476E-11, 0.30 1.704E-11 6.296E-11,

+ 0.50 3.033E-11 6.967E-11, 0.70 4.483E-11 7.517E-11,

+ 1.00 6.839E-11 8.161E-11, 2.00 1.568E-10 9.323E-11,

+ 3.00 2.525E-10 9.751E-11, 5.00 4.503E-10 9.966E-11)

Fig.1. Capacitance C and charge Q of Cexp.

Since the capacitance values are “secondary” information
in this table (capacitance is equal to the derivative of the
charge with respect to the controlling voltage), a slightly
less accurate results can be obtained using only the values of
charge a numerical approximation of capacitance:

Cexp 4 0 PWQ1(1) 4 0 (0.00 0.000E+00,

+ 0.01 4.520E-13, 0.03 1.010E-12, 0.05 2.039E-12,

+ 0.07 3.088E-12, 0.10 5.242E-12, 0.30 1.704E-11,

+ 0.50 3.033E-11, 0.70 4.483E-11, 1.00 6.839E-11,

+ 2.00 1.568E-10, 3.00 2.525E-10, 5.00 4.503E-10)

Fig.1 shows the charge and capacitance as functions of the
voltage over the capacitor Cexp.

3. FORMULA-DRIVEN SIMULATION

The characteristics of (nonlinear) elements can also be
specified by algebraic formulas with controlling voltages
and/or currents as parameters. During initial processing of
circuit descriptions, the formulas are translated into an in-
termediate form, which is evaluated whenever the element
attributes are needed for formulation of circuit equations.
The syntax for formula-driven elements uses ARG(n) to in-
dicate the number n of “arguments”, i.e., controlling volt-
ages and/or currents arg1, arg2, ..., and two expressions,
value_expression and derivative_expression, to describe
the value of an element and its derivative(s) (automatic eval-
uation of derivatives will be implemented later):

name node+ node- ARG(n) arg1 arg2 ... argn

+ {value_expression} {derivative_expression}

It should be noted that for capacitors and inductors the
element “values” are the charge and flux, respectively; the
capacitance of a capacitor and the inductance of an inductor
correspond to the derivative of the charge with respect to the
voltage over the capacitor (which must be the argument) or
the derivative of the flux with respect to the current through
the inductor. For multivariate elements, the “charge shar-
ing” and “flux sharing” effects correspond to partial deriva-
tives with respect to consecutive arguments (i.e., controlling
voltages or currents).

The expressions can be more sophisticated than just arith-
metic expressions as the class of operators includes the as-
signment “:=”, the sequential composition “;”, conditional

Higher-level modelling extensions to SPICE-like circuit simulators 103

operators “if”, “then”, “else”, all logical operators, stan-
dard functions (exp, ln, sin, etc.) and user-defined functions;
the arguments (or controlling voltages and currents) argi in
expressions are denoted by #i, i=1,2,....

The “exponential capacitance” used in the previous ex-
ample can be described as a formula-driven capacitor in the
following way:

Cexp 4 0 ARG(1) 4 0

+ { 1E-10*(#1+0.5*(exp(-#1)-1.0)) }

+ { 1E-10*(1.0-0.5*exp(-#1)) }

It should be observed that (usually) formula-driven ele-
ments are much easier to modify than the table-driven ones.

4. PROGRAM-DRIVEN SIMULATION

In this case the characteristics of (nonlinear) elements or
blocks are specified by user-defined routines with control-
ling voltages and/or currents (and some other information)
passed as parameters. The description is thus composed of
two parts, the element’s or block’s “skeleton” that indicates
the connections with the remaining part of the circuit, and
a “programmed” user-supplied characteristic which defines
the element by a corresponding section of code, identified in
the “skeleton” description by the FUN(idf) parameter:

name node+ node- FUN(idf) ARG(n) arg1 arg2 ... argn

+ par1,par2,par3,...

idf is the evaluation function identifier, ARG(n) indicates the
number of arguments arg1, arg2, ..., and par1,par2,...

are additional parameters of evaluation routines.
The second part of specification is the evaluation routine

itself which slightly changes from one class of elements to an-
other. To accommodate these differences, there is one gen-
eral evaluation routine for each class of elements, and the
idf parameter is used for further identification within each
class of functions. For (nonlinear) capacitive elements the
evaluation routine is called SPUNCE, and it must be defined
in a way equivalent to the following (FORTRAN) header:

SUBROUTINE SPUNCE (IPS,IDF,VARG,NARG,VPAR,NPAR,VAL,

+ MEV)

DOUBLE PRECISION VARG(NARG),VPAR(NPAR(1))

INTEGER NPAR(1)

where IPS is a unique internal identifier of the circuit element
(i.e., IPS is a pointer to the element descriptor; there are
routines which convert descriptor pointers into correspond-
ing circuit element names and vice versa); IDF is the function
identifier idf from the element description; VARG is the vec-
tor of controlling voltages and/or currents augmented by one
more element (the first one) that passes the value of time for
time-domain analysis, frequency for frequency-domain anal-
ysis, etc., so VARG(2)=value(arg1), VARG(3)=value(arg2),
...); NARG is the number of arguments n+1; VPAR is a vector
of parameters par1,par2,... and NPAR is the number of
parameters; VAL returns the value of required attribute, and
MEV indicates the attribute to be evaluated; for SPUNCE, if

MEV<0, VAL should return the value of charge, MEV=0
indicates that VAL should return the value of capacitance as
required for time-domain analysis, if MEV>0, VAL should
return the value of capacitance as required for small-signal
frequency-domain analysis.

Program-driven evaluation of the “exponential capaci-
tance” used in previous examples can be performed by the
following routine (assuming idf=9 is used for identification
of this particular function):

SUBROUTINE SPUNCE(IPS,IDF,VAR,NAR,VPA,MPA,

+ VAL,MEV)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION VAR(1),VPA(1)

C ... IDF=3 denotes the exponential function

IF (IDF.EQ.3) THEN

VEXP=DEXP(-VAR(2))

IF (MEV.LT.0) THEN

C find the charge

VAL=VPA(1)*(VAR(2)+VPA(2)*(VEXP-1.0))

ELSE

C find the capacitance

VAL=VPA(1)*(1.0-VPA(2)*VEXP)

ENDIF

ELSE

C other evaluation functions

ENDIF

RETURN

END

5. A COMPARATIVE EXAMPLE

The following example compares the previous three ap-
proaches within one “testing” circuit composed of three sim-
ilar RC sections with different implementations of exponen-
tial capacitors:

** example - exponential capacitors

VV 1 0 DC(1) AC(1) PULSE(1 0 2NS 5NS 2NS 10NS)

* ... table-driven capacitor

R2 1 2 100

C2 2 0 PWQ(1) 2 0 (0.00 0.000E+00, 0.01 4.520E-13,

+ 0.03 1.010E-12, 0.05 2.039E-12, 0.07 3.088E-12,

+ 0.10 5.242E-12, 0.30 1.704E-11, 0.50 3.033E-11,

+ 0.70 4.483E-11, 1.00 6.839E-11, 2.00 1.568E-10,

+ 3.00 2.525E-10, 5.00 4.503E-10)

* ... formula-driven capacitor

R3 1 3 100

C3 3 0 ARG(1) 3 0 { 1E-10*(#1+0.5*(exp(-#1)-1.0)) }

+ { 1E-10*(1.0-0.5*exp(-#1)) }

* ... programmed capacitor

R4 1 4 100

C4 4 0 FUN(3) 1E-10 0.5

** analyses

.TR 2NS 20NS

.PRINT TR V(1) V(2) V(3) V(4)

.AC 1ME 10ME 100ME 1G

.PRINT AC V(2) V(3) V(4)

.END

Higher-level modelling extensions to SPICE-like circuit simulators 104

***** AC ANALYSIS TEMPERATURE : 27.00 DEG C

FREQ V(2) V(3) V(4)

1.00d+6 9.9867d-1 9.9869d-1 9.9869d-1

1.00d+7 8.8860d-1 8.8984d-1 8.8984d-1

1.00d+8 1.9019d-1 1.9142d-1 1.9142d-1

1.00d+9 1.9369d-2 1.9499d-2 1.9499d-2

***** TRANSIENT ANALYSIS TEMPERATURE : 27.00 DEG C

TIME V(1) V(2) V(3) V(4)

0.00d+0 1.0000d+0 1.0000d+0 1.0000d+0 1.0000d+0

2.00d-9 1.0000d+0 1.0000d+0 1.0000d+0 1.0000d+0

4.00d-9 6.0000d-1 9.5450d-1 9.5426d-1 9.5426d-1

6.00d-9 2.0000d-1 8.3011d-1 8.2973d-1 8.2973d-1

8.00d-9 0.0000d+0 6.4995d-1 6.4999d-1 6.4999d-1

1.00d-8 0.0000d+0 4.9327d-1 4.9335d-1 4.9335d-1

1.20d-8 0.0000d+0 3.6820d-1 3.6795d-1 3.6795d-1

1.40d-8 0.0000d+0 2.6845d-1 2.6955d-1 2.6955d-1

1.60d-8 0.0000d+0 1.8565d-1 1.9405d-1 1.9405d-1

1.80d-8 5.0000d-1 1.7182d-1 1.7854d-1 1.7854d-1

2.00d-8 1.0000d+0 3.7609d-1 3.7624d-1 3.7624d-1

Fig.2 shows the results of time-domain analysis; the plots
for different implementations of the capacitor are practically
identical.

Fig.2. Results of time-domain analysis.

6. CONCLUDING REMARKS

The extensions described in this paper are not as general
as – for example – the modelling language MAST used in
the SABER simulation system [Getr], in which the so called
“templates” define both the terminal relationships of generic
components and the component contributions to the system
of equations solved by the simulator. In SPICE-PAC the
contributions of circuit elements are fixed by the class of ele-
ments (capacitors, controlled sources, etc.); the “flexibility”
is thus restricted to terminal relationships which can be ex-
pressed using table-driven, formula-driven or program-driven
methods. It should be noted that this restriction simplifies
the specifications (examples of MAST specifications given in
[ORou] do not look as friendly and “easy to use” as it is
claimed [Getr]); actually, this restriction allows to introduce

all the extensions within the original SPICE input language
with very moderate syntax changes.

The table-driven approach is provided for experiment-
oriented applications which use measurement data as well
as predicted or estimated characteristics of some elements
or blocks. The formula-driven approach is for theoretical
studies in which flexibility of modifications of symbolic for-
mulas is of primary interest. The program-driven approach
is mainly for very “demanding” applications and for those
users whose interests are in integration of software tools and
exploring new problems.

The extensions presented in this paper are implemented
in SPICE-PAC versions 2G6c.89 and beyond.

Acknowledgement

The Natural Sciences and Engineering Research Council
of Canada partially supported this research through Oper-
ating Grant A8222, and Northern Telecom Canada through
Memorial University Interaction Program.

R e f e r e n c e s

[Bart] D.L. Barton, “Behavioral descriptions in VHDL”;
VLSI Systems Design, vol.9, no.6, pp.28-33, 1988.

[Davis] R. Davis, “Diagnostic reasoning based on struc-
ture and behavior”; Artificial Intelligence, vol.24, no.1-
3, pp.347-410, 1984.

[DeLS] J.T. Deutsch, T.D. Lovett, M.L. Squires, “Parallel
computing for VLSI circuit simulation”; VLSI Systems
Design, vol.7, no.7, pp.46-52, 1986.

[DiNaV] S. Director, S.R. Nassif, L.M. Vidigal, “A new
way to speed up circuit simulation”; Electronics, vol.59,
pp.71-74, August 1986.

[FRS] U. Feldmann, K-G. Rauch, F. Steger, “Circuit simu-
lation on vectorprocessors”; Proc. Int. Conf. on Com-
puter Technology, Systems and Application, Hamburg,
West Germany, pp.246-249, 1987.

[Getr] I. Getreu, “Analog modeling language spans all sys-
tem design levels”; Electronic Design, vol.35, no.13,
pp.95-104, 1987.

[Kuip] B. Kuipers, “Commonsense reasoning about causal-
ity: deriving behavior from structure”; Artificial Intel-
ligence, vol.24, no.1-3, pp.169-203, 1984.

[Niess] C. Niessen, “Hierarchical design methodologies and
tools for VLSI chips”; Proc. IEEE, vol.71, no.1, pp.66-
75, 1983.

[ORou] R. O’Rourke, “Behavioral modeling of digital de-
vices in an analog simulation environment”; VLSI Sys-
tems Design, vol.9, no.1, pp.16-25, 1988.

[Whar] D.J. Wharton, “Behavioral modeling in logic sim-
ulation”; VLSI Systems Design, vol.7, no.8, pp.46-54,
1986.

[WSSN] J. White, R. Saleh, A. Sangiovanni-Vincentelli,
A.R. Newton, “Accelerating relaxation algorithms for
circuit simulation using waveform Newton, iterative
step size refinement, and parallel techniques”; Proc. of
Int. Conf. on Computer-Aided Design, Santa Clara
CA, pp.5-7, 1985.

[Zub] W.M. Zuberek, “SPICE-PAC version 2G6c - an
overview”; Technical Report #8903, Department of
Computer Science, Memorial University of Newfound-
land, St. John’s, Canada A1C-5S7, 1989.

