
sRNARFTarget: A machine learning-based

approach for sRNA Target Prediction

by

© Kratika Naskulwar

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master of Science

Supervisor: Lourdes Peña-Castillo

Department of Computer Science

Memorial University of Newfoundland

July 2020

St. John’s Newfoundland

Abstract

Bacterial small regulatory RNAs (sRNAs) play a vital role in the regulation of gene

expression in bacteria. sRNAs regulate gene expression by interacting with mRNAs

or proteins. Bacterial sRNAs are involved in various processes, such as environmental

stress response, metabolism, and virulence. We need to identify the mRNAs and/or

proteins that these sRNAs interact with, to understand the functional roles of sRNAs.

These mRNAs or proteins are called targets of the sRNAs. There are several compu-

tational tools available for sRNA target prediction; however, these tools have a high

number of false positives, and the most accurate tool requires sRNA sequence conser-

vation across bacteria. As a result of this research project, a machine-learning-based

method (sRNARFTarget) for sRNA target prediction applicable to any bacterium or

sRNA has been developed. In this thesis, we show that sRNARFTarget substantially

outperforms current non-comparative genomics-based methods in terms of running

time and ranking of true interactions.

i

Contents

Abstract i

List of Figures vii

List of Tables ix

List of Abbreviations x

1 Introduction 1

2 Related Work 3

2.1 sRNA Target Prediction . 3

2.2 Interpretability . 10

2.3 Summary . 11

3 Methodology 13

3.1 Data Collection . 14

3.2 Data processing . 15

ii

3.2.1 Split data into training and benchmarking set 15

3.2.2 Get training data . 19

3.2.3 Secondary structure distance . 20

3.3 Machine learning model selection . 21

3.3.1 Training data for binary classification 22

3.3.2 Model training . 22

3.3.3 Model selection . 23

3.4 sRNARFTarget nextflow pipeline . 25

3.5 Benchmarking . 28

3.5.1 Data for benchmarking . 28

3.5.2 Running programs . 29

3.5.2.1 sRNARFTarget . 29

3.5.2.2 IntaRNA . 30

3.5.2.3 CopraRNA . 31

3.5.3 Results standardization . 31

3.5.4 Plots . 35

3.5.4.1 PR & ROC plots . 35

3.5.4.2 Violin Box plots . 35

3.5.4.3 Line plots . 36

3.6 sRNARFTarget interpretability program 36

3.7 Summary . 39

iii

4 Results and Discussion 41

4.1 Pilot experiment using small training data 41

4.2 Using a larger training data set improves model performance 45

4.3 Benchmarking results on independent data sets 50

4.4 Interpreting sRNARFTarget predictions 64

4.5 Summary . 75

5 Conclusion 77

Bibliography 79

iv

List of Figures

2.1 The ROC-like curve for each program in the assessment. Y-axis shows

the number of trusted interactions predicted by each program, and the

x-axis indicates the number of predictions with the best ranking. Each

curve shows the number of trusted interactions predicted by the pro-

gram among the predictions with the best ranking (Figure reproduced

from [1] under CC-by-nc license). 7

3.1 Workflow of Machine Learning based approach 14

3.2 Nextflow pipelines for data processing and k -mer extraction 21

3.3 sRNARFTarget workflow . 26

3.4 sRNARFTarget interpretability workflow 38

4.1 10-fold CV ROC curve and average precision score for random forest

model . 48

4.2 Feature importance plot obtained by R function for entire training data

containing trinucleotide frequency difference. 49

v

4.3 Escherichia coli ROC curve . 51

4.4 Escherichia coli PR curve . 51

4.5 Synechocystis ROC curve . 53

4.6 Synechocystis PR curve . 53

4.7 Pasteurella multocida ROC curve . 54

4.8 Pasteurella multocidas PR curve . 54

4.9 Violin box plot for Escherichia coli . 56

4.10 Violin box plot for Synechocystis . 58

4.11 Violin box plot for Pasteurella multocida 59

4.12 Percentage plot for Escherichia coli . 60

4.13 Percentage plot for Synechocystis . 61

4.14 Percentage plot for Pasteurella multocida 62

4.15 Decision, waterfall, and force plots for E. coli dsrA-hns pair’s predic-

tion made by sRNARFTarget. 66

4.16 Ceteris paribus plot for features AAA and CGG for E. coli dsrA-hns

pair’s prediction made by sRNARFTarget. 67

4.17 Decision, waterfall, and force plots for Synechocystis isaR1-petF pair’s

prediction made by sRNARFTarget. 68

4.18 Ceteris paribus plot for feature GGC for Synechocystis isaR1-petF

pair’s prediction made by sRNARFTarget. 69

vi

4.19 Decision, waterfall, and force plots for P. multocida gcvB-metQ pair’s

prediction made by sRNARFTarget. 70

4.20 Ceteris paribus plot for feature TAA for P. multocida gcvB-metQ pair’s

prediction made by sRNARFTarget. 71

4.21 Missclassified E. coli instance . 73

vii

List of Tables

2.1 Summary of the sRNA target prediction programs 8

3.1 Studies identifiying sRNA targets in the literature 15

3.2 Benchmarking Data . 16

3.3 Model Training Data . 19

3.4 Parameters for Grid search cross-validation 23

3.5 Count of features and instances in training datasets 25

3.6 Count of benchmarking sequences for sRNARFTarget & IntaRNA . . 30

3.7 Final benchmarking dataset used for all three programs 34

4.1 AUROC and average precision score obtained in a pilot experiment

on a small training data (102 E. coli pairs) using trinucleotide and

tetranucleotide frequency as features. 42

4.2 AUROC and average precision score for a small training data (102 E.

coli pairs) for trinucleotide and tetranucleotide frequency difference. . 43

viii

4.3 10-fold CV AUROC and average precision score for the best model per

classifier trained on sequence-derived features (trinucleotide composi-

tion and tetranucleotide composition) from 745 sRNA-mRNA pairs. . 46

4.4 10-fold CV AUROC and average precision score for the best model

per classifier trained on sequence-derived features (trinucleotide and

tetranucleotide frequency difference with secondary structure distance)

from 745 sRNA-mRNA pairs. 47

4.5 The area under the ROC curve and PR curve for benchmarking data 50

4.6 Execution time for sRNARFTarget and IntaRNA for benchmarking

data. Both programs were run on the same computer (see Table 4.9

for the computer specifications). 63

4.7 CopraRNA webserver job execution time 64

4.8 Software or program versions . 74

4.9 System specifications . 75

4.10 Execution time of sRNARFTarget interpretability programs 75

ix

List of Abbreviations

AUPRC Area under the PR Curve

AUROC Area under the ROC Curve

GB Gradient boosting

KNN K-Nearest Neighbor

MDA Mean decrease in accuracy

RF Random Forest

Tetra nt. Tetranucleotide frequency

Tetra nt. Diff Difference between tetranucleotide frequency of sRNA and mRNA

Tetra nt. Diff & Dist. Difference between tetranucleotide frequency and distance

between secondary structures of sRNA and mRNA

Tri nt. Trinucleotide frequency

x

Tri nt. Diff Difference between trinucleotide frequency of sRNA and mRNA

Tri nt. Diff & Dist. Difference between trinucleotide frequency and distance be-

tween secondary structures of sRNA and mRNA

xi

Chapter 1

Introduction

Bioinformatics is the application of computational approaches to understand biolog-

ical phenomena. With the increased generation of biological data, the opportunity

of using machine learning models on biological data has emerged. In this thesis, we

focus on an important question in the area of bacterial gene regulation. sRNAs are

bacterial small regulatory RNAs, usually less than 200 nucleotides in length. sRNAs

are also called non-coding RNAs as they are not translated into a protein. sRNAs

play an essential role in gene expression regulation in bacteria and have become a

rising class of regulatory RNAs [2]. They are involved in several biological functions

such as virulence, metabolism, and environmental stress response [2]. The sRNAs

exert their functions when they interact with mRNAs (messenger RNAs) or proteins.

These mRNAs or proteins are called the targets of the sRNAs. There have been many

sRNAs discovered in recent years; however, their corresponding targets are yet to be

1

found. To understand the roles and functions of sRNAs, it is important to find out

their targets and thus, identifying targets of sRNAs has become an essential piece of

bacterial RNA science.

There are several programs developed in previous studies for finding sRNA targets

[1], such as CopraRNA [3], IntaRNA [4] and SPOT [5]. We will discuss more on

these in Chapter 2. These programs generate many false positives which reduce the

accuracy of the program. Here we developed a machine-learning based method to

predict sRNA targets trained with data generated by RNA-seq based methods. Our

method can be applied to any sRNA-mRNA pair (i.e., does not require sequence

conservation of either sRNA or mRNA). We compare the performance of our method

with that of CopraRNA and IntaRNA. Additionally, we implemented a pipeline to

obtain the interpretations of predictions generated by sRNARFTarget program using

existing interpretability programs.

This thesis is organized as follows: we will discuss related work about sRNA target

prediction and interpretability of machine learning models in Chapter 2. Chapter 3

describes the methodology: data collection and processing, feature extraction, ma-

chine learning models’ training, model selection, and benchmarking. Lastly, we will

discuss the programs created for sRNARFTargets’ interpretation. Chapter 4 presents

results and discussion. Chapter 5 is the conclusion. The program code and supple-

mentary files are available at the below link.

https://github.com/BioinformaticsLabAtMUN/sRNARFTarget.

2

https://github.com/BioinformaticsLabAtMUN/sRNARFTarget

Chapter 2

Related Work

2.1 sRNA Target Prediction

There have been many programs developed for sRNA target prediction in previous

years. Some of these programs are CopraRNA [3], SPOT [5], TargetRNA2 [6], In-

taRNA [4], TargetRNA [7], and RNAcofold [8]. The existing programs can be catego-

rized into programs such as IntaRNA [4], RNAplex [9], CopraRNA [3], TargetRNA2

[6] and RNAup [10] that predict the actual targets and finds the most likely local

interaction; and programs such as Pairfold [11], RNAcofold [8], RNAhybrid [12] and

RNA duplex [13] that find the full interaction between the sRNA and the longer tar-

get RNA. Another categorization of RNA target prediction programs is programs for

general RNA- RNA interactions and programs for sRNA-target predictions. Some of

the existing sRNA-mRNA interaction programs are sTarpicker [14], TargetRNA [7],

3

RNApredator [15], CopraRNA, and SPOT.

The first prediction model for sRNA-mRNA interaction was presented by [16].

This model is based on the Smith-Waterman local sequence alignment interaction

algorithm [17]. This model was designed for Escherichia coli and could not be applied

to other bacteria. The second model for prediction is named TargetRNA [7]. In

TargetRNA, the interaction between a given sRNA and a candidate mRNA target

is predicted by calculating a hybridization score for the two RNA sequences. The

hybridization score is calculated by an extension of the Smith-Waterman dynamic

program [17]. TargetRNA does not account for the structures of either the sRNA

or mRNA. TargetRNA2 [6] is an sRNA prediction web server. This program allows

RNA-seq data to be incorporated. It uses several different features for prediction, such

as conserved regions and secondary structures. Mandin et al. [18] proposed a model

for sRNA target prediction by searching strong sRNA-mRNA duplexes. Each sRNA-

mRNA duplex was scored as a sum of both positive and negative contributions, which

correspond to pairing nucleotides and internal loops. The statistical significance of

the duplex was used as the criterion for interaction.

IntaRNA is a general prediction program for RNA–RNA interaction. This pro-

gram includes target site approachability, and users can define seeds. Interactions

can be predicted for a single organism in IntaRNA. IntaRNA and RNAup have a

similar performance on predicting sRNA targets and perform best among all studied

programs, namely TargetRNA, RNAhybrid, and RNAplex. [19] introduced IntaRNA

4

2.0. It is an open-source reimplementation of the former approach IntaRNA. It facil-

itates improved and customizable RNA–RNA interaction prediction. The following

features were incorporated in this approach, Seed stability constraints, and Dangling

end contributions. sTarPicker [14] is a two-step model based on the hybridization

between the interaction. In the first step, seed regions of sRNA and its target are

bound with base-pairing. In the second step, the initial hybrid extends to create

the entire sRNA-target interaction. RNApredator is a webserver for the prediction

of sRNA targets. RNApredator predicts sRNA targets using RNAplex. RNApreda-

tor also considers the accessibility of the target to improve the prediction specificity.

To enable fast computation, accessibility profiles are pre-computed using RNAplfold

[20]. The result shows that the prediction accuracy of RNApredator is comparable

to that of other methods like RNAup and IntaRNA. RNAcofold [8] is an RNA-RNA

interaction program. It computes the base-pairing pattern, hybridization energy of

interacting RNA pairs and calculates the minimum energy structure.

Currently, CopraRNA and SPOT are the most recent programs for sRNA target

prediction. CopraRNA extends the functionality of IntaRNA and is based on com-

parative genomics [21]. The main feature of comparative genomics is that it looks

for similar or conserved sequences among various bacteria. CopraRNA comes with

certain limitations. One of the limitations is that it can only be applied to sRNAs

whose sequence is conserved among different bacteria. Many sRNAs are specific to

a single bacterium, and thus CopraRNA is unable to predict the mRNA targets of

5

these sRNAs.

SPOT stands for sRNA Target Prediction Organizing Tool. It is a computa-

tional software pipeline for sRNA-target prediction. It uses existing sRNA target

prediction programs such as TargetRNA2, sTarPicker, IntaRNA and, CopraRNA to

predict sRNA-mRNA interactions. These programs are run parallelly to search for

interactions and results are collated for each program. Lastly, experimental data is

integrated using customizable result filters. SPOT results show that it was able to

find additional putative mRNA targets of sRNA RydC in addition to the already

known target. SPOT sensitivity was equal to or surpassed any specific method when

applied on 12 characterized sRNAs.

Backofen, et al.[22] examines the merits and demerits of the existing programs

and tools for sRNA discovery and their target predictions. There have been two

comparative assessments of RNA - RNA interaction prediction [[1], [23]]. Pain et al.’s

results show that CopraRNA outperformed all other programs in terms of accuracy.

Figure 2.1 shows the results obtained by [1]. RNAplex, IntaRNA, RNAhybrid,

RNAup, RNAcofold, RNAduplex, and Pairfold were run using the Unix command-

line versions of the programs and, TargetRNA2 and CopraRNA were run from their

webservers. The results show that CopraRNA performs better compared to other

programs by predicting more number of trusted pairs. Results show that programs

predicting local interactions, such as CopraRNA, IntaRNA, RNAplex, RNAup and

TargetRNA2, outperform programs to predict complete RNA-RNA hybrid. Programs

6

Figure 2.1: The ROC-like curve for each program in the assessment. Y-axis shows the

number of trusted interactions predicted by each program, and the x-axis indicates

the number of predictions with the best ranking. Each curve shows the number of

trusted interactions predicted by the program among the predictions with the best

ranking (Figure reproduced from [1] under CC-by-nc license).

that achieve the lowest performance are RNAcofold and Pairfold. Table 2.1 provides

a summary of the sRNA target prediction programs discussed above.

7

Program Strategy Limitations

CopraRNA [3]

Based on comparative-genomics

that requires sequence conservation of

sRNA and mRNA.

Requires homologs of sRNA

and mRNA in at least four bacteria.

Runs one sRNA at a time.

IntaRNA [4]
Uses interaction sites accessibility and

user-specified seed.

Long exceution time.

SPOT [5]

Metamethod combining four current tools -

TargetRNA2, sTarPicker, IntaRNA

and CopraRNA.

Runs one sRNA at a time.

Requires Payment when

run through AWS.

TargetRNA2 [6]

Uses four features: conservation of the sRNA,

sRNA accessibility, mRNA accessibility and

hybridization energy.

Requires conservation of the

sRNA in other bacteria.

RNAcofold [8]
Computes base-pairing pattern and

hybridization energy.

Neglects some important interaction

structures and is limited to dimeric

complexes.

StarPicker [14]
Two-step model based on the hybridization

between the sRNA-mRNA interaction.
No longer available.

RNApredator [15]

Based on RNAplex. Uses RNAplfold to

precompute the accessibility profiles for

all genomes.

Accuracy is similar to that of other

methods such as RNAup and IntaRNA.

Table 2.1: Summary of the sRNA target prediction programs

8

Most of the current programs for sRNA target predictions use by default un-

translated regions (UTR) [24], which is a part of the whole sequence, not the whole

sequence. UTR refers to both sides of a coding sequence on an mRNA strand, one

on either side. It is called 5’ UTR when it is found on 5’ side. Similarly, when it is

located on 3’ side, it is called 3’ UTR.

There are wet-lab approaches that use RNA sequencing (RNA-seq) [25] to identify

targets of sRNAs. Some of these approaches are MAPS [26], GRIL-seq [27], CLASH

[28] and, RIL-seq [29]. MS2 affinity purification coupled with RNA-seq (MAPS)

method identifies RNAs (mRNA, tRNA, or sRNA) that interact with specific indi-

vidual sRNA. In this method, RNA targets were co-purified by fusing MS2 tag to

E. coli sRNAs. Combined with RNA-seq, MS2-sRNA affinity purification uncovers

the targets of a specific sRNA. GRIL-seq stands for Global small non-coding RNA

target identification by ligation and sequencing. This method also identifies targets

for a specific sRNA. The approach exploits the advantage of the sRNA and its target

mRNA’s proximity stabilized by Hfq protein. GRIL-seq identified direct regulatory

targets of sRNA prrF1 in Pseudomonas aeruginosa. CLASH [28] retrieves base-paired

sRNA–mRNA duplexes using UV-crosslinking, ligation and sequencing of hybrids.

This method identified several mRNA targets for sRNA esr41 of E. coli. RIL-seq

(RNA interaction by ligation and sequencing) [29] is an experimental-computational

approach. It detects Hfq-bound sRNA-target pairs in bacteria. These methods have

significantly increased the number of known sRNA-mRNA interactions.

9

2.2 Interpretability

Many machine learning models remain black boxes [30] despite their high predictive

performance, as it is hard to comprehend the role of the features when making pre-

dictions. Interpretability is understanding the reasoning behind the outcome of the

model. Model interpretability is essential as it shows the features that impact the

model’s outcome and allows a user to explain how the model arrived at its predictions.

Interpretability comes after the model has made its predictions [31].

Interpretability methods can be categorized in two ways. Model agnostic or model

specific. Model agnostic methods can be applied to any machine learning model,

unlike model-specific methods that could be applied to specific kinds of machine

learning models. It can further be categorized in terms of scope, local or global.

Global methods give an understanding of how the model makes its prediction based

on its features and model structure. Local interpretations provide an understanding

of what features are influencing the predicted outcome for a given observation [31].

There are multiple surveys on machine learning interpretability such as [32], [33],

[34]. [35] used Shapley Additive explanations (SHAP) [36] to explain the predictions

of XGBoost model that classifies patients into four laser surgery categories and states

that the explanations generated by SHAP for the results were in line with antecedent

knowledge from specialists. [37] carried out the implementation of the Random forest

model to predict ICU mortality for precision medicine data and added interpretabil-

ity to the model’s output by using LIME [30]. The result shows that the simple

10

generated explanations from a complex model were consistent with current medical

understanding and was able to interpret the influence of the features on prediction.

We considered two python packages for sRNARFTarget interpretability; SHAP [36]

[38] and pyCeterisParibus [39].

SHAP is a model agnostic approach and can be used for local and global interpre-

tations. Shapley value is the average marginal contribution of a feature value across

all possible coalitions (different combination sets of features). The Shapley value is

a process that, in terms of game theory, assigns the payouts to players according to

their contribution to the total payout. In machine learning, the prediction task is

analogous to the game, the model outcome is the payout, and the features are the

players so that the Shapley value estimates the contribution of each feature towards

the final prediction [40].

pyCeterisParibus is a model agnostic approach and can be used for instance based

(local) interpretations. It is based on Ceteris paribus profiles of R [41], Ceteris paribus

profiles are individual variable profiles generated by changing the value of one feature

at one time and keeping all other feature values constant. They are also called what-if

profiles.

2.3 Summary

There are many programs for sRNA target prediction. Among those, CopraRNA is

the most accurate one; however, it requires sequence conservation of the sRNAs and

11

mRNAs in at least four bacterial species. Out of the programs that are not com-

parative genomic-based as CopraRNA, IntaRNA and sTarPicker have been shown

to achieve the best results in terms of the area under the ROC curve (AUROC).

Recently, several RNA sequencing based methods have been developed to experimen-

tally identify targets of sRNAs. These methods have increased the number of known

sRNA-mRNA interactions.

12

Chapter 3

Methodology

The developed sRNA target prediction program sRNARFTarget is generated using

the Random Forest [42] machine learning algorithm. The idea behind this approach

is that the machine learning classifier receives instances containing the difference be-

tween trinucleotide frequency of sRNA and mRNA pairs. The random forest classifier

then returns the prediction probability of the interaction of these two RNAs.

Figure 3.1 gives an overview of the proposed approach. Sequence derived fea-

tures (Trinucleotide frequency difference) are extracted from the sequences of sRNA

- mRNA pairs. These observations are given to a machine learning-based method,

which then predicts whether the two RNAs interact or not.

To train the Random Forest, we first collected experimentally determined sRNA-

mRNA pairs from the literature (Section 3.1), extracted features from their sequences

such as k -mer frequency and secondary structure distances (Section 3.2), carried out

13

a grid search cross-validation to select the best performing model in terms of AUROC

(Section 3.3), and finally comparatively assessed the performance of the final model

with two state-of-the-art programs (CopraRNA and IntaRNA) on three independent

data sets (Section 3.5).

Figure 3.1: Workflow of Machine Learning based approach

3.1 Data Collection

By searching in NCBI Pubmed, we identified studies where sRNA-mRNA interactions

were identified (see Table 3.1). We collected all studies found that provided sRNA

- mRNA validated pairs and then collected all sRNA-mRNA pairs listed in these

studies. We gathered roughly 2400 pairs from multiple bacteria.

14

Bacteria Name Reference

Escherichia coli [1], [43], [28], [44], [45]

Pseudomonas aeruginosa [46], [27], [47]

Burkholderia cepacia [47]

Pasteurella multocida [48]

Salmonella [49], [50]

Mycobacterium tuberculosis [51]

Synechocystis [52] [53]

Multiple bacteria [54], [55], [56]

Table 3.1: Studies identifiying sRNA targets in the literature

3.2 Data processing

The data available in the literature are in different formats. Few datasets were avail-

able with sRNA - mRNA names, accession numbers, sRNA - mRNA sequences or,

locations of sRNA - mRNA in the genome. We used the given sequences directly if

they were provided such as from sTarBase3.0 [55]. For other datasets, we created a

data file which contains Entrez genome accession number, sRNA and target mRNA

name.

3.2.1 Split data into training and benchmarking set

We divided the collected data into training data and benchmarking data.

15

Benchmarking data: We kept the following from the collected dataset to use

later for benchmarking. 102, 22, and 20 sRNA-mRNA pairs from Escherichia coli [1],

Pasteurella multocida [48] and Synechocystis [52] [53] respectively. Table 3.2 shows

genome accession number, number of sRNAs per strain, number of pairs per strain

used in this project and a total of all columns at the end of the Table.

Accession # Strain
No. of

sRNAs

No. of

pairs

NC 000913.3 Escherichia coli str. K-12 substr. MG1655 22 102

NC 002663.1 Pasteurella multocida subsp. multocida str. Pm70 1 22

NC 000911.1 Synechocystis sp. PCC 6803 2 20

Total 3 25 144

Table 3.2: Benchmarking Data

Training data: The remaining data was used for training the models. Table

3.3 shows the genome accession number, number of sRNAs per strain, the number of

pairs per strain used in this project and a total count of all columns at the end of the

Table.

16

Accession # Strain
No. of

sRNAs

No. of

pairs

NC 003062.2 Agrobacterium fabrum str. C58 1 9

NC 011312.1 Aliivibrio salmonicida LFI1238 1 1

NC 012560.1 Azotobacter vinelandii DJ 1 10

NC 000964.3 Bacillus subtilis subsp. subtilis str. 168 1 12

NC 007618.1 Brucella abortus 2308 6 10

NC 011000.1 Burkholderia cenocepacia J2315 1 1

NC 011916.1 Caulobacter crescentus NA1000 1 1

NC 003366.1 Clostridium perfringens str. 13 1 1

NC 002695.1 Escherichia coli O157:H7 str. Sakai 7 28

NC 000913.3 Escherichia coli str. K-12 substr. MG1655 42 358

NC 007880.1 Francisella tularensis subsp. holarctica LVS 1 1

NC 000915.1 Helicobacter pylori 26695 2 2

NC 003210.1 Listeria monocytogenes EGD-e 2 5

NC 018588.1 Listeria monocytogenes serotype 5 5

NC 000962.3 Mycobacterium tuberculosis H37Rv 1 9

NC 002946.2 Neisseria gonorrhoeae FA 1090 1 4

NC 003112.2 Neisseria meningitidis MC58 2 5

17

Table 3.3 continued from previous page

NC 005072.1
Prochlorococcus marinus subsp. pastoris

str. CCMP1986

1 4

NC 002516.2 Pseudomonas aeruginosa PAO1 7 78

NC 007493.2 Rhodobacter sphaeroides 2.4.1 5 6

NC 003198.1
Salmonella enterica subsp. enterica serovar

Typhi str. CT18

1 1

NC 016856.1
Salmonella enterica subsp. enterica serovar

Typhimurium str. 14028S

1 11

NC 003197.1
Salmonella enterica subsp. enterica serovar

Typhimurium str. LT2

40 64

NC 016810.1
Salmonella enterica subsp. enterica serovar

Typhimurium str. SL1344

8 41

NC 003047.1 Sinorhizobium meliloti 1021 1 1

NC 022222.1 Staphylococcus aureus subsp. aureus 6850 2 8

NC 007795.1 Staphylococcus aureus subsp. aureus NCTC 8325 2 2

NC 002745.2 Staphylococcus aureus subsp. aureus N315 2 5

NC 008022.1 Streptococcus pyogenes MGAS10270 1 1

NC 003888.3 Streptomyces coelicolor A3(2) 1 1

NC 000911.1 Synechocystis sp. PCC 6803 1 1

18

Table 3.3 continued from previous page

NC 009783.1 Vibrio campbellii ATCC BAA-1116 5 11

NC 009784.1 Vibrio campbellii ATCC BAA-1116 3 3

NC 022270.1 Vibrio campbellii ATCC BAA-1116 1 2

NC 002505.1 Vibrio cholerae O1 biovar El Tor str. N16961 7 10

NC 002506.1 Vibrio cholerae O1 biovar El Tor str. N16961 6 28

NC 009457.1 Vibrio cholerae O395 1 1

NC 004603.1 Vibrio parahaemolyticus RIMD 2210633 1 1

NC 003131.1 Yersinia pestis CO92 1 1

NC 010465.1 Yersinia pseudotuberculosis YPIII 2 2

Total 37 176 745

Table 3.3: Model Training Data

3.2.2 Get training data

Our first data preprocessing step was to remove any duplicate pair. Next, we wrote

Nextflow [57] pipelines to get the complete sRNA and mRNA sequences from NCBI,

calculate the k -mer frequency and obtain the k -mer frequency difference. This pipeline

is shown in Figure 3.2.

1. We run the training data through the first nextflow pipeline, Filtergenes. This

pipeline finds whether the sRNAs and mRNAs exist in NCBI Gene database

19

using the esearch function of Entrez direct [58] and generates a final output

containing sRNA-mRNA pairs found in NCBI.

2. Using output from the first pipeline, we run pipeline 2 to get the sRNA/mRNA

sequences. We use esearch from Entrez direct, bedtools [59] biocontainer [60]

in this pipeline.

3. We combine sequences retrieved from pipeline 2 and the ones which were directly

collected [55]. We then run the pipeline 3 to extract k -mer frequency from

sequences as shown in Figure 3.2. This pipeline uses skbio [61] module of

python to extract k -mer frequency from sequences.

3.2.3 Secondary structure distance

We retrieve the distance between the sRNA and mRNA secondary structure from the

sequences. This is achieved with the following steps.

1. Obtain predicted secondary structure using the CentroidFold [62] program to

get the secondary structure of sRNAs and mRNAs. This program takes input

sequences and returns the secondary structures of sequences.

2. Calculate the distance between sRNA and mRNA secondary structures using

RNAdistance [63] program. This program takes input secondary structures of

RNAs pairwise and calculates the distance based on the value passed in the

20

Figure 3.2: Nextflow pipelines for data processing and k -mer extraction

distance parameter. We calculated distance for all the values of the distance

parameter.

3.3 Machine learning model selection

We generate models for sRNA target prediction using three ML methods, namely,

Random Forest (RF), K-nearest neighbors (KNN) and gradient boosting (GB). We

21

used SKlearn [64] APIs of Random Forest, KNN and, Gradient Boosting machine

learning algorithms to implement these classifiers.

3.3.1 Training data for binary classification

As a result of data processing, we had a final training dataset containing 745 true

positive sRNA-mRNA pairs. We created 745 true negatives by randomly permuting

the sRNA-mRNA pairs, and then processed the permuted pairs through the pipelines

to calculate the k -mer frequency and secondary structure distance.

3.3.2 Model training

We used R importance function [65] based on mean decrease in accuracy to get the

feature importance, and filter out any feature with a mean decrease in accuracy ≤

0. We used Grid search cross-validation API of scikit-learn to get the best estima-

tor/parameters for the models. See Table 3.4 for parameter grids used in Grid search

CV. We did 10 fold stratified cross-validation to ensure balanced class distribution in

each fold and avoid overfitting. We used the area under the ROC curve (AUROC)

[66] and average precision [67] to evaluate the performance of the models.

22

Model Parameters Values

Random Forest

Number of trees (n estimators) [500, 600, 800, 1000]

Number of features for split (max features) [’sqrt’, ’log2’]

Maximum depth of the tree (max depth) range(1, 11)

Gradient Boosting

n estimators [400,500,700,1000]

max features [”log2”,”sqrt”]

max depth range(1, 11)

Kneighbors (KNN)
n neighbors range(1, 50)

weights [’distance’, ’uniform’]

Table 3.4: Parameters for Grid search cross-validation

3.3.3 Model selection

See Table 3.5 for the count of observations and features for each data set. As a proof

of concept and to be able to assess the effect of a larger dataset for training, we used

two sets of features extracted from a small training data consisting of 102 E. coli

pairs [1]: 1) Trinucleotide frequency of sRNA and mRNA sequences (128 features in

total) 2) Tetranucleotide frequency of sRNA and mRNA sequences (512 features in

total). We then used two more sets of features on the same data as above: 1) Trin-

ucleotide frequency difference (64 features) 2) Tetranucleotide frequency difference

(256 features). Discussion on why these features were selected can be seen in Chapter

23

4.

As mentioned above, models’ performance was evaluated using 10-fold cross-

validation. Based on the results obtained (discussed in Chapter 4), we decided to

use as features the trinucleotide frequency difference and tetranucleotide frequency

difference and generate new models training on the entire training data containing

1490 observations (745 true positives and 745 true negatives). For each set of features,

we found the optimal parameter setting for each classifier using grid search CV, and

compared the models’ performance in terms of AUROC an average precision.

To explore whether other features will increase the performance of the best model

(i.e., generated with trinucleotide frequency difference), we retrieved sRNA-mRNA

secondary structure distances as discussed in section 3.2.2 and add them as extra

features to the trinucleotide frequency difference for a total of 71 features (64 trinu-

cleotide frequency difference and 7 distance features).

We got feature importance based on the mean decrease in accuracy from R func-

tion for entire training data with trinucleotide frequency difference, and all the fea-

tures had a mean decrease in accuracy greater than zero. Feature importance plot can

be seen in Chapter 4. We selected the model with the highest AUROC and average

precision as our final model. We saved this model to be used by the nextflow pipeline

implementing the sRNARFTarget program.

24

Data set Feature name True positives True negatives No. of features

Pilot study

set

Trinucleotide frequency 102 102 128

Tetranucleotide frequency 102 102 512

Trinucleotide frequency difference 102 102 64

Tetranucleotide frequency difference 102 102 256

Large training

set

Trinucleotide frequency difference 745 745 64

Tetranucleotide frequency difference 745 745 256

Trinucleotide frequency difference

with secondary structure distance

745 745 71

Tetranucleotide frequency difference

with secondary structure distance

745 745 263

Table 3.5: Count of features and instances in training datasets

3.4 sRNARFTarget nextflow pipeline

We created a nextflow pipeline that uses the saved random forest model for sRNA

target prediction. The pipeline takes FASTA files as input: a fasta file with sRNA se-

quences and another fasta file with mRNA sequences. The final result of the pipeline

is a CSV file containing prediction probabilities of sRNA-mRNA interaction sorted

in descending order with the sRNA-mRNA ID. Next, we discuss each process of

25

sRNARFTarget pipeline. Figure 3.3 presents the workflow of sRNARFTarget pro-

gram.

Figure 3.3: sRNARFTarget workflow

26

• The first process takes two input fasta files for sRNA and mRNA sequences.

This process creates all possible pairs from the input sRNA and mRNA se-

quences. Each sRNA is paired with all mRNAs. For example, if the input

sRNA file has 5 sRNA sequences and mRNA file has 9 mRNA sequences, then

it will create 45 sRNA-mRNA pairs, 9 pairs for each sRNA.

• Process 2 extracts trinucleotide frequency for sRNA sequences of all possible

pairs created in the first process. It uses the skbio [61] module of python to

extract the k -mer frequency from sequences.

• Process 3 extracts trinucleotide frequency for mRNAs of all possible pairs cre-

ated in the first process using the skbio python module. It then gets the differ-

ence between sRNA and mRNA trinucleotide frequency by subtracting sRNA

frequency from mRNA frequency. It uses pandas [68] subtract function to do

this.

• Process 4 receives sRNA-mRNA trinucleotide frequency difference from the last

process. It loads the saved random forest model and makes predictions for all

pairs. It generates the result file containing three columns sRNA ID, mRNA

ID and predicted interaction probability.

• The last process creates a directory ’sRNARFTargetResult’ and generates two

files in it. First is the final prediction result file ’Prediction probabilities.csv’

containing the results sorted by predicted interaction probability from high to

27

low, rounded to five decimals. The second file is the ’FeatureFile.csv’ that

contains features for sRNA and mRNA pairs. It consists of sRNA/mRNA IDs

and corresponding trinucleotide frequency difference. The feature file is later

used by the interpretability programs.

3.5 Benchmarking

Based on comparative assessments of sRNA target prediction programs [1, 5], four

programs (CopraRNA, IntaRNA, SPOT and sTarPicker) are reported to have the best

performance with CopraRNA been the best performing program. SPOT is reported

to be comparable to CopraRNA; however, we were unable to run SPOT locally and

running SPOT through AWS [69] requires payment [70]. sTarPicker is no longer

available. Therefore, we ran CopraRNA and IntaRNA for our benchmark. CopraRNA

and IntaRNA are non - machine learning based programs.

3.5.1 Data for benchmarking

The data used for independent benchmarking (i.e., these data were not seen during

training) have 22 sRNAs and 102 sRNA-mRNA pairs for E. coli [1] , 1 sRNA and 22

pairs for P. multocida [48], 2 sRNAs and 20 pairs for Synechocystis bacteria [52], [53].

For E. coli, we extracted the sequences for 22 sRNAs using the nextflow pipeline.

For all other sRNAs, we fetched the sequence directly from the NCBI nucleotide

database. The location of isar1 sRNA was taken as reported in [52]. The location

28

of psrR1 sRNA (1671919-1672052) was confirmed by oral communication with the

author of [53]. Finally, gcvB sRNA location was obtained from [48].

As we wanted to perform a transcriptome-wide prediction, we collected location

details for all the mRNAs belonging to each bacterium directly from NCBI. We then

extracted the sequences for all the mRNAs per bacterium using the nextflow pipeline.

Input files for sRNARFTarget and IntaRNA consist of sRNA and mRNA se-

quences in each file and the count of sequences has been listed in Table 3.6.

To run CopraRNA, we used homologs provided in [52] and [53] for isar1 and

psrR1 sRNAs of Synechocystis bacteria. For gcvB sRNA of P. multocida, we retrieved

homolog sRNAs from NCBI. To find homologs for E. coli sRNAs, we used GLASSgo

- sRNA Homolog Finder program [71].

3.5.2 Running programs

3.5.2.1 sRNARFTarget

sRNARFTarget can be run from the Linux command line. It takes two arguments,

an sRNA and an mRNA fasta file. We ran sRNARFTarget for each bacterium with

the number of sequences shown in Table 3.6. As per the workflow of sRNARFTarget

presented in Figure 3.3, the first process of pipeline generated 93280 sRNA-mRNA

pairs for E. coli, 1804 pairs for P. multocida and 6358 pairs for Synechocystis bacteria.

The final result generated the CSV files comprising the sorted prediction probabilities

rounded to five decimal places for all pairs per bacterium. The higher probability

29

indicates a higher predicted likelihood of interaction. The code for sRNARFTarget

nextflow pipeline is available at Github.

sRNARFTarget & IntaRNA

Escherichia coli Synechocystis Pasteurella multocida

No. of sequences in

sRNA fasta file

22 2 1

No. of sequences in

mRNA fasta file

4240 3179 1804

Table 3.6: Count of benchmarking sequences for sRNARFTarget & IntaRNA

3.5.2.2 IntaRNA

We downloaded IntaRNA source code from [72], installed it locally, and executed

it from the command line. The data for running IntaRNA was the same as for

sRNARFTarget as shown in Table 3.6. To obtain a total execution time for IntaRNA,

we created a nextflow pipeline to run IntaRNA’s two steps: getting the interaction

energy and getting the p-values for the interaction energy. This pipeline has two

processes. The first process takes two fasta files, one for sRNA and one for mRNA

sequences and generates a CSV file containing the interaction energy for pairs along

with other columns. The second process takes the file generated from the first one

and runs an R script [73] and generates a file containing p-values and FDR values

30

https://github.com/BioinformaticsLabAtMUN/sRNARFTarget/blob/master/sRNARFTarget.nf

calculated from energy. We used p-values as IntaRNA scores. IntaRNA results did

not contain interaction energies/p-values for a few of the pairs. Final results had

p-values for 92449 pairs in E. coli, 6344 pairs for Synechocystis and, 1803 pairs with

p-values for P. multocida. The lower p-value indicates a higher predicted likelihood

of interaction. Nextflow pipeline for running IntaRNA can be seen on Github.

3.5.2.3 CopraRNA

We ran CopraRNA from its webserver, [CopraRNA webserver link]. We took available

pre-computed results for E. coli sRNAs and submitted jobs for the ones which were

not available as pre-computed results on CopraRNA webserver. For P. multocida

and Synechocystis we submitted jobs on the webserver with homologs as mentioned

in section 3.5.1. We used the same parameter values for running CopraRNA as those

used in the pre-computed results. We considered the result file containing p-values

for all pairs. CopraRNA results did not contain interaction p-values for a few of

the pairs. The result included p-values for 75841 pairs for E. coli, 5474 pairs for

Synechocystis, and 1485 pairs for P. multocida. The lower p-value indicates a higher

predicted likelihood of interaction.

3.5.3 Results standardization

We carried the following steps on the results of all three bacteria and the summary

of final predictions of the programs can be found in Table 3.7.

31

https://github.com/BioinformaticsLabAtMUN/sRNARFTarget/blob/master/Codes/IntaRNA/IntaRNA_Prediction.nf
http://rna.informatik.uni-freiburg.de/CopraRNA/Input.jsp

1. sRNARFTarget predictions

• Score (prediction probabilities) of sRNARFTarget are already rounded to

five decimals.

• We assigned corresponding classes to all predictions. As listed in Table

3.2 Benchmarking data, we assigned, class 1 (true positives) to 102 E.

coli predictions, 22 P. multocida predictions and 20 Synechocystis predic-

tions. Remaining all predictions were assigned with class 0 becoming true

negatives.

• We converted sRNA and mRNA IDs to lowercase.

2. IntaRNA predictions

• As mentioned earlier, lower p-values indicate more likely predicted interac-

tion. We subtracted IntaRNA p-values from 1, to make it consistent with

our program so that p-values now become predicted interaction probability.

We then rounded the score to five decimals.

• Assigned target classes 1 and 0 as mentioned in sRNARFTarget steps.

• Converted sRNA and mRNA IDs to lowercase.

3. Intersection between sRNARFTarget & IntaRNA predictions

• IntaRNA did not generate predictions for all the given input pairs. Hence,

we wrote an R script to get the common pairs predicted by both programs

32

so that the results are consistent across the programs. Common pairs are

henceforth referred to as RI pairs. As a result of this, we got 92449 for E.

coli, 6344 for Synechocystis and, 1803 for P. multocida, pairs with scores

for sRNARFTarget and IntaRNA.

4. CopraRNA predictions

• We used the CopraRNA result file that has predictions for all pairs. We

removed rows where p-values were empty or NA.

• We noticed that there were duplicates in CopraRNA predictions: there

were a number of sRNA-mRNA pairs that had two entries with two differ-

ent p-values. So to eliminate the duplicate entries, we wrote an R script

to get the most significant p-value (lowest p-value) for each sRNA-mRNA

pair, and remove all other entries.

• CopraRNA lower p-values indicate more likely predicted interaction. We

subtracted p-values from 1 as we did for IntaRNA, to obtain predicted

interaction probability. We rounded predicted interaction probabilities to

five decimals.

• Assigned target class 1 and 0 to predictions accordingly as for the other

two programs.

• Converted sRNA and mRNA IDs to lowercase.

5. Intersection between CopraRNA predictions and RI pairs.

33

• Like IntaRNA, CopraRNA also did not generate predictions for all the

pairs. We first extracted common pairs between CopraRNA pairs and

RI pairs (intersection between sRNARFTarget and IntaRNA). Next, we

extracted the pairs in RI pairs that are not present in the CopraRNA result

and assigned those with a predicted interaction probability equal to 0. This

makes the count of predictions the same across all three programs. As a

result of this, we got 92449 for E. coli, 6344 for Synechocystis and, 1803

for P. multocida, predictions with scores for sRNARFTarget, CopraRNA

and IntaRNA.

6. Sorted each program’s predictions by their score in descending order.

Count/Bacteria Escherichia coli Synechocystis Pasteurella multocida

No. of sRNAs 22 2 1

No. of sRNA-mRNA pairs 92449 6344 1803

True positives 101 20 22

True negatives 92348 6324 1781

Table 3.7: Final benchmarking dataset used for all three programs

34

3.5.4 Plots

We created precision-recall curves (PR) and receiver-operating characteristic curves

(ROC), Violin box plots and line plots for comparing the performance of sRNATar-

get, CopraRNA and IntaRNA for all three bacteria. Here we will discuss the func-

tions/modules or approach we used to create these plots and the plots can be seen in

Chapter 4.

3.5.4.1 PR & ROC plots

We used the PRROC [74] package from R to plot PR and ROC curves. We plotted

individual plots for each bacterium per program and combined plots containing three

curves showing three programs per bacterium.

3.5.4.2 Violin Box plots

We created three violin box plots [75], each per bacterium containing three box plots

for each program. For box plots, we first ranked the predictions of each program. We

used the Ordinal ranking (ties are given consecutive ranks) system and used python’s

Ranking [76] module to get the ranks for predictions. Rank 1 corresponds to the

prediction with the highest predicted interaction probability. We then took the ranks

corresponding to the true positives and plotted the violin box plots using the ggplot2

[77] R package.

We ran a Mann-Whitney test [78] using wilcox.test command from [79] R for true

35

positives with ordinal ranks to a pair-wise statistical comparison of the programs

ranks. We included the Mann-Whitney test p-values in the corresponding violin box

plots.

3.5.4.3 Line plots

To create the line plots, we took the top 10% predictions for each program, counted

the number of true positives, and calculated the percentage of true positives among

the top 10% of predictions. Then iteratively increase the percentage of top predictions

by 10% and repeat the process described above until all predictions (100%) are taken.

We plot the percentage of predictions on the x-axis and percentage of true positives

on the y-axis.

3.6 sRNARFTarget interpretability program

We created two python scripts for sRNARFTarget interpretability using SHAP and

pyCeterisParibus python packages. See Figure 3.4 for the workflow of the programs.

Both scripts can be run from the command line. Instructions on running these pro-

grams can be seen on Github.

To run SHAP for a sRNARFTarget prediction, the user can choose an sRNA-

mRNA pair of interest from Prediction probabilities.csv file under sRNARFTargetRe-

sult folder, generated by sRNARFTarget program. This pipeline takes two command-

line arguments, sRNA ID and mRNA ID. sRNA and mRNA IDs have to be the

36

https://github.com/BioinformaticsLabAtMUN/sRNARFTarget/blob/master/Instructions/InterpretabilityProgramsRunningInstructions.txt

same as in the Prediction probabilities.csv file. It then fetches the features for cho-

sen sRNA-mRNA pair from ’FeatureFile.csv’ file under sRNARFTargetResult folder.

This program uses TreeExplainer of SHAP to create the explainer. We used TreeEx-

plainer as the underlying model is a Random forest. Then it calculates the SHAP

values for a given observation (sRNA-mRNA pair). Lastly, it generates SHAP’s de-

cision, waterfall and force plots for interpretation.

37

Figure 3.4: sRNARFTarget interpretability workflow

38

By looking at the SHAP plots, the user can select a variable of interest to run the

pyCeterisParibus program. This program takes three arguments, sRNA ID, mRNA

ID (same which were passed in SHAP) and feature name. Then it creates the ex-

plainer using training data and calculates ceteris paribus profiles for a chosen variable

for given sRNA-mRNA pair. It fetches the features for chosen sRNA-mRNA pair from

’FeatureFile.csv’ file under sRNARFTargetResult folder and plots the calculated pro-

files for the chosen variable.

3.7 Summary

In this chapter, we discussed the data collection. Using the nextflow pipelines, we

extracted the sequences and features; nucleotide frequency and secondary structure

distance. We created true negatives by permuting the true positives. We did Grid

search CV for selecting the best estimator for models generated by random forest,

KNN, and gradient boosting, and used stratified cross-validation for training the mod-

els using the training data. We first trained these models using the small training data

102 E. coli pairs with four sets of features (Trinucleotide frequency, Trinucleotide fre-

quency difference, Tetranucleotide frequency, Tetranucleotide frequency difference of

sRNA-mRNA sequences). Based on the results, we created models with trinucleotide

frequency difference and tetranucleotide frequency difference with entire training data

745 pairs. We retrieved sRNA-mRNA secondary structure distances to see whether

these features increase the model’s performance. Adding distance features increased

39

the execution time from seconds to hours and did not increase the performance of any

model. Based on our analysis and results, we selected a random forest model trained

with trinucleotide frequency difference. We then created the sRNARFTarget nextflow

pipeline that uses the random forest model for prediction. We considered CopraRNA

and IntaRNA for benchmarking. We ran CopraRNA from webserver, IntaRNA from

the command line and sRNARFTarget from nextflow pipeline, with benchmarking

data containing sRNA-mRNA sequences for three bacteria; E. coli, P. multocida and

Synechocystis.

We implemented two python programs to facilitate understanding sRNARFTarget

predictions using SHAP and pyCeterisParibus python packages. From the results

obtained from sRNARFTarget for given sequences, one can choose the sRNA-mRNA

pair of interest and get the visual interpretations from sRNARFTarget SHAP.py and

by looking at these plots, one can also optionally choose the feature and get the

interactive plot by running sRNARFTarget CP.py, which shows the real-time change

in the prediction as the value of the chosen feature changes.

40

Chapter 4

Results and Discussion

In this chapter, we will discuss and present the results obtained first in a small pilot

experiment and then in experiments using the complete training data. At the end of

the chapter, we present the results of comparatively assessing the performance of three

programs for sRNA target prediction (sRNARFTarget, CopraRNA, and IntaRNA)

on data not seen by sRNARFTarget during training.

4.1 Pilot experiment using small training data

The pilot experiment allows us to choose sequence-derived features to infer sRNA

targets with a performance comparable to other non-comparative genomics sRNA

target prediction software. Table 4.1 shows the AUROC and average precision scores

for small data (102 E. coli pairs) for trinucleotide and tetranucleotide frequency of

sRNA-mRNA pairs. We generated 102 true negative instances to get a balanced

41

training data set. The pilot study only includes data from a single bacterium and

roughly 14% of the sRNA-mRNA pairs in the full data set. The performance was less

than random performance (0.5 AUROC) for all three models.

AUROC (mean) Average precision (mean)

All features
Features selected:

MDA >0

All features
Features selected:

MDA >0

Classifiers Tri nt. Tetra nt. Tri nt. Tetra nt. Tri nt. Tetra nt. Tri nt. Tetra nt.

RF 0.17 0.05 0.15 0.13 0.34 0.34 0.36 0.36

KNN 0.48 0.5 0.39 0.39 0.54 0.56 0.46 0.47

GB 0.12 0.12 0.19 0.21 0.36 0.35 0.38 0.38

Table 4.1: AUROC and average precision score obtained in a pilot experiment on

a small training data (102 E. coli pairs) using trinucleotide and tetranucleotide fre-

quency as features.

Table 4.2 shows the AUROC and average precision scores for small data for trin-

ucleotide frequency difference and tetranucleotide frequency difference of 102 E. coli

sRNA-mRNA pairs. Using the difference between nucleotides frequency as features

caused an increase in the model performances. KNN also has better performance

with trinucleotide frequency difference.

We adopted the idea of using sequence-derived features such as nucleotides fre-

42

quency from previous studies such as [80] and [81] that use k -mer frequency for

predicting long non-coding RNAs, [82] that uses k -mer composition for DNA se-

quence classification and [83] that makes use of k -mer composition for predicting

small non-coding RNAs. As sRNAs bind mRNAs through base pairing [84], then

taking nucleotide frequency difference might capture this for the classifiers to use.

Therefore we then included trinucleotide and tetranucleotide frequency difference as

features. We started with trinucleotide composition, and as the performance was not

substantially increasing with tetranucleotide composition, thereby, we decided not to

go beyond tetranucleotide composition.

AUROC (mean) Average precision (mean)

All features
Features selected:

MDA >0

All features
Features selected:

MDA >0

Classifiers
Tri nt.

Diff

Tetra nt.

Diff

Tri nt.

Diff

Tetra nt.

Diff

Tri nt.

Diff

Tetra nt.

Diff

Tri nt.

Diff

Tetra nt.

Diff

RF 0.5 0.11 0.5 0.12 0.58 0.35 0.59 0.35

KNN 0.53 0.44 0.54 0.45 0.54 0.49 0.57 0.52

GB 0.49 0.27 0.52 0.24 0.57 0.43 0.57 0.39

Table 4.2: AUROC and average precision score for a small training data (102 E. coli

pairs) for trinucleotide and tetranucleotide frequency difference.

43

When using all features, the performance of random forest in terms of AUROC

increased from .17 with trinucleotide composition to .5 with trinucleotide frequency

difference, gradient boosting got increased from .12 to .49 and KNN from .48 to .53.

Tetranucleotide frequency difference did not increase the performance as trinucleotide

difference did, and reduced AUROC in KNN by 6%. Random forest and KNN sur-

passed random performance with trinucleotide frequency difference. As removing

features based on their MDA does not substantially affect the models’ performance,

we decided to use all features available.

As per the results from [1] for the same dataset, AUROC for CopraRNA was

0.46 and for IntaRNA, 0.27. As our performance was comparable to CopraRNA

performance, we decided to continue with sequence-derived features such as trinu-

cleotide frequency difference that allows us to distinguish interacting sRNA-mRNA

pairs. Thus, we proceeded to train with a larger dataset.

As all models’ performance was lower than random performance when trinu-

cleotide and tetranucleotide composition were used as features, we discarded these

from further experiments.

44

4.2 Using a larger training data set improves model

performance

The complete training data consists of 745 interacting sRNA-mRNA pairs (true pos-

itives), and 745 random sRNA-mRNA pairs (true negatives). Table 4.3 shows the

performances of the best models per classifier when trained on the entire training

data using trinucleotide frequency difference and tetranucleotide frequency difference

as features. Performances achieved with trinucleotide frequency difference was better

than tetranucleotide frequency difference and substantially higher for random forest

and gradient boosting. With trinucleotide frequency difference, the model with the

best performance was the random forest, followed by gradient boosting and then

KNN. Using the larger training data (745 pairs) instead of the small training data

(102 pairs) improved the performance of random forest from .5 to .67 AUROC.

RNA secondary structures are associated with the regulation of mRNA [85]. [86]

used RNA secondary structure level information for a visualization method of the pre-

diction of sRNA-mRNA interaction. [83] used similar (structural motifs) to predict

non-coding RNAs. Also, since the secondary structure of both sRNA and mRNA

affects their binding [87], we decided to include secondary structure distances as

features together with the tri-(tetra-)nucleotide frequency difference. Models perfor-

mance with trinucleotide frequency difference with secondary structure distances and

tetranucleotide frequency difference with secondary structure distances are in Table

45

AUROC (mean ± std) Average precision (mean ± std)

Classifiers Tri nt. Diff Tetra nt. Diff Tri nt. Diff Tetra nt. Diff

RF 0.67 ± 0.03 0.05 ± 0.02 0.65 ± 0.04 0.31 ± 0

KNN 0.63 ± 0.03 0.01 ± 0 0.60 ± 0.02 0.45 ± 0.01

GB 0.66 ± 0.03 0.06 ± 0.02 0.62 ± 0.03 0.32 ± 0

Table 4.3: 10-fold CV AUROC and average precision score for the best model per

classifier trained on sequence-derived features (trinucleotide composition and tetranu-

cleotide composition) from 745 sRNA-mRNA pairs.

4.4. With trinucleotide frequency difference with secondary structure distances, the

performance was unchanged for random forest. It was dropped by more than half

for KNN and went slightly up for gradient boosting. Adding secondary structure

distance features with tetranucleotide frequency difference features had little to no

effect.

46

AUROC (mean ± std) Average precision (mean ± std)

Models Tri nt. Diff & Dist. Tetra nt. Diff & Dist. Tri nt. Diff & Dist. Tetra nt. Diff & Dist.

RF 0.67 ± 0.03 0.04 ± 0.01 0.65 ± 0.04 0.31 ± 0

KNN 0.27 ± 0.04 0.25 ± 0.06 0.38 ± 0.02 0.38 ± 0.03

GB 0.67 ± 0.04 0.08 ± 0.02 0.64 ± 0.04 0.32 ± 0

Table 4.4: 10-fold CV AUROC and average precision score for the best model per

classifier trained on sequence-derived features (trinucleotide and tetranucleotide fre-

quency difference with secondary structure distance) from 745 sRNA-mRNA pairs.

Adding distance features did not substantially improve models performance, and

dramatically increased the execution time (from seconds to hours) to extract the

features; hence, we dropped the distance features. (Note: Centroid fold program for

fetching secondary structures of RNAs increased the execution time, RNAdistance

program for getting the distance did not take a long time). Random forest and

gradient boosting models were comparable in terms of AUROC and average precision;

however, the random forest was much faster to train than gradient boosting. Thus, we

decided to create our final model using random forest and included this model in the

sRNARFTarget pipeline. Figure 4.1 shows the ROC curve and the average precision

score for the final random forest model. The parameters to create this model are

500 trees (n estimators), log2 of features for split (max features), and the maximum

47

depth of the tree (max depth) is 9.

Figure 4.1: 10-fold CV ROC curve and average precision score for random forest

model

Figure 4.2 shows the top 30 most important features for random forest model

using trinucleotide frequency difference as features.

48

Figure 4.2: Feature importance plot obtained by R function for entire training data

containing trinucleotide frequency difference.

49

4.3 Benchmarking results on independent data sets

We compared sRNARFTarget’s performance with that of CopraRNA and IntaRNA

on data from three bacteria E. coli, Synechocystis and, P. multocida. Table 4.5 shows

the area under the ROC curve (AUROC) and area under the Precision-Recall curve

(AUPRC) for all three programs per bacterium.

AUROC

Bacteria/Program CopraRNA sRNARFTarget IntaRNA

Escherichia coli 0.88 0.65 0.62

Synechocystis 0.95 0.63 0.48

Pasteurella multocida 0.65 0.44 0.40

AUPRC

Escherichia coli 0.0767 0.0038 0.0018

Synechocystis 0.2335 0.0048 0.0037

Pasteurella multocida 0.0359 0.0105 0.0091

Table 4.5: The area under the ROC curve and PR curve for benchmarking data

Figure 4.3 and Figure 4.4 show the ROC and PR curves for E. coli. CopraRNA

performed best among the three programs followed by sRNARFTarget then IntaRNA.

Figure 4.5 and Figure 4.6 show the ROC and PR curve respectively for Synechocystis.

Figure 4.7 and Figure 4.8 show the ROC and PR curves for P. multocida.

50

Figure 4.3: Escherichia coli ROC curve

Figure 4.4: Escherichia coli PR curve

51

CopraRNA performs best for all three bacteria. CopraRNA is a comparative

genomic-based approach and requires sequence conservation of the sRNAs and mR-

NAs in at least four bacteria. sRNARFTarget outperforms IntaRNA, which was the

best non-comparative genomic-based approach as shown by [1].

sRNARFTarget does not require sequences to be conserved in other bacteria and

overcomes this limitation sequence conservation. sRNARFTarget can be run for any

number of sRNAs and mRNAs at a time. sRNARFTarget overcomes the limitation

of running the program for one sRNA at a time of CopraRNA. sRNARFTarget uses

the whole sequences of sRNA and mRNA, and CopraRNA uses untranslated regions

(UTR).

52

Figure 4.5: Synechocystis ROC curve

Figure 4.6: Synechocystis PR curve

53

Figure 4.7: Pasteurella multocida ROC curve

Figure 4.8: Pasteurella multocidas PR curve

54

Figure 4.9 shows the violin box plot for E. coli. The violin box plot shows the rank

distribution of true positives and the shape surrounding the box plots shows the data

density for different values. The horizontal bar in the box shows the median rank of

the true positive. CopraRNA has a lower median rank followed by sRNARFTarget

and then IntaRNA. A lower rank indicates that the program predicts with higher

confidence the true positive pairs as interacting pairs. The shape of CopraRNA

suggests that most of the true positives are ranked before most non-interacting pairs.

The shape of the plot for sRNARFTarget is a bit wider at the bottom than the top.

It has more true positives at the bottom (with lower rank) than the top and narrows

at the top. IntaRNA has the true positives over three-fourths of its rank range and

narrows down as it goes up.

The p-values obtained from the Mann-Whitney test are shown in Figure 4.9. These

p-values indicate that CopraRNA’s median rank of true positives is significantly lower

than sRNARFTarget’s median rank of true postives. Note that the lowest or top rank

is 1. Similarly, sRNARFTarget assigns significantly lower ranks to true positives than

IntaRNA.

55

Figure 4.9: Violin box plot for Escherichia coli

56

Figure 4.10 and Figure 4.11 show the violin box plots for Synechocystis and P.

multocida respectively. For these two bacteria as well, the median rank is lower in

CopraRNA followed by sRNARFTarget and IntaRNA.

Figure 4.10 also shows the p-values from the Mann-Whitney test. P-value for

CopraRNA-sRNARFTarget program pair is 4.778e-05. Hence, it suggests that the

median rank of the true positive ranks of the two programs is notably different. The

median rank of true positives assigned by sRNARFTarget is significantly lower than

the ranks of true positives assigned by IntaRNA with a p-value of 4.768e-06.

All three programs found more difficult to distinguish true interacting pairs in

P. multocida ranking true positives with higher ranks (Figure 4.11). Nevertheless

CopraRNA still ranks true positives significantly lower than sRNARFTarget (p-value

= 2.15e-05), and sRNARFTarget ranks true positives lower than IntaRNA (p-value

= 0.056).

57

Figure 4.10: Violin box plot for Synechocystis

58

Figure 4.11: Violin box plot for Pasteurella multocida

59

Lastly, we plotted the line plots to get the percentage of true positives predicted

among a certain percentage of predicted interacting pairs. Figure 4.12 shows the

percentage plot for E. coli. In the top 10% predictions, CopraRNA predicted 74%

true positives, sRNARFTarget predicted 21% true positives, and IntaRNA predicted

14% true positives. In terms of the percentage of true positives in all the predictions,

this plot suggests that after CopraRNA, sRNARFTarget outperformed IntaRNA.

Figure 4.12: Percentage plot for Escherichia coli

60

Figure 4.13 shows the percentage plot for Synechocystis. From the top 50% pre-

dictions, CopraRNA predicted 100% true positives, sRNARFTarget predicted 70%

true positives and IntaRNA predicted 55% of true positives.

Figure 4.13: Percentage plot for Synechocystis

Figure 4.14 shows the percentage plot for P. multocida. In top 20% predictions,

CopraRNA predicted 18% of true positives. sRNARFTarget was able to predict 10%

of true positives. IntaRNA did not predict any true positives in top 20% predictions.

61

Figure 4.14: Percentage plot for Pasteurella multocida

In terms of execution time, sRNARFTarget is faster than CopraRNA and In-

taRNA. For 1804 sRNA-mRNA pairs of P. multocida, sRNARFTarget took 31.4

seconds and IntaRNA took 1 hour, 43 minutes and 16 seconds. Table 4.6 shows the

execution time for all three bacteria for IntaRNA and sRNARFTarget. Table 4.7

shows the time taken by the CopraRNA webserver for job completion. These times

were calculated by taking the difference between the job submission time and the job

completion time (timestamp of job completion email). These times are not compara-

62

ble to that of Table 4.6 as CopraRNA was run from webserver and sRNARFTarget

and IntaRNA were run from the command line. The decrease in running time ob-

served in sRNARFTarget might be due to the fact that CopraRNA starts with a

genome-wide target prediction for each organism considered. Then it combines the

predictions for homologous targets in all organisms. IntaRNA calculates the free en-

ergy needed to make the interaction site accessible. It also calculates Hybridization

energy to find the quality of an RNA–RNA interaction between the target sites. While

sRNARFTarget calculates the trinucleotide frequency difference and uses a random

forest, which is a collection of decision trees. Decision trees are fast to provide a

prediction.

Bacteria No. of pairs Execution time

sRNARFTarget IntaRNA

Pasteurella multocida 1804 31.4s 1h 43m 16s

Synechocystis 6358 1m 18s 2h 33m 2s

Escherichia coli 93280 15m 56s 3d 16h

Table 4.6: Execution time for sRNARFTarget and IntaRNA for benchmarking data.

Both programs were run on the same computer (see Table 4.9 for the computer

specifications).

63

CopraRNA Webserver

Bacteria sRNA No. of homologs Execution time

Escherichia coli arcZ 8 8h

Pasteurella multocida GcvB 4 8h 19min

Synechocystis IsrR1 19 17h 49min

Table 4.7: CopraRNA webserver job execution time

4.4 Interpreting sRNARFTarget predictions

We applied sRNARFTarget SHAP and sRNARFTarget CP to one sRNA-mRNA pair

from each of the three bacteria that were predicted by sRNARFTarget with the

highest prediction interaction probability. These three observations are true positives

and were correctly classified by sRNARFTarget.

Figure 4.15 shows the plots generated by the sRNARFTarget SHAP (using the

SHAP package) program for dsrA-hns pair of E. coli. Figure 4.15(a) shows the

SHAP’s decision plot for this observation. We can see how the model has reached

its decision from bottom to top. Coloured line is the observation. This plot shows

how the model arrives at its decision using cumulative SHAP values. The X-axis is

displaying the model’s output (prediction probability). Y-axis is the features ordered

by importance (shap values for features of the observation). SHAP values for each

feature are added to the model’s base value (average value of the model output over

64

the training set) from bottom to top. Most of the features (of the top 20 significant

features for this observation) except for feature AAA contribute to the predictions

being positive.

Figure 4.15(b) is the waterfall plot generated by sRNARFTarget SHAP for this

observation; it is showing how the features sorted by their significance (shap values),

move the model output from the base value. Less significant features are grouped at

the bottom (if the number of features exceeds the max display parameter).

Figure 4.15(c) shows SHAP’s force plot for this observation. This plot shows the

output value of the prediction for the chosen observation and base value. Features

pushing the prediction to be higher are in red, while those decreasing are in blue.

Features CGG and AAT followed by GGG, CCG then ATT in red colour have the

highest magnitude and are pushing the model prediction to be higher (more likely

interaction) while feature AAA in blue is pushing it towards the negative side (less

likely interaction).

Figure 4.16 (a) and (b) show the ceteris paribus plot generated from sRNARFTar-

get CP (using pyCeterisparibus package) program for AAA and CGG features. Based

on the visual results of sRNARFTarget SHAP, we randomly selected two features

AAA (decreasing the interaction prediction) and CGG (increasing the probability of

interaction). We ran sRNARFTarget CP for the same observation (dsrA-hns pair)

to see the trend of these two features for dsrA-hns pair. This plot shows the real-time

change in prediction for the selected variable as the feature value changes (Interactive

65

plot). The X-axis shows feature value; Y-axis shows model prediction.

(a) Decision plot (b) Waterfall plot

(c) Force plot

Figure 4.15: Decision, waterfall, and force plots for E. coli dsrA-hns pair’s prediction

made by sRNARFTarget.

66

(a) (b)

Figure 4.16: Ceteris paribus plot for features AAA and CGG for E. coli dsrA-hns

pair’s prediction made by sRNARFTarget.

Figure 4.17 (a), (b) and (c) plots are for isaR1-petF (ssl0020) pair from Syne-

chocystis. The decision plot shows the way the model reached its decision. Waterfall

plot displays that feature GGC is moving the prediction to lower and has the highest

significance for this observation. Force plot shows that features ACC and AAT are

pushing the prediction to be higher. Feature GGC in blue has the highest significance

and is pushing the interaction prediction to be lower.

Figure 4.18 shows that ceteris paribus plot for feature GGC for isaR1-petF pair

from Synechocystis. It shows the models’ prediction for different values of GGC.

67

(a) Decision plot (b) Waterfall plot

(c) Force plot

Figure 4.17: Decision, waterfall, and force plots for Synechocystis isaR1-petF pair’s

prediction made by sRNARFTarget.

68

Figure 4.18: Ceteris paribus plot for feature GGC for Synechocystis isaR1-petF pair’s

prediction made by sRNARFTarget.

Figure 4.19 shows the SHAP plots for the interaction prediction made by sRNARF-

Target for the gcvB-metQ pair of P. multocida. The model’s decision path can be

seen in the decision plot (a). Waterfall plot (b) shows that features TAA, AAA, AAT

and GAT are moving the model’s outcome to towards the base value (reducing the

interaction probability) while features GCG, CGG, GGC, GTC and CGC are moving

the model’s outcome away from the base value (increase the chances of interaction).

Force plot (c) is showing the model’s outcome 51% interaction probability and how

the features the pushing the prediction to be higher or lower. Features GCG, CGG,

TAA and AAA seem to be the most significant features in predicting this observation.

69

(a) Decision plot (b) Waterfall plot

(c) Force plot

Figure 4.19: Decision, waterfall, and force plots for P. multocida gcvB-metQ pair’s

prediction made by sRNARFTarget.

Figure 4.20 shows the ceteris paribus plot for gcvB-metQ pair of P. multocida and

displays an interactive plot with different prediction outcomes for different values of

70

feature TAA.

Figure 4.20: Ceteris paribus plot for feature TAA for P. multocida gcvB-metQ pair’s

prediction made by sRNARFTarget.

One of the use cases of interpretability programs can be when an instance gets

misclassified. Here we discuss one such false-negative example. We take an obser-

vation that is a true interaction pair omrA-ompT of E. coli from the benchmarking

set that was predicted to be non-interaction by sRNARFTarget with 0.45 predicted

interaction probability.

Figure 4.21(a) shows the decision plot for this observation and how the model has

made its decision. As this plot shows that features GCG and CGC along with other

features are driving the models’ outcome to be lower, we picked first two features

based on decision plot GCG and CGC and plotted ceteris paribus plot for these two

features shown in Figure 4.21 (c) and (d). We changed the value of CGC to -0.0119

71

because the plots show that the lower negative value of CGC appears to increase the

prediction probability of being this observation to have most likely interaction while

the positive value pushes it to be non-interaction. Also, we changed the value of GCG

to 0.0235 as the positive value near zero seems to increase prediction probability, while

negative value decreases it.

After changing the values of GCG and CGC, we ran the sRNARFTarget SHAP

programs for this observation. Changing the feature values caused an increase in the

prediction from 0.45 to 0.54 and the observation becomes correctly classified as shown

in Figure 4.21(b). Program versions can be seen in Table 4.8. System specifications

can be seen in Table 4.9.

Table 4.10 shows the program execution times for sRNARFTarget SHAP and

sRNATarget CP interpretability programs. sRNARFTarget SHAP and sRNARF-

Target CP can be run for one sRNA-mRNA pair and one feature at a time respec-

tively. sRNARFTarget SHAP program took 5.35 seconds for one sRNA-mRNA pair.

sRNARFTarget CP program took 4.27 seconds for a single feature of one sRNA-

mRNA pair.

72

(a) Decision plot before changing values of CGC and GCG (b) Decision plot after changing values of CGC and GCG

(c) Ceteris paribus plot for CGC (d) Ceteris paribus plot for GCG

Figure 4.21: Missclassified E. coli instance

73

Software/Program Version

Python 3.7.4

R 3.5.1

Nextflow 0.32.0

bedtools 2.27.1

CentroidFold 0.0.16

RNAdistance 2.4.13

Sklearn 0.22.1

skbio 0.5.5

pandas 0.25.1

numpy 1.18.1

SHAP 0.35.0

pyCeterisparibus 0.5.2

IntaRNA 3.1.0.2

Vienna RNA package 2.4.13

boost 1.70.0

Table 4.8: Software or program versions

74

Processor Name Intel Core i7

Processor Speed 2.2 GHz

Number of Processors 1

Total Number of Cores 4

RAM 16 GB

Table 4.9: System specifications

Program Execution time

sRNARFTarget SHAP 5.35s

sRNARFTarget CP 4.27s

Table 4.10: Execution time of sRNARFTarget interpretability programs

4.5 Summary

In this chapter, we present the results of assessing the performance of sRNARFTarget.

A program for sRNA target prediction using a random forest model. We compared

the performance in terms of AUROC and AUPRC of sRNARFTarget, CopraRNA

and IntaRNA on independent datasets from three bacteria. Results show that Co-

praRNA performed best among all the three programs followed by sRNARFTarget

then IntaRNA. However, CopraRNA is a comparative genomics-based approach that

75

needs sRNA and mRNAs to be conserved in at least four bacteria. In transcriptome-

wide predictions, sRNARFTarget outperformed IntaRNA, a state-of-the-art non-

comparative genomics approach, on all three bacteria. sRNARFTarget runs faster

than CopraRNA and IntaRNA reducing the execution time to seconds instead of

hours. As sRNARFTarget removes the conservation restriction of CopraRNA, we ex-

pect sRNARFTarget to be useful for predicting targets for sRNAs without homologs

in other bacteria. As sRNARFTarget outperforms IntaRNA in terms of AUROC and

execution time, sRNARFTarget should become the non-comparative genomics pro-

gram to be used for sRNA target prediction. Additionally, sRNARFTarget is easy to

use and provides interpretability functionality to facilitate the understanding of its

predictions.

76

Chapter 5

Conclusion

This research focused on developing a transcriptome-wide sRNA target prediction

program, sRNARFTarget. We collected experimentally verified sRNA-mRNA pairs

from the literature to create a training data consisting of 745 interacting sRNA-mRNA

pairs. We selected a random forest model as the final model for sRNARFTarget with

the trinucleotide frequency difference between sRNA-mRNA as features. We validated

sRNARFTarget in three very distinct bacterial species (E.coli, Synechocystis, and P.

multocida). This suggests that the features employed capture a global interaction

pattern shared by distinct bacterial species. sRNARFTarget uses the whole sequence

for target prediction. To facilitate the use of sRNARFTarget, we created a nextflow

pipeline. As future work, a web interface for sRNARFTarget can be developed.

In our benchmark, we compared sRNARFTarget with CopraRNA and IntaRNA.

Our results show that the comparative genomics-based approach used by CopraRNA

77

is the best performing approach. For programs providing transcriptome-wide predic-

tions (instead of predictions for a single sRNA such as CopraRNA), sRNARFTarget

substantially outperforms IntaRNA in terms of AUROC, and rankings of true inter-

acting pairs. Unlike CopraRNA, sRNARFTarget does not need an sRNA or mRNA

sequence to be conserved among other bacteria and can generate predictions for any

number of sRNA and mRNA sequences.

Additionally, we have facilitated the interpretation of predictions made by sRNARF-

Target using existing python packages of interpretability. These interpretations visu-

ally show how the model reaches its decision. Our results show that the impact of

sequence segments (trinucleotide frequency difference) differ from pair to pair. This

can help understand microbiologists the precise sequence segments that contribute

more to a specific sRNA-mRNA interaction. As IntraRNA and CopraRNA are not

machine-learning based, interpretability programs cannot be directly applied to them.

As future work, one could perform feature importance analysis in IntaRNA algorithm

to compare with that of sRNARFTarget.

As CopraRNA performs best among all three programs, we suggest using Co-

praRNA when the homologs of the sRNA-mRNA sequences are available in at least

four bacteria. For the transcriptome-wide prediction or when homolog sequences are

not available, we recommend using sRNARFTarget as it has been shown to outper-

form IntaRNA.

78

Bibliography

[1] Adrien Pain, Alban Ott, Hamza Amine, Tatiana Rochat, Philippe Bouloc, and

Daniel Gautheret. An assessment of bacterial small RNA target prediction pro-

grams. RNA Biology, 12(5):509–513, 2015. PMID: 25760244.

[2] E. Gerhart. Chapter Three - Small RNAs in Bacteria and Archaea: Who They

Are, What They Do, and How They Do It. volume 90 of Advances in Genetics,

pages 133 – 208. Academic Press, 2015.

[3] Patrick R. Wright, Andreas S. Richter, Kai Papenfort, Martin Mann, Jörg Vogel,

Wolfgang R. Hess, Rolf Backofen, and Jens Georg. Comparative genomics boosts

target prediction for bacterial small RNA. Proceedings of the National Academy

of Sciences, 110(37):E3487–E3496, 2013.

[4] Andreas S. Richter, Anke Busch, and Rolf Backofen. IntaRNA: efficient predic-

tion of bacterial sRNA targets incorporating target site accessibility and seed

regions. Bioinformatics, 24(24):2849–2856, 10 2008.

79

[5] Alisa M. King, Carin K. Vanderpool, and Patrick H. Degnan. sRNA Target

Prediction Organizing Tool (SPOT) Integrates Computational and Experimen-

tal Data To Facilitate Functional Characterization of Bacterial Small RNAs.

mSphere, 4(1), 2019.

[6] Mary Beth Kery, Monica Feldman, Brian Tjaden, and Jonathan Livny. Tar-

getRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic

Acids Research, 42(W1):W124–W129, 04 2014.

[7] Brian Tjaden. TargetRNA: a tool for predicting targets of small RNA action in

bacteria. Nucleic Acids Research, 36:W109–W113, 2008.

[8] Stephan H. Bernhart, Hakim Tafer, Ulrike Mukstein, Christoph Flamm, Peter F.

Stadler, and Ivo L. Hofacker. Partition function and base pairing probabilities

of RNA heterodimers. Algorithms for Molecular Biology, Mar 2006.

[9] Hofacker IL Tafer H. RNAplex: a fast tool for RNA–RNA interaction search.

Bioinformatics, 24(22):2657–2663, 04 2008.

[10] Hackermüller J Bernhart SH Stadler PF Hofacker IL Mückstein U, Tafer H.

Thermodynamics of RNA–RNA binding. Bioinformatics, 22(10):1177–1182, 01

2006.

[11] Andronescu Mirela, Zhang Zhi Chuan, and Condon Anne. Secondary Struc-

ture Prediction of Interacting RNA Molecules. Journal of Molecular Biology,

345(5):987 – 1001, 2005.

80

[12] Jan Krüger and Marc Rehmsmeier. RNAhybrid: microRNA target prediction

easy, fast and flexible. Nucleic Acids Research, 34:W451–W454, 07 2006.

[13] I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and

P. Schuster. Fast folding and comparison of RNA secondary structures. Monat-

shefte für Chemie / Chemical Monthly, 1994.

[14] Xiaomin Ying, Yuan Cao, Jiayao Wu, Qian Liu, Lei Cha, and Wuju Li. starpicker:

A method for efficient prediction of bacterial srna targets based on a two-step

model for hybridization. PLOS ONE, 6(7):1–12, 07 2011.

[15] Stadler PF Hofacker IL Eggenhofer F, Tafer H. RNApredator fast accessibility-

based prediction of sRNA targets. Nucleic Acids Research, 39:W149–W154, 06

2011.

[16] Yong Zhang, Shiwei Sun, Tao Wu, Jie Wang, Changning Liu, Lan Chen, Xi-

aopeng Zhu, Yi Zhao, Zhihua Zhang, Baochen Shi, Hongchao Lu, and Runsheng

Chen. Identifying Hfq-binding small RNA targets in Escherichia coli . Biochem-

ical and biophysical research communications, 343(3):950—955, May 2006.

[17] T.F. Smith and M.S. Waterman. Identification of common molecular subse-

quences. Journal of Molecular Biology, 147(1):195 – 197, 1981.

[18] Pierre Mandin, Francis Repoila, Massimo Vergassola, Thomas Geissmann, and

Pascale Cossart. Identification of new noncoding RNAs in Listeria monocyto-

81

genes and prediction of mRNA targets. Nucleic Acids Research, 35(3):962–974,

01 2007.

[19] Mann, Martin and Wright, Patrick R. and Backofen, Rolf. IntaRNA 2.0: en-

hanced and customizable prediction of RNA–RNA interactions. Nucleic Acids

Research, 45(W1):W435–W439, 05 2017.

[20] Athanasius F. Bompfünewerer, Rolf Backofen, Stephan H. Bernhart, Jana Her-

tel, Ivo L. Hofacker, Peter F. Stadler, and Sebastian Will. Variations on RNA

folding and alignment: lessons from Benasque. Journal of Mathematical Biology,

56(1):129–144, 2008.

[21] Ross C Hardison. Comparative Genomics. PLOS Biology, 1(2), 11 2003.

[22] Rolf Backofen and Wolfgang R. Hess. Computational prediction of sRNAs and

their targets in bacteria. RNA Biology, 7(1):33–42, 2010.

[23] Daniel Lai and Irmtraud M. Meyer. A comprehensive comparison of general

RNA–RNA interaction prediction methods. Nucleic Acids Research, 44(7):e61–

e61, 12 2015.

[24] Gissi C et al Mignone F. Untranslated regions of mRNAs. Genome biology, 2002.

[25] Zhong et al Wang. RNA-Seq: a revolutionary tool for transcriptomics. Nature

reviews. Genetics, 10(1):57–63, 2009.

82

[26] David Lalaouna, Marie-Claude Carrier, Szabolcs Semsey, Jean-Simon Brouard,

Jing Wang, Joseph T. Wade, and Eric Massé. A 3 External Transcribed Spacer in

a tRNA Transcript Acts as a Sponge for Small RNAs to Prevent Transcriptional

Noise. Molecular Cell, 58(3):393–405, 2015.

[27] Kook Han, Brian Tjaden, and Stephen Lory. GRIL-seq provides a method for

identifying direct targets of bacterial small regulatory RNA by in vivo proximity

ligation. Nature Microbiology, 2(3):16239, 2016.

[28] Shafagh A Waters, Sean P McAteer, Grzegorz Kudla, Ignatius Pang, Nan-

dan P Deshpande, Timothy G Amos, Kai Wen Leong, Marc R Wilkins, Richard

Strugnell, David L Gally, David Tollervey, and Jai J Tree. Small RNA interac-

tome of pathogenic E. coli revealed through crosslinking of RNase E. The EMBO

Journal, 36(3):374–387, 2017.

[29] Sahar Melamed, Asaf Peer, Raya Faigenbaum-Romm, Yair E. Gatt, Niv Reiss,

Amir Bar, Yael Altuvia, Liron Argaman, and Hanah Margalit. Global Mapping

of Small RNA-Target Interactions in Bacteria. Molecular Cell, 63(5):884 – 897,

2016.

[30] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why Should I Trust

You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 2016

Conference of the North American Chapter of the Association for Computational

83

Linguistics: Demonstrations, pages 97–101. Association for Computational Lin-

guistics, 2016.

[31] Brad Boehmke and Brandon M. Greenwell. Chapter 16 Interpretable Machine

Learning — Hands-On Machine Learning with R. https://bradleyboehmke.

github.io/HOML/iml.html, 2020.

[32] Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S. Cardoso. Machine Learn-

ing Interpretability: A Survey on Methods and Metrics. Electronics, 8(8):832,

2019.

[33] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter,

and Lalana Kagal. Explaining Explanations: An Overview of Interpretability

of Machine Learning. 2018 IEEE 5th International Conference on Data Science

and Advanced Analytics (DSAA), 2018.

[34] Alfredo Vellido, José David Mart́ın-Guerrero, and Paulo JG Lisboa. Making

machine learning models interpretable. In ESANN, volume 12, pages 163–172.

Citeseer, 2012.

[35] Tae Keun Yoo, Ik Hee Ryu, Hannuy Choi, Jin Kuk Kim, In Sik Lee, Jung Sub

Kim, Geunyoung Lee, and Tyler Hyungtaek Rim. Explainable Machine Learning

Approach as a Tool to Understand Factors Used to Select the Refractive Surgery

Technique on the Expert Level. Translational Vision Science Technology, 9(2),

2020.

84

https://bradleyboehmke.github.io/HOML/iml.html
https://bradleyboehmke.github.io/HOML/iml.html

[36] Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model

Predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Pro-

cessing Systems 30, pages 4765–4774. Curran Associates, Inc., 2017.

[37] Gajendra Jung Katuwal and Robert Chen. Machine learning model interpretabil-

ity for precision medicine. arXiv preprint arXiv:1610.09045, 2016.

[38] slundberg/shap: A game theoretic approach to explain the output of any ma-

chine learning model. https://github.com/slundberg/shap. (Accessed on

06/25/2020).

[39] Micha l Kuźba, Ewa Baranowska, and Przemys law Biecek. pyceterisparibus: ex-

plaining machine learning models with ceteris paribus profiles in python. Journal

of Open Source Software, 4(37):1389, 2019.

[40] 5.9 Shapley Values — Interpretable Machine Learning. https://christophm.

github.io/interpretable-ml-book/shapley.html#fn41. (Accessed on

06/25/2020).

[41] Przemys law Biecek. GitHub - pbiecek/ceterisParibus: Ceteris Paribus Plots

(What-If plots) for explanations of a single observation. https://github.com/

pbiecek/ceterisParibus. (Accessed on 06/25/2020).

[42] Leo Breiman. Random Forests. Machine Learning, 45(1), 2001.

85

https://github.com/slundberg/shap
https://christophm.github.io/interpretable-ml-book/shapley.html#fn41
https://christophm.github.io/interpretable-ml-book/shapley.html#fn41
https://github.com/pbiecek/ceterisParibus
https://github.com/pbiecek/ceterisParibus

[43] Sahar Melamed, Asaf Peer, Raya Faigenbaum-Romm, Yair E. Gatt, Niv Reiss,

Amir Bar, Yael Altuvia, Liron Argaman, and Hanah Margalit. Global Mapping

of Small RNA-Target Interactions in Bacteria. Molecular Cell, 63(5):884 – 897,

2016.

[44] David Lalaouna, Audrey Morissette, Marie-Claude Carrier, and Eric Massé.

DsrA regulatory RNA represses both hns and rbsD mRNAs through distinct

mechanisms in Escherichia coli . Molecular Microbiology, 98(2):357–369, 2015.

[45] Mia K. Mihailovic, Jorge Vazquez-Anderson, Yan Li, Victoria Fry, Praveen Vi-

malathas, Daniel Herrera, Richard A. Lease, Warren B. Powell, and Lydia M.

Contreras. High-throughput in vivo mapping of RNA accessible interfaces to

identify functional sRNA binding sites. Nature Communications, 9(1):4084, 2018.

[46] Yi fan Zhang, Kook Sang Han, Courtney E. Chandler, Brian Tjaden, Robert K

Ernst, and Stephen Lory. Probing the sRNA regulatory landscape of P. aerug-

inosa: post-transcriptional control of determinants of pathogenicity and antibi-

otic susceptibility. Molecular microbiology, 106 6:919–937, 2017.

[47] Tiago Pita, Joana Feliciano, and Jorge Leitão. Small Noncoding Regulatory

RNAs from Pseudomonas aeruginosa and Burkholderia cepacia Complex. Inter-

national Journal of Molecular Sciences, 19(12):3759, Nov 2018.

[48] Determination of the small RNA GcvB regulon in the Gram-negative bacterial

pathogen Pasteurella multocida and identification of the GcvB seed binding re-

86

gion. Rna-A Publication of the Rna Society, 24, 2018.

[49] Kathrin S. Fröhlich, Katharina Haneke, Kai Papenfort, and Jörg Vogel. The

target spectrum of SdsR small RNA in Salmonella. Nucleic Acids Research,

44(21):10406–10422, 2016.

[50] Daniel Ryan, Mohana Mukherjee, and Mrutyunjay Suar. The expanding targe-

tome of small RNAs in Salmonella Typhimurium. Biochimie, 137:69 – 77, 2017.

[51] Juntao Mai, Chitong Rao, Jacqueline Watt, Xian Sun, Chen Lin, Lu Zhang,

and Jun Liu. Mycobacterium tuberculosis 6C sRNA binds multiple mRNA tar-

gets via C-rich loops independent of RNA chaperones. Nucleic Acids Research,

47(8):4292–4307, 2019.

[52] Jens Georg, Gergana Kostova, Linda Vuorijoki, Verena Schön, Taro Kadowaki,

Tuomas Huokko, Desirée Baumgartner, Maximilian Müller, Stephan Klähn,

Yagut Allahverdiyeva, Yukako Hihara, Matthias E. Futschik, Eva-Mari Aro, and

Wolfgang R. Hess. Acclimation of Oxygenic Photosynthesis to Iron Starvation

Is Controlled by the sRNA IsaR1. Current Biology, 27(10):1425–1436.e7, 2017.

[53] Jens Georg, Dennis Dienst, Nils Schürgers, Thomas Wallner, Dominik Kopp,

Damir Stazic, Ekaterina Kuchmina, Stephan Klähn, Heiko Lokstein, Wolfgang R.

Hess, and Annegret Wilde. The Small Regulatory RNA SyR1/PsrR1 Controls

Photosynthetic Functions in Cyanobacteria. The Plant Cell, 26(9):3661–3679,

2014.

87

[54] Sabine Brantl and Reinhold Brückner. Small regulatory RNAs from low-GC

Gram-positive bacteria. RNA Biology, 11(5):443–456, 2014. PMID: 24576839.

[55] Wang, Jiang and Liu, Tao and Zhao, Bo and Lu, Qixuan and Wang, Zheng and

Cao, Yuan and Li, Wuju. sRNATarBase 3.0: an updated database for sRNA-

target interactions in bacteria. Nucleic Acids Research, 44(D1):D248–D253, 10

2015.

[56] Mario Tello, Felipe Avalos, and Omar Orellana. Codon usage and modular inter-

actions between messenger RNA coding regions and small RNAs in Escherichia

coli . BMC Genomics, 19(1):657, 2018.

[57] Paolo Di Tommaso, Maria Chatzou, Evan W. Floden, Pablo Prieto Barja, Emilio

Palumbo, and Cedric Notredame. Nextflow enables reproducible computational

workflows. Nature Biotechnology, 35, Apr 2017.

[58] Eric Sayers. Entrez Programming Utilities Help [Internet]. 2008.

[59] Aaron R. Quinlan and Ira M. Hall. BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics, 26(6):841–842, 01 2010.

[60] biocontainers/bedtools - Docker Hub. https://hub.docker.com/r/

biocontainers/bedtools/. (Accessed on 06/10/2020).

[61] Sequences (skbio.sequence) — scikit-bio 0.5.6 documentation. http://

scikit-bio.org/docs/latest/sequence.html. (Accessed on 06/04/2020).

88

https://hub.docker.com/r/biocontainers/bedtools/
https://hub.docker.com/r/biocontainers/bedtools/
http://scikit-bio.org/docs/latest/sequence.html
http://scikit-bio.org/docs/latest/sequence.html

[62] Michiaki Hamada, Hisanori Kiryu, Kengo Sato, Toutai Mituyama, and Kiyoshi

Asai. Prediction of RNA secondary structure using generalized centroid estima-

tors. Bioinformatics, 25(4):465–473, 2008.

[63] Ronny Lorenz, Stephan H. Bernhart, Christian Höner zu Siederdissen, Hakim

Tafer, Christoph Flamm, Peter F. Stadler, and Ivo L. Hofacker. ViennaRNA

Package 2.0. Algorithms for Molecular Biology, 6(1):26, 2011.

[64] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[65] importance function — R Documentation. https://www.rdocumentation.org/

packages/randomForest/versions/4.6-14/topics/importance. (Accessed

on 06/04/2020).

[66] Receiver Operating Characteristic (ROC) with cross validation —

scikit-learn 0.23.1 documentation. https://scikit-learn.org/

stable/auto_examples/model_selection/plot_roc_crossval.html#

sphx-glr-auto-examples-model-selection-plot-roc-crossval-py. (Ac-

cessed on 06/10/2020).

[67] Precision-Recall — scikit-learn 0.23.1 documentation. https://scikit-learn.

org/stable/auto_examples/model_selection/plot_precision_recall.

89

https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/importance
https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/importance
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html

html. (Accessed on 06/10/2020).

[68] pandas.DataFrame.subtract — pandas 1.0.5 documentation. https:

//pandas.pydata.org/pandas-docs/stable/reference/api/pandas.

DataFrame.subtract.html. (Accessed on 06/23/2020).

[69] Amazon Web Services - Documentation. https://github.com/awsdocs. (Ac-

cessed on 06/24/2020).

[70] phdegnan/SPOT: sRNA-target Prediction Organizing Tool. https://github.

com/phdegnan/SPOT. (Accessed on 06/24/2020).

[71] Steffen C. Lott, Richard A Schäfer, Martin Mann, Rolf Backofen, Wolfgang R

Hess, Björn Voss, and Jens Georg. GLASSgo - Automated and reliable detection

of sRNA homologs from a single input sequences. Frontiers in Genetics, 9:124,

2018.

[72] Backofenlab/intarna: Efficient target prediction incorporating accessibility of

interaction sites. https://github.com/BackofenLab/IntaRNA/#install. (Ac-

cessed on 07/22/2020).

[73] IntaRNA/R at master · BackofenLab/IntaRNA. https://github.com/

BackofenLab/IntaRNA/tree/master/R#intarna_csv_p-valuer. (Accessed on

06/10/2020).

90

https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.subtract.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.subtract.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.subtract.html
https://github.com/awsdocs
https://github.com/phdegnan/SPOT
https://github.com/phdegnan/SPOT
https://github.com/BackofenLab/IntaRNA/#install
https://github.com/BackofenLab/IntaRNA/tree/master/R#intarna_csv_p-valuer
https://github.com/BackofenLab/IntaRNA/tree/master/R#intarna_csv_p-valuer

[74] Jan Grau, Ivo Grosse, and Jens Keilwagen. PRROC: computing and visualizing

precision-recall and receiver operating characteristic curves in R. Bioinformatics,

31(15):2595–2597, 2015.

[75] ggplot2 violin plot : Quick start guide - R software and data visualiza-

tion - Easy Guides - Wiki - STHDA. http://www.sthda.com/english/wiki/

ggplot2-violin-plot-quick-start-guide-r-software-and-data-visualization.

(Accessed on 06/10/2020).

[76] Ranking — Ranking 0.3.1 documentation. https://pythonhosted.org/

ranking/. (Accessed on 06/10/2020).

[77] Function reference • ggplot2. https://ggplot2.tidyverse.org/reference/.

(Accessed on 06/10/2020).

[78] Winston Haynes. Wilcoxon Rank Sum Test, pages 2354–2355. Springer New

York, New York, NY, 2013.

[79] wilcox.test function — r documentation. https://www.rdocumentation.

org/packages/stats/versions/3.6.2/topics/wilcox.test. (Accessed on

07/10/2020).

[80] Yanzhen Xu, Xiaohan Zhao, Shuai Liu, Shichao Liu, Yanqing Niu, Wen Zhang,

and Leyi Wei. LncPred-IEL: A Long Non-coding RNA Prediction Method using

Iterative Ensemble Learning. 2019 IEEE International Conference on Bioinfor-

matics and Biomedicine (BIBM), 2019.

91

http://www.sthda.com/english/wiki/ggplot2-violin-plot-quick-start-guide-r-software-and-data-visualization
http://www.sthda.com/english/wiki/ggplot2-violin-plot-quick-start-guide-r-software-and-data-visualization
https://pythonhosted.org/ranking/
https://pythonhosted.org/ranking/
https://ggplot2.tidyverse.org/reference/
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wilcox.test
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wilcox.test

[81] Aimin Li, Junying Zhang, and Zhongyin Zhou. PLEK: a tool for predicting long

non-coding RNAs and messenger RNAs based on an improved k -mer scheme.

BMC Bioinformatics, 15(1):311, 2014.

[82] Dau Phan, Ngoc Giang Nguyen, Favorisen Rosyking Lumbanraja, Moham-

mad Reza Faisal, Bahriddin Abapihi, Bedy Purnama, Mera Kartika Delimayanti,

Mamoru Kubo, and Kenji Satou. Combined Use of k -mer Numerical Features

and Position-Specific Categorical Features in Fixed-Length DNA Sequence Clas-

sification. Journal of Biomedical Science and Engineering, 2017.

[83] Tzu-Hao Chang, Li-Ching Wu, Jun-Hong Lin, Hsien-Da Huang, Baw-Jhiune

Liu, Kuang-Fu Cheng, and Jorng-Tzong Horng. Prediction of small non-coding

RNA in bacterial genomes using support vector machines. Expert Systems with

Applications, 37(8):5549 – 5557, 2010.

[84] Gisela Storz, Jörg Vogel, and Karen M. Wassarman. Regulation by Small RNAs

in Bacteria: Expanding Frontiers. Molecular Cell, 43(6):880–891, 2011.

[85] Markus Fricke, Ruman Gerst, Bashar Ibrahim, Michael Niepmann, and Manja

Marz. Global importance of RNA secondary structures in protein-coding se-

quences. Bioinformatics, 35(4):579–583, 2018.

[86] Joris Sansen, Patricia Thebault, Isabelle Dutour, and Romain Bourqui. Vi-

sualization of sRNA-mRNA Interaction Predictions. 2016 20th International

Conference Information Visualisation (IV), 2016.

92

[87] Zuzanna Wroblewska and Mikolaj Olejniczak. Hfq assists small RNAs in binding

to the coding sequence of ompD mRNA and in rearranging its structure, 2016.

93

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Related Work
	sRNA Target Prediction
	Interpretability
	Summary

	Methodology
	Data Collection
	Data processing
	Split data into training and benchmarking set
	Get training data
	Secondary structure distance

	Machine learning model selection
	Training data for binary classification
	Model training
	Model selection

	sRNARFTarget nextflow pipeline
	Benchmarking
	Data for benchmarking
	Running programs
	sRNARFTarget
	IntaRNA
	CopraRNA

	Results standardization
	Plots
	PR & ROC plots
	Violin Box plots
	Line plots

	sRNARFTarget interpretability program
	Summary

	Results and Discussion
	Pilot experiment using small training data
	Using a larger training data set improves model performance
	Benchmarking results on independent data sets
	Interpreting sRNARFTarget predictions
	Summary

	Conclusion
	Bibliography

