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Abstract

A promoter is a genomic sequence where the transcription machinery binds to start

copying a gene into an RNA molecule. Finding the location of bacterial promoter se-

quences is essential for microbiology since promoters play a central role in regulating

gene expression. There are several tools to recognize promoters in bacterial genomes;

however, most of them were trained on data from a single bacterium or a specific

set of sigma factors. Promotech was developed to overcome this limitation, offering

a machine-learning-based classifier trained to generate a model that generalizes and

detects promoters in a wide range of bacterial species. During the study, two model

architectures were tested, Random Forest and Recurrent Networks. The Random

Forest model, trained with promoter sequences with a binary encoded representation

of each nucleotide, achieved the highest performance across nine different bacteria

and was able to work with short 40bp sequences and entire bacterial genomes using a

sliding window. The selected model was evaluated on a validation set of four bacteria

not used during training, having 50% positive and 50% negative promoter sequences

resulting in an average AUPRC of 0.73±0.13 and an AUROC of 0.71±0.13. The

Random Forest model achieved an average AUPRC and AUROC across the valida-

tion set’s entire genomes of 0.14±0.1 and 0.71±0.17, but increased its performance

to 0.75±0.18 AUPRC and 0.90±0.06 AUROC when it was configured to detect pro-

moter clusters. Promotech was compared against state-of-the-art bacterial promoter

detection programs using the balanced data set and outperformed these methods.
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Chapter 1

Introduction

Promoters, together with transcription factors, are the first step in the process of read-

ing and executing the instructions from the building blocks of every organism, called

DNA. According to the MeSH (Medical Subject Headings) Thesaurus [2], promoters

are “DNA sequence regions which are recognized (directly or indirectly) and bound by

a DNA dependent RNA polymerase during the initiation of transcription and contain

specific DNA sequences that are recognized by the transcription factors and the RNA

polymerase.” The transcription process starts when proteins called transcription fac-

tors (TF) bind to promoters to regulate which genes are expressed. TFs then recruit

enzymes called RNA polymerase (RNAP), which open the double-stranded DNA helix

and synthesize a single strand nucleotide sequence called messenger RNA (mRNA).

mRNAs are later read by ribosomes to produce amino-acid chains called proteins

that perform multiple functions within an organism. In addition to mRNAs, RNAP

also synthesizes RNAs that are not translated into proteins, such as rRNAs, ncRNAs

and sRNAs. Genes coding these non-coding RNAs have specialized promoters that

respond to stimuli.

In this work we collected a large amount of published promoter sequence data

obtained using sequencing technology such as dRNA-Seq [3] and Cappable-Seq [4]

and utilized these data sets to create a machine learning model capable of generalizing

and abstracting the concepts that define a promoter sequence. During the study, two

machine learning model architectures are explored; the first is Random Forest (RF) [5,

6], an ensemble learning method that works by constructing multiple uncorrelated

decision trees and outputting the class selected by the majority of trees. RFs are
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a popular choice given their ability to reduce over-fitting. The second architecture

is Recurrent Neural Network (RNN) [7], a class of neural network that can retain

information through time by receiving outputs of previous time-steps as inputs and

controlling the cell state using Forget/Update gates. RNNs were selected due to the

sequential nature of the data and the models’ ability to handle sequential prediction

problems. In this study, our machine learning models receive a DNA sequence and

outputs a confidence score that indicates whether or not the sequence is a promoter.

The thesis is organized as follows. Chapter 2 discusses the relevant literature

review. Chapter 3 describes the data sources, how the data was processed, and the

machine learning models’ selection and assessment. Chapter 4 presents the results and

identifies the limitations of the study, and Chapter 5 summarizes the main conclusions

and suggestions for further research.



Chapter 2

Literature Review

2.1 Computational approaches for bacterial pro-

moter recognition

There have been numerous tools developed to recognize bacterial promoter sequences.

Here I will describe in chronological order these tools. Polat et al. [8] developed

FS LSSVM, which stands for feature selection and least square support vector ma-

chine. It consists of a feature dimensionality reduction of E. coli ’s promoter sequence

data set from 57 to 4 features. The second component is the least square support

vector machine (FS LSSVM) classifier. Its performance is measured by accuracy,

sensitivity and specificity analysis. The E. coli data set consists of sequences of 57

nucleotides in length and 106 samples, including 53 promoters and 53 non-promoters.

The input features are 57-nucleotide-long DNA sequences. The algorithm, without

feature selection, obtained 65.38% accuracy, 70% sensitivity, 62.50% specificity us-

ing 50%-50% training-test partition and 80% accuracy using cross-validation. The

model, using feature selection, was able to obtain 84.62% accuracy, 90.90%, Sensitiv-

ity, 80% Specificity using 50%-50% training-test partition and 100% accuracy using

cross-validation.

Salamov et al. [9] developed BPROM, a component of the Fgenesb annotator

pipeline for promoter prediction. The pipeline identifies tRNA genes, rRNA genes,

proteins, potential operons, promoters, and terminators. The pipeline’s input can be

a segment of a bacterial genome or short reads of DNA. BPROM uses five relatively
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conserved motifs from E. coli to identify promoters. The conserved motifs are the -10

and 35 search area regulated by sigma 70 factor, the -60 to -40 search area upstream

the -35 box with a length of 7 base pairs, the -11 to +10 search area downstream with

a length of 7 base pairs, and the -31 to -22 search area with a length of 5 base pairs.

Linear discriminant analysis (LDA) [10] is used to derive the recognition function from

distinguishing between promoters and non-promoters sequences with a sensitivity of

83% and specificity of 84%.

Rangannan et al. [11] developed PromPredict, an algorithm that utilizes average

free energy to predict promoter regions using threshold values specific to E. coli, Bacil-

lus subtilis, and Mycobacterium tuberculosis. PromPredict was evaluated on 1144, 612,

and 81 experimentally validated TSSs from E. coli, B. subtilis, and M. tuberculosis,

respectively. It achieved a sensitivity of 99%, 95%, and 100%; and a precision of 58%,

60%, and 49% for E. coli, B. subtilis, and M. tuberculosis, respectively.

DeAvila Silva et al. [12] created BacPP, an algorithm “designed to recognize and

predict E. coli promoter sequences from background with specific accuracy for each

sigma factor (respectively, σ24, 86.9%; σ28, 92.8%; σ32, 91.5%; σ38, 89.3%, σ54, 97.0%;

and σ70, 83.6%).” Sigma factors are bacterial transcription initiation factors that

enables binding of RNAP to a specific gene promoter. BacPP focuses in E. coli and a

subset of sigma factors. Its training data consists of 1,034 sequences divided by sigma

factor and a set of randomly generated negative training instances. Four binary digits

were used to represent each nucleotide and a Neural Network (NN) with a threshold of

0.5 is used to indicate a positive promoter detection. The optimal architecture found

was a 324 input units neural network with 2-5 hidden layers (depending on the sigma

factors), and one output layer for binary classification. BacPP achieved an accuracy

of 76% across the sigma factor families. According to DeAvila Silva et al. [12], “In

contrast to tools previously reported in the literature, BacPP is not only capable of

identification of bacterial promoters in background genome sequence but is designed

to provide pragmatic classification according to sigma factor.”

Anne de Jong et al. [13] developed PePPER, a web-server tool to mine for reg-

ulons and Transcription Factor Binding Sites (TFBS). PePPER has a collection of

Transcription Factors (TFs), TFBS and regulons of L. lactis, E. coli and B. subtilis

from the RegulonDB, MolgenRegDB and DBTBS data sets publicly available via the

PePPER web-server [14] . The PePPER toolbox also provides a promoter prediction
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feature based on a common DNA pattern of 10 base pairs upstream of the transcrip-

tion start site (TSS), a conserved sequence 35 base pairs upstream, and different sigma

factors binding sites.

Solovyev et al. [15] developed CNNProm, a promoter recognition convolutional

neural network (CNN) model able to detect prokaryotic and eukaryotic promoters.

CNNProm is trained to detect promoters from humans, mouse, plant (Arabidopsis),

and two bacteria (E. coli and Bacillus subtilis). The model was created using the

Keras library with Theano as back-end. The network’s input is based on a binary

encoded representation of each nucleotide, e.g., A (1,0,0,0), T (0,1,0,0), G (0,0,1,0),

C (0,0,0,1). The architecture consists of one convolutionary layer with 200 filters

of a length of 21, a max-pooling layer, and a fully connected layer of 128 layers.

The model achieved 0.90 sensitivity (Sn), 0.96 specificity (Sp), and 0.86 correlation

coefficient (CC) on E. coli ’s sigma 70 and Sn = 0.91, Sp = 0.95, and CC = 0.86 for

Bacillus subtilis.

Shahmuradov et al. [16] developed bTSSfinder, “a novel tool that predicts putative

promoters for five classes of sigma factors in Cyanobacteria (σA, σC , σH , σG and σF )

and for five classes of sigma factors in E. coli (σ70, σ38, σ32, σ28 and σ24).” bTSSfinder,

similar to BacPP, focuses in E. coli and Cyanobacteria’ s sigma factors, except for

sigma factor 54. The data set’s positive sequences consists of 251 and 1101 base pairs,

divided in E. coli (1,544 σ70, 140 σ38, 237 σ32, 135 σ28, and 412 σ24), Nostoc (11,386),

S. Elongatus (1,471) and Synechocystis (343). The negative set consists of 8,346 E.

coli sequences and 32,418 sequences of the three combined Cyanobacteria species.

Additional features were included to improve accuracy such as oligomer frequencies

(triplets, tetramers, pentamers and hexamers), and physico-chemical properties of

DNA (free energy, base stacking, melting temperature, and entropy). bTSSfinder

achieved an accuracy of 81% to 87% across the sigma factor classes.

Di Salvo et al. [1] developed G4PromFinder, “a powerful tool for promoter search

in GC-rich bacteria, especially for bacteria coding for a lot of sigma factors, such

as the model microorganism S. coelicolor A3(2).” G4PromFinder utilizes conserved

motifs compared to the previous approaches which use sigma factor families. This

approach was implemented using the genome sequences from S. coelicolor A3(2) with

accession code NC 003888.3 and P. eruginosa PA14 with accession code NC 008463.1.

The promoter identification method is based on putative promoters with maximal AT
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content and G-quadruplex motifs recognition. The methods were evaluated using TSS

global maps obtained by dRNA-Seq [3] experiments. G4Promfinder achieved 54% and

43% precision for S. coelicolor and P. aeruginosa, respectively.

Wang et al. [17] developed IBPP, an image-based promoter prediction method to

surpass the performance of traditional promoter detection methods like the position

weight matrix method (PWM) [18]. IBPP utilizes the evolutionary approach to gen-

erate images from the promoter training data, starting with a randomly generated 81

bp seed images. The images evolve from a random state, are recombined with other

images, develop random mutation and filtered, leaving only the generated images with

the highest similarity score to the promoter training data. The training set consists

of 1,888 E. coli K12 MG1655 (NC 000913) promoter sequences, and the 10,000 ran-

domly generated non-promoter sequences. IBPP is based on neural networks, and

IBPP-SVM combines neural networks and SVMs. IBPP can analyze short (81bp)

and long sequences (2,000bp) with a sliding window. IBPP-SVM achieved a sensitiv-

ity and specificity of 68.7% and 94.3%, respectively. IBPP achieved a sensitivity and

specificity of 56.4% and 94.1%.

Oubounyt et al. [19] developed DeePromoter, a method that combines convo-

lutional neural networks (CNN) and Long Short-term Memory RNNs (LSTM). The

training data set consists of human and mouse promoter sequences, divided into TATA

and non-TATA sequences. The human promoter set consists of 3,065 and 26,532 TATA

and non-TATA sequences, respectively. The mouse set consists of 3,305 and 21,804

TATA and non-TATA sequences, respectively. Each positive set has its own equal size

negative set. The data is represented with a binary format as follows; A, C, G, and

T as (1 0 0 0), (0 1 0 0), (0 0 1 0), (0 0 0 1), respectively. The model achieves 99%

precision, 99% recall, and 98% MCC, for human promoters and 99% precision 98%

recall, and 97% MCC for mouse promoters.

Zhang et al. [20] developed MULTiPly, a method based on support vector ma-

chines (SVM). The training data set consists of 2,860 E. coli K-12 positive sequences,

each with a length of 81bp and the same number of negative sequences. MULTiPly

can predict between promoters and non-promoters, but also classify by its sigma factor

(σ70, σ26, σ32, σ38, and σ28). MULTiPly achieved a sensitivity, specificity, accuracy,

and MCC of (90.43, 76.93, 84.91, 0.69), (88.84, 92.91, 91.21, 0.82), (82.2, 88.41, 85.67,

0.71), (83.31, 86.68, 85.25, 0.7), and (96, 91.3, 94, 0.88), for σ70, σ24, σ32, σ38 and σ28
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respectively.

Lai et al. [21] developed iProEP, a promoter prediction method based on support

vector machines (SVM). The training data set consists of 1,787 H. sapiens, 1,886

D. melanogaster, 598 C. elegans, 270 B. subtilis, and 741 E. coli positive promoter

sequence. The sequence lengths are 300, and 81 bp for eukaryotic and prokaryotic, re-

spectively. iProEP achieved accuracies of 93.3%, 93.9%, 95.7%, 95.2%, and 93.1% and

ROCAUCs of 0.974, 0.975, 0.981, 0.988, and 0.976 for H. sapiens, D. melanogaster,

C. elegans, B. subtilis, and E. coli, respectively.
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2.2 Summary

The number of promoter prediction methods is vast and worth exploring. Each method tackles the problem from different

angles and targets different organisms, but all converge in a single goal, the identification of promoters. Table 2.1 was

obtained from Di Salvo et al. [1] which offers a performance comparisons between G4PromFinder, PePPER, PromPredict

and bTSSfinder. Table 2.2 provides an overview of some promoter identification methods published in the past twelve

years.

Table 2.1: Comparison between G4PromFinder, PeP-

PER, PromPredict and bTSSfinder. The table was ob-

tained from Di Salvo et al. [1].

Tools Bacterial genome
Streptomyces

coelicolor A3(2)

Pseudomonas

aeruginosa PA14

G4PromFinder

Recall

Precision

F1-score

0.70

0.54

0.61

0.69

0.43

0.53

PePPER

Recall

Precision

F1-score

0.20

0.78

0.32

0.31

0.67

0.42

PromPredict

Recall

Precision

F1-score

0.51

0.41

0.46

0.56

0.42

0.48
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bTSSfinder (for E.

coli sigma factors)

Recall

Precision

F1-score

0.45

0.33

0.38

0.41

0.31

0.36

bTSSfinder (for

Cyanobacteria sigma

factors)

Recall

Precision

F1-score

0.29

0.27

0.28

0.30

0.26

0.28

Table 2.2: Summary of promoter prediction approaches

in the last twelve years. The summary includes the meth-

ods’ name, publication year, the primary approach used

to detect promoters, the data set used during the study,

the target organism, and any particular distinguishing

feature.

Name Approach Data set Target Organism Special Features

FS LSSVM

(2007)

Least square support

vector machine

(FS LSSVM)

53 promoter and 53

non-promoter sequences.
E. coli

57 to 4 feature

reduction.

BPROM

(2010)

Linear Discriminant

Analysis (LDA)

* The number of

sequences for training

are not specified.

E. coli

Motifs identification:

-10 and 35 search area

-60 to -40 search area

-11 to +10 search area
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PromPredict

(2010)

An algorithm that uses

the sequences’ average

free energy to

differentiate between

promoters and

non-promoters.

1144, 612, and 81 experimentally validated

TSSs from E, coli, B. subtilis, and M.

tuberculosis, respectively.

PromPredict utilizes

the average free energy

sequence value for

promoter identification.

BacPP

(2011)
Neural Networks (NN)

1034 sequences

subdivided according to

their sigma factor (24,

28, 32, 38, 54, 70) and

1034 random negative

sequences.

E. coli

BPROM can predict

promoters and classify

them by their sigma

factor (24, 28, 32, 38,

54, 70).

PePPER

(2012)

MEME motif search

inside the PePPER

all-in-one toolbox.

TF1 and TFBS2 data

were downloaded from

RegulonDB (E. coli) and

DBTBS(B. subtilis). *

The number of sequences

for training are not

specified.

L. lactis, E. coli, and

B. subtilis

PePPER utilizes the

Pribnow box DNA

pattern for promoter

identification.

1Transcription Factors
2Transcription Factor Binding Sites
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CNNProm

(2017)

Convolutional Neural

Networks (CNN)

(P:839,N:300) E. coli

(P:746,N:2000) B. subtilis

(P:1426,N:8256) Human TATA

(P:19811,N:27731) Human non-TATA

(P:1255,N:3530) Mouse TATA

(P:16283,N:24822) Mouse non-TATA

(P:1497,N:2879) Arabidopsis TATA

(P:5905,N:11459) Arabidopsis non-TATA

Where P is for positive and N for negative

promoter sequences.

CNNProm can detect

promoters across

selected eukaryote and

prokaryote genomes.

bTSSfinder

(2017)

Position weight matrices

(PWM) and Neural

Networks

The positive set was made of 3,597 E. coli K12,

12,797 cyanobacterium Nostoc sp. PCC 7120,

351 Synechocystis sp. PCC 6803, and 1,471 S.

elongatus PCC 6301 TSSs. The negative set

consisted of 8,346 and 32,418 sequences for E.

coli and the Cyanobacteria species.

bTSSfinder can classify

seven different sigma

classes (70, 54, 38, 32,

28, 24 and 19).

G4PromFinder

(2018)

An algorithm that

detects AT-rich element

and G-quadruplex

motifs.

The positive set consisted of 3570 S. coelicolor

A3(2) and 2117 P. aeruginosa PA14 sequences.

The negative set consisted of 548 S. coelicolor

A3(2) and 338 P. aeruginosa PA14 sequences.

The prediction is based

on AT-rich elements

and G-quadruplex

DNA motifs.
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IBPP

(2018)

Support Vector Machine

(SVM)

1,888 positive and 10,000

negative sequences.

E. coli K12 MG1655

σ70

IBPP can analyze short

(81 nt) and long (2,000

nt) sequences using a

sliding window.

DeePromoter

(2019)
CNNs and LSTMs

The training data set

consists of human and

mouse promoter

sequences, divided into

TATA and non-TATA

sequences.

The human promoter

set consists of 3,065

and 26,532 TATA and

non-TATA sequences,

respectively. The

mouse set consists of

3,305 and 21,804

sequences, respectively,

and each positive set

has its own equal size

negative set.

DeePromoter combines

the advantages of both

CNNs and LSTMs

model architectures. It

works with hot-encoded

representations of the

sequences.

MULTiPLy

(2019)

Support vector machine

(SVM)

2,860 promoter sequences

and 2,860 non-promoter

sequences.

E. coli

MULTiPLy is able to

classify five different

sigma classes (70, 38,

32, 28, 24).
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iProEP

(2019)

Support vector machine

(SVM)

(P:1,787,N:3,600) H. sapiens

(P:1,886,N:4,658) D. melanogaster

(P:598,N:1,200) C. elegans

(P:270,N:600) B. subtilis

(P:741,N:1,400) E. coli

Where P is for positive and N for negative

promoter sequences.

iProEP can detect

promoters across

selected eukaryote and

prokaryote genomes.



Chapter 3

Methods

This study aimed to develop a novel tool to detect promoters in bacterial genomic

sequences and surpass previous methods in performance, not just in a specific bac-

terium or sigma factor family, but in a variety of bacterial species. To do this, we have

gathered promoter sequences from many bacteria, assessed multiple iterations of the

proposed machine learning models, selected and applied the correct performance met-

rics for the problem, and determined the optimal settings for each machine learning

method. After the best models’ assessment and selection, they were bench-marked

against the existing tools (BPROM, G4PromFinder, bTSSFinder and MULTIPly)

using a separate validation data set. Each step is described below.

3.1 Materials

3.1.1 Collecting data

Transcription Start Sites (TSS) are locations where the transcription process starts,

and promoters are located upstream of the TSS. For this study, the promoters are

considered to be located within 40 nucleotides (nt) upstream of the TSSs. These

sequences are then pre-processed and used as input for the classification algorithms.

Bacterial TSSs detected by next-generation sequencing (NGS) approaches, namely,

dRNA-seq [3] and Cappable-seq [4], were collected from the literature and then trans-

formed to promoter coordinates and FASTA sequences using BEDTools. The bacteria
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used for training were E. coli, H. pylori, C. jejuni, S. pyogenes, Salmonella enterica

serovar Typhimurium, C. pneumoniae, L. interrogans, and S. coelicolor. The bacteria

reserved for validation were M. smegmatis, C. phytofermentans, R. capsulatus, and B.

amyloliquefaciens. Each bacterium’s information and literature source are described

in Tables 3.1 and 3.2. The data sets consist of BED files containing a list of genomic

coordinates specifying the nucleotide start and end position of TSSs in each bacterial

genome. The data follows the BED format [22] and contains the following fields:

1. Chrom: The name of the chromosome.

2. Start: The starting position of the feature in the chromosome.

3. End: The ending position of the feature in the chromosome.

4. Name: An optional label to identify each feature.

5. Score: The score is set to zero by default in the TSS and promoter BED files,

but is used to store the prediction score when running the machine learning

methods.

6. Strand: Defines the sequence orientation as forward (+) or reverse (-).

After collecting all the TSSs, the BED files were pre-processed. The duplicated

coordinates were deleted, then sorted in descending order by their genomic location,

the files were moved to specific folders per bacterium, and a table referencing each file

was created to be used later in the pipeline.
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Table 3.1: Summary of training and validation data sets.

Each bacterium is labelled with an identifier used to lo-

cate the BED and FASTA files, a second identifier (T

or V) indicates if the bacterium is reserved for training

or validation. Additional information is included such as

the number of TSS per bacterium, the genome’s length,

the Next Generation Sequencing technology used to ob-

tain the TSSs, and the literature sources’ PubMed Id.

The bacteria without a PubMed Id indicate that at the

time of this publication, the source manuscript was still

in preparation.

BACTERIUM
GENOME

ACCESSION

PUBMED-

ID

NGS

TECH-

NOLOGY

LABEL
#TSS

GENOME

LENGTH

T

or

V

Escherichia coli str.

K-12 substr.

MG1655

NC 000913.3 27748404 dRNA-seq ECOLI 278 4,699,673 T

Escherichia coli str.

K-12 substr.

MG1655

NC 000913.2 25266388 dRNA-seq ECOLI 2 2,672 4,705,958 T

Helicobacter pylori

26695
NC 000915.1 20164839 dRNA-seq HPYLORI 1,907 1,688,716 T
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Helicobacter pylori

26695
NC 000915.1 30169674 dRNA-seq HPYLORI 2 449 1,688,716 T

Campylobacter jejuni

subsp. jejuni 81116
NC 009839.1 30169674 dRNA-seq C JEJUNI 269 1,651,375 T

Campylobacter jejuni

subsp. jejuni NCTC

11168

NC 002163.1 23696746 dRNA-seq C JEJUNI 2 1,905 1,664,932 T

Campylobacter jejuni

RM1221
NC 003912.7 23696746 dRNA-seq C JEJUNI 3 2,167 1,800,054 T

Campylobacter jejuni

subsp. jejuni 81116
NC 009839.1 23696746 dRNA-seq C JEJUNI 4 1,944 1,648,467 T

Campylobacter jejuni

subsp. jejuni 81-176
NC 008787.1 23696746 dRNA-seq C JEJUNI 5 2,003 1,720,291 T

Streptococcus

pyogenes strain S119
LR031521.1 30902048 dRNA-seq SPYOGENE 892 1,904,272 T

Salmonella enterica

subsp. enterica

serovar

Typhimurium

SL1344

NC 016810.1 22538806 dRNA-seq
STYPHIR-

MURIUM
1,873 5,130,796 T

Chlamydophila

pneumoniae

CWL029

NC 000922.1 21989159 dRNA-seq CPNEUMONIAE 530 1,245,608 T
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Shewanella

oneidensis MR-1
NC 004347.2 24987095 dRNA-seq SONEIDENSIS 4,729 5,195,568 T

Leptospira

interrogans serovar

Manilae isolate L495
NZ LT962963.1

28154810 dRNA-seq LINTERROGANS 2,865 4,672,387 T

Streptomyces

coelicolor A3(2)
NC 003888.3 27251447 dRNA-seq SCOELICOLOR 3,570 9,168,034 T

Mycobacterium

smegmatis str. MC2

155

NC 008596.1 30984135 dRNA-seq MYCOBACTER 4,054 7,088,042 V

Lachnoclostridium

phytofermentans

ISDg

NC 010001.1 27982035
Cappable-

seq
CLOSTRIDIUM 1,187 4,916,847 V

Rhodobacter

capsulatus SB 1003
NC 014034.1 - dRNA-seq RODOBACTER 1 5,374 3,792,373 V

Rhodobacter

capsulatus SB 1003
NC 014034.1 - dRNA-seq RODOBACTER 2 4,045 3,792,373 V

Bacillus

amyloliquefaciens

XH7

CP002927.1 26133043 dRNA-seq BACILLUS 1,064 3,995,479 V
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Table 3.2: Bacteria literature source. Each bacterium’s

TSS files were obtained from multiple literature sources.

There are fourteen bacterial species, nine reserved for

training and four for validation. A total of twenty bacte-

rial strains were obtained for the study.

Label Source

ECOLI The primary transcriptome of the Escherichia coli O104:H4 pAA

plasmid and novel insights into its virulence gene expression and

regulation [23]

ECOLI 2 Global transcriptional start site mapping using differential RNA

sequencing reveals novel antisense RNAs in Escherichia coli [24]

HPYLORI The primary transcriptome of the major human pathogen Heli-

cobacter pylori [25]

HPYLORI 2 ANNOgesic: a Swiss army knife for the RNA-seq based annota-

tion of bacterial/archaeal genomes [26]

C JEJUNI ANNOgesic: a Swiss army knife for the RNA-seq based annota-

tion of bacterial/archaeal genomes [26]

C JEJUNI 2 High-resolution transcriptome maps reveal strain-specific regu-

latory features of multiple Campylobacter jejuni isolates [27]

C JEJUNI 3 High-resolution transcriptome maps reveal strain-specific regu-

latory features of multiple Campylobacter jejuni isolates [27]

C JEJUNI 4 High-resolution transcriptome maps reveal strain-specific regu-

latory features of multiple Campylobacter jejuni isolates [27]

C JEJUNI 5 High-resolution transcriptome maps reveal strain-specific regu-

latory features of multiple Campylobacter jejuni isolates [27]

SPYOGENE Conserved and specific features of Streptococcus pyogenes and

Streptococcus agalactiae transcriptional landscapes [28]

STYPHIRMURIUM The transcriptional landscape and small RNAs of Salmonella

enterica serovar Typhimurium [29]

CPNEUMONIAE The transcriptional landscape of Chlamydia pneumoniae [30]

SONEIDENSIS Conservation of transcription start sites within genes across a

bacterial genus [31]
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LINTERROGANS Genome-wide transcriptional start site mapping and sRNA iden-

tification in the pathogen Leptospira interrogans [32]

SCOELICOLOR The dynamic transcriptional and translational landscape of the

model antibiotic producer Streptomyces coelicolor A3(2) [33]

MYCOBACTER Defining the transcriptional and post-transcriptional landscapes

of Mycobacterium smegmatis in aerobic growth and hypoxia [34]

CLOSTRIDIUM Global repositioning of transcription start sites in a plant-

fermenting bacterium [35]

RODOBACTER 1 Gruell et al, manuscript in preparation

RODOBACTER 2 Gruell et al, manuscript in preparation

BACILLUS The Global Transcriptional Landscape of Bacillus Amyloliquefa-

ciens XH7 and High-Throughput Screening of Strong Promoters

Based on RNA-seq Data [36]

3.1.2 Generating positive set and negative set

After filtering and sorting the TSS files, a pipeline was designed to obtain the positive

and negative promoter sets. It was created using Nextflow 20.04.1 build 5335, Java

SDK 1.8.0 252, Python 3.6, BEDTools v2.29.2, and Docker v19.03.6. Nextflow [37]

is used for its ability to separate the desired functionality in components and use

them in parallel or sequentially, and it uses BEDTools [38] through genomicpariscen-

tre/bedtools [39], a Docker container used to trigger BEDTools without additional

software installations. The BEDTools [38] library provides multiple components to

transform FASTA sequences and BED coordinates files. It is used in the pipeline to

convert the TSS to promoter coordinates, and the promoter coordinates to FASTA

sequences. The FASTA sequences are then pre-processed and used as inputs for the

machine learning methods.

The first step in the pipeline is to generate a genome length file per bacterium

automatically. The Nextflow pipeline takes a genome FASTA file as input, calculates

the length, and saves it on a “.genome” file. BEDTools’ slopBed [38] command is

then used to generate the positive set of promoter coordinates. It takes the genome

and the TSS BED files as input and generates the promoter coordinates with a length

of 40 nt each. The parameters used to execute the command are (-i) indicates the
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TSS BED file input, (-g) the genome file input, (-r) indicates how many base pairs

are added to the right, and (-l) how many base pairs added to the left. For example,

slopBed -i ECOLI TSS.bed -s -g ECOLI.genome

-l 39 -r 0 > positive.bed

The next step is to generate the FASTA sequences from the promoter coordinates.

To do it, the BEDTools’ getFasta [38] command is used. The parameters used

to execute the command are (-bed) the promoter coordinates file as input, (-fi) the

bacteria’s genomic sequence as input, (-s) forces strandedness, and (-bed) the output

promoter FASTA sequences.

bedtools getfasta -s -bed positive.bed

-fi ECOLI.fasta -fo positive.fasta

The negative coordinates are generated randomly with a length of 40 base pairs

using BEDTools’ random [38] command. The parameters are (-l) The length of each

coordinate and (-n) the total number of coordinates in the BED file.

bedtools random -l 40 -n ‘grep -i -v ‘‘>" positive.fasta | wc -l’ -g

ECOLI.genome > tmp negative promoter.bed

In real-life, the total number of promoters in a bacterium’s genome is minimal

compared to the total number of 40bp segments in the whole genome. Due to this,

the pipeline was modified to generate an unbalanced negative set of 1:10 ratio, as

shown in the command below.

bedtools random -l 40 -n ‘grep -i -v ‘‘>" positive.fasta | echo

$(($(wc - l) * 10 ))’ -g ECOLI.genome > tmp negative promoter.bed

To avoid duplicated coordinates appearing in both positive and negative sets, the

subtract [38] command is used to delete them from the negative set if they have a

minimum sequence overlap of 13% with the sequences in the positive set (-f). The

other parameters are (-s) force strandedness, (-A) removes the entire coordinate if it

exceeds the threshold, (-a) the randomly generated set of coordinates, and (b) the

positive coordinates set file path.
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bedtools subtract -f 0.13 -s -A -a tmp negative promoter.bed

-b positive.bed > negative.bed

The command getfasta [38] is used again to obtain the FASTA sequences from

the negative coordinates file, and this concludes all the steps in the pipeline for a

single bacterium. The pipeline is orchestrated by a python file that runs it for every

bacterium and feeds the pipeline the required parameters and can be set up to output

a balanced or 1:10 ratio unbalanced data set. The pipeline’s output is 55,146 sequences

from all bacteria combined, having 50% positives and 50% negatives when it is set

up to output a balanced data set and 301,006 when set up to output an unbalanced

set of 10% positives and 90% negatives. The training-testing split is done after the

sequences are pre-processed.

Table 3.3: Training data sets.

ID BALANCED UNBALANCED

BACTERIA

ID
POSITIVE NEGATIVE POSITIVE NEGATIVE

ECOLI 248 278 248 2,773

ECOLI 2 2,636 2,616 2,636 26,147

HPYLORI 1,877 1,829 1,877 18,273

HPYLORI 2 448 445 448 4,448

CJEJUNI 269 268 269 2,674

CJEJUNI 2 1,881 1,843 1,881 18,298

CJEJUNI 3 2,140 2,069 2,140 20,736

CJEJUNI 4 1,919 1,870 1,919 18,619

CJEJUNI 5 1,973 1,927 1,973 19,173

SPYOGENE 891 880 891 8,754

STYPHIR-

MURIUM
1,869 1,845 1,869 18,464

CPNEUMO-

NIAE
530 520 530 5,221

SONEIDEN-

SIS
4,728 4,661 4,728 46,511



23

LINTERRO-

GANS
2,791 2,803 2,791 27,979

SCOELI-

COLOR
3,566 3,526 3,566 35,170

SUBTOTAL 27,766 27,380 27,766 273,240

TOTAL 55,146 301,006

3.2 Machine learning models

During the study, two types of machine learning methods were used, Recurrent Neural

Networks (RNNs) [7] and Random Forest (RF) [5, 6]. Both methods have been

successfully used before to classify genomic sequences. Random Forest is a popular

machine learning method for its ability to identify feature importance, handles many

data types (continuous, categorical and binary), is well-suited for high-dimensional

data, and avoids over-fitting by its voting-scheme among the ensemble of trees within

it [40]. According to Zhang et al. [40], RF models have been used in micro-array

gene expression analysis due to the high-dimensional and high ratio of noise in the

data. Lee et al. [41], compared K-nearest Neighbors (KNN) [42], Linear Discriminant

Analysis variants (LDA) [43], bagging trees [44], boosting [45], RFs, and concluded

that RF was the most effective technique used in the micro-array data sets. Izmirlian

et al. [46] and Kirchner et al. [47], demonstrated that RFs are well-suited for mass

spectrometry-based proteomic data analysis, known for its high noise ratio and high

dimensional data. Segal et al. [48] and Hamby et al. [49] have demonstrated the use of

RFs for biological sequence analysis. Segal et al. [48] have developed a model capable

of predicting the replication capacity of virus based on amino acid sequences and

Hamby et al. [49] have developed a model for glycosylation sites prediction.

Recurrent Neural Networks are also well-suited for genomic sequence analysis due

to their ability to handle variable-length inputs, detecting sequential patterns, and

retaining information through time. Hill et al. [50] have utilized RNNs for detecting

protein-coding potential trained on human messenger RNA (mRNA) and long non-

coding RNA (lncRNA) sequences. Also, Shen et al. [51] used RNNs for predicting

transcription factor binding sites (TFBS). Considering all the advantages of both
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types of models and their variations, RFs and RNNs were selected for this study. The

RF models were trained using two types of inputs, hot-encoded binary representation

vectors and tetra-nucleotide frequencies. The RNN models were trained using word

embeddings [52].

3.2.1 Data pre-processing

Hot-encoded features

A Random Forest [5, 6] model was trained using hot-encoded features; this meant

that the nucleotides (A, G, C, T) were transformed into binary vector representations

[1000], [0100], [0010], and [0001] respectively. Multiple nested loops are used to go

through each bacterium, each promoter sequence, and a sliding window of one nt size

and one nt step converting each nucleotide to its binary representation. Each promoter

sequence is 40 base pairs long with each nucleotide having a four-digit representation

resulting in 160 features.

Tetra-nucleotide frequencies

A second Random Forest [5, 6] model was trained using tetra-nucleotide frequencies

calculated using the scikit-bio library [39]. Tetra-nucleotide frequencies were used

as training features because the Random Forest models have a useful functionality of

creating feature importance rankings that allowed us to find the most important tetra-

nucleotide sequences during training based on their frequencies’ importance scores, as

discussed in detail in Section 4.2. To obtain the tetra-nucleotide frequencies, each

promoter sequence is fed to the “kmer frequencies” method [53], which returns a

dictionary of tetra-nucleotides with their frequencies. An empty 2D table is created

with 256 columns. The columns represent all the possible arrangements of tetra-

nucleotides or four nucleotide sequences, i.e. AAAA, AAAT, AATT, etc. Each tetra-

nucleotide and its frequency is then mapped to its column position in the table and

the tetra-nucleotide combinations not present in the sequence are left with a value of

zero. The output number of features is 256 possible tetra-nucleotide frequencies.
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Word embeddings

The Recurrent Neural Networks [7] were trained using word embeddings or a numerical

representation of the tetra-nucleotide sequences. Multiple nested loops were used to

go through each bacterium, each promoter sequence, and a sliding window of four

nt size and one nt step to obtain 37 tetra-nucleotides per promoter sequence. The

37 tetra-nucleotides are then joined together into a single string separated by spaces

and then fed to the Keras’ Tokenizer class [54] . The Tokenizer class is used for text

processing and requires a sentence-like input, then it takes every word and obtains a

numerical representation for every unique word in the data set. The output number

of features is 37 tokens representing each tetra-nucleotide in the promoter sequence.

3.2.2 Model architectures and implementation

Random forest with hot encoding

The model is created using the Sklearn’s RandomForestClassifier [54] combined with

the GridSearchCV [55] python class and expects the hot-encoded data set as input.

The GridSearchCV class handles the best hyper-parameters’ search. It does this

by creating multiple models with different hyper-parameters combinations, assessing

them, and retaining only the best model. The hyper-parameters used during the

search are “max features”: [None, “sqrt”, “log2”] and “n estimators”: [1000, 2000,

3000]. The remaining parameters were left as default. The default parameters were

the following:

criterion=gini, max depth=None, min samples split=2,

min samples leaf=1, min weight fraction leaf=0.0, max leaf nodes=None,

min impurity decrease=0.0, min impurity split=None, bootstrap=True,

oob score=False, n jobs=None, random state=None, verbose=0,

warm start=False, class weight=None, ccp alpha=0.0, max samples=None

The “max features” (m) parameter indicates the subset of features considered dur-

ing a node split. If m is None, then m is equal to the total number of features, “sqrt”

is the square root of the number of features, and “log2” is the binary logarithm of the

number of features. The “n estimators” (n) parameter indicates the number of trees

trained in the ensemble. The model was trained using an imbalanced data with a 1:10
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ratio between positive and negative instances. The best selected hyper-parameters

were m=“log2” and n=2,000. The class weights were automatically generated with a

value of class 0 = 0.53 and class 1 = 10.28.

Random forest with tetra-nucleotides

Random forest is used again for a second model, but this one expects the tetra-

nucleotide frequencies data set as input. The architecture, parameters, and class

weights are the same as described above and the hyper-parameters selected by the grid

search are m=“log2” and n=2,000. The main differences between the models are the

input shape, 160 features for hot encoding and 256 for tetra-nucleotides frequencies.

Recurrent Neural Networks

Two types of RNNs were tested during the study, Long Short-Term Memory Unit

(LSTM) [56] and Gated Recurrent Unit (GRU) [57]. Both models try to solve the

vanishing and exploding gradient problems that occur in the vanilla RNN architec-

ture. GRU uses two gates instead of LSTM’s three gates and are considered less

complex and more memory efficient. Originally, the models were built around the

Scikit-learn’s GridSearchCV [55] for hyper-parameter optimization and the Keras-

Classifier [54] wrapper to handle Keras models from within Scikit-learn’s methods.

But, each grid-search iteration proved to be very time-consuming and computation-

ally expensive. It was decided to create separate models with different number of

layers, trained and tuned manually. The models were made using Keras [54] and Ten-

sorflow v2.1.0 [58] as back-end. The only hyper-parameter that varied was the number

of hidden layers. The remaining parameters are described in Table 3.4. The models’

architecture consisted of one embedding layer [54] with 50 neurons and a vocabulary

size automatically calculated by the Tokenizer [54] class in the pre-processing pipeline.

Also, one GRU or LSTM layer, a sigmoid activation, a dropout layer, and a binary

output. Each layer had 100 neurons.

Table 3.4: Recurrent Neural Networks’ hyper-

parameters.

Hyper-parameters Values
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Embedding layer neurons 50

RNN layer neurons 100

Hidden layer neurons 100

# Hidden layers [0, 1, 2, 3, 4]

Dropout rate 0.2

Epochs 50

Batch size 10

Vocabulary size 301

Activation function Sigmoid

Optimizer function Adam

Loss function Binary cross-entropy

3.3 Model assessment

The RF and RNN models were trained on the Compute Canada’s Beluga Cluster [59]

configured with four NVidia V100SXM2 16GB GPUs, eight Intel Gold 6148 Skylake

@ 2.4 GHz CPUs, and managed through SLURM commands. The first step was to

select the best performing architecture for each type of model. The 1:10 unbalanced

bacteria set reserved for training/testing were used to train the models. First, it was

pre-processed using the Nextflow pipeline and joined together in a single set. The

data’s total size was 496,041 sequences with 160 features for the hot-encoding set,

256 features for the tetra-nucleotide frequencies set, and 37 features for the word

embedding set. The data set reserved for training consisted of nine bacteria and was

split in 90% training, 10% testing. Four bacteria were reserved for validation. The

two RF models were trained using GridSearchCV with a K-Fold value of 10. The

RNNs were tuned and trained manually with a total of 10 combinations using GRU

and LSTM layers, each with 0, 1, 2, 3 or 4 hidden layers. The grid-search for both

RF models selected m=“log2”, and n=2,000 as the best hyper-parameters. The RNN

models and weights were stored using the Keras “save model” [54] method and the

RF models were serialized into binary files using the Joblib [60] python library.
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3.4 Benchmarking

The best models obtained during training and testing were compared to the previous

methods BProm [9] , bTSSfinder [16] , G4Promfinder [1], and MULTiPLy [20]. Three

tests were performed, the first consisted in scanning a whole bacterial genome using a

sliding window and predicting the probability of finding a promoter in each window.

The second test used the same approach but instead of trying to locate a specific

promoter location, it focused in finding clusters where the probability of finding a

promoter was high. The third test used a balanced data set with the same number of

positive and negative samples. It is important to highlight that it was not possible to

evaluate the four other tools in test one and two because they were not designed to be

run in a whole bacterial genome and their running time would have been unfeasible.

3.4.1 Test 1: Whole genome promoter prediction

A sliding window of 40 nt size with a step of one nt was used to scan the whole

genome. The sliding window travelled along the genome, appending each sequence

to a vector that later was used as the pipeline’s input to transform the sequences

to the correct format expected by each model. The number of generated sequences

ranged from 4 to 7 million depending on the genome size. After obtaining the list of

sequences, it was fed to the pipeline, which transformed the data into a hot-encoding

and word embedding format.

The pipeline was unable to generate the whole genome’s tetra-nucleotide frequen-

cies due to a repeated python “Memory Error”, which indicated that the device was

running out of RAM memory. The code was optimized to use Numpy [61] arrays and

methods. Vector concatenations were avoided to reduce complexity and memory al-

location. Despite the code and memory management optimization, the large quantity

of data combined with the use of scikit-bio’s tetra-frequency calculation still maxed

the available memory. Only the RF model trained with hot encoded features, and the

RNNs were able to be used during tests one and two.

After completing the data transformation, the data sets were fed to the RNNs and

the RF model. The predictions were obtained in a BED file containing the coordi-

nates for each position scanned and the score. The results were then assessed using
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BEDTools by comparing the predictions coordinates, with the coordinates 40bp up-

stream of the TSS detected by the NGS technologies. The BEDTools’ intersect [38]

command was used to obtain the number of correctly predicted promoter sites. The

command filtered all the predictions that had at least 0.1 overlap with the true pro-

moter sequences, as shown in Figure 3.1.

Figure 3.1: The sequence overlap represents the percentage of nucleotides in the

predicted promoter sequence that are located in the same genomic region as the true

promoter sequence. All the predicted sequences that have a 10% overlap or more are

considered corrected predicted promoter sequences. Sequence A and Sequence B in

the figure represent predicted promoters.

The process was repeated multiple times, the score threshold was changed, the

predictions were filtered, and only those with scores above the threshold (0.5, 0.6, 0.7,

0.8, and 0.9) were left. This was done to check which score threshold gave the best

recall versus precision performance. The confusion matrix per score threshold was

calculated, and used to draw the Precision-Recall and ROC curves.

3.4.2 Test 2: Whole genome cluster prediction

As described in detail in Section 4.3, after visual inspection of the predicted sequences

compared to the true promoters, we observed that predicted promoter sequences

grouped or clustered near the true promoter sequences. Thus, we designed a second

test were sequences not necessary overlapping but very close to the true promoters

were considered correct. This test was almost identical to the first, the only difference
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was that instead of using intersect [38], it was the closest [38] command. The clos-

est command filtered all the coordinates adjacent in distance to the true promoter.

It was configured to filter all but the five prediction closest to the real promoters.

This parameter is called “the closest hits” (k) and had a value of five. After being

filtered by BEDTools, a second filter was applied, which only left those coordinates

less than 100 nt in distance in both directions from the true promoters. The cluster

prediction was done to find nearby predictions that did not align perfectly with the

real promoters but were located in their proximity. The process was repeated per

score threshold (0.5, 0.6, 0.7, 0.8, and 0.9), the confusion matrices were calculated,

and the performance graphs were generated.

3.4.3 Test 3: Balanced data set prediction

The third test included the trained models during the study and four state-of-the-art

promoter prediction programs (BPROM [9], BTSSFinder [16], G4PromFinder [1], and

MULTiPLy [20]). The TSS coordinates from the bacteria reserved for validation were

fed to the pipeline to obtain the transformed representations for the RNN and RF

models. The generated data set contained the same number of positive and negative

sequences, as shown in Table 3.5, and each sequence had a length of 40 nt. The

RFs, RNNs, G4PromFinder, and MULTiPLy accepted 40 nt inputs, but BProm and

BTSSFinder required longer sequences of 250 nt. The BEDTools’ slopBed [38] com-

mand was used to extend the existing sequences in both directions from 40 to 250 nt.

G4Promfinder was easier to integrate to the pipeline since it was developed in python

and the sequences were fed directly from the script. BProm and bTSSfinder required

writing each sequence to disc and then running the programs through a shell script

from the python pipeline and this significantly increased the execution time. Finally,

MULTiPLy was tested separately, since it was developed in Matlab, so a short script

was created to feed and evaluate each bacterium’s data set.

Table 3.5: Balanced test data set.
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BACTERIA ID
PROMOTER

SEQUENCES

NON-

PROMOTER

SEQUENCES

MYCOBACTER 4,054 3,978

CLOSTRIDIUM 1,187 1,177

RHODOBACTER 1 5,374 5,207

RHODOBACTER 2 4,045 3,918

BACILLUS 1,064 1,055

SUBTOTAL 15,724 15,335

TOTAL 31,059
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3.5 Summary

A set of TSS coordinates were collected from a wide range of bacteria obtained

from different literature sources. The TSSs were then fed together with the bac-

terial genomes to the pre-processing pipeline to obtain the promoter coordinates and

sequences. The pipeline used the BEDTools commands to obtain the promoter co-

ordinates from the TSS coordinates and the promoter sequences from the promoter

coordinates. It generated random coordinates and sequences used as the negative

data set. Two types of models were used during the study, Random Forest (RF)

and Neural Networks (RNNs). The RFs were sub-divided into two types, one using

promoter sequences transformed to hot-encoded representation vectors and the other

using promoter sequences transformed to tetra-nucleotide frequencies. RNNs were

sub-divided into LSTMs and GRUs, which were then manually tuned with 0, 1, 2, 3,

and 4 hidden layers. After training the models, they were compared with methods

from previous studies. Three tests were made during the benchmark; the first and sec-

ond tests used a sliding window that travelled through a whole bacterial genome and

produced a BED file with coordinates and scores. The predictions were then assessed

using BEDTools’ intersect command to filter only the predictions that correctly over-

lapped the true promoters at least a certain threshold. The second test was similar,

but instead of using intersect, it used the closest command, which filtered and left

only the prediction coordinates closest to the true promoters. The third test utilized

a balanced data set of bacteria reserved for validation. The positive and negative sets

contained the same number of sequences. In the third test, the positive set was made

of the true promoters from each bacterium, and the negative set was generated from

random sequences coming from each bacterial genome.
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Results and Discussion

4.1 Model assessment

A total of two Random Forest [5, 6] models and ten variants of Recurrent Neural

Networks [7] were trained during this study. As described in Section 3.2.1, the training

data for the RF models was obtained by pre-processing the promoter sequences to

extract their tetra-nucleotide frequency and hot-encoding representations. The RNN

models consisted of five Long Short-Term Memory Unit (LSTM) [56] and five Gated

Recurrent Unit (GRU) [57] models having zero to four hidden layers and a word

embedding [52] representation of the promoter sequences as input. The balanced

data set consisted of nine bacteria reserved for training and testing with a total of

55,146 sequences, as shown in Table 3.3. The data set was split in 75% training

and 25% testing. The two RF models obtained the best Area Under the Precision

Recall Curve (AUPRC) and Area Under the Receiver Operating Characteristic Curve

(AUROC) during training and testing, as shown in Table 4.1.

Table 4.1: Training and testing AUPRC and AUROC

performance results using a balanced data set.

TRAINING TESTING

MODELS AUPRC AUROC AUPRC AUROC

RF-HOT 0.99 0.99 0.95 0.94

RF-TETRA 0.98 0.98 0.86 0.86
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GRU-0 0.82 0.81 0.81 0.80

GRU-1 0.57 0.57 0.58 0.57

GRU-2 0.52 0.52 0.52 0.52

GRU-3 0.55 0.55 0.55 0.56

GRU-4 0.50 0.49 0.51 0.50

LSTM-0 0.91 0.90 0.91 0.90

LSTM-1 0.91 0.91 0.91 0.90

LSTM-2 0.91 0.90 0.91 0.90

LSTM-3 0.57 0.54 0.54 0.56

LSTM-4 0.50 0.50 0.50 0.50

The total number of promoters in a bacterial genome is much smaller than the total

number of 40 nt segments in the whole genome. For that reason, the models trained

with a balanced data set were tested on a 1:10 ratio unbalanced set to determine if

they could be suitable for whole-genome promoter recognition. The original data set

was expanded by increasing the number of random negative promoter sequences ten

times, ending in an unbalanced set of 301,006 sequences, as shown in Table 3.3. The

data set was split in 90% training and 10% testing. The models were tested again

using the unbalanced testing set and obtained a lower performance compared to the

previous balanced test, as shown in Tables 4.1 and 4.2.

Table 4.2: AUPRC and AUROC performance results us-

ing a 1:10 ratio unbalanced test data set.

MODELS AUPRC AUROC

RF-HOT 0.70 0.74

RF-TETRA 0.43 0.40

GRU-0 0.51 0.51

GRU-1 0.51 0.50

GRU-2 0.51 0.51

GRU-3 0.46 0.46

GRU-4 0.75 0.50

LSTM-0 0.50 0.51

LSTM-1 0.50 0.50
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LSTM-2 0.49 0.49

LSTM-3 0.50 0.60

LSTM-4 0.75 0.50

The low performance of the models with the unbalanced sets suggested that the

models would not be suitable for real life scenarios, and hence, 12 new models were

trained using a 1:10 ratio unbalanced data set to meet the requirements needed for

use on an entire genome. The RF model trained with hot-encoded sequences obtained

the highest performance, followed by the GRU with one layer and LSTM with three

layer, as shown in Table 4.3. It is important to note that the RNNs considered during

the study have a set architecture with only one variable hyper-parameter, being the

number of hidden layers. Due to the long training time constraints, no more vari-

ations were considered. It took around 20 hours to train each RNN model on the

balanced data compared to the 12 hours taken by the automatically tuned RF models

using grid-search hyper-parameter optimization. The RNNs took 6.5 days to train

on the unbalanced data, and the models had a file size of 1 to 3 MB; meanwhile, the

RFs took four days of training and had a file size of 3.3 to 3.7GB. In summary, with

enough time and resources, there is still room for optimization in the RNNs’ archi-

tecture and the RF models take less time to train but have a higher footprint in disk.

The four best models RF-HOT, RF-TETRA, GRU-1, and LSTM-4 were selected for

the final tests using Mycobacterium smegmatis, Lachnoclostridium phytofermentans,

Rhodobacter capsulatus, and Bacillus amyloliquefaciens’ complete genomes reserved

for validation (i.e., not seen during training).

Table 4.3: Training and testing AUPRC and AUROC

performance results from the twelve new models using

the 1:10 ratio unbalanced data set.

TRAINING TESTING

MODELS AUPRC AUROC AUPRC AUROC

RF-HOT 0.990 0.999 0.802 0.938

RF-TETRA 0.961 0.997 0.593 0.844

GRU-0 0.761 0.932 0.752 0.929

GRU-1 0.788 0.939 0.778 0.934
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GRU-2 0.764 0.932 0.753 0.929

GRU-3 0.732 0.921 0.728 0.922

GRU-4 0.740 0.923 0.728 0.923

LSTM-0 0.739 0.924 0.734 0.923

LSTM-1 0.747 0.927 0.744 0.927

LSTM-2 0.742 0.924 0.739 0.923

LSTM-3 0.749 0.926 0.748 0.924

LSTM-4 0.757 0.929 0.748 0.928

4.2 Feature analysis

Before proceeding with the validation tests, a feature analysis was done to find pos-

sible patterns and motifs recognized by the models. The RF classifiers can create a

feature importance ranking based on importance scores. The scores were calculated

using Permutation-based Importance or Mean Decrease Accuracy (MDA) [62] and

Impurity-based Importance [6]. First, the RF model trained with tetra-nucleotide fre-

quencies was used to calculate the average impurity-based feature importance across

the ensemble of trees for each tetra-nucleotide sequence. The most important se-

quences based on their frequencies were TATA, ATAA, TAAT, TTAT, AAAA, and

TTTT, which can be considered as conserved motifs across the wide range of bacte-

ria used during the study. The test was repeated but using the permutation-based

importance score and a permutating each feature five times. Both tests produced

similar results having the same tetra-nucleotide sequences appearing at the top of the

ranking, only varying their ranking position and score, as shown in Tables 4.4 and 4.5.

The results indicate that the RF models focus on a motif called Pribnow-Schaller box

[63, 64], which is a six nucleotide consensus sequence (TATAAT), commonly located

around ten base pairs upstream from the transcription start site.

Table 4.4: Impurity-based feature importance ranking

generated using the Random Forest model trained with

tetra-nucleotide frequencies.

IMPURITY-BASED FEATURE IMPORTANCE
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IMPORTANCE

RANKING

TETRA-NUCLEOTIDE

SEQUENCE
IMPORTANCE SCORE

1 TATA 0.023±0.015

2 ATAA 0.014±0.009

3 TAAT 0.014±0.008

4 TTAT 0.011±0.007

5 AAAA 0.010±0.001

6 TTTT 0.010±0.001

7 GTTA 0.009±0.004

8 TATT 0.009±0.004

9 TAAA 0.009±0.002

10 AATA 0.008±0.004

11 TTTA 0.008±0.003

12 AATT 0.008±0.003

13 AAAT 0.008±0.002

14 ATTT 0.008±0.002

15 ATTA 0.008±0.004

16 GCTA 0.008±0.003

17 TTAA 0.007±0.002

18 CAGC 0.007±0.004

19 GTAT 0.007±0.003

20 CAAA 0.007±0.001

Table 4.5: Permutation-based feature importance rank-

ing generated using the Random Forest model trained

with tetra-nucleotide frequencies.

PERMUTATION-BASED FEATURE IMPORTANCE

IMPORTANCE

RANKING

TETRA-NUCLEOTIDE

SEQUENCE
IMPORTANCE SCORE

1 ATAA 0.052±0.001

2 TATA 0.048±0.001

3 TAAT 0.046±0.002
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4 TTAT 0.039±0.001

5 GTTA 0.036±0.001

6 TAAA 0.035±0.001

7 AATA 0.035±0.001

8 ATTA 0.033±0.001

9 TATT 0.031±0.001

10 AATT 0.031±0.000

11 AAAT 0.030±0.001

12 GCTA 0.029±0.001

13 TTTA 0.028±0.001

14 GATA 0.027±0.001

15 ATTT 0.026±0.000

16 CAAA 0.026±0.001

17 AAAA 0.024±0.001

18 GGTA 0.023±0.001

19 GTAT 0.023±0.000

20 CCAA 0.021±0.001

The feature importance analysis was repeated with the RF model trained with

hot-encoded features. To give some context about the data’s format, each of the

40 nucleotides was transformed into a four-digit binary representation, expanding the

feature-set from 40 to 160 features. Each feature represents the existence of having one

of the four possible nucleotides adenine (A), thymine (T), guanine (G), and cytosine

(C) for the current position in the range of -39 to 0 relative to the transcription

start site (TSS). The features were expanded using a 4-digit binary representation

per nucleotide, e.g. A (1000), G (0100), C (0010), and T (0001). The permutation

and impurity-based feature importance ranking generated by the RF model provided

the most important positions in the range of -39 to 0 relative to the TSS and the

nucleotide with the most occurrence for each position. The results demonstrated the

large concentration of adenine (A) and thymine (T) in the range of -8 to -12 relative

to the TSS as shown in Tables 4.6 and 4.7. Each nucleotide’s importance score was

plotted on a bar graph to have visual representations of the results. Figures 4.1, and

4.2 show an AT-rich concentration with higher importance values on the positions -10
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and -35 following the Pribnow-Schaller box pattern [63, 64].

Table 4.6: Impurity-based feature importance ranking

generated using the Random Forest model trained with

hot encoded promoter sequences.

IMPURITY-BASED FEATURE IMPORTANCE

IMPORTANCE

RANKING
NUCLEOTIDE POSITION

IMPORTANCE

SCORE

1 A -11 0.043±0.021

2 T -7 0.040±0.020

3 T -12 0.023±0.010

4 T -8 0.019±0.007

5 A -9 0.019±0.012

6 A -12 0.019±0.007

7 A -10 0.018±0.008

8 C -11 0.017±0.011

9 G -11 0.014±0.008

10 T -11 0.014±0.006

11 G -8 0.014±0.009

12 T -13 0.013±0.004

13 A -8 0.013±0.006

14 A 0 0.013±0.008

15 T -6 0.013±0.005

16 T -0 0.012±0.005

17 G -7 0.012±0.007

18 C -12 0.012±0.006

19 A -1 0.012±0.005

20 G -14 0.011±0.006
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Figure 4.1: Impurity-based feature importance scores per nucleotide per position rel-

ative to the transcription start site.

Table 4.7: Permutation-based feature importance rank-

ing generated using the Random Forest model trained

with hot encoded promoter sequences.

PERMUTATION-BASED FEATURE IMPORTANCE

IMPORTANCE

RANKING
NUCLEOTIDE POSITION

IMPORTANCE

SCORE

1 A -11 0.090±0.002

2 T -7 0.080±0.002

3 A -10 0.044±0.001

4 T -8 0.042±0.001

5 T -12 0.040±0.001

6 A -9 0.037±0.001

7 A -12 0.036±0.001

8 T -6 0.031±0.001

9 A 0 0.030±0.001

10 A -8 0.026±0.001

11 T -13 0.024±0.001

12 A -1 0.023±0.001

13 T 0 0.023±0.001

14 G -8 0.022±0.001



41

15 C -11 0.021±0.001

16 T -35 0.021±0.001

17 T -11 0.021±0.001

18 C -1 0.020±0.001

19 A -12 0.019±0.001

20 G -11 0.019±0.001

Figure 4.2: Permutation-based feature importance scores per nucleotide per position

relative to the transcription start site.

4.3 Benchmarking

After completing the feature analysis, the preparation of the validation tests started.

The goal was to create a pipeline able to receive small genomic sequences, but to

also traverse whole bacterial genomes. This proved to be a very demanding task for

the models since they were trained to receive a 40 nt input, and it was necessary

to build a sliding window with a one nt step and a 40 nt window size. The sliced

sequences were then pre-processed and fed to the model twice. First, using a forward

strand configuration and then using a backwards strand configuration. These same

steps were repeated for Mycobacterium smegmatis, Lachnoclostridium phytofermen-

tans, Bacillus amyloliquefaciens and Rhodobacter capsulatus reserved for validation.

For example, the sliding window created 6,988,167 sequences of 40 nt when used on
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the Mycobacterium smegmatis’ genome. Each sequence was repeated a second time

with a backward strand configuration ending up with 13,976,336 sequences and each

of the four selected models was executed around 14 million times for each of the four

validation bacterial species. The process took around 4 hours to run per bacterium,

including the sliding window, the data pre-processing, and the model’s execution.

Increasing the step size decreased the time during execution but also decreased the

model’s performance. The complete genomes’ predicted true promoters were filtered

using the BEDTools intersect [38] command, with confidence thresholds of 0.5, 0.6,

0.7, 0.8, 0.9, and overlap threshold of 0.1. The AUPRC and AUROC were calculated

based on the results as shown in Tables 4.8 and 4.9.

Table 4.8: AUPRC performance per model and per bac-

terium using the BEDTools’ intersect command to count

the predicted true promoters. The numbers in bold indi-

cate the model with the highest performance.

BACTERIA
RF-

HOT
GRU-0 GRU-1 LSTM-3 LSTM-4

MYCOBACTER 0.271 0.016 0.014 0.035 0.039

CLOSTRIDIUM 0.019 0.005 0.005 0.024 0.02

RHODOBACTER 1 0.119 0.040 0.031 0.058 0.062

RHODOBACTER 2 0.106 0.032 0.026 0.05 0.056

BACILLUS 0.189 0.015 0.010 0.019 0.011

Table 4.9: AUROC performance per model and per bac-

terium using the BEDTools’ intersect command to count

the predicted true promoters. The numbers in bold indi-

cate the model with the highest performance.

BACTERIA
RF-

HOT
GRU-0 GRU-1 LSTM-3 LSTM-4

MYCOBACTER 0.646 0.568 0.58 0.696 0.666

CLOSTRIDIUM 0.834 0.546 0.562 0.66 0.61

RHODOBACTER 1 0.558 0.57 0.567 0.691 0.663

RHODOBACTER 2 0.563 0.572 0.575 0.699 0.668
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BACILLUS 0.924 0.593 0.599 0.66 0.585

Table 4.10: Average AUPRC and AUROC performance

plus–minus standard deviation per model across the bac-

teria validation set using the BEDTools’ intersect com-

mand to count the predicted true promoters. The num-

bers in bold indicate the model with the highest perfor-

mance.

MODELS AVERAGE

AUPRC

ACROSS

BACTERIA

AVERAGE

ROC-AUC

ACROSS

BACTERIA

RANKING

BASED

ON

AUPRC

THRESHOLD

FOR BEST

RECALL

THRESHOLD

FOR BEST

PRECISION

RF-HOT 0.141±0.095 0.705±0.166 1 0.5 0.6

GRU-0 0.028±0.015 0.697±0.060 4 0.5 0.6

GRU-1 0.028±0.016 0.683±0.045 4 0.5 0.6

LSTM-3 0.037±0.017 0.681±0.022 3 0.5 0.6

LSTM-4 0.038±0.022 0.638±0.038 2 0.5 0.6

The AUPRC seems low, but if one considers that the test was extremely unbal-

anced, having millions of 40 nt-long genomic sequences considered as negatives and a

couple of thousand sequences considered as positives, the performance is much better

than random. For example, for M. smegmatis there are four thousand true promoters

and 14 million genomic sequences, thus a random classifier would have an AUPRC

of 0.0003 which compared with the AUPRC obtained by Random Forest model using

hot-encoded sequences (RF-HOT) is a thousand-fold improvement over random per-

formance. The RF-HOT showed the best overall AUPRC and AUROC performance

across the bacteria, as shown in Table 4.10. After visual inspection of the predicted

promoters, it was concluded that many predictions were located adjacent to the real

promoter sequences but did not overlap with them, as shown in Figure 4.3. To ac-

count for this, a second approach was considered using the BEDTools’ closest [38]

command to count as correct predictions those adjacent to the real promoter. The
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closest command was configured to select the five nearest predictions to the true pro-

moters. The nearest predictions were filtered again to select the predictions within

100 nt in both directions. We called this task “the cluster promoter prediction”. As-

sessing the performance of the models using the cluster promoter prediction method

increased AUPRC 2 to 6 times and AUROC by 1 to 1.5 times the values obtained

with the “intersect” test, as shown in Tables 4.11 and 4.12.

Figure 4.3: Promoter prediction clusters discovered in the true promoters’ proxim-

ity but not overlapping. Blue squares on the first row indicate the location of true

promoters while blue squares on the second and third rows indicate the location of

predicted promoters with a score of 0.6 and 0.5 respectively.

Table 4.11: AUPRC performance per model and per bac-

terium using the BEDTools’ closest command to count

the predicted true promoter clusters. The numbers in

bold indicate the model with the highest performance.

BACTERIA
RF-

HOT
GRU-0 GRU-1 LSTM-3 LSTM-4

MYCOBACTER 0.868 0.43 0.49 0.415 0.376

CLOSTRIDIUM 0.428 0.273 0.311 0.269 0.264

RHODOBACTER 1 0.844 0.736 0.715 0.681 0.661

RHODOBACTER 2 0.84 0.672 0.688 0.626 0.6

BACILLUS 0.787 0.286 0.327 0.25 0.214
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Table 4.12: AUROC performance per model and per bac-

terium using the BEDTools’ closest command to count

the predicted true promoter clusters. The numbers in

bold indicate the model with the highest performance.

BACTERIA
RF-

HOT
GRU-0 GRU-1 LSTM-3 LSTM-4

MYCOBACTER 0.895 0.805 0.829 0.906 0.887

CLOSTRIDIUM 0.95 0.799 0.831 0.892 0.861

RHODOBACTER 1 0.856 0.85 0.859 0.912 0.896

RHODOBACTER 2 0.843 0.833 0.851 0.91 0.889

BACILLUS 0.968 0.783 0.8 0.889 0.823

The average AUPRC, AUROC scores and thresholds across the bacteria were cal-

culated using the performance results from test two and are shown in Table 4.13. The

RF model using hot-encoded sequences showed the best overall performance across

the bacteria. Figure 4.4 illustrates the improvement gained using cluster prediction

compared to the previous test using the BEDTools’ intersect command. This sug-

gests that our models predict promoters in the proximity of actual promoters but

these predicted promoters do not match the exact genomic location of the actual

promoters.
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Table 4.13: Average AUPRC and AUROC performance

per model across the bacteria validation set using the

BEDTools’ closest command to filter the true predicted

promoter clusters. The numbers in bold indicate the

model with the highest performance.

MODELS AVERAGE

AUPRC

ACROSS

BACTERIA

AVERAGE

AUROC

ACROSS

BACTERIA

RANKING

BASED

ON

AUPRC

THRESHOLD

FOR BEST

RECALL

THRESHOLD

FOR BEST

PRECISION

RF-HOT 0.753±0.184 0.902±0.055 1 0.5 0.6

GRU-0 0.427±0.212 0.903±0.028 3 0.5 0.6

GRU-1 0.411±0.216 0.899±0.026 5 0.5 0.6

LSTM-3 0.448±0.199 0.902±0.011 2 0.5 0.6

LSTM-4 0.423±0.199 0.871±0.030 4 0.5 0.6
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Figure 4.4: Comparison between the AUPRC and AUROC obtained in test one and

test two using the BEDTools intersect and closest command, respectively.
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The third test was made using a more conventional approach using 40 nt-long

genomic sequences as input. As in the previous tests, the validation data set included

Mycobacterium smegmatis, Lachnoclostridium phytofermentans, Bacillus amylolique-

faciens and Rhodobacter capsulatus with a 1:1 ratio of positive to negative instances.

The smaller data set allowed the inclusion of methods from previous studies and the

RF model trained with tetra-nucleotide frequencies that failed to run on a whole

genome as previously explained in Section 3.4.1. The benchmark results in terms of

AUPRC and AUROC are shown in Table 4.14, Table 4.15, and Figure 4.5. The RF

model trained with hot-encoded genomic sequences had the best overall AUPRC and

AUROC across the bacteria.

Table 4.14: AUPRC performance per model and per bac-

terium using a balanced validation set. The numbers in

bold indicate the model with the highest performance.

BACTERIA RF-

HOT

RF-

TETRA

GRU-0 GRU-1 LSTM-3 LSTM-4

MYCOBACTER 0.951 0.8 0.646 0.622 0.625 0.623

CLOSTRIDIUM 0.631 0.608 0.486 0.49 0.499 0.501

RHODOBACTER 1 0.704 0.678 0.588 0.576 0.559 0.573

RHODOBACTER 2 0.732 0.697 0.561 0.537 0.531 0.527

BACILLUS 0.639 0.843 0.486 0.5 0.494 0.505

Table 4.15: AUROC performance per model and per bac-

terium using a balanced validation set. The numbers in

bold indicate the model with the highest performance.

BACTERIA RF-

HOT

RF-

TETRA

GRU-0 GRU-1 LSTM-3 LSTM-4

MYCOBACTER 0.934 0.814 0.63 0.601 0.622 0.592

CLOSTRIDIUM 0.597 0.608 0.488 0.487 0.489 0.47

RHODOBACTER 1 0.665 0.674 0.577 0.566 0.546 0.593

RHODOBACTER 2 0.692 0.694 0.549 0.527 0.51 0.595

BACILLUS 0.677 0.837 0.496 0.502 0.481 0.506
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Figure 4.5: Comparison between the AUPRC and AUROC performance obtained in

test three using a balanced validation set.
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Table 4.16: Average AUPRC and AUROC performance

± standard deviation per model across the five bacterial

strains in a balanced validation set. The numbers in bold

indicate the model with the highest performance.

MODELS AVERAGE

PRECISION

AT BEST

THRESHOLD

AVERAGE

RECALL

AT BEST

THRESH-

OLD

AVERAGE

AUPRC

AVERAGE

AUROC

RANKING

BASED

ON PRE-

CISION

AT BEST

THRESH-

OLD

RANKING

BASED

ON

AUPRC

RANKING

BASED

ON AU-

ROC

RF-HOT 0.603±0.176 0.946±0.061 0.731±0.130 0.713±0.129 3 1 2

RF-TETRA 0.606±0.097 0.902±0.070 0.725±0.095 0.725±0.097 2 2 1

GRU-0 0.505±0.003 1.0±0.0 0.553±0.069 0.548±0.059 5 4 4

GRU-1 0.505±0.003 1.0±0.0 0.545±0.055 0.537±0.047 5 4 4

LSTM-3 0.505±0.003 1.0±0.0 0.542±0.054 0.530±0.057 5 4 4

LSTM-4 0.505±0.003 1.0±0.0 0.546±0.052 0.551±0.059 5 4 4

MULTiPly 0.530±0.039 0.809±0.135 0.592±0.072 0.608±0.092 4 3 3

G4PROMFINDER 0.471±0.056 0.683±0.372 - - 6 - -

BTSSFINDER 0.409±0.228 0.345±0.353 - - 7 - -

BPROM 0.682±0.093 0.191±0.248 - - 1 - -



51

RF-HOT had the best performance in terms of AUPRC on all the validation data sets but the Bacillus amylolique-

faciens ’ where RF-TETRA had the best performance. Both RF models had the best performance across the bacteria as

shown in Figure 4.5. A deeper analysis was made to find additional properties found in each bacterium to help explain

the models’ possible target patterns. Table 4.17 shows a large concentration of proteo-bacteria with high AT content in

the training data set. Table 4.18 shows that there is only one proteo-bacteria and lower AT content in the validation

data set. These motifs were obtained with a computational program and have not been validated. The Multiple Em for

Motif Elicitation (MEME) [65] tool was used to find conserved motifs in the bacterial promoter sequences. Table 4.18

shows that Lachnoclostridium phytofermentans and Bacillus amyloliquefaciens had very noticeable TATAAT conserved

motifs compared to the other bacteria. Additionally, Mycobacterium smegmatis had a high concentration of thymine (T)

and guanine (G) in the -10 position relative to the TSS. Both nucleotides proved to have higher importance score in that

position, as shown in Figures 4.1 and 4.2.

Table 4.17: Training data set’s characteristics. Note that

the motif’s X-axis is labelled from 1 to 40 but the the

positions relative to the transcription start site are -39

to 0.

TRAINING

BACTERIA
TYPE

ME-

DIAN

GC %

MEME MOTIFS

E. coli
Proteobac-

teria
50.6
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Helicobacter

pylori

Proteobac-

teria
38.9

Campylobacter

jejuni

Proteobac-

teria
30.4

Streptococcus

pyogenes
Firmicutes 38.4

Salmonella

enterica serovar

Typhimurium

Proteobac-

teria
52.1
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Chlamydia

pneumoniae

Chlamy-

diae
40.6

Shewanella

oneidensis

Proteobac-

teria
46

Leptospira

interrogans Spirochaetes
35
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Streptomyces

coelicolor

Actinobac-

teria
71.98

Table 4.18: Validation data set’s characteristics. Note

that the motif’s X-axis is labelled from 1 to 40 but the

the positions relative to the transcription start site are

-39 to 0.

VALIDATION

BACTERIA
TYPE

ME-

DIAN

GC %

MEME MOTIFS

Mycobacterium

smegmatis

Actinobac-

teria
67.4
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Lachnoclostrid-

ium

phytofermentans

Firmicutes 35.6

Rhodobacter

capsulatus

Proteobac-

teria
66.5

Bacillus amy-

loliquefaciens
Firmicutes 46.4
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4.4 Summary

The Random Forest trained with hot-encoded promoter sequences was selected as

the Promotech’s default predictive model for whole genome assessment and both RFs

were selected for balanced data sets, due to their high performance across the bacteria

validation tests. The performance on the first whole genome test, where the model

was tasked to predict the promoters’ exact position, was RF-HOT (0.14±0.1 AUPRC

and 0.71±0.17 AUROC). During the second test, the model was tasked to predict

promoter clusters and increased its performance to RF-HOT (0.75±0.18 AUPRC and

0.9±0.06 AUROC). The last test used a balanced data set, including four state-of-

the-art promoter prediction programs (BPROM, BTSSFinder, G4PromFinder, and

MULTiPLy) and, the RF models outperformed all the other programs across all the

bacteria with a performance of RF-HOT (0.73±0.13 AUPRC and 0.71±0.13 AUROC)

and RF-TETRA (0.73±0.1 AUPRC and 0.73±0.1 AUROC).



Chapter 5

Conclusions

In this project, we built a universal prokaryotic promoter recognition model, and,

based on the complete empirical analysis of promoter patterns found across a wide

range of bacteria and the results obtained by the Random Forest and Recurrent Neural

Network models, we concluded the following:

1. Both Random Forest models’ feature importance ranking showed that AT-rich

sequences had the highest importance scores, as shown in Tables 4.4, 4.5, 4.6,

and 4.7. These sequences matched the Pribnow-Schaller box consensus sequence,

which is a commonly found in bacterial promoter regions.

2. The Random Forest models gave higher importance scores to the Adenine (A)

and Thymine (T) nucleotides located around the -10 and -35 positions relative

to the TSS, as shown in Figures 4.1 and 4.2. The pattern is more noticeable

in some bacteria than others, for example, in L. phytofermentans and B. amy-

loliquefaciens is more present compared to M. smegmatis and R. capsulatus, as

shown in Table 4.18.

3. The Random Forest model trained with hot-encoding sequences outperformed

the Recurrent Neural Networks by around 20-40% AUPRC and 1-4% AUROC,

as shown in Tables 4.10, 4.13, and 4.16. Additionally, Random Forest took

40% less time to train, as shown in Section 4.1. Note that there is room for

improvement in the RNNs’ architecture, as the RNNs’ hyper-parameters were

manually tuned due to their long training time of 6.5 days using the unbalanced
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data set. Tuning them using automated processes, such as grid-search, proved

to be challenging due to the exponential time increase with every new possible

hyper-parameter combination included in the search. In sum, there might be

different hyper-parameter combinations that might increase their performance.

4. The Random Forest model trained with hot-encoded sequences and the Recur-

rent Neural Networks were able to traverse entire genomes using a 40 nt sliding

window with long running times of around four hours and 14 million executions

per genome.

5. The Random Forest model trained with tetra-nucleotide frequencies was unable

to traverse the entire genome due to a higher demand for random-access memory

(RAM) allocation space and CPU intensive tasks needed to obtain the tetra-

nucleotide frequencies from, around, 14 million sliding window sequences per

bacterium.

6. Since the RF models predicted promoters nearby actual promoters, their average

AUPRC performance substantially increased when predictions within 100 nt of

an actual promoter were considered correct, as shown in Tables 4.10, 4.13 and

Figure 4.4. For example, the RF-HOT model increased its performance from

0.141±0.095 to 0.753±0.184 average AUPRC. This indicates that the models

detect signals in the region close to an actual promoter; although they may miss

the exact location.

7. The RNN models achieved a high average AUPRC and AUROC performance

during training and testing but performed poorly on unseen bacteria in the

validation tests, indicating that the models over-fitted the training data. For

example, the GRU-0 model’s performance dropped from 0.761 during training

to 0.553±0.069 average AUPRC during the balanced validation test, as shown

in Tables 4.3 and 4.16.

8. The Random Forest models proved to produce an overall high average AUPRC

and AUROC performance across a wide range of bacteria in different conditions

such as balanced, unbalanced, and whole genomes’ data sets, as shown in Tables

4.10, 4.13, and 4.16. Both models outperformed bTSSfinder and G4Promfinder

on average precision at the best thresholds by around 30% and MULTiPLy’s

AUPRC by around 15% on the balanced validation test.
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Based on these findings, it can be stated that Promotech is a well-suited tool for

universal bacterial promoter detection when compared to currently available tools

that have a more narrow focus on a single bacterium or small set of bacteria and

sigma factors. Promotech is available at GitHub [66].
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