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Abstract 

Reading to be remembered material aloud improves memory at test compared to material read 

silently; a finding termed “the production effect”. Aloud words are theorised to be better 

remembered because they stand out and benefit from distinctive processing during which unique 

features of the words (i.e., visual, phonological, semantic) are attached to the encoding trace. 

Recent accounts challenge this notion suggesting that an attentional or effortful component 

contributes to the effect. The following applies pupillometry to measure cognitive effort during a 

production task; the pupils dilate when one is engaged in an effortful task (e.g., solving a 

difficult math problem) compared to a less effortful task (e.g., solving an easy math problem). 

Across two experiments, I separated components of the production task (e.g., presenting the 

stimulus separately from speaking) to provide insight into the underlying active cognitive 

processes. In Experiment 1, a pre-cue was implemented, participants viewed the instructional cue 

(e.g., read aloud) prior to viewing and producing the stimulus. In Experiment 2, participants 

viewed the word and instruction simultaneously and waited until a later “Go” cue to speak. Both 

experiments demonstrated evidence showcasing the importance of distinctiveness and also the 

influence of other cognitive processes within the production paradigm.  

 Keywords: memory, recognition, production effect, pupillometry 
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General Summary 

Many people try to repeat or read things aloud to memorize them. Indeed, saying things aloud 

does improve memory for those items–this phenomenon is known as the production effect. 

Researchers proposed that aloud words are remembered better than silent ones because aloud 

words are unique compared to the silent ones. This notion has been challenged by suggestions 

that speaking aloud might increase effort or attention to aloud words. I assessed this possibility 

by measuring pupil size as an index of cognitive effort. I modified the production paradigm by 

separating the steps involved in the production task in two ways: (1) In Experiment 1, I added a 

pre-cue where participants viewed the instructional cue prior to speaking aloud; and (2) In 

Experiment 2, the cue to speak aloud was delayed. My results suggest an additional process 

facilitates the production effect which will be detailed in the following text. 
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Chapter 1: Literature Review 

When people deliberately try to remember information, whether it is a birthday or 

information from class that will appear on a test, they use a variety of study techniques. For 

example, self-report measures from university students suggest that within the university 

environment, they will often reread passages from their study notes and that university 

instructors reinforce these habits (Morehead, Rhodes, & DeLozier, 2016). But is this an effective 

strategy? Indeed, research suggests that reading material when accompanied by some form of 

production (e.g., reading aloud, writing, etc.) does improve memory relative to material that is 

not produced (Ozubko, Hourihan, & MacLeod, 2012). At first glance this phenomenon – titled 

the production effect – seems straightforward. However, there are complex cognitive processes 

underlying this seemingly simple effect. The dominant explanation of the production effect is 

distinctiveness; that is, the produced materials are remembered better because they have extra 

features (e.g., motoric, auditory) that the silently read words do not (Hunt, 2006; MacLeod, 

Gopie, Hourihan, Neary, & Ozubko, 2010). Although there is a great deal of support for this 

explanation, there is also reason to believe that attention and/or effort contribute to the enhanced 

memory performance. In the following, I will outline research on the production effect, describe 

the evidence for or against a distinctiveness explanation, and discuss how attention or effort may 

play a role. Then, I will describe the advantages of using pupillometry (an unobtrusive 

psychophysiological technique) as a proxy to measure attention or effort. The ultimate purpose 

of this thesis is to closely examine the various cognitive processes used in this memory paradigm 

to inform the use of the production effect as a device to improve memory performance. 

The finding that reading words aloud resulted in a memory advantage over words that 

were read silently was first recorded by Hopkins and Edwards (1972). The authors observed that 
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recognition for words said aloud was better when the aloud and silent words were intermixed, 

but not when compared across two separate pure-lists made entirely of either condition. In the 

following decades several other researchers observed this effect, sometimes inadvertently when 

production was used as an experimental manipulation to study other cognitive processes, such as 

attention and modality effects in long-term memory (Conway, & Gathercole, 1987; Gathercole & 

Conway, 1988; MacDonald & MacLeod, 1998). The effect itself did not gain traction nor its 

name until MacLeod, et al. (2010) later elaborated on previous findings by completing a series of 

experiments designed to identify the breadth and boundaries of the effect. The structure of the 

studies completed by MacLeod, et al. (2010) is considered typical for the paradigm, whereby a 

list of words was presented one at a time simultaneously with a cue (e.g., a symbol or colour) 

indicating whether the cued word was to be read aloud or silently. The study list was then 

followed by one of two memory tests: (1) a recognition test, where participants were presented 

with a list of words, half which were previously studied half which were not; (2) a recall test 

where participants must remember as many words as possible without a cue. Since their initial 

examination, the production effect has been replicated by many authors and shown to improve 

memory in diverse domains such as visual imagery (Fawcett, Quinlan, & Taylor, 2012; Hourihan 

& Churchill, 2019), longer texts (Ozubko, Hourihan et al., 2012), and across age groups (Lin & 

MacLeod, 2012). Indeed, the effect has been applied to practical domains such as within 

educational contexts, and the memory benefit for items studied aloud has been demonstrated to 

sustain itself when the interval between study and test was extended by a week (Ozubko, 

Hourihan et al. 2012). Considering the results of these experiments it was proposed that the 

production effect was the outcome of the aloud words standing out against the backdrop of the 

silently read ones, resulting in the former items being more distinctive within memory (Hunt, 
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2006; MacLeod et al., 2010). The following sections will describe evidence for – and against – 

this perspective as a prelude to the present studies.   

1.1 Distinctiveness in Production 

Distinctiveness is a mental process whereby unique items stand out against common ones 

and therefore, are processed differently; this differential processing benefits later recollection of 

those unique items (Hunt, 2006). Importantly, memory improvement is not the result of the 

exceptional features of those items, but rather of a specific type of cognitive processing used, 

which facilitates later retrieval of those items. According to Hunt (2006), to initiate distinctive 

processing there must be some form of difference or salience within the items that are processed 

distinctively: they must stand out in some way. Within the framework of the production effect 

the predominant theory is that the aloud items stand out against the silent items because they are 

encoded with additional information specific to those words, such as the unique phonemes, 

auditory, visual and semantic traits that are encoded when a word is said aloud (MacLeod et al., 

2010; Ozubko & MacLeod, 2010). The distinctive processing which occurs in response to the 

aloud items, incorporates those word’s distinctive features into memory, thereby improving later 

performance.  

The notion that distinctiveness was a central feature of the production effect was 

evidenced by three key findings in MacLeod et al.’s (2010) study. First, producing the same 

response for all produced words (e.g., saying “yes” for all the aloud items rather than reading the 

specific word aloud) did not result in a memory benefit for those items, indicating that the verbal 

production itself had to be unique to encode the distinctive information of the words. Second, the 

production effect was found even for nonwords, showing that production did not necessitate the 

study items be meaningful as long as they were unique. Third, the production effect occurred 
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when words were already strengthened by virtue of generation (a process where participants 

must come up with the word themselves from a definitional cue). This finding demonstrated that 

production was additive to words that had already been strengthened, suggesting that production 

did not just improve memory by increasing encoding strength. Rather, it was thought that the 

additional distinctive information (e.g., motor and auditory features) was incorporated into the 

memory trace during encoding that increased memory for the item. In summary, these results 

supported the notion that the distinctiveness account was consistent with the memory benefits 

observed as a result of production.  

In addition to reading words aloud activating distinctive processing, participants might 

also use the “distinctiveness heuristic”, whereby distinctive information encoded during study is 

used strategically, to inform their decisions at test (Dodson & Schacter, 2001). During encoding, 

participants may begin to incorporate some of the distinctive elements of the study phase into 

their memory; specifically, they may encode an element associated with the motoric articulation 

itself. Later, at test participants may think back to their subjective experience at encoding and use 

this “production trace” (Fawcett, 2013) to identify whether they remember saying the word aloud 

at study. If successful in retrieving this trace, then it can be heuristically inferred that the word 

appeared on the study list (Dodson & Schacter, 2001). Supporting this notion, producing words 

is ineffective at improving memory on implicit memory tasks (e.g., speeded reading), which do 

not require consciously assessing whether a word had been studied (Hourihan & MacLeod, 2008; 

MacDonald & MacLeod, 1998; MacLeod et al. 2010). These observations lend support to the 

suggestion that participants are able to access the production trace at test and indicate that 

production is an effective mnemonic device only if participants are actually able to access it. 
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Further evidence for the use of a distinctiveness heuristic during production includes 

studies using source or list discrimination tasks. For example, source discrimination tasks – 

where at test participants identify whether a given word at study was read aloud, silently or if it 

is a new word – evidenced that participants had a higher likelihood of correctly identifying the 

mode of presentation for words that had been read aloud (Conway & Gathercole, 1987; Ozubko, 

Gopie, & Macleod, 2012). This held true even when silent words were strengthened by repetition 

(Ozubko, Major, & MacLeod, 2014). These findings suggest that participants are successful at 

accessing distinctive information attached to the encoding trace such as motor, auditory, or 

semantic information, at test and use it to discriminate between test items. Further evidence 

comes from list-discrimination tasks where participants are shown two separate lists at study and 

then at test must indicate which list a given word was from. When a mixed-list of items is 

followed by a pure-aloud list, accuracy for source discrimination is lower than when the mixed-

list is followed by a pure-silent list. Supposedly, reading the second list aloud renders the aloud 

items on the first list no longer useful as a diagnostic tool at test, since these aloud items cannot 

be parsed from those read aloud on the second list (Ozubko & MacLeod, 2010). Participants’ 

success at these types of tasks implies that they are encoding distinctive information at study and 

that they are able to access this information and perhaps use it strategically to inform their 

decisions at test. Evidence that participants are strategically utilizing distinctive information 

supports the distinctiveness theory and more specifically the distinctiveness heuristic.      

 An extension of the evidence for distinctiveness in production came from Forrin, 

MacLeod and Ozubko (2012), who demonstrated that the effect persisted across different modes 

of production (reading aloud, mouthing, writing and whispering). Moreover, they observed that 

different modes of production resulted in differing magnitudes of the effect. For example, 
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reading words aloud resulted in better memory performance than when words were whispered, 

written, or mouthed. These results replicated a previous finding by Conway and Gathercole 

(1987) who also observed an intermediate production effect for whispering. Because words that 

are read aloud utilize two forms of additional processing—motor articulation and auditory 

feedback—it is implied that they benefit from additional distinctive information that is encoded 

within the two forms of sensory feedback (Conway & Gathercole, 1987; Forrin et al., 2012). In a 

similar vein, Quinlan and Taylor (2013) lent further support for a distinctiveness account by 

obtaining a larger production effect for words that were sung compared to words read aloud; it 

was surmised that singing the word results in more distinct encoding elements than speaking. 

The production effect appears to be additive and the magnitude of the effect may vary depending 

on the number of distinct processes which occur during encoding (Forrin et al., 2012; Ozubko & 

MacLeod, 2010; Quinlan & Taylor, 2019). For example, when one is singing they are engaged in 

motor articulation, auditory processing and changing qualities of their voice such as their tone 

and pitch; when one is talking they are still engaged in motor and auditory function but there is 

less uniqueness in their vocal qualities (Hassall, Quinlan, Turk, Taylor, & Krigolson, 2016; 

Quinlan & Taylor, 2013). Additionally, Jamieson and Spear (2014) demonstrated evidence for 

the offline production effect – better memory for words that were imagined to be typed than 

silently read ones. This effect was also smaller compared to the magnitude of the effect when 

words were actually typed out. The results from these studies demonstrated that distinctive 

processing can be additive and the amount of distinct processing that occurs can influence the 

effectiveness of production.   
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1.2 Theoretical and Empirical Challenges 

 Although substantial evidence points towards distinctiveness as a fundamental process in 

yielding the production effect, not all experimental observations are compatible with a 

distinctiveness framework. At first the observation that the production effect was only observed 

in within-subject designs (experiments where participants view a mixed-list of both words to be 

produced or read silently) was thought to be a cornerstone of the effect. This type of design 

aligns with a distinctiveness account – words said aloud would stand out compared to the words 

that were read silently causing the memory benefit (Hopkins & Edwards, 1972; Macdonald & 

MacLeod, 1998; MacLeod et al., 2010). In a between-subjects design participants are only 

exposed to one condition and therefore this design does not fit into a distinctiveness framework 

(Bodner & Taikh, 2012; Bodner et al. 2016; although see Jamieson, Mewhort, & Hockley, 2016). 

Indeed, attempts to resolve the effect in between-subjects designs have historically failed to 

produce any difference (Dodson & Schacter, 2001; Hopkins & Edwards, 1972; MacLeod et al., 

2010). Nonetheless, this claim was recently challenged by a series of meta-analyses showing 

consistent evidence for a between-subjects production effect (e.g., Bodner, et al., 2014; Fawcett, 

2013). Notably, it was revealed that using a between-subjects design had a moderate effect size 

and showed a reliable trend of hits for aloud words being greater than those for silent words.   

 Following the initial evidence for a between-subjects production effect, the finding has 

been replicated successfully by multiple researchers (Bodner, Jamieson, Cormack, McDonald, & 

Bernstein, 2016; Bodner et al., 2014; Forrin, Groot, & MacLeod, 2016; Forrin, Ralph, Dhaliwal, 

Smilek, & MacLeod, 2019; Taikh & Bodner, 2016). Although, note that while the within-subject 

effect is robust across both recognition and recall designs the between-subjects production effect 

has only been observed in recognition studies (Fawcett, 2013; Forrin & MacLeod, 2016; 
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MacLeod & Bodner, 2017). This discovery opened a dialogue that the production effect might 

not be solely driven by distinctiveness and that a second mechanism may also contribute to the 

effect (Fawcett, 2013; Fawcett & Ozubko, 2016; Ozubko, Gopie, & MacLeod, 2012). For 

example, saying the word aloud might strengthen the memory trace of the word (Bodner & 

Taikh, 2012). This notion is closely related to the concept of level of processing, introduced by 

Craik and Lockhart (1972) who posited that a deeper processing of an item (e.g., deciding if the 

word “cow” is semantically related to the word “grass” as opposed to silently reading the word 

“cow”) would strengthen the encoding process and create a stronger memory trace of the word. 

Considering this, the strength account posits that because aloud words are more strongly 

encoded, they will be more likely retrieved at test. A second cognitive mechanism proposed to 

play a role in increasing memory performance in the production paradigm is attention (Bodner, 

Taikh, & Fawcett, 2014; Fawcett, 2013; MacDonald & MacLeod, 1998; Ozubko, Gopie et al., 

2012). Perhaps saying the word aloud allocates more attentional resources to the word thereby 

strengthening the encoding trace or facilitating the effectiveness of distinctive processing. In the 

text that follows, studies that observed results that do not fit into the traditional framework of the 

distinctiveness account, or that supported a strength or attentional account, will be discussed. 

Finally, I will discuss how psychophysiological measures, such as pupillometry, have been 

applied to examine cognitive processes and discuss how similar techniques can be used to 

observe attentional and strength processes during production.    

1.3 Evidence for Alternative Types of Processing 

 1.3.1 Evidence that production increases attention or encoding strength. Multiple 

researchers have suggested that the greater magnitude of the production effect in a within subject 

design is the result of a cost incurred to the silent items when presented in a mixed-list (Bodner 
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et al., 2014; Hopkins & Edwards, 1972; Jones & Pyc, 2014; Jonker, Levene, & MacLeod, 2014; 

Lambert, Bodner, & Taikh, 2016). In free-recall studies, accuracy for silent words was 

demonstrated to be lower in a mixed-list design when compared against silent items in a pure-list 

design (Lambert et al., 2016; Jones & Pyc, 2014). Surprisingly, comparing aloud words in this 

manner revealed no performance differences between the two lists (but see Jonker et al., 2014). 

This evidence suggests that the production effect in within-subject designs, using a mixed-list is 

driven by a cost incurred to the silent items rather than a benefit to produced items within free-

recall studies. Both Jonker et al. (2014) and Lambert et al. (2016) suggested that during studies 

using a within-subject free-recall procedure, participants engage in both item-specific and item-

order processing for studied items. Item-specific processing is activated by unusual stimuli (e.g., 

aloud words) which engages encoding of information specific to the features of an individual 

item (i.e., visual, phonological, semantic features). In contrast item-order processing is the 

encoding of relational information, such as the order of word presentation (e.g., remembering 

that the word ‘dime’ followed the word ‘toast’). In within-subject recall production studies 

enhanced item-specific processing for aloud words interferes with item-order processing; since 

increased item-specific processing for aloud words reduces the amount of item-order processing 

that occurs overall. Silent words are particularly affected by a reduction to item-order processing 

since they do not benefit as much as aloud words from item-specific processing but only when 

aloud and silent items are presented together. Additionally, some of these same studies 

determined that the cost to silent items is actually greater than the memory boost for aloud words 

(Jones & Pyc, 2014). The notion that the production effect may be caused in part by a cost to 

silent items rather than a boost to aloud items poses a challenge to the distinctiveness account of 

production which predicts better memory for aloud items due to advantageous distinctive 
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processing; this account does not predict that distinctive processing would lessen encoding for 

silent words (cf. Macleod et al., 2010).  

 Bodner et al. (2014) again demonstrated a cost to silent items in a within-subject design, 

but this time using a recognition paradigm rather than free-recall, confirming that the cost to 

silent items discovered in studies using free-recall at test extended to those using recognition as 

well. They determined that in a mixed-list design, the measure of sensitivity (dʹ) for silent items 

was lower than the same measurement for silent items in a pure-list design. This suggests that the 

presence of aloud words decreases sensitivity for silent items in a mixed-list design meaning that 

participants are less able to identify silent words during recognition in a mixed-list compared to a 

pure-list design. The same authors obtained a significant between-subjects production effect by 

comparing dʹ across the two pure-lists finding that sensitivity was greater for aloud words than 

silent words. Finally, they observed that sensitivity for aloud words in the mixed-list improved 

when compared against the pure-silent list, confirming that reading words aloud on the mixed-

list did improve memory for aloud words. However, the same authors did not observe improved 

sensitivity for aloud items in the mixed-list when compared to the pure-aloud list, providing 

concrete evidence that there is a memory benefit from production, even after factoring in costs. 

Although these results also revealed that production might not be particularly useful when used 

in a mixed-list context – if the goal is to remember all list items – since improved memory for 

the aloud items may be at the detriment to memory for silent items.  

 In a subsequent study Forrin et al. (2016) followed up on the previous study by Bodner et 

al. (2014). They argued that comparing dʹ across different experimental designs was problematic 

since it is impossible to separate false-alarms (FA) in a mixed-list design (i.e., having both a 

mixed-aloud and mixed-silent FA rate), an issue previously discussed by Fawcett et al. (2012). 
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By not being able to separate the FA rates for the two mixed list conditions, there is no way of 

knowing if the participant thought the FA was a word they had read aloud or had read silently. 

Therefore, the measure used by Bodner et al. (2014) was biased since it assumed an equal 

probability for a FA being incorrectly identified as a word from either condition. Forrin et al. 

replicated the previous study using three different designs. First, they used a blocked design 

where the same participant viewed all three list designs (i.e., mixed-list, pure-silent, pure-aloud) 

replicating Bodner et al.’s (2014) previous findings using a similar dʹ measurement. Next, in 

their second experiment they altered the design by having participants make modality 

attributions at test (i.e., asked participants if they studied the word aloud, silently or if it was 

new). Using this method, they were able to obtain separate FA rates for the mixed-aloud and 

mixed-silent words. Finally, in their last experiment they followed the Experiment 2 protocol but 

separated the test following the mixed-list into two response options (e.g., aloud-new, silent-

new) so that a cost-benefit analysis could be completed. By examining the dissociated FA rates 

in Experiments 2 and 3 the authors demonstrated that words that were read aloud in the mixed-

list were better remembered than those read aloud in the pure-list, evidenced by a higher dʹ. 

However, they did not observe this advantage in Experiment 1 when the FA rates were not 

dissociated. Instead, this evidenced the notion that new items are not equally likely to be 

identified as aloud or silent; FA rates were more likely to be identified as silent items than aloud 

ones when separate FA rates were used but using separate FA rates did not impact the observed 

cost to silent items in the mixed-list. It should be mentioned that their approach fundamentally 

changed the design of the production experiment and while providing evidence towards 

differential FA rates, the results might be different in an unmodified production study.  
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 The discrepancy in results between studies that have found a cost to silent items and no 

benefit to aloud items (e.g., Jones & Pyc, 2014; Lambert et al. 2016) and those that have shown 

improved sensitivity for aloud items (e.g., Bodner et al., 2014; Forrin et al., 2016) is likely 

determined by the type of test used to asses memory performance. The set of studies that showed 

no advantage for aloud words used a free-recall testing procedure, whereas those studies that 

showed increased sensitivity for aloud words used a recognition test. Recollection and recall 

depend on different processes to elucidate memory. In free-recall where there is no cue at test to 

guide memory processes, participants rely more on relational processing – a process where 

information about words in relation to other words that appeared on the list is encoded (Lambert 

et al., 2016; Jones & Pyc, 2014). At test relational information can benefit memory by acting as a 

cue for related words. For example, the previously studied word “cow” might cue the word 

“grass” as these two words are semantically related. Conversely, in recognition studies a target 

word is provided, therefore, relational information is less important. Instead memory depends 

more on item-specific processing, the encoding of specific information about the stimulus itself 

(e.g., visual, semantic, phonetic, etc.) so that it can be compared to the test word. This is 

evidenced by the sensitivity scores being used to guide judgement for aloud words in recognition 

studies. Unlike studies examining the production effect in recognition, there is presently no 

evidence supporting the effect between subjects in recall (Fawcett, 2013; Forrin & MacLeod, 

2016; MacLeod & Bodner, 2017). It seems that production might only be beneficial for memory 

when used in a between-subjects design followed by a recognition test.  

 Many researchers have questioned if the cost to silent items is due to disengagement with 

those items or participants viewing them as less important. This notion is referred to as the “lazy 

reading hypothesis” (Begg & Snider, 1987; MacLeod et al., 2010). However, there are mixed 
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findings that both support and refute the hypothesis. Contradictory evidence suggests that 

participants are engaging with silent items to the same degree as aloud ones. For example, using 

a self-paced study design, where participants moved on to the next study word at their own pace, 

Lambert et al. (2016) found no difference between the average duration of study time for silent 

and aloud words. If participants regarded the silent words as being less important, it would be 

expected that they would spend less time studying those words. Additionally, participants who 

read the pure-silent list actually took longer than those who read the pure-aloud list. In a similar 

vein, studies that have strengthened encoding for silent items by adding a deeper processing 

manipulation (e.g., generation, imagery) contradict a lazy reading stance as the expected 

production effect remains intact even when silent items are strengthened (Forrin, Jonker, & 

MacLeod, 2014; MacLeod et al., 2010). Likewise, in a blocked list design where the first half of 

the list is read silently and the second half is read aloud (or vice versa), the cost to silent items is 

reduced (Bodner et al., 2016). It seems that the cost is incurred by differences in encoding for 

silent words that are presented in a mixed-list rather than differences in engagement. This 

observation refutes the notion that participants see silent words as being less important or are 

taking less time to encode them.  

Nevertheless, there is still conflicting evidence suggesting that participants might not 

attend to aloud and silent words equally: On subjective reports of attentional allocation at test 

participants report more engagement with aloud items (Fawcett & Ozubko, 2016) and are less 

likely to mind-wander while reading aloud than reading silently (Varao Sousa, Carriere & 

Smilek, 2013). Similarly, Ozubko, Bamburoski, Carlin, and Fawcett (2020) included a third 

study condition of silent items that participants were told were “more important” than both aloud 

and other silent items. This procedure resulted in superior performance for important silent items 
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over non-important silent items; indeed, performance was comparable to that observed in the 

aloud condition. Although there is no concrete evidence to support the lazy reading hypothesis 

per se, there is evidence that points towards different levels of attention and motivation between 

trials where participants speak aloud and those where participants read silently, which could 

potentially result in a cost to memory for the silent items.         

The assumption that producing words might influence attentional processes was 

considered by MacDonald and Macleod (1998) who sought to examine the effect of differing 

attention on direct and indirect memory. Across a series of three experiments attention was 

manipulated by having participants read words aloud as a means of increasing attention to those 

items versus reducing attention by having participants “ignore” the other items. In the first 

experiment participants were asked to say “pass” for items that were in the ignore condition. 

Later, in the second experiment the same methodology was used except participants were no 

longer required to make an overt response to the unattended items. Finally, in the third 

experiment participants were shown word pairs, with one item being the “attended” item to be 

said aloud and the other to be ignored. Note that across all three experiments participants were 

given no explicit instructions as to whether they should read the unattended word nor were they 

instructed to ignore it; they were unaware that the word list would be followed by a test.  

In each experiment the study list was followed by an implicit test and an explicit test. In 

the implicit test participants read the words aloud as quickly as possible; the implication was that 

words that had been “primed” (previously presented) would have a lower latency period before 

speaking than those that were not primed. Therefore, if participants were really not attending to 

the “ignored” words then there should be no difference in latency between silent words and new 

ones. The second, explicit memory test was a traditional recognition test format. The first two 
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experiments revealed similar results on the implicit test; the unattended words did prime memory 

as evidenced by faster reaction times for both attended and unattended items compared to new 

words. However, there was no priming effect for the ignored words when they were presented as 

a word pair. The explicit memory test showed better memory for the words that were read aloud 

– demonstrating a production effect - across all three studies. Interestingly, production only 

influenced memory on the explicit memory test. MacLeod et al. (2010) posited that production 

had no effect on the implicit memory test because without having time to make a conscious 

decision at test, participants would not be able to utilize distinctive information encoded during 

the study phase to discriminate between items. However, Macdonald and MacLeod (1998) also 

attributed the results of the explicit memory test to the increased attention that was used to 

encode the words that were said aloud. This study lent support for the theory that speaking aloud 

increased participants’ focus on the word resulting in a stronger encoding trace of that word.    

Further work examining the potential impact of attentional processes on the production 

effect were examined when the task was completed with background noise. Mama, Fostick, and 

Icht (2018) had participants complete a typical production task under different noise conditions. 

These included a steady-state noise condition (i.e., energetic noise presented in normal speech 

range); a babble condition (i.e., nonsense language syllables); and a silent condition where no 

noise was presented. In all noise conditions noise was played through headphones so that 

auditory feedback from production could not be heard by the participant. The production effect 

was observed in the no noise and the steady-state noise conditions. However, babble noise 

eliminated the effect rendering similar performance for aloud and silent recall. The authors were 

not sure if the babble noise interrupted the effect because of its informational nature (i.e., 

sounding like real words) or because it drew attention away from the task. A second experiment 
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was completed using fluctuating energetic sounds to see if it was the linguistic nature of the 

babble noise or the fact that the noise fluctuated that eliminated the production effect. They 

found that fluctuating noise also eliminated the production effect although average overall recall 

was similar to that of the no noise and steady-state noise conditions, which were all significantly 

higher than the babble noise condition. Furthermore, there was no difference between means 

across the four noise conditions for silent words. It seemed that it was not the informational 

quality of the background noise that interrupted the production effect but rather the fluctuation in 

the noise presented that reduced it. The authors suggested that noise impeded attentional 

processes during production and especially affected the aloud words which benefit from 

additional attention during production, drawing from Bodner et al.’s (2014) idea of “shallow 

processing” that might occur to silent words.  

A later study by Mama and Icht (2018a), further examined the role of attention in the 

production effect by studying a sample of adults with attention-deficit/hyperactivity disorder 

(ADHD). This disorder is characterized by an impairment in cognitive functions, especially those 

associated with attention (Faraone et al., 2000; Fuermaier, et al., 2015). The authors tested a 

clinical sample of adult participants with diagnosed ADHD who were already prescribed and 

taking methylphenidate (MPH) - a medication used to treat the attentional deficits associated 

with the disorder. The researchers had them complete a typical free-recall production task with 

and without MPH and compared their results to a healthy control group. The authors predicted 

that if there was an attentional component to the production effect, and that vocalizing improves 

attention, then they should see a production effect across both groups (control, ADHD) but that 

the production effect would be larger in the ADHD group after taking MPH. Their results 

confirmed their hypothesis: all three groups showed a significant production effect, and the 
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production effect was larger for participants after they had taken MPH. Interestingly, the 

difference in the production effect between the ADHD groups was driven by improved 

performance for aloud words in the MPH group and there was no difference in the recall of silent 

words. Furthermore, testing after administration of MPH revealed better memory for aloud 

words boosting recall scores to that comparable to the control group but the amount of silent 

words recalled was lower than the control group. These results were consistent with an 

attentional account of the production effect previously put forth by Mama et al. (2018), described 

above, whereby completing the experiment in a noisy environment that interfered with attention 

eliminated the memory benefit from production, but the attentional manipulation did not have an 

effect on their silent counterparts. This finding suggests that attention could be an integral 

process in the production effect. The fact that manipulating attention in both studies had an effect 

on aloud words but not silent words suggests that attention is not just a supporting background 

process, but rather that it plays a specific role in the improved memory outcome for aloud words.  

 In a similar vein, Forrin et al. (2019) theorized that silent items in the mixed-list design 

may be weakened by aloud words due to performance anticipation: Participants know that they 

will be saying an upcoming word aloud and their anticipation causes their attention to be 

diverted from the task at hand. In a series of four experiments they modified the typical 

production task by using different designs that would alert participants as to whether the 

upcoming words would be said aloud or silently. The experimenters theorized that if 

performance anticipation was interfering with encoding for silent items then the closer the silent 

word was to the next performance block the more it would be affected by performance anxiety. 

This notion is similar to the “next-in-line” effect whereby a participant has worse memory for a 

word they hear right before they know they will be speaking aloud compared to prior words they 
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had heard earlier (Brenner, 1973). The hypothesis was confirmed across three experiments; 

although observing the expected production effect, the researchers noted a linear decline in the 

performance of silent words as their proximity to words that were to be said aloud increased. 

Providing further evidence that performance is affected by the social factor of performance 

anticipation, when the participant completed the same task without an experimenter in the room 

the cost to silent items was lessened. Based on their findings the authors proposed that 

performance anxiety affected silent items in two ways: (1) attention was diverted from the silent 

items due to a preoccupation with upcoming performances; (2) upcoming performance created 

anxiety which decreased encoding for silent items (Forrin et al., 2019). One issue with this study 

is that in a standard production paradigm the participant is not privy to what word will appear 

next. Forrin et al. (2019) suggest that in these designs, a ‘blanket cost’ is imposed – all silent 

items are affected by a performance anticipation as participants do not know when the aloud 

items will appear. 

 In addition to attention, other research suggests that encoding strength may also 

contribute to the effect. Mama and Icht (2018b) examined the notion that the production effect 

could be influenced through effortful processing using delayed production. In the delayed 

production condition participants would complete a typical production trial but rather then saying 

the word aloud when it was presented they held their verbal response until they were prompted 

by a later cue. The word did not remain onscreen during the delayed interval between viewing 

the stimuli and producing the word. This meant that participants would have to retrieve the word 

from their working memory - akin to the testing effect, whereby memory for items that are tested 

is superior to memory for items that are studied a second time (see Eisenkraemer, Jaeger, & 

Stein, 2013, for review). However, the distinctiveness theory of production would predict that 



 19 

there would be no difference between immediate vocal production and delayed vocal production 

since the same number of distinctive elements (e.g., auditory, semantic, motor features) would be 

present.    

Mama and Icht (2018b) found that delaying vocalization by either 1 or 3 s improved 

recall scores compared to reading the word aloud immediately. The advantage of delayed 

production persisted even when study time for the aloud words was increased to three seconds. 

However, the authors noted that the increase in memory observed following the delayed trials 

could be caused by factors related to withholding the production response or extra processing of 

the word during the delayed time period. To examine if the benefits of delayed production were 

related to effortful retrieval and not these other factors, they added a delayed reading condition. 

In both the delayed production and the delayed reading condition participants first viewed the 

stimuli followed by a delay (no stimulus) of 3 s, then participants retrieved the word from 

memory (i.e., delayed production) or the word reappeared on the screen and the participant read 

it aloud (i.e., delayed reading). The memory advantage for delayed production persisted even 

when compared against delayed reading, evidencing that improved memory performance 

resulted from the increased effort that was used in retrieving the items and not increased study 

time (Mama & Icht, 2018b). This outcome supports the notion of a strength account of 

production, that rendering production more effortful increases the encoding strength of the word 

and results in a stronger memory trace (Bodner & Taikh, 2012).   

In a similar procedure, Thoms, Fawcett, Hourihan and Willoughby (2019) used a delayed 

production procedure but modified it by including differing stimulus onset asynchronies (SOAs) 

for both aloud and silent words. The timing between the stimulus onset and the ‘Go’ signal to 

produce the word varied by 500 or 1500 ms. Additionally, they included a third, less frequent, 
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catch condition where participants thought they would have to produce the word, but the Go 

signal never appeared. The authors supported the delayed production effect reported by Mama 

and Icht (2018), observing a trend towards a higher accuracy for both aloud and silent words 

after the 1000 ms delay compared to the 500 ms delay. Importantly, unlike the prior study there 

was no immediate production condition; therefore, no comparison could be made between 

memory performance for delayed items and immediately produced ones. Nevertheless, the 

observed trend of greater recognition scores over the increasing intervals of the SOAs suggests 

that the comparison would be similar to that recorded by Mama and Icht (2018b) where the 

delayed production effect improved memory relative to immediate production.  

Importantly, the key finding by Thoms et al. (2019) was that a significant production 

effect was still observed during the catch trials even though the word was never produced. This 

was akin to the offline production effect previously observed by Jamieson and Spear (2014) 

where a production effect was obtained for words that were imagined to be typed. However, an 

important difference between the two studies is that Thoms et al. (2019) did not instruct 

participants to imagine producing the word. Both the finding that accuracy for aloud words 

increased over a time delay and the observation of a production effect in the absence of a 

productive act, challenge the distinctiveness account. First, as stated previously by Mama and 

Icht (2018b), delaying the onset of production does not manipulate the amount or type of 

distinctive information that is encoded, therefore, it is likely that either processing strength or 

attention is increased by delaying production. Second, the authors found evidence for the 

production effect in the absence of distinctive processing elicited by the act of production, 

finding a memory advantage for aloud words even on stop trials. Although the authors could not 

rule out the possibility that participants imagined producing the word, there is no reason to 
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expect they would be motivated to do so in the absence of an instruction. Alternatively, these 

trials might have been distinctive to participants themselves as they may have caught participants 

off guard. A second explanation is that the participants may have engaged in more attentional or 

effortful processing of the word when they thought that they would have to produce it, whereas 

in a silent trial they may have not stayed engaged with the stimulus after it had left the screen. 

Nonetheless, this study, along with the others mentioned above, suggest that either attention or 

processing strength play a role in the production effect (Forrin et al., 2019; Mama et al., 2018; 

Mama & Icht, 2018a, 2018b). While the above findings do not refute the distinctiveness account, 

they do highlight outcomes of the production effect that do not fit into a traditional 

distinctiveness account framework, perhaps suggesting an additional component.   

1.3.2 Neurological evidence for the production effect. Given the competing theoretical 

frameworks within this literature, there has been a growing interest in using psychophysiological 

and neuroimaging approaches to better characterize the mechanisms involved in the production 

effect. In the first such study, Hassall et al. (2016) measured brain activity using 

electroencephalography (EEG) during a standard production paradigm. Specifically, the 

researchers were interested in the P300 – a positive deflection over the frontal and parietal lobes 

comprised of two subcomponents: (1) the P300a which is localized to the frontal cortex and is 

associated with stimulus driven processing; and (2) the P300b which is localized to the parietal 

lobes and reflects distinctive processing (although see Polich, 2007). Of particular note, the P300 

is largely characterized by its nature to be activated by unique stimuli and has previously been 

used to identify the impact of distinctive items on memory in paradigms such as the primacy and 

von Restorff effects (Fabiani & Donchin, 1995; Kamp, Forester, Murphy, Brumback, & 

Donchin, 2012).  



 22 

 Since the P300 had previously been associated with distinctive encoding, Hassall et al. 

(2016) inferred that the signal should be observed during a production task and that the 

amplitude of the signal should be larger for produced words compared to silent ones. 

Furthermore, a mode of production that incorporates more distinct elements into the encoding 

trace (e.g., singing) should result in a larger P300 signal than words read aloud. Consequently, in 

addition to aloud and silent conditions the researchers added a third “sing” condition. 

Participants completed the task while their neural activity was measured with EEG; the word and 

instruction were presented before enacting production because speaking can interfere with neural 

recording. The event-related brain potentials (ERPs) included in the analysis were obtained from 

300-500 ms post instruction – well before production was enacted. The researchers predicted that 

amplitude would increase depending on the amount of distinctive processing which occurred and 

therefore posited that the mode of production which would elicit the highest amplitude would be 

singing aloud, followed by speaking aloud and lowest for reading silently. Furthermore, they 

predicted that memory performance would follow a similar trend and that a larger peak 

deflection would be associated with better memory for more distinctive words.    

 The authors did not find an increased behavioural production effect for singing (i.e., 

larger difference in memory performance between words sung aloud versus read silently than for 

words read aloud versus words read silently). However, recognition was higher both for items 

that were sung or spoken compared those read silently, demonstrating the production effect for 

both conditions. These behavioural findings were accompanied by the observation of P300 

waveforms that peaked at 400 ms and were localized to the parietal lobe consistent with a P300b 

signal (Polich, 2007). Analysis of the P300 revealed that the peak amplitude increased for both 

spoken and sung words relative to silent words. Contrary to the predicted outcome, the peak 
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amplitude for the sung words was not greater than the words said aloud. Although, the results of 

the study did not show strong evidence for the distinctiveness account (there was no evidence for 

more distinctive processing for sung items over spoken items), it also did not refute 

distinctiveness since produced items still benefited and showed a stronger P300 signal compared 

to those in the silent condition (Hassall et al., 2016). However, given that the change in signal 

was observed prior to the word being produced it is possible that this was reflecting a separate 

process, such as increased encoding strength or attention. The P300 is also sensitive to 

attentional and memory load processes and the amplitude changes may reflect a response to both 

attentional load and mental capacity (Kok, 2001; Yu, Prasad, Thakor, & Al-Nashash, 2015). 

Therefore, the difference in amplitude observed between the production conditions and the silent 

conditions may have been influenced by either one of these processes. As Hassall et al. (2016) 

did not demonstrate a clear relationship between distinctive processing and the P300 it cannot be 

directly inferred that purely distinctive processing is occurring, and a strength or attentional 

account cannot be ruled out.  

A second endeavour to investigate the underpinnings of the production effect by 

observing the neural mechanisms behind the effect was completed by Fawcett et al. (2020). Their 

investigation was exploratory and aimed to determine if neural activity during the production 

effect was consistent with a distinctiveness account. However, instead of EEG, functional 

magnetic resonance imaging (fMRI) was used to measure blood flow in the brain. By detecting 

changes in blood flow in the brain fMRI can be used to localize cognitive activity to specific 

areas of the brain – a key difference from EEG. The authors reasoned that if distinctive 

processing during the production effect was due to the encoding of more distinct elements (i.e., 

motoric, semantic, etc.) then areas responsible for this output (i.e., motor and auditory cortices) 
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should be more active during encoding for words that were produced. In addition to reading the 

words aloud and silently the authors added a third “check condition” where participants were 

instructed to read the word silently to themselves but say “check” out loud. The purpose of this 

third condition was to act as a motor control to enable the comparison of any neural responses 

that would occur due to the effort of speaking alone.  

Their behavioural results revealed the expected production effect with more aloud words 

being labelled ‘old’ than check or silent items; the latter two conditions did not differ. Finally, 

more responses were made to all study conditions compared to foil words. Examination of neural 

activation during the study phase revealed more substantial activation in the motoric, auditory 

and semantic brain areas during the aloud and control conditions compared to the silent 

condition. Although similar areas of the brain were activated in both the aloud and control 

conditions, difference comparisons revealed that activation in the motor and auditory cortices 

were more substantial in the aloud condition. Additionally, there was greater activation of the 

brain areas involved in semantic processing (i.e., the inferior frontal gyrus and the premotor 

cortex), suggesting more semantic processing was occurring during aloud trials. Considering the 

similarities in activation between the control and aloud conditions did not result in behavioural 

differences, it was suggested that these similarities were the result of cognitive processes 

unrelated to the production effect. Lastly, a correlational analysis was completed comparing the 

magnitude of activation during the aloud condition from the baseline measurement, to the 

magnitude of the production effect (i.e., the difference in memory performance between words in 

the vocal conditions and the silent words). The relationship between activation in the aloud 

condition was related to memory performance, meaning that participants who showed more 

activation were also more likely to remember the words they said aloud. The authors concluded 
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that the activation of the auditory and motor cortices during encoding was consistent with the 

prediction of a distinctiveness account: greater activation during the aloud condition was related 

to better memory performance. Furthermore, the upregulation in the motor, auditory and 

semantic brain areas suggests that participants were encoding more distinctive information 

during aloud trials compared to control or silent ones. Observations by both Hassall et al. (2016) 

and Fawcett et al. (2020) provided a different perspective of the cognitive mechanisms behind 

the production effect using neuroimaging techniques. Next, I will examine another technique that 

can be used to measure cognitive processes during a production task.    

1.4 Using Pupillometry to Measure Cognitive Effort  

In addition to neuroimaging techniques, there has also been growing interest in the use of 

unobtrusive psychophysiological measures, such as pupillometry. This approach involves 

measuring pupil size during cognitive tasks and allows researchers to quantify mental effort. 

Pupil dilation is measured while participants are engaged in cognitively demanding tasks. In 

particular, past research has found that while engaging in a cognitive task, pupil diameter will 

vary as a function of the task demands: As the task becomes more difficult (e.g., completing a 

difficult math problem) the pupils dilate, and when the difficulty of the task lessens pupils retract 

(e.g., completing a simple math problem; Hess & Polt, 1964). Similar relations between pupil 

size and cognitive effort have been demonstrated in a number of cognitive domains, including 

recognition memory (Geller, Still & Morris, 2016), working memory (Kahneman, & Beatty, 

1966), and attention (Unsworth & Robinson, 2018). Given its functionality in quantifying 

cognitive effort, this method could perhaps shed light on the cognitive processes underlying the 

production effect. Throughout the remainder of the document change in pupil size will be 
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discussed as a measure of cognitive effort only, and not as a response to another factor, for 

example, the response to a change in luminance.     

 Applying pupillometry to the production effect may shed light on the processes involved, 

providing a quantitative measure of attention and effortful cognitive processing. For example, it 

would be expected that an increase in pupil dilation would occur to a greater degree when 

participants say the word aloud but not when they read it silently since it is predicted that reading 

aloud should be more cognitively demanding than reading silently. As an alternative, if 

participants were relatively less engaged during silent trials, a rapid drop-off in the pupillary 

signal may be expected to occur during those trials, perhaps reflecting mind wandering which is 

characterized by a decrease in pupil diameter (Grandchamp, Braboszcz, & Delorme, 2014; 

Smallwood, et al., 2011; Smilek, Carriere, & Cheyne, 2010; although see Franklin, Broadway, 

Mrazek, Smallwood, & Schooler, 2013). 

Accordingly, in a recent study, Tiller, Hourihan, and Fawcett (2018) measured variation 

in pupil diameter during a production task to determine if aloud trials were more cognitively 

demanding than silent trials. They reasoned that if there was a strength component to the 

production effect, then this should be reflected in differences in cognitive effort at encoding. 

Using a similar procedure to that of Fawcett et al. (2020) they further controlled for any 

cognitive effects that might have been associated with the effort that it took to speak aloud 

during production by including a third ‘check’ condition, where participants always gave the 

same verbal response (“check”) to control for cognitive effort that might occur as a result of 

speaking alone. They predicted that pupil diameter would increase to a larger degree on the aloud 

trials than silent trials with check trials falling in the middle. Overall, their predictions were 

supported, with data demonstrating a pupillometric production effect defined by larger pupils on 
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the aloud trials compared to the silent trials. A particularly compelling finding was that pupil 

dilation on aloud trials was sustained over a longer period of time than during the check trials, 

while dropping off quickly in the silent trials. Finally, the magnitude of the aforementioned 

pupillometric production effect, was itself predictive of the magnitude of the subsequent 

behavioural production effect (i.e., more aloud words remembered than silent at test). That is, 

participants who showed more effortful or attentive encoding during the study phase – as 

indicated by pupil dilation – were more likely to show a larger production effect.  

Considering these findings, it was suggested that encoding was more effortful for aloud 

items as evidenced by an increase in pupil diameter during study. Additionally, it was suspected 

that pupil size was influenced by an attentional component since participants’ pupil size retracted 

during the silent conditions over the course of the trial, whilst dilation was sustained on aloud 

and check trials. This could be evidence that participants attentionally disengaged from silent 

items at a faster rate but sustained attentional efforts on their primary task – either processing the 

aloud item or saying “check”, respectively – for a longer duration during aloud and check 

conditions. This notion is consistent with studies on mind-wandering which show that pupils 

retract when participants are not attentionally engaged during task performance (Unsworth & 

Robinson, 2018).     

However, in considering this early study there is limited ability to draw firm conclusions 

pertaining to the observed pupillometric effects because any putative differences in attentional 

allocation necessarily overlap temporally with effects driven by production itself; this is 

indicated by the finding that comparative differences in pupil dilation on the check and aloud 

trials was only marginally significant (Tiller et al., 2018). A stronger test would somehow 

separate the production and other cognitive processes in a manner such that they might be 
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investigated individually during the production task. In the following experiments I aim to 

dissect the cognitive processes that are specific to interpreting the production cue and the 

stimulus separate from the act of producing.  

1.5 Current Experiments  

The current studies addressed the problem of not being able to separate the motoric act of 

production from the other cognitive processes. Both studies were designed to replicate Tiller et 

al. (2018) with some procedural changes used to tease apart the different processes that might 

contribute to the production effect. For example, by separating motoric production from the 

initial encoding of the stimulus I can address whether processing effort differs across conditions 

in response to distinctive stimuli and if there are preparatory differences in initial encoding if a 

participant knows that they will be later producing the word. Additionally, by separating vocal 

responses from the stimulus presentation I can elucidate attentional differences that might occur 

in response to words that are produced versus those that are not. For example, if the word is 

encoded prior to production, will participants still engage with the word they have read silently 

during the time given to produce the word or will they disengage with the task (e.g., mind-

wander or prepare for the upcoming trial)? Following procedures from past studies applying 

psychophysiological measures to the production effect, I added a third control condition where 

participants read the word silently but said “check” aloud, to control for any effortful processes 

that could occur in response to speaking alone (Fawcett et al., 2020; Tiller et al., 2018).   

To explore these ideas, first, in Experiment 1 a pre-cuing procedure was implemented to 

highlight preparatory processes that might occur when participants know they will be producing 

something. Subsequently, in Experiment 2 I then implemented a delayed production procedure in 

which participants will be presented with an instructional cue simultaneously with the word but 
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then asked to delay production until a later ‘Go’ cue denoting that they should carry out the 

preceding instruction (Hassall et al., 2016; Mama et al., 2018). Using delayed production I can 

examine the hypothesis that participants will disengage with silent items during the time allotted 

for production after the stimulus is removed from the screen.   

Together, I predict that that in both experiments a behavioural and pupillometric 

production effect will be obtained – that is, better recognition for aloud than silent items at test 

and greater pupil dilation for aloud items than silent items during encoding. I expect that 

recognition performance for check items will be equivalent to silent items since past research has 

indicated no resulting production effect when a non-unique word is said aloud (MacLeod et al., 

2010). Furthermore, I anticipate that pupil size in the check condition will be greater than that of 

the silent condition due to the effort of speaking, but smaller than dilation in the aloud condition 

due to less effortful cognitive processing being used when saying the word. In Experiment 1, I 

expect that the pre-cueing procedure will result in differences in pupil size concurrent or slightly 

preceding stimulus onset, indicative of preparatory cognitive processes. In Experiment 2, I 

predict that the post-cueing procedure will reveal differences in attentional disengagement with 

pupil size rapidly decreasing for the silent items compared to the aloud and check items, 

especially during the cue to produce. Finally, I expect to replicate Tiller et al.’s (2018) observed 

relationship between the magnitude of the pupillometric production effect and the behavioural 

production effect across both studies. Considering the two experiments in totality should give 

further insight into the roles of cognitive effort and the possibility of an attentional role in the 

production effect.  
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Chapter 2: Experiment 1 

1.1 Overview 

The primary objective of Experiment 1 was to elaborate on the observations made by 

Tiller et al. (2018) by using a pre-cueing procedure in which the participants would view the 

instruction before the stimulus appeared on the screen. In Experiment 1 participants viewed the 

instructional cue (e.g., if the word was to be read aloud) before the word presentation and verbal 

production. Therefore, participants would have time to prepare for their upcoming response. 

Importantly, this procedure will allow me to infer if differences in cognitive effort occur in the 

period surrounding the cue onset when participants are not giving a motoric response. It is 

possible that participants will engage with the trials differently depending on the action they will 

be taking; for example, participants might show more attentional engagement on trials where 

they know they will be speaking, even before they know what they are meant to say (and 

therefore, prior to the possibility of any form of distinctive processing).   

With the intention of investigating the preparatory (i.e., pre-cue) and motoric responses 

separately, I grouped my pupillary analysis into two separate time windows: (1) an early window 

spanning the pre-cue period to assess preparatory processes; (2) a late window including the time 

the stimulus was onscreen during which the participants would be speaking, to investigate 

processes related to the stimulus and motoric production. I anticipate that pupil size between the 

vocal conditions (i.e., aloud, check) and silent condition will diverge during this pre-cue period, 

which could be indicative of preparatory cognitive processes. For example, participants might 

exert greater task specific attentional efforts if they know that they will be speaking in the second 

half of the trial. If differences in pupil size prior to word presentation were observed this 

outcome would be difficult to reconcile within a distinctiveness framework as these differences 
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could not be a response to distinctive elements of the word before the word is on screen. 

Furthermore, I expect to replicate the early behavioural and pupillometric findings by Tiller et al. 

(2018). Specifically, I expect to observe a greater increase in pupil size during aloud trials than 

both silent and check trials, with dilation during check trials being intermediate. Finally, I expect 

that I will find the behavioural production effect, but that memory for words presented during the 

check condition will not be remembered better than silent items, despite a difference in pupil size 

during study.  

2.2 Methods 

2.2.1 Participants. Sixty-six students at Memorial University participated in exchange 

for 1 credit point towards a psychology class or were paid $10.00 for an hour of their time. Those 

who received points were recruited through the university psychology pool, paid participants 

were recruited through poster advertisements. Participants were asked to refrain from wearing 

makeup as it might interfere with the accuracy of the pupillometric equipment. Data from 10 

participants were excluded from the study as over 50% of their data was removed during 

preprocessing (see Section 2.2 for an outline of the preprocessing procedure and exclusion 

criteria). Of these, data from (a) two participants were excluded due to interference with the eye 

tracker (i.e., persistent glare from eyeglasses or a black rim interfering with the eye tracker); (b) 

two participants were removed because they blinked frequently during the baseline collection 

period; and, (c) one participant was removed because their head moved out of the chin rest 

during the study, invalidating their calibration. The remaining exclusions were caused by lost 
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data from frequent blinking that occurred throughout the trial.1 The final sample consisted of 56 

participants.   

2.1.2 Materials. Stimuli and Apparatus. The current study was created using the 

Experiment Builder (SR Research, 2020) software package developed for the Eyelink 1000 Plus 

(SR Research, 2010). The experiment was loaded on the display computer, a MacMini Computer 

running OSX 10.12 and was displayed on a 22” 1020x768-resolution Benq. All stimuli were 

presented in black (RGB: 0, 0,0) size 24 Courier font on a grey (RGB: 128, 128, 128) 

background. Pupil and gaze data were monitored by a separate, networked computer running 

specialized recording software. During the experiment, output from the eye tracker was 

displayed to the experimenter on a V176L Acer screen, where they monitored data quality 

throughout the task.  

Pupillary data from each participant’s right eye was recorded at a rate of 500 Hz using an 

Eyelink 1000 Plus eye-tracker (SR Research, 2010) deployed across from the desk-mounted 

configuration. The eye tracking hardware was placed below the monitor and a chin rest was 

installed on the desk to reduce unnecessary head movement during the study. The chin rest was 

positioned so the participant’s eyes were 105 cm away from the display screen and their forehead 

was positioned against the forehead rest 50 cm above the desk. The forehead rest was maintained 

at a constant height meaning every participant’s gaze was similarly positioned in relation to the 

camera. The distance from the camera attached to the eye tracker to the chin rest was also 50 cm. 

The participant sat in a standard computer chair onto which wheel covers were placed to further 

 

 

1 Exclusion criteria were determined apriori with the intent of maximizing data quality; however, exploratory 

analyses revealed that inclusion of all participants did not impact my primary conclusions.  
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prevent unwanted movement during the study. The participant responded using a keyboard 

placed on the desk directly in front of the head rest.  

  Stimuli consisted of 200 words randomly selected from the MRC Psycholinguistic 

Database (Coltheart, 1981). These words were subdivided into five randomized lists of 40 words. 

Lists were matched for word length (M = 5.42, SD = 1.28) and the Kucera-Francis written word 

frequency (M = 63.76, SD = 81.02). To control for item-level variability, I counterbalanced the 

five lists across all conditions (aloud, silent, check and two foil lists). Counterbalancing and 

randomization were implemented using a custom Python script and run using PsychoPy3 (Peirce 

et al., 2019).  

 Production instructions (aloud, silent, check) were represented by a box (720 pixels x 540 

pixels) in centre screen. The perimeter of the box was made up of either ‘x’ for silent trials, ‘+’ 

for aloud trials, or ‘✓’for “check” trials. Each symbol was comprised of four identical straight 

lines, reconfigured to create the desired shape, ensuring that they were matched for luminance. A 

fourth box was made out of squares, also matched for luminance, and acted as a neutral 

interstimulus placeholder between trials to maintain equal luminance between screen changes.  

 Pretest Questionnaire. Prior to completing the experiment participants were asked to 

complete a brief demographic questionnaire. Data collected with the questionnaire included age, 

gender, handedness, language, hours of sleep the previous night and caffeine consumption prior 

to study. These questions were in multiple choice or Likert scale format.2 These data were 

collected as part of a standard questionnaire used in this laboratory and were not analyzed.  

 

 

2 Due to university closure because of a global pandemic, I was unable to access the previously collected 

demographic information.  
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2.2.3 Procedure. The experiment consisted of four phases - a familiarization phase, a 

practice phase, a study phase and a test phase. Calibration of the eye tracking device was 

completed prior to each phase, excluding the familiarization phase, to ensure a precise 

measurement of the pupil. During calibration the participant was asked to fixate their gaze on a 

dot on the screen, which moved around to nine points approximating a square. The fixation 

points appeared one at a time, disappearing once the eye tracker recorded fixation of the pupil. 

After calibration, this procedure was repeated a second time during a validation procedure, and 

an accuracy measurement of the difference between the calibration fixation and the validation 

fixation was recorded. This process was repeated on a participant-by participant basis until the 

difference measurements were minimized as much as possible.    

 Initial Setup. Before initiating the study the experimenter assigned the participant to one 

of five counterbalance conditions to determine which of the three lists would comprise the study 

list presented during the study phase and which two would be later integrated as foil items in the 

list presented during the test phase. Following consent and the demographic questionnaire, the 

researcher introduced the participant to the eye tracking device, ensuring the participant was 

seated at a comfortable height for the head rest. Adjustments were first attempted by moving the 

height of the chin rest if there was a large height difference the height of the chair was also 

manipulated. Modifications were made so that the eye tracker was focused on the right eye. The 

researcher explained that the study would consist of four phases: (1) the familiarization phase 

where the participant would be told the instructions for the study; (2) the practice phase where 

they would be given a short list and practice reading the words while following the instructional 

cues; (3) the study phase where they would memorize a list of words; and (4) the test phase 



 35 

where they would be shown a second list of words and indicate if they had previously viewed 

them.  

Familiarization Phase. In this phase, the participant was familiarized with the study 

procedure. Specifically, each instruction cue (box) was presented with explicit instructions 

written in the centre noting their meaning. For example, the ‘x’ instruction was presented with 

the instructions “Read the word silently”. The ‘+’ instruction was presented with the instructions 

“Read the word out loud”. Lastly, the ‘✓’ instruction was presented with the instructions “Say 

‘Check’”. Each of the instruction cues was presented three times for 6000 ms, for a total of nine 

trials. Note that  participant was verbally instructed to also read the word on the screen silently to 

themselves in the “check” condition in addition to making the verbal response; they were also 

reminded not to say ‘check’ aloud until the word appeared on the screen. The participant was 

told that the words would appear on a later test so they should try their best to memorize them 

but were not given any instructions on how.  

 Practice Phase. After the familiarization phase,  the participant was asked to repeat the 

instructions they had read to ensure understanding. If they could not remember the instructions 

the researcher verbally repeated them a second time. The practice phase followed an identical 

format to the study phase listed below; calibration and validation were completed prior to the 

presentation of the practice list. The practice phase was shorter than the study phase and only 

contained 9 words each three-letters in length (e.g., ‘CAT, ‘CAR’, and ‘BAR’). This shorter list 

was presented to ensure the participant understood the instructions and was capable of 

performing the tasks. The participants were told that they did not have to remember these words 

for the later test.  
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 Study Phase. Immediately preceding the study phase, the researcher calibrated the eye 

tracker, as described earlier. As depicted in Figure 2.1, each study phase trial began with two 

blank screens for 200 ms interposed by a 1000 ms “blink” screen – made up of three exclamation 

marks presented at center. During this time the participant was instructed to blink if needed so 

that they could keep their eye open for the remainder of the trial; otherwise they were instructed 

to avoid blinking outside this period, but that they could blink during the trial if needed. Next, 

the instruction cue for that trial (e.g., ‘+’, ‘x’, ‘✓’) was presented with a fixation dot centered in 

the middle for 1500 ms. As described above, a pre-cuing procedure (e.g., Fawcett, et al., 2020) 

was used in this study meaning that the cue was displayed preceding the target stimulus for 1500 

ms after which the fixation dot was replaced by the target word for 3500 ms with the cue 

remaining onscreen. Once the word appeared on the screen the participant was asked to 

implement the appropriate instruction (e.g., reading the word aloud if it was an aloud trial). The 

trials automatically progressed without input from the participant. To control for changes in 

luminance that would affect pupil dilation, a placeholder that matched the pixilation of the cue 

screen (See Figure 2.1) was displayed for 500 ms before the pre-cue and 1000 ms after stimulus 

presentation. As described below in Section 2.2, the period preceding cue onset served as the 

baseline period for analysis purposes.  
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Figure 2.1: Outline of the screens presented to participants during a typical trial in Experiment 1. 

This experiment used a pre-cue followed by joint cue and item presentation. The “+” symbols 

displayed in the present figure indicate that the participant should read the word aloud. The three 

exclamation marks denote that the participant should blink at that point. Duration is indicated 

below each event. 

 

 

 

 Test Phase. The study phase was followed by a brief break in which the experimenter 

gave the participant instructions for the test phase and calibration and validation was again 
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completed with the eye tracker. Participants were presented with all 200 words – the previous 

120 words presented at study intermixed with the two 40 word foil lists. Mirroring the study 

phase each trial began with two blank 200 ms screens surrounding a 1000 ms blink screen during 

which participants were again instructed to blink if needed. After this a fixation dot was 

displayed in the center of the screen for 2000 ms and then replaced by the test-word which 

appeared for a period of 3000 ms. After, the target word disappeared, and the participant was 

given time to make their response using the numerical keys (1-6) at the top of the keyboard. The 

participant was asked indicate whether they had seen the word before (i.e., an old word) or if it 

was a word they had not seen before (i.e., a new word) by rating the word on the following scale: 

1 – very sure new, 2 – mostly sure new, 3 – unsure new, 4 – unsure old, 5 – mostly sure old, and 

6 – very sure old. The scale was displayed each trial following the removal of the target word 

and remained until a self-paced response was made, which initiated the beginning of the next 

trial. 

2.3 Pupil Processing   

Prior to analysis, the pupillary signal was pre-processed to maximize the signal-to-noise 

ratio. This section outlines each pre-processing step taken in its approximate order.  

2.3.1 De-blinking and artifact removal. First, blinks in the data were identified and 

removed in a process known as de-blinking. Blinks are characterized by an occlusion of the eye 

which occurs when the eyelid covers the pupil. An algorithm developed by Hershman, Henik, 

and Cohen (2018) was used to identify blinks by measuring the pattern of rapid fluctuations 

represented by measurement error recorded by the eye tracker that is distinct from the 

physiological pupil fluctuations, which occur at a much lower frequency. During a blink there 

are no rapid fluctuations in the data, due to the absence of a pupillary signal. Thus, the algorithm 
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picked up on the absence of the signal and identified these instances as blinks. Next, the onset 

and offset of the blink are identified by pinpointing the last signal that occurred prior to the loss 

of signal caused by the blink. The pupil signal rapidly changes during the time immediately 

before and after the blink due to the partial covering of the pupil by the eyelid. The algorithm 

next identified these periods of change. The data were first smoothed to increase the signal to 

noise ratio between rapid fluctuations of measurement error (i.e., noise) and the steady 

physiological pupillometric signal of interest. Then the differences in pupil size were compared 

between each consecutive sample using a moving average until a monotonic pattern emerged 

(i.e., the stable pupil signal reflecting cognitive activity). Once the start and endpoints of the 

blink were pinpointed, the data points between were removed only where these fluctuations 

began and ended. Hence, only those data points that were affected by the eyelid signal were 

removed.  

Afterwards, I located and removed artifacts (missing trials or changes in the pupil signal 

that were unrelated to cognitive effort) that were not picked up by the blinking algorithm. A 

small number of trials contained no pupillary signal; there were a few circumstances where a 

pupil signal may be absent over the course of a trial. First, the participant may have engaged in a 

prolonged blink and kept their eyes closed for the duration of a trial. Although infrequent and 

discouraged, this may have occurred if the participant was fatigued by prolonged fixation on the 

centre of the screen. Second, in a few cases the eye tracker may have temporarily lost the pupil. 

This can be caused by interference from eyeglasses. For example, the eye tracker differentiates 

the pupil from the iris by picking up on an infrared reflection on the cornea that is reflected back 

from an infrared illuminator that is attached to the eye tracker, eyeglasses that have a black rim 

can reflect the illumination and therefore be picked up by the eye tracker (Gagl, Hawelka, & 
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Hutzler, 2011; SR Research, 2010). Additionally, in some cases light from the infrared 

illuminator may reflect off the lens of the eyeglasses; this reflection is also sometimes picked up 

by the eye tracker and can occlude the pupillary signal. In exceptional cases the pupil signal may 

have been lost if the participant moved their head. Movement was discouraged during the study 

and the participant was asked minimize movement after calibration; as an additional preventative 

measure they were also requested to keep their head in a chinrest during the study. Despite these 

protocols, occasionally a participant might have moved involuntarily, such as by coughing or 

yawning, which may have disrupted the pupil signal. Missing trials were easily identified due to 

the absence of data and subsequently removed from analysis.  

Finally, I addressed artifacts in the data that were caused by the eyes being focused too 

far away from the center of the screen. This problem occurs when a participant looked away 

from the centre of the screen the shape of the pupil changed from a circle to an ellipse and 

additionally may have become partially occluded by the eyelid (Gagl, et al., 2011). In either 

scenario the measure of pupil diameter was contaminated since the entire diameter of the pupil 

was not visible and its shape was distorted. The present study was designed so that most task-

related stimuli appear centre screen (or near centre screen), eliminating a need to focus the gaze 

away from the center. Therefore, I controlled for wandering gaze by restricting the area of screen 

that is of interest and removing pupil data collected when the gaze was focused outside this area. 

I defined the cut-off regions as being a focused gaze more than a quarter of the width or height of 

the screen away from the outside of the instruction box. Gaze which drifted outside of the cut-off 

region was identified and removed (i.e., treated as missing) using a custom function in R 3.5.1 (R 

Core Team, 2018).   
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2.3.2 Downsampling. After data were processed and noise caused by blinks and artifacts 

was removed, it was then downsampled from the original sampling rate of 500Hz to a rate of 

50Hz. This process was completed to reduce autocorrelation of the residuals and minimize the 

load of data on the processing software. A cut-off of 50Hz was selected based on van Rij, 

Hendriks, van Rijn, Baayen and Wood (2019) who determined it as an ideal minimal cut-off. 

Pupil change in response to cognitive activity is quite slow and sampling rates as low as 30Hz 

are sufficient to capture it (Winn, Indt, Koelewijn, & Kuchinsky, 2018). After downsampling the 

sampling rate was reduced to samples of 20 ms meaning that the trial was split into even 20 ms 

time periods; all subsequent processing and analysis occurred within these 20 ms time samples.       

2.3.3 Baseline calculations. To measure the change in pupil size which occurred in 

response to cognitive effort, a baseline measurement – when the participant was alert but not 

exerting cognitive effort – was first obtained. The baseline measurement was collected during the 

interstimulus placeholder screen presented between the blink and pre-cue screen as seen in 

Figure 2.1. The screen appeared for a duration of 500 ms; I collected the baseline measurement 

for the last 200 ms of the presentation to avoid overlap with any blinking that may have been 

residually occurring from the previous screen. The baseline for each trial was calculated by 

averaging the recorded pupil size during that 200 ms time window.  

Next, I calculated the change in pupil size for each trial from its respective baseline 

estimate. This was done by subtracting the average of the baseline period for a given trial from 

each sample within the remainder of that trial. I chose to use a subtractive baseline over a 

standardized baseline as there can be issues that arise when using standardization. For example, 

the same level of pupillary response can seem greater in magnitude due to an unrealistically 

small baseline (for example, if measurement error is present in the baseline sample), when 
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standardizing the baseline, pupil size is divided by the baseline measurement, which inflates 

incorrect measurements to a greater degree compared to when subtraction is used (Mathôt, 

Fabius, Van Heusden & Van der Stigchel, 2018; van Rij et al., 2019). 

2.3.4 Data cleaning. Finally, trials and/or participants were excluded if too much data 

were lost during the preceding steps. Individual trials were excluded if more than 50% of the 

baseline period or 75% of the remaining trial was missing respectively. Participants were 

excluded if more than 50% of their trials were missing. As noted earlier, 10 participants were 

excluded in this manner, resulting in 56 participants included in the final analysis.   

2.4 Results 

All statistical analyses were completed using R 3.5.1 (R Core Team, 2018). Results 

calculated using analysis of variance (ANOVA) were completed using the ez package (v4.4-0; 

Lawrence, 2016). Post-hoc comparisons were carried out using Fisher’s least significant 

difference (FLSD); these values are presented visually in the relevant figures, such that any two 

conditions for which the error bars do not overlap are considered statistically significant, so long 

as the relevant main effect or interaction was also found to be significant (Carmer & Swanson, 

1973; Ramsey, 2002). Although my primary interest was the impact of production instruction on 

pupil dilation, I first analyzed the behavioural data.       

2.4.1 Behavioural analysis. Confidence ratings (1-6) from the recognition test were 

converted into binary (yes/no) responses such that, 1, 2 or 3 were coded as 0 (“no”) and 4, 5, or 6 

were coded as 1 (“yes”)3. The proportion of “yes” responses were then averaged for each test-

phase condition (aloud, check, silent, foil) and compared using a repeated measures ANOVA. As 

 

 

3 Confidence ratings were collected for later analysis outside the scope of the thesis and were therefore collapsed 

into a binary (yes/no) responses for the present analysis. 
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depicted in Figure 2.2, my analysis revealed a significant main effect of condition, F(3, 165) = 

302.87, MSE <.01, p <.001, ηG2 = 0.74. Accordingly, participants were more likely to respond 

‘yes’ to items that had been read aloud followed by silently read items and check items, which 

themselves differed. Participants were least likely to respond “yes” to foil items (reflecting a 

false alarm), which were (falsely) recognized at a rate significantly lower than any of the 

remaining conditions.  

 

 

 

 

Figure 2.2 Proportion of ‘yes’ responses as a function of condition (foil, silent, check, aloud) in 

Experiment 1. Error bars represent ½ Fisher’s Least Significant Differences (FLSD).  
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2.4.2 Pupillary analysis. Having established the presence of a behavioural production 

effect I next assessed the results from the pupil data (see Section 2.3 for pre-processing). Change 

in pupil diameter was aggregated to create a grand average by condition (aloud, check, silent) 

and across participants to produce the waveforms displayed in Figure 2.3. Note that a value of 

zero for time comparisons refers to the onset of the pre-cue. 
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Figure 2.3. Mean change in pupil diameter in arbitrary units, as a function of condition (aloud, 

check, silent). On the x-axis, zero represents the onset of the pre-cue. The dotted horizontal line 

represents average pupil size during the baseline period. Error bars show 95% confidence 

intervals. The bars running along the bottom of the graph reflect periods for which the 

appropriate conditions (e.g., A-C = Aloud – Check) differ significantly (p < .05). Word onset is 

represented by an arrow.  

 

 

Prior to conducting my planned, windowed analyses, I first applied an exploratory mass 

univariate analysis to the time-series (Groppe, Urbach, & Kutas, 2011); to this end, student’s t-
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tests were computed comparing change in pupil diameter between conditions for all possible 

comparisons (a total of 225 tests per time series). Although the analysis was exploratory, and 

therefore required no multiplicity correction, the p-values were nonetheless corrected for False 

Discovery Rate (FDR), ensuring that no more than 5% of the differences deemed significant 

would be spurious; this approach is common in fMRI studies (see Benjamini, & Hochberg, 1995; 

Genovese, Lazar, & Nichols, 2002). Those regions where comparisons produced significant 

results are summarized by the lines at the bottom of Figure 2.3.  

All three comparisons revealed significant differences prior to – and in the period 

surrounding – word presentation at 1500 ms. For comparisons against the silent condition, these 

differences emerged early in the trial (around 500 ms for the check trials and 1500 ms for the 

aloud trials), with pupil size plateauing and then diminishing steadily in the silent condition soon 

thereafter, whilst in both the check and aloud conditions, pupil size continued to rise. The check 

condition demonstrated a particular increase during the pre-cue period. Speculatively, unlike 

during the aloud trials, during the check trials participants would know what they would be 

saying and were likely preparing their response, accounting for the additional effort during this 

period. However, following presentation of the stimulus the increase in pupil size in the aloud 

condition became significantly greater than that in the check condition. Interestingly, in all three 

comparisons I observed differences in pupil dilation prior to word onset suggesting that 

production-related changes in pupil size occurred in response to the instruction alone even before 

viewing the stimulus. 

 Following the exploratory analysis of the time series, I then conducted a planned analysis 

comparing pupil dilation for each condition across two pre-specified time windows. The first



 

 “early” time-window aggregated the change in pupil diameter measured between 1000 and 2000 

ms. This window was chosen to assess my hypothesis that differences in pupil size would 

emerge in response to cue onset, even preceding the word itself. Although this time window 

includes a small period (500 ms) following stimulus presentation, researchers who have 

systematically measured the pupillary response in similar cognitive tasks suggest that any 

cognitive response is delayed by 500-1300 ms following stimulus presentation (Hoeks & Levelt, 

1993; Verney, Granholm, & Marshall, 2004). Thus, it is expected that any effects emerging in 

the pupillary signal within this window reflect processing related to the cue, rather than the word 

(and indeed, processing of the cue is likely to have been delayed so as to be represented within 

that time-frame).4 The second, “late” time window included pupil samples collected from 2000-

4000 ms, to observe differential processing in response to stimulus information alongside the cue 

and to capture changes in pupil size related to the productive act itself.  

Mean change in pupil diameter was analyzed as a function of condition (aloud, check, 

silent) and time window (early, late) using a repeated-measures factorial ANOVA. A main effect 

of condition was observed, F(2, 110) = 64.81, MSE = 14700.93 , p <.001, ηG2 = 0.10, although 

there was no main effect of time, F(1, 55) = 0.02, MSE = 25326.81, p = .886, ηG2 = <.01. 

However, there was a significant condition x time interaction, F(2, 110) = 66.333, MSE = 

4587.69, p <.001, ηG2 = 0.04. As revealed by Figure 2.4, during the early window, increases in 

pupil size during the check condition was greater than the aloud followed by the silent condition, 

which also differed from one another. Conversely, during the late time window pupils were 

largest during the aloud condition, although this did not significantly differ from the check 

 

 

4 This analysis had the same outcome with the inclusion of the full time window.  
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condition. Both aloud and check conditions showed a larger increase in pupil size compared to 

the silent condition indicating that participants exerted greater mental effort during these trials 

compared to silent ones. Notably, pupil size increased in both aloud and check trials from the 

early to the late time window, but markedly decreased within this same period for the silent 

condition.  

 

 

 

 

 Figure 2.4: Average change in pupil size during early (1000-2000 ms) and late time-windows 

(2000-4000 ms). Error bars represent ½ FLSD.   
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Lastly, replicating analytical techniques used by Tiller et al. (2018), I conducted a 

correlational analysis to examine the relationship between the amount of mental effort exerted 

(i.e., change in pupil size) during each time window and the magnitude of the production effect; 

this was intended to determine if the increase in pupil size during study was predictive of later 

memory performance at test. To this end, I calculated the magnitude of the pupillometric 

production effect for each participant defined as the difference in pupil size between the aloud 

and silent conditions within each time window. Similarly, a measure of the behavioural 

production effect was calculated for each participant by subtracting the recognition performance 

for silent words from performance for aloud words; correlations were carried out to assess the 

relationship between these two variables for both the early and late time-windows. If cognitive 

processing (reflected in increased pupil diameter) was related to the resulting behavioural 

production effect then there should be a relationship between that and the pupillary production 

effect. Importantly, in Experiment 1 during the early time-window, I measured pupil activity in 

response to instruction alone, during which no distinctive information was presented; therefore, a 

relationship between pupil size and memory performance would be indicative of alternative 

(albeit possible preparatory) cognitive processes apart from distinctive processing.  

Prior to analysis, inspection of these data revealed a small number of apparent 

multivariate outliers. To evaluate this possibility, I used the minimum covariance determinant 

(MCD; Fauconnier, & Haesbroeck, 2009; Hubert, & Debruyne, 2009). The MCD detects outliers 

by identifying extreme standard deviations of the outliers from the mean or center data points. 

Unlike other methods, the MCD adjusts for the effect that the outliers have on the standard 

deviation of the dataset which is why it is preferred for multivariate datasets and datasets with 
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high covariance. I implemented this test using the Routliers package in R (Delacre & Klein, 

2019). This analysis indicated four participant outliers; two of these were present in both time 

windows, one was present in the early time window only and the last was present in the late time 

window only. I completed the correlational analyses twice; the first time including the indicated 

the outliers and the second time after removing them. The outcome of both analyses is visually 

depicted in Figure 2.5.   

The first analysis revealed a positive relationship during both the early, r = .30, t(54) = 

2.30, p = .025, 95% CI [0.04, 0.52] and late r = .51, t(54) = 4.40, p = <.001, 95% CI [0.29, 0.68], 

time windows, replicating the observations of a positive relationship between these measures 

previously reported by Tiller et al. (2018). After excluding the previously identified outliers, a 

significant positive correlation was still observed in both the early, r = .30, t(51) = 2.26, p = .028, 

95% CI [0.03, 0.53] and late, r = .53, t(51) = 4.51 , p <.001, 95% CI [0.31, 0.70] time windows. 

Again, the results were in line with previous research (Tiller et al., 2018); after excluding the 

outliers the strength of the positive relationship in both the early and late time windows was 

maintained. Of particular interest, the results confirm that there was a relation between cognitive 

processing during the pre-cue and the subsequent behavioural production effect, prior to the 

distinctive information provided by the stimulus. This suggests that there are preparatory 

cognitive processes that might facilitate the production effect. Similarly, an increase in pupil size 

in the late time-window reflecting processing that occurred during stimulus encoding and 

production was also related to better memory performance. Considered in whole the correlational 

analysis suggests that both preparatory processes and those that occur during production 

contribute to the memory outcome.   
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Figure 2.5: Relation of the pupillometric and behavioural production effect during early (1000-

2000 ms) and late time-windows (2000-4000 ms). The solid regression lines demonstrate the 

relationship with all data included, the dotted regression lines represent the relationship after the 

removal of the outliers. Grey dots represent outliers.   

 

 

 

 An increase in pupil size was also evident in the check condition but unlike the aloud 

condition the behavioural data did not display an apparent increase in memory. A second 

correlational analysis was completed to determine if the change in pupil size during check trials 
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would also be related to later memory performance. Perhaps, given that pupil size increased but 

memory did not, I would observe a negative correlation. To assess this possibility I repeated the 

correlational analysis for the check condition. A behavioural measurement of the check effect 

was obtained by subtracting each participant’s silent recognition scores from their check scores.  

Next, the pupillary check effect was calculated by subtracting the magnitude of the pupil signal 

on silent trials from the check trials. Remaining consistent with the previous correlation the 

MCD was used once again to check for outliers. This analysis revealed a number of outlier 

participants, two of which were present in both time-windows; an additional three and four 

outliers were identified in the early and late time windows respectively. 

  The initial analysis, including all participants, revealed no significant correlation across 

both the early, r = .00, t(54) = -0.02, p = .98, 95% CI [-0.27, 0.26] and late, r = -.07, t(54) = 0.49, 

p = .63, 95% CI [-0.20, 0.32], time windows. The results of this analysis confirm that the change 

in pupil size during check trials was not related to later memory performance. Furthermore, I did 

not find evidence that pupil size was related to worse performance for check items. Removing 

the previously identified outliers did not change the outcome of the analysis; there was still no 

significant relationship between memory during check conditions and the pupillary signal in 

either the early, r = -.12, t(49) = -0.83, p = .41, 95% CI [-0.38, 0.16], or the late, r = .11, t(48) = -

0.77, p = .44, 95% CI [-0.38, 0.17], time windows. The results of these analysis both are depicted 

in Figure 2.6.  
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Figure 2.6: Relation of the pupillometric and behavioural check effect during early (1000-2000 

ms) and late time-windows (2000-4000 ms). The solid regression lines demonstrate the 

relationship with all data included, the dotted regression lines represent the relationship after the 

removal of the outliers. Grey dots represent outliers.   

 

2.5 Discussion  

 In Experiment 1 the study procedure was modified by adding a pre-cue prior to the 

stimulus to assess whether participants would respond differentially to the instruction alone. 

Specifically, differential responses were measured using pupillometry to assess changes in pupil 
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dilation that occurred over the trial as a means of gauging cognitive effort. This was motivated 

by Tiller et al. (2018) who previously demonstrated that pupil size changed in response to 

production condition, but did not separate the cue from the stimulus or the productive act. By 

separating the cue from the stimulus, I could infer whether participants responded differently to 

the cue alone, even if there was no stimulus present. Pupillary differences observed during this 

pre-cue period would be unexpected from a distinctiveness account perspective and might 

indicate a role of attention in the production effect, an idea that was previously evidenced by 

other studies (Mama et al., 2018, Mama & Icht, 2018a). I expected that the remainder of the trial 

would replicate the previous pupillometric findings with pupil size being greater in the aloud and 

check conditions compared to the silent ones due to the additional effort of speaking aloud 

(Tiller et al., 2018). Lastly, I predicted that the correlation between the magnitude of the 

behavioural production effect and the pupillometric production effect would be replicated. This 

finding would strengthen the notion of a relationship between cognitive effort at encoding and 

the outcome on later memory performance. As predicted pupil size diverged during the pre-cue; 

unexpectedly, the pupil size in the check condition increased to a greater degree than in the aloud 

condition, and both were greater than the silent condition. A correlation between the 

pupillometric and behavioural production effect was also observed in both time windows; the 

correlation during the early time window was particularly surprising as participants were not 

actively encoding the stimulus at this time. These findings will be further elaborated on in the 

upcoming section.  

2.5.1 Conclusions from behavioural data. First, a production effect was observed, 

evidenced by a greater proportion of “yes” responses to aloud words than silent words on the 

recognition test. This finding was expected as the production effect is robust in a within-subject 
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design and has been replicated extensively (MacLeod & Bodner, 2017). Additionally, I observed 

a difference in the comparison of check and silent recognition scores with performance for silent 

items being significantly greater than check items. This finding was unexpected because 

MacLeod et al. (2010) had previously examined production with a repeated vocal response 

(saying ‘yes’) and obtained equivalent means between silent and check recognition scores. 

However, this discrepancy might have arisen because MacLeod et al. (2010) presented the 

stimulus and cue simultaneously whereas in the present study participants were presented with 

the instruction during a pre-cue. As a result, the current participants could prepare an exact 

response during the check condition. Since participants were already prepared to say “check” 

when the stimulus appeared on screen, their primary motive may have been to say “check”, and 

memorizing the stimulus could have become secondary to the task that they were already 

engaged in, resulting in less effort being used to encode the item. (This notion will be further 

explored in Section 4.1; Tyler, Hertel, McCallum and Ellis, 1979.) Related to this, after 

participants say “check” they may feel that they have completed the task and therefore did not 

return to encode the item that was presented, thereby not memorizing the item as well despite the 

cognitive effort exerted in planning and executing their non-specific vocal response.  

A second difference between the present study and MacLeod et al. (2010) is that the 

current study included the repetitive verbal response as a third experimental condition whereas 

MacLeod et al. only compared silent words to a repetitive overt response. In fact, the presence of 

a third condition could have impacted recognition for the check items. Other studies that used a 

third condition have demonstrated mixed findings with some showing a similar trend as the 

present work, albeit not significant (Tiller et al., 2018; Fawcett et al., 2020); while others have 

observed a trend in the opposite direction (Roddick, Fawcett, Newman, Lambert, & Bodner, 
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2014). Adding a third condition changes the nature of the experimental task. For example, the 

addition of a third condition may increase cognitive load exerted on the task by invoking task 

switching costs combined with the extra effort of engaging in two unrelated mental tasks (i.e., 

processing the stimulus and saying “check”; Baddeley, Lewis, Eldrige &Thomson, 1984; Meiran 

& Chorev, 2005). While the outcome of having a third condition might have relevance in terms 

of its impact on experimental design, this finding does not have much significance in application. 

In practice, someone is unlikely to make an unrelated overt response when trying to memorize 

something.  

2.5.2 Conclusions from pupillometric data. In Experiment 1, I had three hypotheses 

that were assessed using the pupillometric measure. First, I predicted that pupil size would differ 

in response to the instructional cue prior to both the presentation of the stimulus and production. 

Second, I predicted that these differences would be maintained for the duration of the trial and 

that I would replicate Tiller et al.’s (2018) observation that pupil size in the silent condition 

would decrease over the course of the trial. Lastly, I predicted that a second outcome from Tiller 

et al.’s prior study would be replicated in the present study; specifically, that I would also 

observe a relationship between pupil change and the production effect. This correlation was 

expected to demonstrate that the magnitude of the pupillometric effect was related to the 

magnitude of the resulting behavioural effect, implicating a relationship between the amount of 

cognitive effort used at encoding and the resulting memory performance. The presence of such a 

relationship would allow me to make a direct connection between cognitive effort and the 

production effect.    

First, I will discuss the outcome of the early time window which spanned from 1000-

2000 ms, including the pre-cue and the first 500 ms of the stimulus presentation (as mentioned in 
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Section 2.4.2, the pupil response takes time to respond and so it is unlikely that cognitive effort 

related to stimulus processing was captured in this window; Hoeks & Levelt, 1993). My 

windowed analysis confirmed that during the early time-window there were significant 

differences between all three conditions with pupil size in the check condition showing the 

greatest increase. Remarkably, task-related differences in mental effort emerged in response to 

the cue alone; since the stimulus was not on screen there was no distinctive information to be 

encoded. Further, during this early time window the pupillometric production effect was 

predictive of the behavioural production effect, meaning that change in pupil size predicted later 

memory performance even prior to the distinctive encoding elements. Importantly, the increase 

in pupil size prior to presentation of the stimulus is difficult to reconcile within a distinctiveness 

framework, suggesting instead that participants become somehow more alert or engaged in 

anticipation of production. The fact that these motivational differences were themselves 

predictive of the magnitude of the behavioural production effect supports the argument that 

participants are more attentive during aloud trials and that attention plays some role in the effect.  

 A related and unexpected finding was that pupil size in the check condition increased to 

a greater degree than the aloud condition during the pre-cue. I propose that during the check trial 

participants know that they will be saying “check” and so are preparing to say an exact response, 

whereas in the aloud trial they are just preparing to speak. This will be addressed in Experiment 

2 where the encoding of the stimulus and production will occur at separate times. My outcome 

from Experiment 1 supports the notion that these early pupillary responses are preparatory in 

nature and that they might facilitate the production effect by focusing mental processes towards 

the word to be produced. Further evidence comes from the pupil increase during the aloud 

condition within the same period of time, indicating that pupil change reflects the cognitive 
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effort used as participants prepare to speak aloud in the upcoming portion of the trial. Evidence 

for a link between pupil size and attention comes from studies on task engagement and mind-

wandering which have noted that pupil size is greater when participants are on-task and 

completing a task that keeps their attention externally engaged (Unsworth & Robinson, 2018). 

The difference in pupil size between the two speaking conditions and the silent condition might 

similarly reflect differences in task engagement; knowing that they will be speaking, participants 

focus their attention to the task at hand, as evidenced by an increased pupil diameter.  

Next, I will consider the pupillary differences that emerged in the late time window. This 

period related to my second hypothesis that pupil change would be sustained in the aloud and 

check conditions but drop in the silent condition. Furthermore, if saying the word aloud was 

more effortful, I expected that pupil size in the aloud condition would be greater than in the 

check condition. However, although average pupil diameter was numerically larger in the aloud 

than the check condition during the late time window, subsequent windowed analysis determined 

the difference was not significant. Nevertheless, this trend is in line with my explanation for the 

observed increase in the check conditions during the early time window; when participants were 

beginning to speak in the aloud condition during the late window they were preparing and giving 

an exact response, leading to an increase in pupil dilation above the check condition. Again, 

correlational analysis during the late time window confirmed a relationship between the 

pupillometric and the behavioural production effect. The greater increase in pupil dilation during 

the aloud condition compared to the silent condition was predictive of better encoding of aloud 

words compared to silent ones. This suggests that participants were exerting greater cognitive 

effort during aloud trials which facilitated encoding of the stimulus.  
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Subsequently, I will consider the pupil trends observed in the silent condition across both 

early and late time windows. Initial exploratory analysis suggested that during the silent trials 

pupil size initially increased but then dropped over the time course of the trial. In fact, near the 

end of the trial, pupil size in the silent condition dropped below the baseline measurement. 

Windowed analysis again confirmed this initial observation; not only was the change in pupil 

size consistently smaller than the aloud and check conditions in both time windows, but there 

was a marked decrease in pupil size in the silent condition between the two windows (see Figure 

2.4). This observation is consistent with the assumption that participants do not fully attend to or 

stay fully engaged with the stimulus for the entire trial. If participants were for example, 

rehearsing the word after they read it I would expect that pupil size would be maintained over a 

greater time period. The drop in pupil size during the silent trials is consistent with the “lazy 

reading hypothesis” (Begg & Snider, 1987; MacLeod et al., 2010).  

Alternatively, the smaller pupil size in the silent conditions, especially during the later 

time window, might indicate less effortful processing. That is, in the aloud and check trials, pupil 

size increases because encoding the word and speaking aloud is more effortful. In the silent 

condition participants are using less effort by simply reading the word silently. This difference in 

observed effort does not necessarily indicate that attentional or effortful processes are driving the 

memory outcome. If the cognitive effort indicated by pupil increase in the two speaking 

conditions was driving memory performance, then I might also expect better memory for the 

check words. Because check words were not remembered as well as aloud words (indeed, they 

were remembered more poorly than the silently read words), this suggests that the observed 

production effect was still influenced by the distinctive processing of the aloud words. My 

correlational analysis further supported this notion showing no relationship between the 
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magnitude of pupil change during check trials and later memory performance. Similarly, Fawcett 

et al. (2020) also used a third motor control condition and found greater activation of brain areas 

associated with production without observing improved memory for “check” items. They posited 

that production did not benefit control stimuli the same way as aloud stimuli since the word 

“check” was not useful as a retrieval cue as it was a repetitive verbal response. Furthermore, their 

brain imaging revealed greater activation in speech processing areas during aloud conditions 

suggesting that these words were better encoded. Nevertheless, the difference in pupil sizes 

which emerged during the early window are difficult to explain within a pure distinctiveness 

framework and suggest an attentional component that might facilitate or provide additional 

processing on top of the distinctiveness processing which occurs.   

Chapter 3: Experiment 2  

3.1 Overview  

 Experiment 2 was designed to parse the mental processes that occur during the 

production effect from the motoric act. Whereas in Experiment 1 the trial was designed so that 

mental effort could be assessed prior to the presentation of distinctive information, in Experiment 

2 I used a delayed production design (Hassall et al., 2016; Mama & Icht, 2018b). Participants 

viewed both the stimulus and cue simultaneously but were asked to hold their response for a 

separate “Go” signal. Note that similar to the design used by Mama and Icht (2018b), the word 

disappeared from the screen during the Go cue meaning that participants had to use their 

immediate memory of the word to produce it. By using this design, I can examine mental 

processes in response to distinctive information (i.e., the stimuli) separately from the motor 

processes which occur during the productive act. Hassall et al. (2016) previously demonstrated a 

greater amplitude of the P300b signal (see Section 1.3.2) in response to the cue and stimuli in a 
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similarly designed delayed production procedure. Given that, and the finding in Experiment 1 

that pupil size differed between the three conditions (aloud, check, silent) prior to motoric 

production, I expect that a similar divergence in the pupillary response will be observed in 

Experiment 2 even prior to the productive act itself.  

Similar to Experiment 1, I split my pupillary analysis across time-windows to compare 

different processes occurring across the course of the trial. For Experiment 2 three time-windows 

were chosen: (1) an early window spanning the initial presentation of the stimulus to assess 

initial encoding processes; (2) a middle window prior to production to capture processes that 

might occur to prepare for speaking; (3) a late time window including the verbal response to 

investigate processes related to motoric production. In Experiment 1, I observed greater pupil 

dilation in the check and aloud conditions in response to the cue alone compared to the silent 

condition, an effect which remained for the duration of the trial. I predict that in Experiment 2 a 

similar change in pupil size will occur with greater pupil dilation during the aloud and check 

conditions compared to the silent condition both before and after the participant initiates motoric 

production. Since I previously observed a response to the cue alone, I should see a similar 

preparatory response in this experimental design. However, in Experiment 1 participants saw the 

cue alone, prior to the distinctive information from the stimulus and I saw an increase in pupil 

size for the check conditions above the aloud condition. In Experiment 2 I hypothesize that the 

change in aloud pupil size will be equivalent or greater than in the check condition because 

participants will be not only preparing to speak but also encoding the distinctive elements of the 

stimulus. 

Next, I hypothesize that there will be a divergence in pupil dilation during the Go cue. 

Specifically, I predict that the increase in pupil size in the aloud and check conditions will 
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continue to grow at the onset of the Go cue in response to the effort used to produce the word (or 

say “check”). Since during the aloud condition a distinct response will be generated, pupil size 

will be greater in the aloud condition and sustained for a longer duration. Finally, in the silent 

condition I hypothesize that pupil diameter will drop at the onset of the Go cue, since 

participants will not have to make a response. These findings would be in line with observations 

made by Tiller et al. (2018) who observed a steep decrease in pupil diameter during silent trials 

whereas, aloud and check pupil change was more sustained; they attributed this to the possibility 

that participants were disengaging more quickly with silent items. I surmised that if this is the 

case, there should be a similar drop in pupil size during the delayed production task. If 

participants are less engaged with the silent items, I would expect them to disengage with the 

item by the time the Go signal appears since they will be able to read and encode the item at the 

outset of the trial. By using a delayed production procedure in Experiment 2 I aim to expand on 

my observations made in Experiment 1, namely to determine if attention or effort is an 

underlying cognitive process of the production effect.   

3.2 Methods  

3.2.1 Participants. Thirty-five students enrolled at Memorial University were either 

recruited through the university’s psychology pool and completed the study in exchange for one 

course credit or were recruited by poster advertisement and paid $10.00 for an hour of their time. 

Participants were asked to refrain from wearing makeup. Data were preprocessed using the 

guidelines outlined in Section 2.2. The same cut-off criteria of 50% remaining data after 

removing trials to lost pupil signal was used. As all participants met this criterion the final 

sample consisted of 35 participants.  
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3.2.2 Materials. The experimental setup and stimuli were identical to those used in 

Experiment 1, with the exception of the addition of a new instruction symbol ‘=’ used as the 

‘Go’ signal. As depicted in Figure 3.1, this symbol was also represented by a box (720 pixels x 

540 pixels) matched for luminance in centre screen and was used to cue the participant to speak 

after the word presentation.   

3.2.3 Procedure. The general procedure for Experiment 2 closely resembled that of 

Experiment 1. The experiment consisted of the same four phases and the eye tracker was set up 

following the same procedure as the previous study. Whereas in Experiment 1 the participant 

was told to speak while the word was on the screen, in Experiment 2 they were instead asked to 

hold their response (on ‘check’ and ‘aloud’ trials) until the second screen when the Go cue 

appeared. During the silent condition participants were told to read the word to themselves 

silently and to focus on the center screen for the entirety of the trial. The remainder of the 

procedure was identical to that used in Experiment 1. For that reason, trial events were identical 

between these experiments for the setup, familiarization phase and test phase. Changes to the 

practice and study phase are detailed below.  

Practice Phase An identical list of three-letter words was presented to the participant 

following the same protocol as Experiment 1. However, prior to presentation the participant was 

alerted that there would be a fourth cue, ‘=’, that would follow the presentation of the words and 

was notified that verbal responses should be withheld until the symbol appeared.   

 Study Phase As depicted in Figure 3.1 the study phase for Experiment 1 differed from 

that presented in Experiment 2. Again, trials began with two blank 200 ms screens appearing 

before and after a 1000 ms blink screen. Then cue and the target item were presented 
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concurrently for 3500 ms followed by the equal symbol for 1500 ms during which the participant 

could make their verbal responses. As in the previous study, an interstimulus was presented  

before and after the stimuli to control for changes in luminance.   

 

 

 

 

 

Figure 3.1: Outline of the screens presented to participants during a typical trial in Experiment 2. 

This experiment used a joint cue and item presentation followed by the second ‘Go’ cue 

represented by the “=”. The “+” symbols displayed in the present figure indicate that the 

participant should read the word aloud. The three exclamation marks denote that the participant 

should blink at that point. Duration is indicated below each event.  

 

200 ms 
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500 ms 
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1500 ms 
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3.3 Pupil Processing  

Experiment 2 followed the same preprocessing procedure as Experiment 1 (see section 

2.2). Again, baseline was collected for the last 200 ms of the interstimulus placeholder appearing 

between the blink instruction and the stimulus onset (see Figure 3.1). There were no other 

differences in the procedures used.  

3.4 Results  

 Statistical analysis was completed using the procedural guidelines and software outlined 

in Experiment 1. As before, I began with an analysis of the behavioural data, to establish the 

presence of a standard production effect.  

3.4.1 Behavioural analysis. Following protocol from Experiment 1, test-phase 

confidence rating responses were collapsed into a binary response (yes/no)5. After, the 

proportion of “yes” responses for each of the test-phase conditions (aloud, check, silent, foil) 

were then averaged and compared using a repeated measures ANOVA. My analysis revealed a 

main effect of condition, F(3, 102) = 161.29, MSE = <0.01, p <.001, ηG2 = 0.58. Consistent with 

Experiment 1, post-hoc comparisons depicted in Figure 3.2 demonstrated that saying the words 

aloud improved recognition relative to all remaining conditions. Contrary to Experiment 1, 

reading the word silently was not indicative of better performance than saying ‘check’, although 

‘yes’ responses to silent words was still numerically greater than check. Additionally, in line 

 

 

5 Following Experiment 1 procedures confidence ratings were collected for later analysis outside the scope of the 

thesis.  
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with my previous findings, participants were more likely to respond “yes” to both of these items 

compared to foil items.  

 

 

 

Figure 3.2. Mean proportion of ‘yes’ responses to items by condition (foil, silent, check, aloud), 

Experiment 2. Error bars represent ½ FLSD. 

 

 

3.4.2 Pupillary analysis. Emulating the procedure used in Experiment 1, I then examined 

the pupillometry data. Again, I averaged change in pupil diameter collected during the 

preprocessing phase (see Section 2.2) across participants for the three conditions (aloud, check, 



THE PUPILLOMETRIC PRODUCTION EFFECT  

 

67 

silent) the resulting waveforms are depicted in Figure 3.3. Note that for the time comparisons a 

value of zero represents the onset of the stimulus.  

 

Figure 3.3. Mean change in pupil diameter (a.u.) as a function of conditions (aloud, check, 

silent). On the x-axis, the value 0 indicates the beginning of the stimulus presentation. The dotted 

horizontal line represents average pupil size during the baseline period. Error bars show 95% 

confidence intervals. The bars running along bottom of the graph reflect periods for which the 

appropriate conditions (e.g., A-C = Aloud – Check) differ significantly (p < .05). The aloud and 

check conditions did not differ significantly within any of the included time samples. Arrow 

indicates onset of ‘Go’ cue. 
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Maintaining consistency with Experiment 1, I completed an exploratory mass univariate 

analysis on the entire time series using t-tests comparing each condition at every sample within 

the time series (300 tests per time series). Error rate was again adjusted using the FDR method. 

Figure 3.3 displays the results from these comparisons, with significant differences being 

represented by the lines running horizontally across the bottom of the figure.  

The comparisons revealed a similar trend when comparing both the aloud and check 

conditions to the silent condition. The increase in pupil size in both comparisons reached 

significance around 1000 ms and continued to grow as the trial progressed. These observations 

mirror those observed in Experiment 1; a larger increase in the aloud and check pupil change 

compared to silent is consistent with the notion that more mental effort was used on these trials. 

However, the third comparison between the aloud and check conditions suggested no significant 

differences between the two groups. The results from this final comparison lead to a different 

conclusion than Experiment 1 where I observed differences between the aloud and check 

conditions. This may be because in Experiment 1 participants were able prepare an exact 

response in the check condition only, but in Experiment 2 participants could prepare their 

response in both conditions.   

 I next proceeded to the planned time window analyses, this time using three 

predetermined windows of interest: (a) an “early” time window subtending 1000-2500 ms, (b) a 

middle time window subtending 2500-4500 ms, and (c) a late time window subtending 4500-

6500 ms. Here, the early window was selected to capture the initial cognitive processing that 

would occur in response to the word and cue presentation. This window was analogous to the 

late window in Experiment 1, but combined cognitive processing in response to the word and 

instruction, while separating them from vocal production. The middle and late time windows 
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were chosen to observe activity leading up to and following production, respectively. If there are 

preparatory processes that occur prior to production, I would expect them to emerge during the 

former, whereas the latter should capture processes specifically related to the productive act 

itself.  

Mean change in pupil diameter was analyzed as a function of condition (aloud, check, 

silent) and time window (early, middle, late) using a repeated measures factorial ANOVA. 

Replicating Experiment 1, I observed a significant difference for condition, F(2, 68) = 52.85, 

MSE = 16478.00, p <.001, ηG2 = 0.10 and a significant interaction, F(4, 136) = 26.09, MSE = 

4355.08, p <.001, ηG2 = 0.03. Diverging from Experiment 1, my analyses also revealed a 

significant main effect of time, F(2, 68) = 16.06, MSE = 20109.92, p <.001, ηG2 = 0.04. Post-hoc 

analyses are displayed in Figure 3.5; as depicted, a similar trend emerged across all three time 

windows, with a larger increase in pupil size for aloud and check trials than for silent trials. 

However, the difference between the aloud and check conditions was non-significant during each 

time period. The interaction is driven by a significant increase in pupil size for both the aloud 

and check conditions from the middle to the late time window, while there was no change in the 

silent pupil size between these to time windows. Comparatively, pupil change in the silent 

condition is significantly greater in the early window compared to the middle and late windows, 

which do not differ. Considering this, it appears that during aloud and check conditions 

participants were allocating an increasing amount of mental effort to initially examine the word, 

prepare for a vocal response, and produce the word (or say “check”). In the silent condition a 

steady decrease in pupil size suggests that mental effort lessened over the course of the trial.  
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Figure 3.4: Average change in pupil size during early (1000-2500 ms), middle (2500-4500 ms) 

and late time-windows (4500-6000 ms). Error bars represent ½ FLSD.   

 

 

Finally, emulating the analysis previously completed in Experiment 1 and by Tiller et al. 

(2018), I completed a correlational analysis assessing the relationships of the magnitude of the 

behavioural production effect (improved memory for aloud words over silent) with the 

magnitude of the pupillometric production effect (increased mental effort as evidenced by an 

increased difference in pupil size for aloud compared to silent items). A separate analysis was 

completed for each of the three-time windows. Following the same protocol as in Experiment 1, 

I identified outlier cases in the data using the MCD. This analysis confirmed six cases as outliers; 

of these two were outliers only in the early time window, one only in the late window, and the 
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other three were present in both the middle and late time windows. The latter cases reflected 

points with a pupillometric production effect of close to zero, despite a large behavioural 

production effect. One of these participants had already been flagged earlier due to issues 

surrounding data recording (i.e., their thick eyeglasses made them difficult to calibrate), but they 

were ultimately included because inspection of their pupillometric data following recording 

revealed it to not be particularly noisy. Due to the presence of these outliers, I conducted the 

correlational analyses twice – once including and once excluding those participants.  

 The first analysis including all participants revealed no significant relationship between 

the pupillometric and behavioural production effect across the early r = .10, t(33) = 0.55 , p = 

.59, 95% CI [-0.25, 0.42], middle, r = .01, t(33) =0.07, p = .94, 95% CI [-0.32, 0.34], or late, r = 

.10, t(30) =0.59 , p = .56, 95% CI [-0.24, 0.42], time windows.  

The subsequent analysis excluding the previously detected outliers revealed a significant 

positive correlation in the late time-window only, r = .44, t(29) =2.70 , p = .01, 95% CI [0.11, 

0.69], although the middle time window was marginally significant, r = .33, t(30) = 1.88 , p = 

.07, 95% CI [-0.03, 0.61], and the early time window trended in a similar direction, r = .17, t(31) 

= 0.94 , p = .35, 95% CI [-0.19, 0.48]. After removing the outliers the correlational analysis still 

revealed a smaller relationship than expected. Importantly, the present sample size is lower than 

had been intended owing to recruitment difficulties and early closure of the university due to a 

global pandemic, leaving my analyses underpowered to detect correlations aligned with those 

reported in the earlier experiments (power to detect r = .3 is only 41.47%). Furthermore, it is also 

possible that the use of three different time windows diluted the measure: In Experiment 1 the 

time trial was split into two windows. Furthermore, Tiller et al. (2018) sampled one window 

which was selected 1000 ms after cue and stimulus onset, until after verbal production was 
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completed, capturing the entire production process. Importantly, in both of these cases the 

processing of the stimuli and production occurred at the same time, possibly strengthening the 

relation to subsequent performance. In the current experiment initial encoding processes (i.e., 

viewing the stimulus) and production (i.e., saying the word aloud) were split into two time-

windows. Since production and encoding occurred at different times the peak amount of mental 

effort used might have been less and more dispersed than when production and encoding happen 

simultaneously.  
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Figure 3.5: Correlation between pupillometric and behavioural production effect across the 

early (1000-2500 ms), middle (2500-4500 ms) and late time-windows (4500-6000 ms). The 

solid line represents linear regression with the inclusion of all data points. The dashed line 

demonstrates linear regression after the removal of the outliers. The outlier points are 

represented by the grey points.  

 

Next, I completed a second correlational analysis to determine if there was a relationship 

between increased pupil size during check conditions and later memory performance. This time I 

assessed the relation of the pupillometric check effect (difference in the magnitude of the pupil 

signal between silent and check) and the behavioural check effect (difference in recognition 

between silent and check items). Once more, outlier analysis revealed one participant whose data 
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was indicated as an outlier in all three time windows. Two separate participants were outliers in 

either the early or late time windows only.  

With the inclusion of all data points, the analysis revealed no significant relationship 

across the early r = -.10, t(33) = 0.60, p = .55, 95% CI [-0.42, 0.23], middle, r = -.05, t(33) = -

0.29, p = .77, 95% CI [-0.37, 0.29], or late r = -.02, t(33) = -0.14, p = .89, 95% CI [-0.36, 0.31], 

time windows. Replicating the results in Experiment 1 the outcome of the analysis suggests that 

there was no relationship between pupil change and later memory during the check condition. 

Subsequent analysis following the removal of the outlying data points revealed still insignificant 

correlations across the early, r = .13, t(31) = 0.78, p = .44, 95% CI [-0.21, 0.46], middle, r = .12, 

t(32) = 0.71, p = .49, 95% CI [-0.22, 0.44], and late r = .07, t(31) = 0.37, p = .71, 95% CI [-0.28, 

0.40], time windows. The results from this correlational analysis are depicted in Figure 3.6.  
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Figure 3.6: Correlation between pupillometric and behavioural check effect across early (1000-

2500 ms), middle (2500-4500 ms) and late time-windows (4500-6000 ms). The solid line 

represents linear regression with the inclusion of all data points. The dashed line demonstrates 

linear regression after the removal of the outliers. The outlier points are represented by the grey 

points.  
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3.5 Discussion  

 The goal of Experiment 2 was to measure cognitive responses to not only the instruction 

(as in Experiment 1) but also to the distinctive aspects of the word, still separated from the 

productive act itself. To do this, I implemented a post-cue during the study phase where 

participants had to wait until a later “Go” cue was presented to produce the word. Using this 

procedure I was able to elaborate on my finding of a preparatory process in Experiment 1 and to 

observe if mental effort would differ by condition when encoding the stimulus was separated 

from production. In Experiment 1 a preparatory effect was evidenced, such that pupil size 

deviated in response to the instruction alone; I took this to mean that participants were engaging 

in attentional or effortful processes to prepare themselves for the upcoming trial. Considering 

this, and that other studies have also evidenced cognitive differences prior to production when 

the stimulus was pre-cued (Hassall et al., 2016), I expected to see a similar pupil response in the 

present experiment prior to production.  

Furthermore, by using a post-cue procedure I could address the idea that participants are 

less attentive during silent trials. If this is the case then I expected participants would readily 

disengage with the material, especially if they have already encoded the word. This could shed 

light on motivational differences in the silent condition: If participants do not stay engaged or try 

to rehearse the item after it leaves the screen it would suggest that participants are less motivated 

to memorize the silent items. Lastly, since the previous experiment and Tiller et al. (2018) both 

demonstrated a positive relationship between the pupillometric and behavioural production 

effects; I expected to observe a similar trend across all three time windows reflecting a 

relationship between the amount of cognitive effort being used during the aloud trials and the 

memory benefit of aloud words over silent ones. 
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 In Experiment 2 I observed a divergence in pupil size in the two vocal conditions from 

the silent condition early in the trial, before participants spoke aloud, supporting my prediction 

that I would observe differences in pupil size prior to production. I suggest that this change 

represents preparatory processes that reflect the effort of preparing to speak aloud. Additionally, 

I observed a decrease in pupil size during the silent condition over the course of trial, suggesting 

that participants were disengaging in the trial after encoding the word. Finally, I found a 

relationship between the pupillometric production effect and the behavioural production effect in 

the late window only. These observations will be discussed in greater detail in the coming 

sections.   

3.5.1 Conclusions from behavioural data. Once more I observed a production effect 

with a greater proportion of “yes” responses to items that were said aloud than to ones that were 

read silently. The finding of better memory for silent items over check items in the first 

experiment was not replicated in the second experiment. However, numerically the means 

trended in a similar direction. The previously discussed implications related to the impact of the 

inclusion of a third condition on the performance for check items (see Section 2.5.1) cannot be 

ruled out. Again, I observed a trend towards poorer memory for the check items compared to 

silent ones which is in agreement with the previously mentioned point that check items may 

incur a cost related to being cognitively engaged in two unrelated tasks or because of task 

switching costs (Baddeley et al., 1984; Meiran & Chorev, 2005). However, the relationship 

between change in pupil size and memory performance was found to be not related, suggesting 

that check memory performance was not influenced by cognitive effort. 

 3.5.2 Conclusions from pupillometric data. In Experiment 2, pupillometry was used to 

assess three hypotheses. First, I had predicted that a divergence in pupil size would occur prior to 
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production, in line with Experiment 1 and Hassall et al.’s study (2016), both of which observed a 

difference in cognitive processing prior to the act of production. Second, I predicted that pupil 

size in the aloud condition would be greater than in the check condition both before and after the 

Go cue because preparing a specific response should be more effortful than saying a repetitive 

word. Third, I again expected to find a relationship between the pupillometric effect and the 

behavioural effect, such that a larger increase in pupil size during aloud trials compared to silent 

trials was related to better memory for aloud words compared to silent words, replicating both 

Experiment 1 and Tiller et al. (2018). Finally, for my fourth hypothesis I proposed that once 

again I would observe a smaller pupil increase during silent trials compared to both aloud and 

check trials, especially in the latter half of the trial after the stimulus disappeared.  

 To assess the first hypothesis, that changes in pupil size would occur prior to production, 

I examined data during the first two time windows. The windowed analysis confirmed that 

across the early and middle time windows, the increase in pupil size during the silent trials was 

significantly lower than both the aloud and check trials, which did not differ from one another. 

Part of my hypothesis was supported; differences were observed prior to production. However, 

pupil size in the aloud condition was not greater than the check condition across either time 

window. This finding did support my theory proposed in Experiment 1: That pupil size was 

greater in the check condition during the pre-cue period because participants were preparing an 

exact response. In Experiment 2, participants knew what they would be saying in both 

conditions, so it was expected that the pupil increase in the check condition would not be higher. 

However, a greater pupil change in both the speaking conditions was observed compared to the 

silent condition even though during these time periods participants were engaged with the same 

amount of information (i.e., reading the stimulus and being alerted to the condition). An increase 
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in pupil dilation in the aloud and check conditions compared to silent trials suggests that 

participants were preparing to speak even early in the trial. This notion lends support to the 

hypothesis that there is a preparatory component to the production effect and again, may reflect 

differences in attention or cognitive effort related to preparing an aloud response. Partially 

addressing my third hypothesis, unlike in Experiment 1, my correlational analysis was not 

sufficiently powered to provide strong support that these processes were related to later memory 

performance. However, the correlations did trend in the expected direction with the middle 

correlation being marginally significant. Furthermore, the late time window revealed a 

significant positive correlation after the removal of the outliers. Additionally, analysis of the 

relationship between pupil size and memory for check items also revealed an outcome that was 

not significant. Moreover, as previously mentioned my correlational analysis was underpowered 

due to early interruption of data collection because of university closure in response to a global 

pandemic.         

My second hypothesis proposed that pupil size for aloud words should be larger than 

check words across all three time windows, since in the aloud conditions participants would be 

preparing a unique response and that should be more effortful. Subsequent analysis of the time 

windows revealed that pupil change did not differ between the aloud and check conditions across 

any time window. This finding is in agreement with the distinctiveness account and suggests that 

speaking in either of the two conditions was equally effortful. However, only memory for aloud 

items benefited from vocalization suggesting that reading the specific word aloud enabled more 

effective encoding of the unique features of that word (Forrin et al., 2012); the check response 

was not unique and so those words did not benefit from the extra effort of speaking aloud 

(MacLeod et al., 2010). However, the results supported my third hypothesis: That there would be 
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a relationship between the pupillometric and behavioural production effect. In the late time-

window (when participants produced the word) the results did suggest a moderate positive 

relationship between the pupillometric and behavioural production effect. This provides a 

challenge for the notion that cognitive effort did not play a role in the production effect since 

pupil changes reflect cognitive effort and the correlation with later memory performance 

suggests that some of the effortful processing that was observed during the aloud trial was 

related to memory for those words. Conversely, I found no evidence suggesting that the increase 

in pupil size during check trials was related to memory performance. However, an alternate 

explanation would be that pupil dilation reflects an increase in distinctive processing: 

participants who are more engaged with the word might better encode the distinctive features of 

the stimulus resulting in improved memory. 

Finally, I will discuss my final prediction that the pupillometric trends observed during 

the silent condition would decrease across the course of the three time windows. The windowed 

analysis confirmed that the change in pupil size during the silent condition was consistently 

smaller than the other two conditions during all three time windows. Furthermore, comparing 

changes in silent pupil size over the three time windows mirrored my Experiment 1 results with 

pupil size being greater in the early window compared to the other two windows which did not 

statistically differ. The second part of my prediction – that pupil size would drop after the 

production cue – was partially confirmed. As depicted in Figure 3.5, pupil size for silent words 

during the middle time window was close to baseline, and the waveforms plotted in Figure 3.3 

reveal that silent pupil size dropped below baseline shortly after presentation of the Go cue. This 

observation suggests that after the cue was displayed participants may have felt that they had 

finished the task and did not stay engaged. However, after this cue pupil size slightly increased a 
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second time during the late time window. Keeping this in mind, I propose that during the silent 

conditions, when the Go cue is presented participants are initially relieved that they do not have 

to speak (dip below baseline) but then are preparing for the next trial (increase to above 

baseline). A second explanation could be that participants are engaging in maintenance rehearsal 

and reprocessing the word; however, retrieving the word from memory would be expected to 

improve memory for those words which was not reflected in the behavioural data (see Greene, 

1987 for a discussion on maintenance rehearsal).  

Overall the results from Experiment 2 were largely consistent with a distinctiveness 

account of production with little divergence between the aloud and check pupil sizes observed. 

Nevertheless, some of the observations were consistent with those in Experiment 1. Namely, the 

decrease in the silent pupil signal indicating that participants used less effort to encode those 

words and that they disengaged with the words earlier in the trial then in the speaking conditions. 

Next, the emergence of pupil change prior to production in both experiments indicated that 

speaking aloud was more effortful and suggested that participants were allocating cognitive 

resources to prepare their vocal response early in the trial. Lastly, a relationship between the 

pupillometric and behavioural production effect was observed in both time windows in the first 

experiment and the late window in the second experiment, demonstrating that cognitive effort 

was predictive of later memory performance. Furthermore, I did not find evidence that increased 

pupil size was related to memory for check items. These findings are consistent with a 

distinctiveness account but are also indicative of differences in attention or cognitive effort 

between aloud and silent trials. In the final chapter I will attempt to reconcile the results within 

these frameworks.   
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Chapter 4: General Discussion 

Producing content to be memorized has been touted as a simple mnemonic device as it 

requires little knowledge and practice. However, effective use requires an integrated 

understanding of the production effect and its underlying processes, which remain under debate. 

Heretofore, research has focused on whether distinctiveness adequately explains the mnemonic 

benefit of the act of production; other processes that could occur in addition to or separately from 

the act of production are less examined. Through the preceding experiments I took a new 

perspective to examining the underlying cognitive processes of this classic paradigm by applying 

a psychophysiological measure – pupillometry – to acquire a measurement of cognitive effort. 

The two experiments completed were modeled on a previous study completed by Tiller et al. 

(2018) and were modified to the end of replicating and elaborating on those previous findings. 

The outcome of the present studies evidenced the role of distinctive processing while also 

suggesting a role of attention or cognitive effort. While I do not believe that the current results 

contradict the distinctiveness account, I do posit that they provide evidence for a supporting 

process that can enhance or modulate the effectiveness of distinctive encoding processes.  

4.1 Interpreting the Pupillary Signal  

Across two studies I demonstrated the importance of distinctiveness, attention and 

cognitive effort in eliciting the production effect. In Experiment 1 a pre-cue procedure was 

completed with the primary goal of determining if participants would respond differentially to 

the instructional cue when presented alone. The experimental outcome confirmed that 

participants did respond differently to the cue even when it appeared before the word, as 

evidenced by different pupil sizes in response to the cue alone. I believe these processes to be 

preparatory in nature and that they exhibit mental effort used to focus one’s attention towards the 
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experiment when participants know they will be completing a more demanding upcoming task. 

In comparing the two speaking conditions to the silent condition, the speaking conditions both 

elicited a larger pupil size before speaking, whereas during the silent conditions pupil change 

was much smaller in comparison. In support, Unsworth and Robinson (2018) previously revealed 

that pupils changed prior to completing a cognitive task and that an increase in pupil diameter 

meant that participants were focused on preparing for the upcoming task; the authors confirmed 

that participants were focused on the task by including thought probes during this time period. 

The early divergence in pupil change prior to the presentation of distinctive information is 

difficult to accommodate within the current distinctiveness framework. Nevertheless increased 

focus or engagement on the task might still facilitate memory through distinctive processing; this 

idea is explored further in the proceeding section.    

Next, in Experiment 2 a delayed production procedure was used to elaborate on the 

preparatory responses observed in Experiment 1 (see Mama & Icht, 2018b; Thoms et al., 2020). 

Again, Experiment 2 revealed that pupil dilation changed significantly prior to production, 

indicating that participants engaged in differential processing depending on the experimental 

condition, this time while the stimulus was on screen. However, this difference was only 

observed between the silent condition and the two conditions which involved speaking. The 

aloud and check conditions did not significantly differ from one another, suggesting that the 

larger pupil size in these two conditions reflected cognitive responses that were related to 

preparing to speak aloud. Importantly, these changes occurred early in the trial well before the 

onset of the Go cue, which indicates that extra cognitive processes were recruited well before the 

onset of speaking and were used to prepare for the upcoming vocal response. Although I cannot 

directly infer that these differences are reflecting attentional processes, the observation of a 
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divergence in the pupil signal during Experiment 2, prior to production is in line with the 

speculation that pupil change prior to vocal production is caused by preparatory processes. An 

idea previously proposed in response to the early pupil change observed in Experiment 1.  

Pupil size was consistently smaller in the silent condition compared to the other two 

conditions across both experiments, a finding that corroborates earlier pupillary findings by 

Tiller et al. (2018). Furthermore, in both studies pupil diameter decreased over the course of the 

trial. A smaller pupil size indicates that encoding silent words was less effortful than encoding 

aloud or check words (Hess & Polt, 1964). In Experiment 1 the finding that pupil size was 

smaller while encoding the stimulus was not unexpected as this occurred during the same time 

that participants spoke in the aloud and check conditions. Therefore, it is unsurprising that 

encoding while speaking was more effortful than encoding the word in the absence of speech. 

The observations made in Experiment 2 are more difficult to explain; since the stimulus was 

presented before production in the aloud and check conditions, participants in all three conditions 

were reading the word silently to themselves during the early period of the trial. Thus, 

participants in the check and aloud conditions should not have been using more mental effort to 

encode the word; any additional effort was therefore most likely related to preparing to vocalize. 

It is possible that knowing they would be speaking, participants allocated more attentional 

resources to the word. Hassall et al. (2016) previously demonstrated differences in brain activity 

prior to production when the stimulus preceded speaking. Across both studies, pupil size 

decreased over the course of the trial in the silent condition; this observation was also thought to 

indicate changes in attentional processes. Tiller et al. (2018) also observed constriction of the 

pupil size during the silent condition over the course of the trial and suggested that this process 

reflected attentional disengagement, leading to lower memory performance for silent words. 
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Similarly, I suggest that my findings are supportive of the previous notion and reflect 

participants both engaging less with silent words and more readily disengaging from them. This 

finding supports the “lazy reading hypothesis” and suggests that participants do show differential 

engagement on silent trials (MacLeod et al. 2010).  

A final trend observed across both studies was a similarity in pupil diameter between the 

check and aloud conditions which only significantly diverged during the pre-cue in Experiment 

1. This similarity indicates that a comparable amount of mental effort was used when 

participants read the word, prepared to speak and during their vocal response during aloud and 

check trials. Despite pupil measures indicating that similar amounts of cognitive effort were used 

in these two conditions when the word was on screen, only the aloud condition showed improved 

memory performance; indicating that it was probably the distinctive information strengthened by 

the unique vocal response that was better encoded during the aloud trials and subsequently 

boosted memory for aloud words. Evidence for this notion comes from Fawcett et al. (2020) who 

observed similar differences between check and aloud trials in brain activation. As in the present 

study there was no memory improvement for the check conditions leading the authors to 

conclude that it was the distinctive information encoded on the aloud trials that improved 

memory for those items. The correlational analysis confirmed that pupillary change was related 

to the production effect during aloud trials but was not during check trials. The parallels between 

these two studies and the conclusions that can be made about memory performances during 

aloud and check trials will be discussed further in the upcoming section.    

4.2 Implications for the Distinctiveness Account  

 The distinctiveness account of the production effect posits that producing words renders 

those words distinctive compared to words that are not produced and that these words benefit 
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from additional unique information added by the act of production (MacLeod et al., 2010). 

Furthermore, it is thought that participants heuristically use this information at test to inform 

decisions about whether a word had been previously studied (Dodson & Schacter, 2001). 

Although the main findings were largely consistent with a distinctiveness account, some of my 

findings provide a challenge to a pure distinctiveness account and suggest that there are other 

active mechanisms that improve memory for aloud words during the production task.     

 First, the observed similarities in the pupil signal during the aloud and check conditions 

were comparable in both studies, only diverging during the early window in Experiment 1. These 

results are compatible with a distinctiveness account. If pupil size was reflecting mental effort 

related to the task and to later memory performance then I would have expected to see a greater 

increase in pupil diameter in the aloud condition compared to the check condition. The absence 

of a difference suggests that the effort that was used in these conditions was indicative of the 

effort related to speaking and not necessarily the encoding processes. Similarly, if cognitive 

effort improved memory by increasing the strength of produced words (Bodner & Taikh, 2012), 

then I would have expected to see an improvement in memory for the check condition as well, 

since pupil size also increased during these trials indicating more mental effort was used during 

encoding. However, memory performance for the check condition did not benefit from the 

observed cognitive effort and in fact was lower than the performance for silent words in 

Experiment 1. This indicates that aloud words benefited from additional distinctive processing 

that increased memory for those words at test (MacLeod et al., 2010). Although, note that mental 

effort in the check condition may have reflected cognitive effort allocated to other areas of the 

task, for example, engaging in two unrelated tasks might have contributed to mental effort in the 

check conditions; this idea will be explored further in the following section.   
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Additionally, the finding that memory performance improved for aloud words but not 

check words might be due to differences in participants’ ability to use those responses to guide 

their decisions at test using the distinctiveness heuristic (Dodson & Schacter, 2001). Speaking 

was equally effortful in both conditions but only the aloud words were encoded better. The only 

difference between the two conditions was that in the aloud condition participants read the 

stimuli aloud – a unique response, whereas in the check condition participants said “check” – a 

repetitive verbal response. MacLeod et al. (2010) surmised that for production to improve 

memory the produced word had to be unique, otherwise it would not benefit from the additional 

distinctive processing. This suggests that memory performance for aloud words was improved 

because aloud words benefited from greater distinctive processing, resulting in a more elaborate 

encoding trace in one’s memory. However, another factor influencing the performance 

difference between the aloud and check conditions might have been the ability to use this 

information to guide decisions at test. In the check condition participants produced a repetitive 

verbal response, therefore the response would be less useful to use heuristically at test. A similar 

inference was made by Fawcett et al. (2020) who demonstrated increased activation in the motor 

and auditory cortices during study in the aloud and check conditions but only observed a 

performance improvement in the aloud condition. Interestingly, they also observed activation of 

the auditory and motor cortices for control words during test, suggesting that participants were 

trying to access a  production trace but since the trace did not have any defining information it 

did not aid memory performance. In conclusion, the similarities observed in pupil size in the 

aloud and check conditions in the present studies without an observed outcome in memory 

performance provide support to the distinctiveness account, suggesting that memory 
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performance is largely the outcome of encoding the distinctive nature of the aloud words which 

are produced during study.    

In Experiment 1, I demonstrated that cognitive effort differed by condition even prior to 

the presentation of distinctive information. This finding is difficult to explain with the original 

distinctiveness account since cognitive processes that occurred during that time could not have 

been related to distinct information. Providing a further challenge, my correlational analysis 

revealed that these differences were related to memory performance at test but only for aloud 

words. I suggested that these differences were likely reflecting preparatory processes, meaning 

that participants increased their attention to the task knowing the upcoming task would be more 

effortful. However, a theory that is more in line with a distinctiveness account is that differences 

in attention might not impact memory directly but rather contribute to the effect indirectly 

through supporting distinctive processing. For example, attention might facilitate production by 

enabling participants to encode more or better encode the distinctive elements of the stimulus, 

thereby enhancing the memory trace. The amount of attention that is allocated to the word would 

modulate the degree to which memory is improved. 

Further evidence for additional active cognitive processes during production comes from 

studies relating dual-process theory to the production effect. This theory is based on the notion 

that recognition memory is driven by two discrete memory processes: recollection and 

familiarity (Yonelinas, 2002). Recollection is thought to be a process of retrieval where one 

makes a decision at test based on specific episodic traces about the encoding of the memory 

(e.g., tone of voice), whereas familiarity is a trace feeling that something has been seen but in the 

absence of specific details (e.g., a sense of having seen the word before but no details about the 

way it was presented). Since distinctive encoding involves storing specific information and using 
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that information to inform decisions at test, it follows that recollection should be the driving 

process in production if the memory boost is purely the outcome of distinctive encoding (Fawcett 

& Ozubko, 2016; Ozubko, Gopie et al. 2012). In contrast, familiarity reflects a process akin to 

encoding strength or attention where memory is not guided by a specific recollective episode but 

a broader notion that something has been studied.  

Ozubko, Gopie et al. (2012) were the first to investigate recollection and familiarity 

within the production paradigm. Across two studies they obtained separate measures for 

recollection and familiarity and by comparing these measures across silent and aloud conditions 

they concluded that producing words improved both types of memory. They observed an 

increase in recollection, highlighting the important role that distinctive processing plays in the 

production effect. However, they also observed a significant increase in familiarity for words 

that had been produced. Importantly, familiarity for aloud words remained even when silent 

words were also strengthened through repetition. This led to the conclusions that familiarity was 

unlikely reflecting a difference in encoding strength, instead the authors suggested that attention 

might be at play, bolstering the notion previously put forth that attention might play a supporting 

role in the production effect (see MacDonald & MacLeod, 1998) while also showing evidence 

for dual-processing.  

Later, Fawcett and Ozubko (2016) replicated the finding that production increased both 

familiarity and recollection again evidencing dual-processing in the production effect. Unlike 

Ozubko et al. (2012), they proposed that familiarity was reflecting strength processes but added 

that increased attention mediated encoding strength, such that increased attention would elicit 

stronger encoding and thereby improve memory. Interestingly, the authors also completed a 

meta-analysis including studies that had measured recollection and familiarity in both within- 
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and between-subjects designs. They observed that in a between-subjects design the production 

effect was driven by familiarity, suggesting that in a within-subject design, production boosts 

both familiarity and recollection, but in a between-subjects design memory is benefited by 

familiarity alone. This suggests that in a within-subject design the encoding of distinctive 

information causes the memory boost but in the between-subjects design memory improvement 

is driven by encoding strength. In the following section I will expand on the notion that attention 

or other processes could play a more central role in the production effect and discuss the 

pupillometric findings within a broader range of cognitive theory.    

4.3 Evidence Supporting Alternative Accounts of Production  

In Experiment 1, I observed a divergence in pupil size as a response to the experimental 

condition prior to the presentation of any distinctive information. I previously examined these 

findings within the framework of attention facilitating the process of distinctive encoding. Now I 

would like to explore the idea that attention could play a more central role in the production 

effect. An alternate interpretation of the role of attention in the production effect is that attention 

mediates the effect. A mediation framework of attention in production would suggest that 

attention can facilitate distinctive processing as previously discussed, but also that attention can 

directly impact memory performance such that words that are better attended to are better 

encoded. This second component could explain why the pupillary response to the cue in the early 

window was related to the magnitude of the production effect. If this early pupillary response 

reflects differences in attention, then the amount of attentional engagement that was allocated 

during the pre-cue might predict the advantage that extra attention gave to encoding. Similarly, 

Fawcett and Ozubko (2016) posited that Hassall et al.’s (2016) observation of the P300 signal 

prior to production could be reflecting attentional resources allocated to facilitate production. 
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The increase in pupil size observed during the aloud and check conditions prior to production in 

both Experiment 1 and 2 might reflect a similar process. Whether attention directly impacts later 

memory or if it merely facilitates distinctive processing, my observation of pupil differences in 

the pre-cue in Experiment 1 suggests that attentional processes play a role.     

Another possible indicator of attention in the current studies was the consistent finding of 

a smaller pupil size during the silent condition which decreased in size over the course of the 

trial. This pattern can be interpreted two ways. First, encoding the silent stimulus may not be as 

effortful as encoding the aloud or check stimulus; participants might stay focused on the word 

but use less effort to rehearse it. Second, participants may not attend to silent words as well and 

become disengaged with the task, perceiving it to be complete after reading the word silently. 

The fact that silent pupil size dropped below baseline by the end of the trial in both Experiment 1 

and 2 (see Figures 2.3 and 3.3) suggests that participants were not actively focusing on the word 

throughout the entire trial. If attention was sustained, I would expect that maintaining focus over 

the course of the trial would be somewhat effortful (see Unsworth & Nash, 2008). That 

participants do not attend to silent items as well is compatible with a lazy reading hypothesis 

(MacLeod et al., 2010). The results are in agreement with previous research suggesting that 

participants do not attend to silent items as effectively as they do to aloud ones, based on 

subjective reports from participants (Fawcett & Ozubko, 2016; Ozubko et al., 2020) and 

evidence that reading passages aloud reduces mind-wandering (Varao Sousa et al., 2016). 

However, it should be noted that MacLeod et al. (2010) provided evidence challenging the lazy-

reading hypothesis, demonstrating that the production effect held even when silent words were 

strengthened by generation. On that note, Fawcett (2013), proposed a “lively reading” 

hypothesis: that participants might not be less engaged with or motivated to encode the silent 
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items, but rather that they were attending to the aloud items more, resulting in a benefit to those 

items. The results from the current experiments are also compatible with this viewpoint as I 

observed consistently a larger pupil diameter in the aloud condition compared to the silent 

condition.    

Further evidence that attention might contribute to the production effect comes from 

studies where attention was directly manipulated within the production paradigm. First, Mama et 

al. (2018) demonstrated that the production effect was eliminated in a noisy environment when 

linguistic or fluctuating background noise was present. They argued that the elimination of the 

production effect was due to the noise interrupting attentional resources during the task. 

Interestingly, noise impacted memory for the aloud words only – memory for silent words was 

similar across conditions. One might argue that noise interrupted distinctive processing and not 

attentional resources by reducing the capacity to encode auditory feedback. However, across all 

noise conditions participants did not receive auditory feedback including a steady-state noise 

condition which resulted in a production effect comparable to that in the no noise condition.  

This indicated that it was not just the absence of auditory feedback that eliminated the effect with 

linguistic or fluctuating noise. Later Mama and Icht (2018a) again addressed the role of attention 

in the production effect by comparing a group of participants who were diagnosed with ADHD 

before and after taking MPH. Similar to Mama et al. (2018), improving attention (through 

administration of MPH) only improved memory for the produced words; silent words were 

equivalently recalled. This cohesion of results provides evidence that attention is fundamental in 

production as only those words that had been produced were impacted when attention was 

reduced.  
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Similarly, Slaney (2015) showed that divided attention (by having participants complete a 

secondary task where they responded to differing tones) eliminated the production effect for 

recall when the distraction occurred during the test phase. Unlike Mama et al. (2018), the author 

did not find an impact of divided attention during the study phase and suggested that distinctive 

information was automatically encoded even when attention was divided. However, these 

differences may have arisen due to methodological differences; in Slaney’s study the tones 

appeared across differing sub-trials, whereas Mama et al. had a blanket noise condition that 

persisted through the entire study phase. Although arriving at different conclusions about the role 

of attention in production, studies that have manipulated attention suggest that attention does 

play an important role in the production effect and that the effect is reduced if not eliminated 

when attention is decreased (Mama et al., 2018; Mama & Icht, 2018a; Slaney, 2015). 

As discussed earlier, pupil size during check conditions changed mostly to the same 

degree as the aloud conditions across both experiments but with no memory benefit to check 

words, which I determined was consistent with a distinctiveness account. However, I also 

mentioned that an alternative perspective is that equivalent mental effort is used on both trials, 

but in the aloud trials this effort is related to encoding the word while in the check trials it is in 

response to a different task demand. For example, it is possible that when participants had to say 

“check” aloud that they were primarily focused on the vocal response and that memorizing the 

stimulus became a secondary task. Previously, Tyler, et al. (1979) had participants complete a 

secondary task (e.g., responding to a tone) while they were engaged with a primary task, which 

involved choosing the correct word for an anagram or to complete a sentence. The primary task 

had a low effort and a high effort (e.g., more difficult anagrams or sentence completion) 

condition, and participants were told that this task was more important than performance on the 
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secondary task (responding to the tone). They found that effort impacted performance on the 

secondary task but only in the high effort condition; when participants were using more cognitive 

effort on the primary task, response times for the secondary task were longer. This supports the 

assumptions made in the present study; if participants are using more cognitive effort (as 

evidenced by pupil dilation) but not showing an improvement for memory for those words, then 

participants could be perceiving memorizing the stimulus as a secondary task and thus 

performance is being impacted by the primary task – saying “check” aloud. When making a 

repetitive verbal response participants have to engage in two different processes – encoding the 

stimulus and saying an unrelated word aloud – this process may be effortful in its own right. 

Participants are required to hold two phonological representations (i.e., “check” and the silently 

read word) in their mind which might result in the word not being encoded as well because of the 

cognitive load of having to perform two unrelated tasks during encoding (Baddeley et al., 1984). 

A second possibility is that the increase in pupil size before speaking is caused by 

performance anxiety. Evidence that participants might feel performance anxiety when speaking 

aloud during the production task was put forth by Forrin et al. (2019). These findings are 

especially relevant to the current study because Forrin et al. also alerted participants to the 

upcoming trial instruction and determined that memory performance differed depending on the 

upcoming condition. A connection between anxiety and cognitive effort has been previously 

measured using pupillometry; Hepsomali, Hadwin, Liversedge, Degno and Garner (2018) 

showed that participants who have higher trait anxiety might compensate by allocating more 

cognitive effort towards highly demanding cognitive tasks. When participants with high trait 

anxiety completed a cognitively demanding Go/No-Go task they showed greater pupil dilation 

than a low-trait anxiety group, indicating more cognitive effort being used. However, 
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performance measures did not differ between the two groups, suggesting that cognitive effort 

was being used as an effective strategy to compensate for task related deficits due to anxiety. 

Although this study was making a comparison between participants with low and high trait 

anxiety, the results indicate that when participants are anxious they might compensate with 

mental effort. If Forrin et al.’s speculation about performance anxiety during production is 

correct, then it could be the case that in the speaking conditions some of the pupil change is 

reflecting mental effort being allocated in response to performance anxiety about the upcoming 

task. However, the correlation of the increase in pupil size during aloud trials compared to silent 

ones with the behavioral production effect suggests that pupil size is reflecting task-specific 

mental effort – at least during aloud and silent trials. Nevertheless, it is possible that performance 

anxiety partially contributes to the increase in pupil size observed.    

4.5 Future Directions  

Presently, in my lab we have obtained preliminary data extending the findings of Thoms 

et al. (2020) who studied the delayed production effect using varying stimulus onset asynchrony 

timings. Specifically, Thoms (2020) modified the previous study by applying pupillometry to 

measure cognitive effort during the delayed production effect across time intervals of 500 ms and 

1500 ms. They also included catch trials – where the Go signal to produce the word never 

appeared, thus participants thought that they were going to be producing the word but never did; 

these catch trials also occurred less frequently than the other two conditions so that participants 

would be less likely to adapt to them. Previously, Thoms et al. (2020) observed increasing 

recognition accuracy for aloud and silent words as the trials lengthened, suggesting that a longer 

trial increased encoding strength. They also made the novel observation of a production effect 

during the catch trial when no word was produced, similar to the offline production effect but 
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with the key difference being that participants were not told to imagine saying the words 

(Jamieson & Spear, 2014). By applying pupillometry to the previous behavioural delayed 

production design we will be able to make further inferences about whether cognitive effort is 

sustained over longer trials and if this does indeed relate to better memory for these words. My 

own observations in Experiment 2 suggest that pupil size will be sustained over longer trials 

since both the aloud and check conditions showed sustained pupil size when a delayed 

production procedure was used.  

A limitation present in both the present Experiment 2 and Thoms (2020) is that neither of 

these studies included an immediate production condition. In previous investigations of the 

delayed production effect Mama and Icht (2018b) included an immediate production condition in 

which participants read the word aloud while it was on screen. Including an immediate 

production condition would allow for a direct comparison of memory improvement across the 

course of the trial while providing the additional measure of pupillometry. A future study could 

modify the delayed production procedures used in the present Experiment 2 and by Thoms 

(2020) so that there is also an immediate production condition. This would provide further 

corroboration for the theory that the delayed production condition resulted in better memory 

performance because the words were strengthened over the delayed period; this should be 

reflected in sustained cognitive effort over the course of the delay.       

The present study demonstrates that pupillometry is an effective tool for measuring the 

cognitive processes that underlie the production effect. Certainly, my most challenging finding 

was the divergence of pupil diameter being different in all three conditions during the pre-cue in 

Experiment 1. I suggested that this was caused by an attentional component causing a greater 

pupil increase in the two speaking conditions, reflecting the effort it took participants to focus or 
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upregulate their attention to prepare for speaking aloud. Future studies should find a way to 

adjust the current paradigm to determine if there is an attentional preparatory component to the 

production effect in a way that is more similar to the classic paradigm (i.e., simultaneous 

presentation of the instruction cue, stimulus, and production). Notably, by using a pre-cue 

procedure I fundamentally changed the experimental procedure from the classic paradigm and 

therefore, I can only infer that these processes would also occur without modifications. 

Demonstrating preparatory differences without using a pre-cue could provide further evidence 

for this process in the production paradigm, for example, participants might still upregulate 

attentional processes prior to speaking. Alternatively, I previously mentioned that another 

explanation for the increase in pupil size prior to production might be that it is an indicator of 

performance anxiety. Forrin et al., (2019) previously suggested that memory for silent words was 

worsened by performance anxiety elicited from participants being aware that they would be 

speaking aloud on an upcoming trial. A second physiological measure of anxiety, such as skin 

conductance could be applied to the present pre-cue paradigm to assess whether participants do 

indeed get anxious when they are about to speak aloud (Weerts, & Lang, 1978). This 

manipulation might also inform as to whether pupillometry can be used as a valid measure to 

assess performance anxiety.   

4.6 Final Conclusions  

 Reading words aloud renders them more memorable than words that are read silently. 

There is substantial evidence that produced words are perceived as distinctive from unproduced 

words and that subsequent distinctive processing and related processes (i.e., use of a 

distinctiveness heuristic) are the main drivers of the production effect (Dodson & Schacter, 2001; 

MacLeod et al., 2010). Nevertheless, some studies have provided evidence that production also 
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works by enhancing attentional processes (Forrin et al., 2019; Mama et al. 2018; Mama & Icht, 

2018a) or by strengthening the encoding trace (Mama & Icht, 2018b). Additionally, attention has 

been cited as a mechanism that might inhibit the encoding of silent words (i.e., a “lazy reading 

hypothesis”; Fawcett & Ozubko, 2016; MacLeod et al. 2010; Ozubko et al., 2020).  

The current experiments provided further corroboration of distinctiveness as a central 

process in the production effect. However, my results provided evidence that challenge a pure 

distinctiveness account; in particular, the finding of a pupillary response prior to the presentation 

of distinctive information supports earlier findings that attention might play a role in the 

production effect. Future studies should aim to further examine whether attention plays a critical 

or supportive role in improving memory via production. Further evidence for attention in the 

production effect was evidenced by smaller pupil changes during silent trials, consistent with the 

“lazy reading account” of production, which suggests the production effect may be in part due to 

a cost to silent items (MacLeod et al., 2010). Finally, correlations between the difference in 

cognitive effort measured on aloud trials compared to silent ones and the resulting production 

effect in recognition suggest that alternative processes, such as attention and cognitive effort are 

related to later memory. Furthermore, the current studies highlighted pupillometry as a useful 

metric for examining the processes underlying the production effect. Future research should 

continue to use pupillometry to further examine the cognitive underpinnings of the production 

effect. Given its simple implementation and effectiveness at improving memory it is important to 

understand the production effect as its applications in areas, such as academia and the workplace 

are enumerable. Only through understanding the underlying cognitive processes can the 

paradigm be applied in a truly effective manner.         
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