
IEEE Int. Symposium on Industrial Electronics (ISIE’96), Warsaw, Poland, 17-20 June 1996, vol.2, pp.1055-1060.

Copyright c© 1996 IEEE (DOI 10.1109/ISIE.1996.551091).

Optimal Schedules of Manufacturing Cells —

Modeling and Analysis Using Timed Petri Nets

W.M. Zuberek

Department of Computer Science
Memorial University of Newfoundland

St. John’s, Canada A1C-5S7

Abstract – A method for systematic generation of sim-
ple and composite schedules for a large class of man-
ufacturing cells is presented. The generated schedules
can easily be transformed into timed Petri net models,
and these models evaluated using one of methods de-
veloped for analysis of timed Petri nets, for example,
invariant analysis. Performance characterization (the
cycle time or the throughput) obtained in this way can
be used for optimization of the cell’s performance.

1. INTRODUCTION

Manufacturing cells (or robotic cells) are groups of
machines with a robot that performs cyclic sequences of
pickup, move, load, unload and drop operations, trans-
porting the manufactured parts from one machine of
the cell to another [1, 2]. This cyclic sequence of robot
activities is called a schedule. The throughput of the
cell depends on the sequence of robot actions as well
as on the sequence in which different parts enter the
cell [3]. Any approach to maximizing the throughput
of a robotic cell must be able to deal efficiently with
two issues: how to generate alternative schedules for a
given cell, and how to evaluate these schedule. Usually
the schedules are represented by models which capture
the essential characteristics of the schedule, but which
remove all details inessential to the evaluation process.

Manufacturing cells can be regarded as discrete event
systems, with their behavior represented by ‘events’
and ‘activities’. An activity corresponds to an op-
eration performed by a machine or the robot, and
events corresponds to changes of (simultaneous) activi-
ties. Different sets of activities determine the ‘states’ of
the system. In each state, several activities can occur
concurrently, for example, several machines can per-
form their operations simultaneously and the robot can
also transport a part. Petri nets provide a simple and
convenient formalism for modeling systems that exhibit
parallelism and concurrency [4, 5].

Although the application of Petri nets to modeling
and analysis of scheduling problems has a long history
[6, 7, 8, 9, 10], the Petri nets used in these models did
not represent the durations of modeled activities. In or-
der to study performance aspects of modeled systems,

these durations must also be taken into account and in-
cluded into model specifications. Several types of Petri
nets ‘with time’ have been proposed by assigning ‘firing
times’ to the transitions or places of a net. In timed
nets, transition firings are ‘real–time’ events, i.e., to-
kens are removed from input places at the beginning
of the firing period, and they are deposited to the out-
put places at the end of this period (sometimes this is
also called a ‘three–phase’ firing mechanism). The fir-
ing times may be either deterministic or stochastic, i.e.,
described by some probability distribution function. In
both cases the concepts of state and state transitions
have been formally defined and used in derivation of
different performance characteristics of the model [11].

Analysis of net models can be based on their behavior
(i.e., the space of reachable states) or on the structure
of the net; the former is called reachability analysis
while the latter structural analysis. Invariant analysis
seems to be the most popular example of the structural
approach. Structural methods eliminate the derivation
of the state space, but they provide less information
than the reachability approach. Quite often, however,
all the detailed results of reachability analysis are not
really needed, and the performance measures provided
by structural methods are quite satisfactory [12]. In
particular, the throughput of a timed net model can
easily be determined from the structure of a net if the
net can be decomposed into a set of conflict–free or
free–choice elementary nets [13].

The steady–state behavior of manufacturing cells is
considered for two types of schedules, the so called sim-
ple schedules in which exactly one (new) part enters the
cell and one leaves the cell in each cycle, and composite
schedules which deal with several (new) parts in each
cycle. In both cases, timed Petri net models are pre-
sented, and are solved using the invariant analysis. The
solutions are obtained in symbolic form which means
that the analysis needs to be performed only once, and
then specific values of performance characteristics can
easily be obtained by simply evaluating the symbolic
solutions for different sets of parameter values. Exam-
ples of simple and composite schedules for a 3–machine
cell illustrate the proposed approach.

Throughput optimization is obtained by systematic
analysis of different schedules and selecting the schedule

Optimal schedules of manufacturing cells ... 1056

that minimizes the cell’s performance (i.e., minimizes
the cycle time). As the number of possible schedules
increases rather quickly with the number of machines
as well as with the length of a (composite) schedule,
an efficient method of generating simple and compos-
ite schedules for a large class of manufacturing cells
is needed. Such a method is proposed in this paper.
The generated schedules can easily be transformed into
timed Petri net models, and these models evaluated us-
ing one of methods developed for analysis of timed Petri
nets, for example, invariant analysis.

2. MODELS OF SIMPLE SCHEDULES

For simple schedules of robotic cells, exactly one part
enters and one leaves the cell in each cycle (although
the part which leaves the cell may not be the same as
the one which enters the cell). It is known [2] that for
a cell with m machines there are m! different simple
schedules. For m = 3 (Fig.1 shows a sketch of a 3–
machine cell), there are six simple schedules, denoted
here as A, B, C, D, E and F.

M3

M1

M2

M3

In Out

Robot

Fig.1. Layout of a three–machine cell.

Assuming, for simplicity, that each part follows the
same path from the input (In) to machine–1 (M1), to
machine–2 (M2), to machine–3 (M3), and finally to the
output of the cell (Out), the simple schedules can be
described by the following sequences of cell configura-
tions, where each configuration corresponds to a distri-
bution of parts among the machines of the cell (when
the robot does not carry a part); more specifically, each
configuration is described by anm–tuple of machine de-
scriptions:

(k1, k2, ..., km)

where each machine description ki is “1” if the ma-
chine Mi is loaded with a part in this configuration,
and otherwise is “0” (in the case of multiple machines
performing exactly the same operations, the values de-
scribing each multi–machine station would assume the
values from “0” to “n” where n is the number of iden-
tical machines):

A: (0, 0, 0) → (1, 0, 0) → (0, 1, 0) → (0, 0, 1) → (0, 0, 0)
B: (0, 0, 1) → (1, 0, 1) → (0, 1, 1) → (0, 1, 0) → (0, 0, 1)
C: (0, 0, 1) → (1, 0, 1) → (1, 0, 0) → (0, 1, 0) → (0, 0, 1)
D: (0, 1, 0) → (1, 1, 0) → (1, 0, 1) → (1, 0, 0) → (0, 1, 0)
E: (0, 1, 0) → (1, 1, 0) → (1, 0, 1) → (1, 0, 0) → (0, 1, 0)
F: (0, 1, 1) → (1, 1, 1) → (1, 1, 0) → (1, 0, 1) → (0, 1, 1)

Each change of configurations corresponds to a part
moving from one machine to another, from the input to
the first machine, or from the last machine to the out-
put. All schedules uniformly begin by moving a (new)
part from the input to the first machine.
The simple schedules can be generated systematically

by applying the following rules, describing all possible
“passages” of parts through the machines:

• a configuration (k1, ..., ki, ki+1, ..., km) derives a
configuration (k1, ..., ki − 1, ki+1 + 1, ...km) if and
only if the value of ki is “1” and the value of ki+1

is “0”, i = 1, ...,m− 1;

• a configuration (k1, k2, ..., 1) always derives a
configuration (k1, k2, ..., 0) (this derivation corre-
sponds to moving a part from the last machine
Mm to the output of the cell),

• it is assumed that each schedule begins by moving
a (new) part from the input to the machine M1,
so the first derivation is always from (0, k2, ...km)
to (1, k2, ..., km),

• for a cell with m machines, the length of all sim-
ple schedules is equal to m + 1 (it corresponds to
a passage of a part, although not necessarily the
same, from the input, through all machines of the
cell, to the output).

The six simple schedules of a 3–machine cell corre-
spond to all possible derivations of configurations de-
scribed by the above rules, applied to four different ini-
tial configurations of the cell (the initial configurations
describe different distributions of parts on machines in
time instants when a new part is going to be picked
from the input):

(0, 0, 0) → (1, 0, 0) → (0, 1, 0) → (0, 0, 1) → (0, 0, 0) A

(0, 0, 1) → (1, 0, 1) →

{

(0, 1, 1) → (0, 1, 0) → (0, 0, 1) ... B
(1, 0, 0) → (0, 1, 0) → (0, 0, 1) ... C

(0, 1, 0) → (1, 1, 0) → (1, 0, 1) →

{

(0, 1, 1) → (0, 1, 0) ... D
(1, 0, 0) → (0, 1, 0) ... E

(0, 1, 1) → (1, 1, 1) → (1, 1, 0) → (1, 0, 1) → (0, 1, 1) F

Since parts are transported from one machine (or in-
put) to another (or output) by the robot, the sequences
of robot’s actions can easily be derived from the se-
quences of configurations by “implementing” the moves
of parts corresponding to changes of consecutive con-
figurations. For example, schedule A begins be trans-
porting a part from the input to M1 and loading it;
when the first operation is finished, the robot unloads

Optimal schedules of manufacturing cells ... 1057

M1, moves the part to M2 and loads it there, and so
on. The sequences of robot actions are as follows (the
robot moves from X to Y are denoted by X ⇒ Y if the
robot carries a part and by X → Y otherwise):

A: In⇒M1 ⇒M2 ⇒M3 ⇒ Out→ In

B: In⇒M1 ⇒M2 →M3 ⇒ Out→M2 ⇒M3 → In

C: In⇒M1 →M3 ⇒ Out→M1 ⇒M2 ⇒M3 → In

D: In⇒M1 →M2 ⇒M3 →M1 ⇒M2 →M3 ⇒

Out→ In

E: In⇒M1 →M2 ⇒M3 ⇒ Out→M1 ⇒M2 → In

F: In⇒M1 →M3 ⇒ Out→M2 ⇒M3 →M1 ⇒

M2 → In

Timed Petri net models of simple schedules can easily
be derived from the sequences of robot operations. In
timed models, net transitions represent (machine and
robot) operations while places represent ‘conditions’ (in
the most general sense). A Petri net model of sched-
ule A is shown in Fig.2. The three machines of Fig.1
(or rather machine operations) are represented by t1,
t2 and t3, each of these transition with its input and
output place (for ‘part loaded’ and ‘machine operation
finished’ conditions). The ‘firing times’ associated with
these transitions, f(t1) = o1, f(t2) = o2 and f(t3) = o3,
represent the (average) times of performing the opera-
tions on machines M1, M2 and M3, respectively. It is
assumed that a part is always available in In, and that
Out removes manufactured parts sufficiently quickly,
so In and Out are not actually shown (they can easily
be added to the model, with or without some form of
buffering).

t1 t2 t3p12 p21 p23 p32 p34

p40p04 t40

t12 t23 t34t01 p11 p22 p33

p10

Fig.2. Petri net model of schedule A.

The operations of the robot are represented by a sim-
ple cycle (p04, t01, p11, t12, p22, t23, p33, t34, p40, t40,
p04), which follows the sequence of robot’s operations.
The initial marking of place p04 represents a new part
ready to be picked up from the input conveyor. The
‘interpretation’ of the transitions is as follows:

robot operations exec time

t01 pick a part from In, move to M1, load u+ w + y

t12 unload M1, move to M2 and load v + w + y

t23 unload M2, move to M3 and load v + w + y

t34 unload M3, move to Out and drop v + x+ y

t40 move from Out to In 2y

where the ‘execution times’ (or firing times of transi-
tions) are given assuming that:

u denotes the (average) pickup time,
v denotes the (average) unload time,
w denotes the (average) load time,
x denotes the (average) drop time and
y denotes the average ‘travel’ time between two ad-
jacent machines (assuming, for simplicity, that
this time is the same for all adjacent machines,
and also the same for M3 to Out, Out to In and
In to M1 moves).

Fig.3 shows a Petri net model of schedule C. The
robot’s operations are represented by a more complex
cycle (p03, t01, p13, t13, p31, t34, p41, t41, p14, t12, p22,
t32, p30, t30, p03), and the ‘interpretation’ of the tran-
sitions is as follows:

t1 t2 t3

t01 t12 t23 t34

t13

t30

t41
p03

p13
p14

p22

p30

p31

p41

p10 p12 p21 p23 p32 p34

Fig.3. Petri net model of schedule C.

robot operations exec time

t01 pick a part from In, move to M1, load u+ w + y

t12 unload M1, move to M2 and load v + w + y

t13 move from M1 to M3 2y
t23 unload M2, move to M3 and load v + w + y

t30 move from M3 to In 2y
t34 unload M3, move to Out and drop v + x+ y

t41 move from Out to M1 2y

The initial marking assigns tokens to p03 (the next
part ready to be picked up from the input conveyor)
and p32 (another part loaded – in the previous cycle –
on machine M3).

3. MODELS OF COMPOSITE

SCHEDULES

Models of composite schedules can be regarded as an
interleaved composition of simple schedules, which cor-
respond to consecutive parts entering the cell within
one cycle. A systematic generation of composite sched-
ules can be obtained by tracing all possible moves of
parts through the cell. Since each composite schedule
processes n parts in a single cycle (and is called an
n–schedule for simplicity), the states of a cell (i.e., dis-
tributions of parts among the machines of a cell) must
be denoted in a unique way within a cycle. A typi-
cal m–machine cell state is a vector of length m with
elements equal to “1” to denote machines processing
parts, and elements equal to “0” for idle machines. For
composite schedules, a hypothetical “input container”
is introduced, which (for an n–schedule) contains ini-
tially exactly n (parts); all these parts must be emptied

Optimal schedules of manufacturing cells ... 1058

during the schedule. This container is characterized by
an additional, initial element of cell descriptions, sepa-
rated from the remaining (machine) descriptions by a
colon (rather than a comma). A typical description of
an n–schedule for an m–machine cell is thus:

(k0 : k1, k2, ..., km)

and the rules describing changes of configurations are:

• a configuration (k0 : k1, ..., ki, ki+1, ..., km) derives
a configuration (k0 : k1, ..., ki− 1, ki+1+1, ...km) if
and only if the value of ki is “1” and the value of
ki+1 is “0”,

• a configuration (k0 : k1, k2, ..., 1) always derives a
configuration (k0 : k1, k2, ..., 0) (this corresponds
to moving a part from the last machine Mm to the
output of a cell),

• a configuration (k0 : 0, k2, ..., km) derives a config-
uration (k0 − 1 : 1, k2, ..., km) if and only if k0 > 0
(this corresponds to moving a new part from the
input to M1),

• it is assumed that each schedule begins by moving
a (new) part from the input to the machine M1, so
the first derivation is always from (k0 : 0, k2, ...km)
to (k0 − 1 : 1, k2, ..., km),

• for a cell with m machines, the length of all n–
schedules is equal to n ∗ (m+ 1).

For a 3–machine cell, there are 34 different 2–
schedules, including 6 which are just simple schedules
repeated twice. All 34 2–schedules can be systemat-
ically derived by iteratively applying the rules to the
four initial configurations of the cell. For the initial
configuration (0,0,0), there are five 2–schedules:

[3]
(0:0,0,0)

❄

(0:0,0,1)
❄

(0:0,1,0)
❄

(0:1,0,0)
❄

(1:0,0,0)

[2]
(0:0,0,0)

❄

(0:0,0,1)
❄

(0:0,1,0)
❄

(0:0,1,1)

[1]
(0:0,0,0)

❄

(0:0,0,1)
❄

(0:0,1,0)
❄

(0:1,0,0)

(0:1,0,1)
✟

✟✟✙

❍
❍❍❥

(1:0,0,1)
✟

✟✟✙

❳❳❳❳❳③

[4]
(0:0,0,0)

❄

(0:0,0,1)
❄

(0:0,1,0)
❄

(0:1,0,0)

[5]
(0:0,0,0)

❄

(0:0,0,1)
❄

(0:0,1,0)
❄

(0:0,1,1)

(0:1,0,1)
✟

✟✟✙

❍
❍❍❥

(0:1,1,0)

❄

(1:0,1,0)
❳❳❳❳❳❳③

✏
✏

✏
✏✮

(1:1,0,0)

❄

(2:0,0,0)

❄

Each of these schedules can be decomposed into a
pair of interleaved simple schedules. For example,
schedule [1] is composed of simple schedules A and C:

schedule A schedule C

(0,0,0)
(1,0,0)
(0,1,0)
(0,0,1) → (0,0,1)

(1,0,1)
(1,0,0)
(0,1,0)

(0,0,1) ← (0,0,1)
(0,0,0)

schedule [2] is a composition of A and B:

schedule A schedule B

(0,0,0)
(1,0,0)
(0,1,0)
(0,0,1) → (0,0,1)

(1,0,1)
(0,1,1)
(0,1,0)

(0,0,1) ← (0,0,1)
(0,0,0)

and schedule [3] is simply a composition of A with itself.

All these schedules can easily be translated into se-
quences of robot operations (as before, the robot moves
from X to Y are denoted by X ⇒ Y if the robot carries
a part and by X → Y otherwise):

[1]: In ⇒ M1 ⇒ M2 ⇒ M3 → In ⇒ M1 → M3 ⇒ Out

→ M1 ⇒ M2 ⇒ M3 ⇒ Out → In

[2]: In ⇒ M1 ⇒ M2 ⇒ M3 → In ⇒ M1 ⇒ M2 → M3

⇒ Out → M2 ⇒ M3 ⇒ Out → In

[3]: In ⇒ M1 ⇒ M2 ⇒ M3 ⇒ Out → In ⇒ M1 ⇒ M2

⇒ M3 ⇒ Out → In

[4]: In ⇒ M1 ⇒ M2 → In ⇒ M1 → M2 ⇒ M3 ⇒ Out

→ M1 ⇒ M2 ⇒ M3 ⇒ Out → In

[5]: In ⇒ M1 ⇒ M2 → In ⇒ M1 → M2 ⇒ M3 → M1

⇒ M2 → M3 ⇒ Out → M2 ⇒ M3 ⇒ Out → In

Timed Petri net models can easily be derived from
the sequences of robot’s action. For example, the net
model for schedule [1] is shown in Fig.4. The model
contains three transitions representing the machines of
the cell (t1, t2 and t3 with average operation times o1,
o2 and o3, respectively) and their input and output
places. The remaining part of the model represents
the actions of the robot (the elements of the schedule
A in the composite schedule A+C are denoted by an
additional single quote):

Optimal schedules of manufacturing cells ... 1059

robot operations exec time

t′01 pick a part from In, move to M1, load u+ w + y

t′12 unload M1, move to M2 and load v + w + y

t′23 unload M2, move to M3 and load v + w + y

t′30 move from M3 to In 2y
t′34 unload M3, move to Out and drop v + x+ y

t′40 move from Out to In y

t01 pick a part from In, move to M1, load u+ w + y

t12 unload M1, move to M2 and load v + w + y

t13 move from M1 to M3 2y
t23 unload M2, move to M3 and load v + w + y

t34 unload M3, move to Out and drop v + x+ y

t41 move from Out to M2 y

t1 t2 t3

t01 t12 t23 t34

t13

t41

p03
p13

p14

p22

p31

p41

p10

p12

p21

p23

p32 p34

p11’ p22’

p30’t30’

t12’

p40’
p04’

t34’t23’

p33

t40’

t01’

Fig.4. Petri net model of schedule [1]=(A+C).

For the initial cell configuration (0,0,1), there are 12
different 2–schedules

(2:0,0,1)

❄

(1:1,0,1)

❄

✘✘✘✘✘✾

(1:0,1,1)

❄

(0:1,1,1)

❄

(0:1,1,0)

❄

(0:1,0,1)

❄

(0:1,0,0)

❄

(0:0,1,0)

❄

(0:0,0,1)
[6,7,8]

✘✘✘✘✘✾

(0:0,1,1)

❄

(0:0,1,0)

❄

(0:0,0,1)
[9,10,11]

❳❳❳❳❳③

(1:1,0,0)

❄

(1:0,1,0)
✘✘✘✘✘✾
❄

(1:0,0,1)

❄

(1:0,0,0)

❄

(0:1,0,0)

❄

(0:0,1,0)

❄

(0:0,0,1)
[12,13]

❳❳❳❳❳③

(0:1,0,1)

❄

(0:1,0,0)

❄

(0:0,1,0)

❄

(0:0,0,1)
[14,15]

❳❳❳❳❳③

(0:0,1,1)

❄

(0:0,1,0)

❄

(0:0,0,1)
[16,17]

and their corresponding robot’s sequences of actions
are:

[6]: In⇒M1 ⇒M2 → In⇒M1 →M3 ⇒ Out→

M2 ⇒M3 ⇒ Out→M1 ⇒M2 ⇒M3 → In

[7]: In⇒M1 ⇒M2 →M3 ⇒ Out→ In⇒M1 →

M2 ⇒M3 ⇒ Out→M1 ⇒M2 ⇒M3 → In

[8]: In⇒M1 →M3 ⇒ Out→M1 ⇒M2 → In⇒

M1 →M2 ⇒M3 ⇒ Out→M1 ⇒M2 ⇒M3 → In

[9]: In⇒M1 ⇒M2 → In⇒M1 →M3 ⇒ Out→

M2 ⇒M3 →M1 ⇒M2 →M3 ⇒ Out→M2 ⇒

M3 → In

[10]: In⇒M1 ⇒M2 →M3 ⇒ Out→ In⇒M1 →

M2 ⇒M3 →M1 ⇒M2 →M3 ⇒ Out→M2 ⇒

M3 → In

[11]: In⇒M1 →M3 ⇒ Out→M1 ⇒M2 → In⇒

M1 →M2 ⇒M3 →M1 ⇒M2 →M3 ⇒ Out→

M2 ⇒M3 → In

[12]: In⇒M1 ⇒M2 →M3 ⇒ Out→M2 ⇒M3 ⇒

Out→ In⇒M1 ⇒M2 ⇒M3 → In

[13]: In⇒M1 →M3 ⇒ Out→M1 ⇒M2 ⇒M3 ⇒

Out→ In⇒M1 ⇒M2 ⇒M3 → In

[14]: In⇒M1 ⇒M2 →M3 ⇒ Out→M2 ⇒M3 →

In⇒M1 →M3 ⇒ Out→M1 ⇒M2 ⇒M3 → In

[15]: In⇒M1 →M3 ⇒ Out→M1 ⇒M2 ⇒M3 →

In⇒M1 →M3 ⇒ Out→M1 ⇒M2 ⇒M3 → In

[16]: In⇒M1 ⇒M2 →M3 ⇒ Out→M2 ⇒M3 →

In⇒M1 ⇒M2 →M3 ⇒ Out→M2 ⇒M3 → In

[17]: In⇒M1 →M3 ⇒ Out→M1 ⇒M2 ⇒M3 →

In⇒M1 ⇒M2 →M3 ⇒ Out→M2 →M3 ⇒

Out→M2 ⇒M3 → In

There are 12 schedules for the initial configuration
(0,1,0) and another 5 schedules for the initial configu-
ration (0,1,1) [14].

4. OPTIMAL SCHEDULES

Performance analysis of simple schedules is exten-
sively discussed in [15]. Net invariants [13, 15] or net
transformations [16] can be used to obtain symbolic so-
lutions in terms of operation execution times associated
with transitions of the model.
Net invariants can also be used for analysis of com-

posite schedules. The net shown in Fig.4 has six P–
invariants which imply invariant subnets with the sets
of transitions shown in Tab.1; the entries in Tab.1 are
multiplied by the relative frequencies of transition fir-
ings, determined by a T–invariant [5, 13] (the net shown
in Fig.4 has one T–invariant which assings multiplicity
2 to t1, t2 and t3, and multiplicity 1 to all other tran-
sitions).
Since the invariant (2) is a subset of (1), (4) is a

subset of (3), and (6) is a subset of (4), the cycle time
of the schedule A+C is:

T [1]
c = max(T1, T3, T4)

where T1, T3 and T4 are obtained by adding the firing
(or execution) times of transitions in the corresponding
invariant subnets:

T1 = 2o1 + 2o2 + 2u+ 4v + 6w + 7y
T3 = 2o2 + 2o3 + u+ 6v + 5w + 2x+ 9y
T4 = 2(o2 + u+ 3v + 3w + x+ 7y)

Optimal schedules of manufacturing cells ... 1060

Tab.1. Sets of transitions of the invariant subnets.

invariants 1 2 3 4 5 6

t1 2 2 0 0 0 0
t2 2 0 2 1 0 0
t3 0 0 2 0 1 0
t′01 1 1 1 1 1 1
t′12 1 1 1 1 1 1
t′23 1 1 1 1 1 1
t′30 1 1 0 1 0 1
t′34 1 1 1 1 1 1
t′40 1 1 1 1 1 1
t01 1 1 0 1 0 1
t12 1 1 1 1 1 1
t13 0 0 0 1 0 1
t23 1 1 1 1 1 1
t34 0 0 1 1 1 1
t41 0 0 1 1 1 1

Other 2–schedules are modeled and analyzed in the
same way; some examples are given in [14].

For a 3–machine cell, there are 34 different 2–
schedules, so the optimal 2–schedule schedule can easily
be selected on the basis of systematic evaluations:

Topt = min(T [1]
c , T [2]

c , ..., T [34]
c)

The same approach is used to model and analyze
other composite schedules.

5. CONCLUDING REMARKS

The number of schedules (both simple and compos-
ite) increases very quickly with the number of machines,
and the number of composite schedules also increases
rather quickly with the the length of the schedule; for a
3–machine cell, there are 6 simple schedules, 34 differ-
ent 2–schedules and 198 different 3–schedules. Instead
of analyzing all these schedules one after another, a
more general approach can be developed, using colored
Petri nets for modeling the whole sets of schedules,
with different colors representing different schedules.
For simple schedules, such an approach is presented
in [14]; a similar approach is expected for composite
schedules. Most likely new methods of analyzing such
models need to be developed to perform many possible
simplifications during the analysis.
Several simplifying assumptions were made during

the derivation of Petri net models, e.g., the all parts
are identical, that the robot travel times between ad-
jacent machines are the same, etc. It should be noted
that all these assumptions were made to simplify the
discussion and they can easily be removed by simple
modifications of the presented approach. For example,
the composite schedules can correspond to manufac-
turing parts of different types; the parameters of each
component (simple) schedule can ve different to reflect
the differences between the different types of parts.

References

[1] B.H. Claybourne, “Scheduling robots in flexible
manufacturing cells”; CME Automation, vol.30,
no.5, pp.36–40, 1983.

[2] S.P. Sethi, C. Sriskandarajah, G. Sorger, J.
Blazewicz, W. Kubiak, “Sequencing of parts and
robot moves in a robotic cell”; Int. Journal of
Flexible Manufacturing Systems, vol.4, pp.331–
358, 1992.

[3] C. Dixon, S.D. Hill, “Work–cell cycle–time analy-
sis in a flexible manufacturing system”; Proc. Pa-
cific Conf. on Manufacturing, Sydney–Melbourne,
Australia, vol.1, pp.182–189, 1990.

[4] T. Murata, “Petri nets: properties, analysis and
applications”; Proceedings of IEEE, vol.77, no.4,
pp.541–580, 1989.

[5] W. Reisig, “Petri nets - an introduction” (EATCS
Monographs on Theoretical Computer Science 4);
Springer Verlag 1985.

[6] M. Hack, “Analysis of production schemata by
Petri nets”; Project MAC Technical Report TR–
94, 1972.

[7] R. Suri, “An overview of evaluative models for
flexible manufacturing systems”; Annals of Oper-
ations Research, vol.3, no.1, pp.3–21, 1985.

[8] M. Silva, R. Valette, “Petri nets and flexible manu-
facturing”; in: “Advances in Petri nets 1989” (Lec-
ture Notes in Computer Science 424), pp.374–417,
Springer Verlag 1989.

[9] F. DiCezare, G. Hahalakis, J.M. Orith, M. Silva,
F.B. Vernadat, “Practice of Petri nets in manufac-
turing”; Chapman & Hall 1993.

[10] Proc. IEEE Int. Conf. on Systems, Man and Cy-
bernetics, 1993, 1994, 1995.

[11] W.M. Zuberek, “Timed Petri nets – definitions,
properties and applications”; Microelectronics and
Reliability (Special Issue on Petri Nets and Re-
lated Graph Models), vol.31, no.4, pp.627–644,
1991.

[12] H.P. Hillion, “Timed Petri nets and application to
multi-stage production system”; in: Advances
in Petri Nets 1989 (Lecture Notes in Computer
Science 424); pp. 281–305, Springer Verlag 1989.

[13] W.M. Zuberek, W. Kubiak, “Timed Petri net
models of flexible manufacturing cells”; Proc. 36-
th Midwest Symp. on Circuits and Systems, De-
troit MI, August 16–18, 1993.

[14] W.M. Zuberek, “Application of timed Petri nets
to modeling and analysis of flexible manufactur-
ing cells”; Technical Report #9503, Department of
Computer Science, Memorial University of New-
foundland, St.John’s, Canada A1B 3X5, June
1995.

[15] W.M. Zuberek, W. Kubiak, “Modeling simple
schedules of manufacturing cells using timed Petri
nets”; Proc. 6-th Int. Workshop in Intelligent Sys-
tems and Innovative Computations, Tokyo, Japan,
pp.38–47, 1994.

[16] W.M. Zuberek, W. Kubiak, “Throughput analy-
sis of manufacturing cells using timed Petri nets”;
Proc. IEEE Int. Conf. on Systems, Man and Cy-
bernetics, San Antonio, TX, pp.1328–1333, 1994.

