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Abstract

Table-driven approximation of semiconductor device
characteristics and table-driven behavioral descriptions
are two particularly attractive examples of enhance-
ments that can significantly speed up circuit simula-
tion by eliminating many time-consuming calculations
in which device voltages and currents are derived from
properties and geometries of semiconductor materials.
Several extensions to a SPICE-compatible simulation
tool are described, that provide table-driven capabili-
ties for all nonlinear SPICE circuit elements.

1. INTRODUCTION

Computer-aided circuit analysis or circuit simulation
is an accepted method of verifying designs before the
expensive and time-consuming fabrication phase. Even
with designs of modest size, an accurate simulation pro-
vides invaluable insight into the performance of the
product. However, existing trends in integrated circuit
design towards increasing device densities and shrink-
ing circuit geometries results in designs of increasing
complexities. This – in turn – increases the simula-
tion time and memory requirements. Several techniques
have been proposed to counterbalance these increasing
requirements [DNV,FRS], but using “higher-level ab-
straction” wherever possible remains the simplest and
the most effective solution to this complexity problem.
The notion of “abstraction” in this context means a

method to replace an object by a simplified one that
only defines the interaction of the object with its envi-
ronment, while deleting the internal organization details
of the object [Niess]; for example, the whole compara-
tor module can be replaced by a single “block” with
input-output characteristics equivalent to those of the
original design. The virtue of abstraction is data reduc-
tion, sometimes by one or more orders of magnitude.
For very large systems, one level of abstraction may not
suffice, it has to be applied a number of times in succes-
sion creating “hierarchical abstraction”.
Table-driven approximation of semiconductor device

characteristics and table-driven behavioral descriptions
are two particularly attractive examples of “higher-level
abstraction” that can significantly speed up circuit sim-
ulation by eliminating many time-consuming calcula-
tions in which device voltages and currents are derived

from properties and geometries of semiconductor mate-
rials. An implementation of table-driven capabilities in
a SPICE-like circuit simulators is outlined in this paper.
The SPICE-2 program [Coh,Vlad] developed at the

University of California, Berkeley, has become one of
the most popular “second-generation” circuit simula-
tors. However, SPICE-2 is a “batch oriented” program
with a “closed” structure [Coh] which is too “inflexible”
in applications that require efficient analyses for numer-
ous variants of the same circuit (e.g., interactive sim-
ulation or circuit optimization). In such cases, a more
flexible structure of the circuit simulator is needed, in
which different analyses (for the same circuit topology)
can be performed selectively, and which allows to access
the internal representation of circuit elements in order
to modify element values. SPICE-PAC [Zub1] is a simu-
lation package obtained by redesigning the SPICE-2G.6
simulation program.
SPICE-PAC, in a way similar to the SPICE program,

provides a “predetermined” set of (parameterized) cir-
cuit elements and semiconductor devices. For example,
SPICE allows circuits to contain linear and nonlinear
elements (capacitors, inductors, dependent voltage and
current sources [Vlad]), but the only nonlinear function
which is supported by SPICE is a polynomial (in one
- for capacitors and inductors - or more - for depen-
dent sources - variables). Since in many cases this is
too restrictive [BVS,TYIS], a number of extension have
built into SPICE-PAC to allow “external” specification
of nonlinear functions by user-supplied tables of data.
The package offers a number of (internal) interpolating
methods for multidimensional data, and also provides
an interface to user-supplied (or library) “external” in-
terpolation routines.
The paper is organized in three main sections. Sec-

tion 2 presents table-driven elements implemented in the
SPICE-PAC package. Section 3 discusses “internal” in-
terpolation methods, i.e., the methods that are built into
the package, while section 4 describes an interface to
“external” interpolation routines. Applications of these
capabilities are illustrated by simple examples of table-
driven elements.

2. TABLE-DRIVEN ELEMENTS

The characteristics of nonlinear elements (capacitors,
inductors, dependent sources) as well as “input-output”
characteristics of modules (or “subcircuits”) can be
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specified by (multidimensional) tables of numerical data
with an associated interpolating method.
Table-driven circuit elements are described in a way

similar to the original SPICE syntax (with some small
differences for different classes of elements):

Name node+ node- itp(n) arg1 arg2 ... argn
DIM(d1,d2,...,dn) x1,x2,...

or, if the data are shared by a number of elements, they
can be described by a “TABLE” pseudoelement to avoid
repetition of descriptions:

Name node+ node- itp(n) arg1 arg2 ... argn
USE(tname)

where Name is the unique name of the element with the
first letter N determining the class the element (R for re-
sistors, C for capacitors, etc.); node+ and node- are ele-
ment terminals; itp indicates the interpolation method:

itp: value: derivative:

PWL or PWL1 piecewise linear approximated
PWL2 piecewise linear piecewise linear
PWQ or PWQ1 piecewise quadratic approximated
PWQ2 piecewise quadratic piecewise quadratic
PWC or PWC1 piecewise cubic approximated
PWC2 piecewise cubic piecewise cubic

n is the number of arguments (i.e., the num-
ber of controlling voltages and/or currents);
arg1, arg2, ... argn are the arguments in the
SPICE sense, i.e., each arg is either a pair of nodes
that determine the controlling voltage, or a voltage
source name that indicates the controlling current
flowing through this source; DIM(d1,d2,...) is an
optional specification of the “structure” of parame-
ters x1,x2,..., e.i., if these parameters describe a
multidimensional array of data, the dimensions of this
array are indicated in the DIM option as n consecutive
values d1,d2,...,dn; tname is the name of a “TABLE”
pseudoelement, and x1,x2,... are the consecutive
numerical values describing the characteristics of Name.

General syntax of “TABLE” pseudoelements is as fol-
lows:

.TABLE tname ARG(n) DIM(d1,d2,...) x1,x2,x3,...

where ARG(n) s an optional specification of the number
of controlling voltages and/or currents (with the default
value equal to 1) and all other symbols are as before.

Example 1. A semiconductor diode characteristic is
approximated by a table-driven voltage controlled cur-
rent source with piecewise linear, quadratic and cubic in-
terpolation methods. The differences between the origi-
nal (reference) diode and the approximated elements are
shown in a few selected points of the transfer character-
istics:

**** SPICE-PAC.2G6c:89.05b (MUN) DATE : 27 MAY 89

** table-driven dependent sources

VDD 1 0

* reference diode

RL 1 2 1K

DD 2 0 DMOD

.MODEL DMOD D

* diodes as voltage-controlled-current sources

R1 1 3 1K

G1 3 0 PWL(1) 3 0 USE(TAB)

R2 1 4 1K

G2 4 0 PWQ(1) 4 0 USE(TAB)

R3 1 5 1K

G3 5 0 PWC(1) 5 0 USE(TAB)

.TABLE TAB (-10 -1E-11, 0 0, 0.05 1.09E-13,

+ 0.10 5.68E-13, 0.15 3.44E-12, 0.20 2.30E-11,

+ 0.25 1.58E-10, 0.30 1.09E-09, 0.35 7.53E-09,

+ 0.40 5.21E-08, 0.45 3.60E-07, 0.50 2.49E-06,

+ 0.55 1.72E-05, 0.60 1.19E-04, 0.65 8.21E-04,

+ 0.70 5.67E-03, 0.75 3.92E-02, 0.80 2.71E-01,

+ 0.85 1.87E+00, 0.90 1.29E+01)

* DC analysis

.DC VDD -2 4 1.0

.PRINT DC V(2),V(2,3),V(2,4),V(2,5)

.END

***** DC TRANSFER CURVE TEMP : 27.00 DEG C

VDD V(2) V(2,3) V(2,4) V(2,5)

-2.00d+00 -2.00d+00 1.00d-11 -1.87d-09 2.25d-07

-1.00d+00 -1.00d+00 1.00d-11 -1.05d-09 6.43d-08

0.00d+00 2.74d-29 2.74d-29 2.74d-29 -1.85d-24

1.00d+00 6.29d-01 1.07d-02 5.77d-03 -6.78d-03

2.00d+00 6.63d-01 7.22d-03 4.28d-03 -1.40d-02

3.00d+00 6.77d-01 1.13d-02 6.16d-03 -8.07d-03

4.00d+00 6.86d-01 1.03d-02 5.27d-03 -4.51d-03

The few numerical results indicate that the differences
are usually in range of millivolts, that the quadratic
interpolation results are approximately twice “better”
than the linear ones, and that the results of cubic in-
terpolation may actually be worse than the results of
linear interpolation. A more complete illustration of the
differences between the reference voltage and the three
interpolated values is shown in Fig.1; it clearly confirms
previous observations.
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Fig.1. Errors of internal interpolation methods – example 1.

Example 2. In this example, the transfer character-
istic of a MOSFET inverter is modeled by a table-driven
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voltage-controlled voltage source; the transfer character-
istic with the selected data points is shown in Fig.2.

Fig.2. Inverter’s transfer curve with selected data points.

Similarly as before, the results of linear, quadratic and
cubic interpolation are compared with the simulation of
the original inverter [GlaDo].

**** SPICE-PAC.2G6c:89.09a (MUN) DATE : 14 OCT 89

.OPTIONS DEFL=2.25E-6 LIMPTS=501

VIN 1 0 0

VDD 9 0 5V

* MOS subcircuit (reference level)

M1 2 1 0 0 NENHS W=11.2U AD=61P PD=42U

.MODEL NENHS NMOS LEVEL=3 TOX=33E-9 LD=0.19E-6

+ XJ=0.27E-6 UO=650 RSH=0 VMAX=13E4 ETA=0.25

+ KAPPA=0.5 NSUB=5E14 VTO=0.946 CGSO=2.43E-10

+ CGDO=2.43E-10 CJSW=3.3E-10 CJ=69E-6 PB=0.7

+ THETA=0.1 MJ=0.5 MJSW=0.3 NFS=1E10

M2 9 2 2 0 NDEPS W=4.2U L=6.25U

.MODEL NDEPS NMOS LEVEL=3 TOX=33E-9 LD=0.19E-6

+ XJ=0.27E-6 UO=650 RSH=0 VMAX=13E4 ETA=0.25

+ KAPPA=0.5 NSUB=5E15 VTO=-2.078 CGSO=2.43E-10

+ CGDO=2.43E-10 CJSW=3.3E-10 CJ=69E-6 PB=0.7

+ THETA=0.04 MJ=0.5 MJSW=0.3 NFS=1E10

* table-driven voltage-controlled voltage sources

E1 3 0 PWL(1) 1 0 USE(Tdata)

R1 3 0 1K

E2 4 0 PWQ(1) 1 0 USE(Tdata)

R2 4 0 1K

E3 5 0 PWC(1) 1 0 USE(Tdata)

R3 5 0 1K

.TABLE Tdata (0.00 5.000, .500 5.000, .700 4.999,

+ .80 4.998, .900 4.958, 1.00 4.863, 1.10 4.708,

+ 1.20 4.473, 1.25 4.311, 1.30 4.100, 1.35 3.792,

+ 1.37 3.594, 1.40 3.129, 1.45 2.377, 1.50 1.661,

+ 1.55 .9898, 1.58 .6148, 1.60 .5070, 1.65 .4120,

+ 1.70 .3599, 1.80 .2961, 1.90 .2556, 2.00 .2266,

+ 2.20 .1871, 2.50 .1508, 3.00 .1165, 3.50 .0966,

+ 4.00 .0836, 5.00 .0674)

* DC analysis

.DC VIN 0 5 0.01

.PRINT DC V(2) V(2,3) V(2,4) V(2,5)

.END

The differences between the original (reference) out-
put and the three interpolation methods are shown in
Fig.3. It can be observed that the extrema of differences
correspond to sharp changes of the transfer curve shown
in Fig.2.

Fig.3. Errors of internal interpolation methods – example 2.

3. INTERNAL INTERPOLATION

Because of the Newton-Raphson method used in the
solution of nonlinear circuit equations [Coh], both the
values and of table-driven elements and the values of
(partial) derivatives (with respect to controlling volt-
ages and/or currents) are needed by the simulation al-
gorithm.
Interpolation of one-dimensional data follows Neville’s

algorithm [PFTV], closely related to and sometimes con-
fused with Aitken’s algorithm, the latter now considered
obsolete. Calculations can be arranged in a “tableau”
with the argument x “bracketed” by the xi+j values and
the size of the tableau depending upon the degree of the
interpolation polynomial:

xi : yi = P1

P12

xi+1 yi+1 = P2 P123

P23 P1234

xi+2 yi+2 = P3 P234

P34

xi+3 yi+3 = P4

Neville’s algorithm is a recursive way of filling in the
numbers in the tableau a column at a time, from left to
right. It is based on the following recursive relationship
between the polynomials P [PFTV]:

Pi(i+1)...(i+m) =
(x−xi+m)Pi...(i+m−1)+(xi−x)P(i+1)...(i+m)

xi−xi+m

.

In multidimensional interpolation, the basic idea is
to break a multidimensional problem into a succes-
sion of one-dimensional interpolations. To do a two-
dimensional m-order interpolation in the X direction
and n-order interpolation in the Y direction, first an
(m+ 1)× (n+ 1) block of the tabulated function is lo-
cated that contains the desired point (x, y), and then
(m+1) one-dimensional interpolations are performed in
the direction Y (to “reduce” the second dimension), and
then one one-dimensional interpolation in the X direc-
tion to find the required value. The same scheme can
be used for more dimensions, although the number of
one-dimensional interpolations grows rapidly with the
number of dimensions and the order of interpolation.

All internal interpolation methods are simple local
methods; more sophisticated algorithms can be used
through the “external” interpolation mechanism.
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4. EXTERNAL INTERPOLATION

For all nonlinear elements, interfaces have been im-
plemented in SPICE-PAC to “external”, user-defined
routines that – if used – replace the “standard” SPICE-
PAC’s capabilities. In particular, for table-driven ele-
ments, these interfaces can be used to access interpo-
lation methods which are not available in the package.
Circuit elements that use externally specified evaluation
methods (either library or used-defined) are called en-
hanced elements [Zub2].
Generally, the interfacing routines pass the values of

controlling voltages and/or currents (and some other in-
formation) to the evaluation routines and return the val-
ues of interpolated functions and/or their derivatives, as
required by the simulation package.
The syntax of enhanced circuit elements follows the

original SPICE’s syntax with the FUN(idf) section in-
dicating use of external routines:

Name node+ node- FUN(idf) ARG(n) arg1 arg2 ... argn
DIM(d1,d2,...,dn) x1,x2,...

idf is a numerical identifier of the evaluation func-
tion, ARG(n) indicates the number of controlling volt-
ages and/or currents arg1, arg2, ... argn with the
default value of 1, DIM(d1,...,dn) is an optional speci-
fication of dimensions for “structured” parameters, and
x1,x2,... are numerical data, as before.
Several enhanced elements can share the same set of

numerical data using the “TABLE” pseudoelement:

Name node+ node- FUN(idf) ARG(n) arg1 arg2 ... argn
DIM(d1,d2,...,dn) USE(tname)

There is one interfacing routine for each class of en-
hanced elements; the idf parameter is used for further
identification within each class of elements.
For (nonlinear) controlled sources the interfacing rou-

tine is called SPUDSE, and it must be defined in a way
consistent with the following (FORTRAN) header:

SUBROUTINE SPUDSE (IPS,IDF,VA,NA,VP,NP,VAL,SUM)
DOUBLE PRECISION VA(NA),VP(NP(1))
INTEGER NP(1)

where IPS is a unique internal identifier of the circuit
element (i.e., IPS is a pointer to the element descriptor;
there are routines which convert descriptor pointers into
corresponding circuit element names and vice versa);
IDF is the function identifier idf from the element de-
scription; VA is the vector of controlling voltages and/or
currents; NA is the number of arguments n; VP is a vector
of parameters x1,x2,..., and NP is an auxiliary vector
with at least two elements; the first element always indi-
cates the number of parameters; if the second is nonzero,
the elements NP(2),NP(3),... indicate consecutive di-
mensions from the DIM option, i.e., NP(2)=d1, etc.; VAL
returns the value of required attribute, and SUM returns
the sum of products of arguments and derivatives, while
the values of (partial) derivatives are returned in the
vector VA (replacing the values of arguments). The fol-
lowing example shows how to use external interpolation
for table-driven controlled sources.

Example 3. In order to use Akima spline for approx-
imation of the transfer curve of the MOSFET inverter
from example 2, the SPUDSE routine interfaces SPICE-
PAC to the implementation of the Akima method that
is available in the IMSL library [IMSL]. Akima splines
are designed specifically to combat “wiggles” of approx-
imation functions that often appear in spline functions.
It is assumed that Akima splines are identified by the
function identifier idf=11.

SUBROUTINE SPUDSE (IPS,IDF,VA,NA,VP,NP,VAL,SUM)

C

C DCSAKM is an IMSL routine that determines AKIMA

C spline interpolants. DCSVAL evaluates the cubic

C spline, and DCSDER evaluates its n-th derivative

C ("n" is the first argument).

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION VA(NA),VP(1),NP(1)

DIMENSION XBRK(50),COEF(200)

SAVE XBRK,COEF

COMMON /SPPABC/ IOFILE

DATA MK / 0 /

IF (IDF.EQ.11) THEN

C ... Akima spline interpolation

IF (NA.NE.1) GO TO 90

IF (MK.EQ.0) THEN

MK=NP(1)/2

IF (MK.GT.50) GO TO 90

CALL DCSAKM(MK,VP(1),VP(MK+1),XBRK,COEF)

ENDIF

ARG=VA(1)

VAL=DCSVAL(ARG,MK-1,XBRK,COEF)

DER=DCSDER(1,ARG,MK-1,XBRK,COEF)

VA(1)=DER

SUM=ARG*DER

ELSE

C ..... other evaluation methods

ENDIF

RETURN

90 WRITE(IOFILE,900) IPS,IDF,NA,NP(1)

900 FORMAT(’ ... SPUDSE : incorrect arguments :’,4I4)

STOP

END

A comparison of Akima interpolation results with the
original inverter’s output is shown in Fig.4. The errors
are also in the range of millivolts, and two characteristic
extrema are clearly visible, as in Fig.3.

Fig.4. Errors of external interpolation – example 3.
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5. CONCLUDING REMARKS

Table-driven simulation not only provides an oppor-
tunity for SPICE-PAC to simulate devices for which de-
tailed models do not presently exist in circuit simulators
[SNSPH], but also to represent characteristics of exist-
ing elements and devices more efficiently. It is known
[BVS,DeCh,Rauh] that table-driven models can be used
to eliminate most of the time-consuming evaluations of
device models in which electrical properties are derived
from technological and geometric parameters (it appears
that in simulation of integrated circuits, evaluations of
device models consume about 90% and sometimes even
more of the total simulation time [DNV,Rauh]). Fur-
thermore, table-driven simulation provides a simple so-
lution to hierarchical simulation in which the character-
istics of whole “blocks” (or subcircuits) can be repre-
sented by table-driven elements; DC characteristics can
be assigned to (multidimensional) controlled voltage and
current sources, while time-dependent properties can be
represented by capacitors with nonlinear table-driven
characteristics of charge and capacitance [FRS].
Table-driven circuit elements are especially conve-

nient for experiment-oriented applications in which mea-
surement data as well as predicted or estimated charac-
teristics can be used directly in element specification.
Interfaces to external evaluations of element charac-

teristics can be used not only for table-driven elements
but also for more “demanding” applications that use a
number of software tools integrated into a sigle system.
The extensions presented in this paper are imple-

mented in SPICE-PAC versions 2G6c.89 and beyond.
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