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Abstract

Since the 1980s, mathematicians have been studying hyperbolic groups, and hyper-

bolic geometry has been considered one of the most useful tools in geometric group

theory. In the 2000s, a generalization of hyperbolic groups was introduced by Dah-

mani, Guiraldel and Osin, known as hyperbolically embedded subgroups. This notion

has several applications in group theory and low dimensional topology. In this thesis,

we introduce an alternative definition of hyperbolic embedded subgroup modelled on

a characterization of a relatively hyperbolic group by Bowditch [2] and prove that

our notion is equivalent to the original definition.
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General Summary

Group theory is a mathematical abstraction to study the collection of symmetries

of an object. The collection of transformations that leave a geometric structure

invariant is the called the group of isometries of the object. Here we study the group

of symmetries of infinite geometric objects. The theory is rich when the objects

resemble non-positive curvature. The thesis deals with a particular class of non-

positively curved discrete groups known as groups with a hyperbolically embedded

subgroup. The thesis shows that this particular class of groups can be described in

an alternative way generalizing previous results.
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Introduction

Groups acting on hyperbolic spaces properly and cocompactly represent the class of

hyperbolic groups. Mathematicians started giving attention to this direction in the

late 1980s when Gromov introduced the notion of hyperbolic groups in his paper [9].

After that, hyperbolic geometry has proved to be one of the most useful tools in

geometric group theory.

In the 90s, the notion of a relatively hyperbolic group was developed independently

in the Ph.D. thesis of Benson Farb [8], under the direction of Thurston, and by

Bowditch [2]. It is a generalization of the notion of hyperbolic group, replacing the

condition of properness with a certain finiteness condition. In the early 2000s, a more

comprehensive study of relatively hyperbolic groups started in series of articles by

Denis Osin in [16] and [17], as wells as works of other researchers like Groves and

Manning in [10]. There are different equivalent definitions of relatively hyperbolic

groups. In this thesis, we review the definition by Bowditch in [2] and a definition

based on one by Farb [7], which is implicit in the work of Martinez-Pedroza and Wise

[14]. In Chapter 3, we review the equivalence of these two definitions based on results

in [14].

The theory of relatively hyperbolic groups has found several applications in group

theory and low dimensional topology. A highlight of the theory of relatively hyperbolic
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groups is a generalization of Thurston’s Dehn filling of hyperbolic knot complements

in the framework of group theory, which can be found in [17] and [10]. This tool has

had important applications for example its role in the solution of the virtual Haken

conjecture on 3-manifolds by Agol in [1].

The notion of hyperbolically embedded subgroup generalizes the notion of rel-

atively hyperbolic group. In this context, a generalization of Thurston Dehn fill-

ing has been developed by Dahmani, Guiraldel and Osin [5]. A group admitting a

non-degenerate hyperbolically embedded subgroup is also known as an acylindrically

hyperbolic group, see [18]. The theory of acylindrically hyperbolic groups started

with the first non-trivial example that is the result of Bowditch, who showed that

the action of the mapping class group of a hyperbolic surface on its curve complex is

acylindrical, see [3]. Bowditch used this result to obtain many interesting applications

and results about the mapping class group [3].

In this thesis, we introduce an alternative definition of hyperbolically embedded

subgroup modelled on a definition of relatively hyperbolic groups by Bowdictch [2]

and prove that our notion is equivalent to the idea introduced by Osin [5].

In order to state our result, we introduce some definitions. Let G be a group, let

S be a subset of G, let H be a subgroup, let Γ(G,H ∪ S) be the Cayley graph of G

with respect H ∪ S. We will define the angle-metric on the subgroup H as follows,

for h, k ∈ H, ∠H(h, k) is the minimal length of an edge-path in Γ(G,H ∪ S) between

h and k that does not contain a vertex of Γ(H,H \ {e}) other than h and k, and let

∠H(h, k) =∞ if such a path does not exist, see Chapter 4 for precise definitions. The

subgroup H is hyperbolically embedded in G with respect to S if G is generated by

H ∪ S, the Cayley graph Γ(G,H ∪ S) is hyperbolic, and H is a locally finite metric

space with respect to the angle-metric.
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A graph Γ is a (G,H)-graph ifG acts on Γ while satisfying the following conditions:

� Γ is connected and hyperbolic,

� Γ is fine at a vertex v if the metric on set of vertices adjacent to v induced by

the path-metric on Γv is locally finite, see Chapter 2 for a precise definition,

� for all w ∈ V∞(Γ) = {Vertices with infinite stabilizers}, Gw acts on TwΓ with

finitely many G-orbits,

� number of G-orbits of vertices are finite,

� stabilizer subgroups of edges are finite,

� stabilizer subgroups of vertices are either finite or a conjugate of H,

� and there exists a vertex that has the stabilizer subgroup equals to H.

Our main result is the following:

Theorem 0.1. A subgroup H is hyperbolically embedded in G for some subset S if

and only if there exists a (G,H)-graph.

Table 1 summarizes the structure of the thesis. Two well known equivalent no-

tions of hyperbolic groups are in the first row. The equivalence between a1 and a2 is

Proposition 3.1. Whereas, the second row provides equivalent definitions of relative

hyperbolic groups, their equivalence is explained in Chapter 3. The equivalence be-

tween b0 and b1 is Corollary 4.10 and the equivalence between b1 and b2 is Proposition

3.5. Then we stated the characterizations of acylindrically hyperbolic groups in the

third row. The equivalence between c0 and c1 is Proposition 4.8, and the equivalence

between c0 and c2 is the main result of the thesis. The table uses the following notions

and their precise definitions can be found in the following chapters:
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� Γ(G,H): Cayley graph (Chapter 1.1).

� Γ̂(G,H, S): Coned-off Cayley graph (Chapter 1.6).

� Gv: G-stabilizer of v (Chapter 1).

� H ↪→h G: H is a hyperbolically embedded subgroup (Chapter 4).

� V∞(Γ): Set of vertices with infinite stabilizers (Chapter 4).

� T∞Γ: Set of vertices adjacent to v (Chapter 2).

In this thesis, we have divided the chapters as follows: Chapter 1 is of preliminar-

ies, which is for those readers who have minimal knowledge of geometric group theory.

Chapter 2 is introducing the fine graph and its properties, which is used to define

a (G,H)-graph. The main result in this chapter is Theorem 2.11 which guarantees

that a particular finiteness property (fineness) on graph is preserved under certain

extensions of the graph. The first and second rows of the table are discussed in Chap-

ter 3. Then in Chapter 4, our main result is proved. At last, Chapter 5 explains a

non-trivial example of a (G,H)-graph, that is, SL2(Z) acting on the Farey Graph.
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Figure 1: Main structure of thesis

a0: Hyperbolic Group.

G is hyperbolic ⇐⇒
∃S ⊆ G finite such that

� Γ(G,S) is connected

� Γ(G,S) is hyperbolic

a1: Hyperbolic Group.

G is hyperbolic ⇐⇒
∃S ⊆ G finite such that

� Γ(G,S) is connected

� Γ(G,S) is hyperbolic

a2: Hyperbolic Group.

G is hyperbolic ⇐⇒
∃Γ such that

� Γ is connected and

hyperbolic

� G-action on Γ is

cocompact and proper

b0: Relative Hyperbolic
Group H ≤ G.

G is hyperbolic relative to

H ⇐⇒ ∃S ⊆ G

finite such that

� Γ(G,H ∪ S) is connected

� Γ(G,H ∪ S) is hyperbolic

� H is locally finite

with respect to the

angle metric ∠H .

b1: Relative Hyperbolic
Group H ≤ G.

G is hyperbolic relative to

H ⇐⇒ ∃S ⊆ G

finite such that

� Γ̂(G,H, S) is connected

� Γ̂(G,H, S) is hyperbolic

� Γ̂(G,H, S) is fine.

b2: Relative Hyperbolic
Group H ≤ G.

G is hyperbolic relative to

H ⇐⇒ ∃Γ such that

� Γ is connected and

hyperbolic

� ∀e ∈ E(Γ), Ge is finite

� ∀v ∈ V (Γ), Gv is either

finite or a conjugate of H

� ∃v ∈ V (Γ) such that

Gv = H

� G-action on Γ is

cocompact

� Γ is fine

c0: Hyperbolically
Embedded Subgroup
H ≤ G.

H ↪→h G wrt S ⇐⇒
∃S ⊆ G such that

� Γ(G,H ∪ S) is connected

� Γ(G,H ∪ S) is hyperbolic

� H is locally finite

with respect to the

angle metric ∠H .

c1: Hyperbolically
Embedded Subgroup
H ≤ G.

H ↪→h G wrt S ⇐⇒
∃S ⊆ G such that

� Γ̂(G,H, S) is connected

� Γ̂(G,H, S) is hyperbolic

� Γ̂(G,H, S) is fine at

cone vertices.

c2: Hyperbolically
Embedded Subgroup
H ≤ G.

H ↪→h G ⇐⇒ ∃Γ such that

� Γ is connected and

hyperbolic

� ∀e ∈ E(Γ), Ge is finite

� ∀v ∈ V (Γ), Gv is either

finite or a conjugate of H

� ∃v ∈ V (Γ) such that

Gv = H

� |{Gv | v ∈ V (Γ)}| <∞
� Γ is fine at V∞(Γ).

� ∀w ∈ V∞(Γ), Gw acts on

T∞Γ with finitely

many orbits.
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Chapter 1

Preliminaries

A graph is an ordered pair (V,E), where V is a set, and E is a relation on V that is

anti-reflexive and symmetric. Elements of set V are called vertices, and elements of

set E are called edges. For a graph Γ, we denote V (Γ) and E(Γ) its vertex and edge

set, respectively. For a vertex w ∈ V (Γ), Γ−m is a graph with vertex set V (Γ)−{w}

and edge set E(Γ) − {{v, w} | v ∈ V (Γ)}. If a vertex is an element of an edge, it is

called an incident. Two vertices that are in the same edge are called adjacent. And

the number of adjacent vertices of a vertex is the degree of it.

A path from a vertex v0 to a vertex vn of Γ is a sequence of vertices [v0, v1 . . . , vn],

where vi and vi+1 are adjacent for all i ∈ {0, . . . , n − 1}. Its reverse-path would be

[vn, vn−1 . . . , v0]. The length of a path is one less than the total number of vertices in

the sequence. If no vertex on a path appears in the sequence more than once, the path

is called an embedded path. Most metrics considered in this thesis are path metrics

on the set of vertices of graphs, which are defined such that the distance between any

two vertices is the length of the shortest embedded path between them if such exists,

otherwise infinity.

13



Figure 1.1: Circuits

A path [v0, v1 . . . , vn] is closed if v0 = vn, and a closed path is called a cir-

cuit if [v0, v1 . . . , vn−1] is an embedded path. And a path is escaping if for every

i ∈ {0, 1, . . . , n}, vi = v0 implies i = 0. See Figure 1.1, the paths in X1 and X2 are

circuits, whereas the paths in X3 and X4 are not as the vertex 3 is repeating. Also

note that in Figure 1.2, X3 can not have a circuit. The concatenation of two paths

α = [u0, u1 . . . , un] and β = [v0, v1 . . . , vm] is [α, β] = [u0, u1 . . . , un, v0, v1 . . . , vm].

Analogously, the concatenation of a vertex a and the path α would be [a, α] =

[a, u0, u1 . . . , un].

A graph is connected if, for any two vertices u, v ∈ V , there exists a path between

them. See Figure 1.2, X1 is not connected as there does not exist any path from vertex

4 to any other vertex, while X2 and X3 are connected. A connected component of a

graph is a maximal subgraph that is connected. A graph in which any two distinct

vertices are adjacent is called a complete graph. See Figure 1.2, X2 is a complete

graph.

A group homomorphism φ : G→ H is a function from a groupG to a groupH with

the property that (xy) = (x)(y) for all x, y ∈ G. An automorphism φ : V (Γ)→ V (Γ)

of Γ is a bijection such that it preserves the adjacency relation. The collection of

automorphisms of Γ forms a group under composition denoted as Aut(Γ). An action

14



Figure 1.2: Connected and disconnected graphs

of a group G on a graph Γ is a group homomorphism φ : G→ Aut(Γ). Such a graph

is called a G-graph.

Let Γ be a G-graph. In this case, when the action is understood from the context,

for g ∈ G, v a vertex and e an edge of Γ we use g.v to denote ρ(g)(v) and g.e to

denote ρ(g)(e). We will use Gv to denote the set {g ∈ G|g.v = v}, which is called the

G-stabilizer of the vertex v. And G.v denotes the set {g.v | g ∈ G} which is called

the G-orbit of the vertex v. The G-stabilizer and G-orbit of an edge are defined

similarly. The G-action on a graph Γ is proper if G-stabilizers of all the vertices in

Γ are finite. Note that this also implies that the stabilizer subgroups of edges are

finite. The G-action of a graph Γ is cocompact if there are finitely many G-orbits

of vertices and edges. If there is only one G-orbit of vertices, the G-action is called

vertex transitive.

A metric space in which every ball of finite radius contains finitely many elements

is called a locally finite metric space. X is a geodesic metric space if for any x, y ∈ X,

there exists a path γ : [0, d] → X such that d = dist(x, y) and for all t, s ∈ [0, d],

dist(γ(s), γ(t)) = |s− t| and γ(0) = x and γ(d) = y.

15



Let G be a group. A G-action on a metric space X is a group homomorphism

ϕ : G → Isom(X). The action of a group G on a graph Γ is also an action by

isometries on the graph considered as a metric space. The G-action on a metric space

X is proper if for all Γ ⊆ X compact, {g ∈ G|Γ∩ g.Γ 6= φ} is finite. The G-action on

a metric space X is cocompact if there exist Γ ⊆ X compact such that G.Γ = X, in

other words,
⋃

g∈G g.Γ = X.

1.1 Cayley Graphs

Let G be a group and let S be a subset of G. Then, the Cayley graph Γ(G,S) of G

with respect to S is the graph which has

� V (Γ(G,S)) := G

� E(Γ(G,S)) := {{g, gs}|g ∈ G, s ∈ S \ {e}}.

Remark 1.1. The Cayley graphs, Γ(G,S) and Γ(G,S ∪ S−1), are the same graphs;

here S−1 denotes the set of inverses of elements of S.

The group G acts on the Cayley graph Γ(G,S) by multiplication as follows: for

g ∈ G, v ∈ V (Γ(G,S)) and {v, vs} ∈ E(Γ(G,S)),

1. g.v = gv which is a vertex of Γ(G,S), and

2. g.{v, vs} = {gv, gvs} which is an edge of Γ(G,S).

The following results until Proposition 1.6 can be found in the book [4], which is

a classical reference in geometric group theory, and they can also be found in [13].
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Lemma 1.2. Let G be a group and let S ⊂ G be a generating set of G. Then the

Cayley graph Γ(G,S) is a connected graph.

Proof. Without loss of generality, assume that S is closed under inverses. Let g ∈ G.

As S generates G, g = s1s2 . . . sl where si ∈ S, for all i ∈ {1, 2, . . . , l}. Then the

sequence [e, s1, s1s2, s1s2s3, . . . , s1s2 . . . sl] is a path from the identity e, to g. Hence,

Γ(G,S) is connected.

The path-metric metric on the set of vertices of Γ(G,S) is also called the word

metric induced by S on G.

Proposition 1.3. The following statements are true about the G-action on a Cayley

graph Γ(G,S):

1. It is vertex transitive.

2. It is cocompact if S is finite.

3. It is proper.

4. The stabilizer subgroups of edges are finite.

Proof. 1. Note that g.1 = g, hence all vertices are in the G-orbit of the identity

element. In particular, Γ(G,S) is vertex transitive.

2. The number of G-orbits of edges is equal to the cardinality of S as all the edges

are the translates of the edges {1, s}, for s ∈ S.

3. Since for all g, v ∈ G, gv = g implies g = 1, the G-stabilizers of vertices are

trivial.
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4. The stabilizer subgroups of edges are of order at most two. Note that the edge

e = {g, gs}, for g ∈ G and s ∈ S, has G-stabilizer of order two if s has order

two in G; otherwise e has trivial G-stabilizer. Note that the element gsg−1 is

in the stabilizer of e.

1.2 Svark-Milnor’s Lemma

An action of a group on a metric space is called a geometric action if it is proper,

cocompact and by isometries. A metric space X is proper if closed and bounded

subsets of X are compact.

Definition 1.4. (Quasi-Isometry) Let a ≥ 1, b ≥ 0 and c ≥ 0. A function f : X → Y

is a (a, b, c)-quasi-isometry if

1. for every x1, x2 ∈ X
1
a
distX(x1, x2)− b ≤ distY (f(x1), f(x2)) ≤ a distX(x1, x2) + b

2. and for every y ∈ Y there is x ∈ X such that distY (f(x), y) ≤ c.

Two metric spaces X and Y are said to be quasi-isometric is there exists a quasi

isometry between them.

Proposition 1.5. (Svark-Milnor’s Lemma) Let X be a geodesic and proper met-

ric space. If a group G acts on X by a geometric action then G is finitely generated
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Figure 1.3: [13] A δ-slim triangle.

and for any x0 ∈ X, the map

G −→ X

g 7−→ g.x0

is a quasi-isometry.

1.3 Hyperbolic Metric Spaces

Let (X, d) be a geodesic metric space and let δ ≥ 0. Then X is a δ-hyperbolic space if

for any triangle with sides γ0, γ1 and γ2, the union of the δ-neighbourhoods of γ1 and

γ2 contains γ0. See Figure 1.3.

Examples. [13]

� Every geodesic metric space X of finite diameter is diam(X)-hyperbolic.

� The Euclidean plane R2 is not hyperbolic because, for δ ∈ R≥0, the Euclidean

triangle with vertices (0, 0), (0, 3δ), and (3δ, 0) is not δ-slim. See Figure 1.4.

� A tree is a connected graph without embedded closed paths. Trees are hyperbolic

with respect to the path-metric.
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Figure 1.4: [13] The Euclidean plane is not hyperbolic.

Proposition 1.6. [13, Corollary 7.2.13] Let X, Y be geodesic metric spaces. If there

exists a quasi-isometry between X and Y , and Y is hyperbolic, then so is X.

To a graph, we associate a geodesic metric space by considering all the edges as

intervals of length one and defining the distance between any two points as the infi-

mum of the lengths of continuous rectifiable paths between the points. The distance

between two vertices in this metric coincides with the length of the shortest embed-

ded path in the graph between them. Note that the definition of a cocompact action

on a metric space agrees with the definition of cocompact action on a graph when

considering the graph as a metric space with the path-metric.

A graph is said to be hyperbolic if the graph is hyperbolic with respect to the

path-metric. Two graphs are quasi-isometric if there exists a quasi-isometry between

the graphs with respect to the path-metric. Hence, Proposition 1.6 also holds for two

graphs: the quasi-isometry between two graphs preserves hyperbolicity.
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1.4 Operations on Graphs

Let Γ be a G-graph. Each of the following four operations constructs a new G-graph

Γ′ as described:

� (Edge G-attachment) Attaching to Γ the G-orbit of an edge with a representa-

tive incident to u, v ∈ V (Γ). Observe that G-stabilizer equal to Gu ∩Gv.

V (Γ′) = V (Γ),

E(Γ′) = E(Γ) ∪ {{g.u, g.v} | g ∈ G}.

� (Edge G-removal) Removing the G-orbit of an edge of Γ with a representative

e ∈ E(Γ).

V (Γ′) = V (Γ),

E(Γ′) = E(Γ)− {g.e | g ∈ G}.

� Attaching a G-orbit of a vertex of degree one of Γ adjacent to v ∈ V (Γ) with

trivial G-stabilizer. Assuming that G ∩ V (Γ) is empty,

V (Γ′) = V (Γ) ∪G,

E(Γ′) = E(Γ) ∪ {{g.v, g} | g ∈ G}.
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1.5 Important results about group actions

Let S be a subset of a group G. Then G is generated by S if G = 〈S〉, where 〈S〉 is

the intersection of all the subgroups of G containing S. If S is finite, then we say, G

is finitely generated by S.

Lemma 1.7. Let G be a group acting cocompactly on a graph Γ. Let v ∈ V (Γ) and

let TvΓ = {u ∈ V (Γ) | u is adjacent to v}. Then Gv acts on TvΓ with finitely many

G-orbits.

Proof. Suppose there are infinitely many Gv-orbits in TvΓ. Let u1, u2, . . . be rep-

resentatives of distinct orbits in TvΓ. Since G is acting cocompactly on Γ, there

are finitely many G-orbits of edges, say w1, . . . , wl are representatives. Note that

E(Γ) = G.w1∪G.w2∪ . . . G.wl. By the pigeon-hole argument, passing to a subcollec-

tion, we can assume that {v, ui} ∈ G.w1 for all i. For each i, there is gi ∈ G such that

gi.{v, u1} = {v, ui}. As u1 and ui are in distinct Gv-orbits, gi.u1 = ui and gi.v = v

are not possible. Hence, the only possibility is that gi.v = ui and gi.u1 = v for each

i. Note that for each i,

gig
−1
2 .v = gi.u1 = v (1.1)

gig
−1
2 .u2 = gi.v = ui. (1.2)

Equation 1.1 implies that gig
−1
2 ∈ Gv. Then expression 1.2 implies that u2 and

ui are in the same Gv-orbit for all i′s. This contradicts the assumption that ui’s

represent distinct Gv-orbits of elements in TvΓ. Hence, there are finitely many Gv-

orbits in TvΓ.

Lemma 1.8. Let Γ be a connected G-graph with finitely many G-orbits of vertices.
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Then there exists a finite subgraph Γ0 ⊆ Γ such that G.V (Γ0) = V (Γ) and

1. T = {g ∈ G | dist(Γ0, g.Γ0) ≤ 1} generates G,

2. If in addition, there are finitely many G-orbits of edges, then there exists a

finite set of vertices F such that V (Γ0) ⊂ F , and a finite set W ⊂ G such that

G = 〈W ∪⋃v∈F Gv〉.

Proof. Let Γ0 be a subgraph of Γ consisting of a collection of representatives of G-

orbits of vertices; in particular, Γ0 is a finite graph without edges.

1. Fix x0 ∈ V (Γ0) and let g ∈ G such that g.x0 6= x0. Otherwise, gx0 = x0 implies

g ∈ T . Since Γ is connected, there is a path Eg = [x0, x1, x2, ..., xn], where

xn = g.x0. Note that n ≥ 1 since g.x0 6= x0. For each xi ∈ Ex0 , there is gi ∈ G

such that xi ∈ gi.Γ0. Then dist(gi.Γ0, gi+1.Γ0) ≤ 1. Therefore, gi
−1gi+1 ∈ T for

0 ≤ i < n. Observe that

g = g0(g−1
0 g1)(g−1

1 g2)(g−1
2 g3)...(g−1

n−1g) ∈ 〈T 〉.

Hence, G = 〈T 〉.

2. Let {v0, . . . , vm} = V (Γ0). For each 0 ≤ i ≤ m, let {wi
0, . . . , w

i
`i
} be a collection

of representatives of Gvi-orbits of vertices adjacent to vi. Lemma 1.7 implies

that this collection is finite by compactness. Let

F = V (Γ0) ∪
m⋃
i=0

{wi
0, . . . , w

i
`i
} = {u0, . . . , u`}

For each ordered pair of indexes 0 ≤ i, j ≤ `, let gi,j ∈ G such that gi,j.ui = uj,

if there exists such an element; otherwise let gi,j be the identity element. Let
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W = {gi,j : 0 ≤ i, j ≤ m}.

Let G0 = 〈W ∪ ⋃u∈F Gu〉. Note that G0 ⊆ G. We just have to prove that

G ⊆ G0, for which it is sufficient to prove that T ⊆ G0. Let Γ+
0 be a subgraph

of Γ such that

� V (Γ+
0 ) = F , and

� E(Γ+
0 ) = E(Γ0) ∪⋃m

i=0

⋃`i
k=0{[vi, wi

k]}.

Claim: Let x ∈ G. Then dist(Γ+
0 , x.Γ

+
0 ) = 0 implies x ∈ G0.

In this case, Γ+
0 and x.Γ+

0 have a vertex in common, say uj. Then there is a

vertex ui of Γ+
0 such that x.ui = uj; note that ui might be equal to uj. By

definition of W , the element gi,j satisfies that gi,j.ui = uj. Observe that g−1
i,j x

stabilizes the vertex ui, and hence g−1
i,j x is in G0. Since gi,j is also in G0, it

follows that x ∈ G0 as well.

Let x ∈ T . There are two cases to consider.

A. dist(Γ0, x.Γ0) = 0: Observe that dist(Γ0, x.Γ0) = 0 implies dist(Γ+
0 , x.Γ

+
0 ) = 0.

Hence, x ∈ G0.

B. dist(Γ0, x.Γ0) = 1: Under the assumption, there are vertices u of Γ0 and v

of x.Γ0 such that u and v are adjacent. By definition of F there is an element

g ∈ Gu such that g.v ∈ F . It follows that Γ+
0 and gx.Γ0 have a vertex in common,

namely g.v. Hence, dist(Γ+
0 , gx.Γ0) = 0 which also means dist(Γ+

0 , gx.Γ
+
0 ) = 0,

and therefore gx ∈ G0. Since g ∈ G0, it follows that x ∈ G0.

The statements A and B imply that for any x ∈ T , if dist(Γ0, x.Γ0) ≤ 1 then

x ∈ G0. Therefore, G = G0 = 〈W ∪⋃u∈F Gu〉.
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1.6 Coned-off Cayley Graphs

For this section, let G be a group, let S be a subset of G and let H be a subgroup of

G.

Let Γ(G,S) be the Cayley graph of G. Now we will construct a new graph from

Γ(G,S), as follows:

1. For each left coset gH of H in G, add a vertex v(gH) in Γ(G,S), which we will

regard as a cone vertex.

2. For each g ∈ G add an edge e(gh) = {gh, v(gH)} between gh and v(gH), where

gh ∈ gH.

The new graph is called the Coned–off Cayley graph of G with respect to H. It is

denoted by Γ̂ = Γ̂(G,H, S). Note that

V (Γ̂) = G ∪ {v(gH) | gH ∈ G/H},

E(Γ̂) = E(Γ(G,S)) ∪ {e(gh) | gh ∈ gH}.

Remark 1.9. Note that all the following sets are representing {e(gh) | gh ∈ gH}:

{{x, v(gH)} : g ∈ G, x ∈ gH},

{{g, v(gH)} : g ∈ G},

{{gh, v(gH)} : gh ∈ gH}.
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The group G acts on the Coned-off Cayley graph Γ̂(G,H, S) by multiplication as

follows: for g ∈ G,

� If v ∈ V (Γ̂), then g.v = gv which is a vertex in Γ̂.

� If v(gH) ∈ V (Γ̂), then g.v(gH) = gv(gH) which is a vertex in Γ̂.

� If {v, vs} ∈ E(Γ̂), then g.{v, vs} = {gv, gvs} which is an edge of Γ̂.

� If [x, v(gH)] ∈ E(Γ̂), then g.{x, v(gH)} = {gx, gv(gH)} which is an edge of Γ̂.

Lemma 1.10. Let S ⊂ G and let g ∈ G. The following statements are equivalent:

1. g = h0s0h1s1h2s2 . . . hmsm where hi ∈ H and si ∈ S, for i ∈ {1, 2, . . . ,m}.

2. [e, h0, h0s0, h0s0h1, . . . , g] is a path in Γ(G,S ∪H) from 1 to g.

3. [e, v(H), h0, h0s0, v(h0s0H), h0s0h1, h0s0h1s1, v(h0s0h1s1H), h0s0h1s1h2, . . . , g] is

a path in the Coned-off Cayley graph Γ̂(G,H, S) from 1 to g.

Proof. 1 ↔ 2: It is trivial to observe that this holds.

2 → 3: Indeed, an edge of the form [g, gh] in Γ(G,H ∪ S) where h ∈ H, corresponds

to the path of length two in Γ̂(G,H, S) given by [g, v(gH), gh].

3 → 2: As cone vertices are not the vertices of Γ(G,S ∪ H), we can replace the

sub-path [g, v(gH), gh] to the edge incident to g and gh.

Lemma 1.11. G = 〈S ∪ H〉 if and only if Γ̂(G,H, S) is connected if and only if

Γ(G,H ∪ S) is connected.

Proof. Let g ∈ G. Note that if G is generated by H and S, then g can be written as

a word in the elements of H and S. Then, Lemma 1.10 concludes the proof.
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Figure 1.5: Addition of a vertex

Lemma 1.12. Suppose G = 〈S ∪ H〉. Γ̂(G,H, S) is quasi-isometric to the Cayley

graph Γ(G,H ∪ S).

Proof. Consider the inclusion map i : Γ(G,H ∪ S) ↪→ Γ̂(G,H, S).

Claim 1: Every vertex of Γ̂ is at a distance at most one from a vertex in the image

of i. Indeed, every cone vertex is adjacent to a vertex of Γ, and all other vertices are

vertices of Γ.

Claim 2: distΓ̂(x, y) ≤ 2 distΓ(x, y) for any pair of vertices x, y ∈ V (Γ). Note that

if two vertices of Γ are adjacent, then their images in Γ̂ are at a distance at most

two, see Figure 1.5. Consider a path in Γ from the identity element e to g. Then

by Lemma 1.10, there is a corresponding path from e to g in Γ̂ of at most twice the

length.

Claim 3: distΓ(x, y) ≤ distΓ̂(x, y). Observe that in Lemma 1.5, the path in statement

2 is shorter or equal to the path in statement 3. Hence, the inequality holds.

Therefore, the inclusion map i : Γ(G,H∪S) ↪→ Γ̂(G,H, S) is a (2, 0, 1)-quasi-isometry.

Proposition 1.13. Consider the G-action on Γ̂(G,H, S), the following statements

hold:
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1. There are finitely many G-orbits of vertices.

2. The action is cocompact if S is finite.

3. The stabilizer subgroups of edges are finite.

4. The stabilizer subgroups of vertices are either trivial or a conjugate of H.

5. There exists a vertex that has the stabilizer subgroup equals to H.

Proof. Claim 1: Γ̂(G,H, S) has finitely many G-orbits of vertices. There are exactly

two G-orbits of vertices, all the cone vertices are the G-translates of the cone vertex

v(H), and all other vertices are the elements of G.

Claim 2: Γ̂(G,H, S) has finitely many G-orbits of edges if S is finite. There are only

two types of edges:

� Edges incident to only elements of G of the form {g, gs}. These edges are in

the G-orbit of {1, s}, for the corresponding s ∈ S.

� Edges incident to a cone vertex of the form {g, v(gH)}. These edges are in the

G-orbit of {1, v(H)}, for h ∈ H,

Hence the number of G-orbits of edges is |S|+ 1.

Claim 3: Stabilizer subgroups of edges are finite. The stabilizer subgroups of edges

with cone vertices are trivial while the stabilizer subgroups of edges other than that

are of order at most two by the same argument as in Proposition 1.3.

Claim 4: Stabilizer subgroups of vertices are trivial or a conjugate of H. Every cone

vertex is a translate of v(H); hence stabilizers of cone vertices are conjugates of H.

Whereas, the stabilizer subgroup of all the other vertices is the identity element as
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all the vertices are elements of G. Note that the stabilizer of the cone vertex v(H) is

H.
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Chapter 2

Fineness in Graphs

Let Γ be a graph and v ∈ V (Γ). Recall that the set of the adjacent vertices to v is

denoted as:

TvΓ = {w ∈ V (Γ) | {v, w} ∈ E(Γ)}.

Observe that the cardinality of TvΓ is the degree of v. For x, y ∈ TvΓ, denote by

∠v(x, y) the minimal length of a path in Γ\{v} between x and y, and let ∠v(x, y) =∞

if such a path does not exist. The function ∠v is a metric on TvΓ that we shall refer

to as the angle metric on TvΓ.

Let v be a vertex of a graph Γ. Then Γ is fine at v if (TvΓ,∠v) is a locally finite

metric space. Let C ⊂ V (Γ). Then Γ is fine at C if Γ is fine at v, for all v ∈ C.

Subsequently, Γ is a fine graph if it is fine at V (Γ).

In the case that Γ is a G-graph and u, v ∈ V (Γ), observe that the vertex stabilizer

Gv acts on TvΓ by isometries, and if u and v are in the same G-orbit then TuΓ and

TvΓ are isomorphic as metric spaces. In particular, if Γ is fine at v then Γ is fine at
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Figure 2.1: Farey Graph

every vertex in the orbit of v.

Examples. � Every finite graph is fine.

� Every locally-finite graph is fine. Indeed, for all vertices there will be finitely

many adjacent vertices.

� Every Cayley graph of a finitely generated group is fine since it is locally-finite.

� The Farey graph, Figure 2.1, is fine but not locally-finite. We will prove this in

chapter 5.

2.1 Characterizations of Fineness

Proposition 2.1 and Corollary 2.2 are results which appear in [2] and [14], respectively.

The generalization of these results is done in the remaining part of the section. Lemma

2.7, at the end of the section, will be used later in the proof of Proposition 4.8.

Proposition 2.1. [2, Proposition 2.1] Let Γ be a graph. The following statements

are equivalent:
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1. For every edge e ∈ E(Γ) and for every positive integer k, there are finitely many

circuits of length at most k containing e.

2. For every two distinct vertices in V (Γ) and for every positive integer k, there

are finitely many embedded paths of length at most k that connect each other.

3. Γ is a fine graph.

Proof. 1 → 2: Bowditch has proved this in [2, Proposition 2.1].

1 ← 2: This follows from the observation that if c is a circuit of length k, containing

the edge e = {u, v}, then c \ {e} is a path of length k − 1 between u and v.

2 → 3 By contrary, suppose TvΓ is not locally finite for v ∈ V (Γ). Suppose u ∈ TvΓ

and the ball B(u, r) = {w ∈ TvΓ | ∠v(w, u) ≤ r} ⊂ (TvΓ,∠v) is infinite. Note that,

for all w,w′ ∈ B(u, r), there exists a path α in Γ \ {v}, of length at most r, from w

to w′. Hence, α∪{u,w′} is a path of length at most r+ 1 between v and w. As there

are infinitely many elements in B(u, r), there are infinitely many paths from v to w,

which contradicts 2.

3 → 2: By contrary, suppose 2 does not hold. Pick a minimal counterexample;

v, w ∈ V (Γ) such that for a positive integer k, there are infinitely many paths from v

to w. Note that, by the minimality condition, the adjacent vertices of v in infinitely

many of these paths would be distinct. So a ball of radius 2k − 2 in (TvΓ,∠v) would

contain infinitely many elements, which contradicts 3.

Corollary 2.2. [14, Lemma 2.1] Let Γ be a fine G-graph with finite edge stabilizer

subgroups. For vertices u, v ∈ Γ, the intersection Gu ∩Gv is finite unless u = v.

For vertices u and v of Γ and k ∈ Z+, we define:

~vu(k)Γ = {w ∈ TvΓ | w belongs to an escaping path from v to u of length ≤ k}.
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Proposition 2.3. A graph Γ is fine at a ∈ V (Γ) if and only if ~ab(k)Γ is a finite set

for every k ∈ Z+ and every vertex b ∈ V (Γ).

Proof. Let Γ be fine at a ∈ V (Γ). Pick a vertex b ∈ V (Γ). Suppose there are infinitely

many vertices {v0, v1, . . . } ∈ ~ab(k)Γ. Note that for any i, j ∈ Z+, ∠a(vi, vj) is at most

2k − 2. Hence, {v0, v1, . . . } ∈ ~ab(k)Γ ⊂ BTa(Γ)(v0, 2k), where BTa(Γ)(v0, 2k) is a ball

in (Ta(Γ),∠a). This implies that BTa(Γ)(v0, 2k) is infinite which contradicts the fact

that (Ta(Γ),∠a) is a locally finite metric space due to the fineness of Γ at a.

Conversely, assume that ~ab(k)Γ is a finite set for every k ∈ Z+ and for every vertex

b ∈ V (Γ). Let u ∈ TaΓ and pick a ball BTa(Γ)(u, r) for any r ∈ Z+. Our goal is to show

that BTa(Γ)(u, r) is finite. Note that, ∠a(u,w) ≤ r for any w ∈ BTa(Γ)(u, r). Hence,

by adding the edge {a, w} to the path from w to u in Γ \ {a}, we can get an escaping

path from a to u of length at most r+1. Therefore, w ∈ BTa(Γ)(u, r) ⊂ ~au(r+1)Γ. As

u ∈ TaΓ ⊂ V (Γ), ~au(r+1)Γ is a finite set by the hypothesis which implies BTa(Γ)(u, r)

is finite.

Remark 2.4. For a G-graph Γ, if Γ is fine at a then Γ is fine at every vertex in the

G-orbit of a.

Corollary 2.5. Let Γ be a G-graph with finite edge stabilizers. Suppose that Γ is fine

at a ∈ V (Γ). Then for all vertices b ∈ V (Γ), Ga ∩Gb is finite unless a = b.

Proof. Suppose M = Ga ∩ Gb and P is a minimum length path from a to b. Say, k

is the length of P . Let P, P1, P2, P3 . . . be the M -translates of P . Consider Pi as the

sequence of vertices, say, [ui0, u
i
1, . . . , u

i
k], where a = u0 and b = uik.

Claim 1: Either U1 = {uj1 | j ∈ N} is infinite or M is finite. Suppose U1 is finite. Note

that M acts on U1. Indeed, U1 is the M -orbit of u0
1. It follows that any vertex w ∈ U1,

the edge {a, w} is fixed by a finite index subgroup of M . Since edge stabilizers are
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Figure 2.2: Construction of γ and γ̂.

finite, M is finite.

Claim 2: U1 is finite. Suppose that U1 is infinite. Observe that U1 is contained in the

ball BTa(Γ)(u
0
1, 2k− 2) of centre u0

1 and radius 2k− 2 in the metric (TaΓ,∠a). Since Γ

is fine at a, (TaΓ,∠a) is a locally finite metric space and therefore, BTa(Γ)(u
0
1, 2k − 2)

is finite. This contradicts that U1 is infinite.

Remark 2.6. Note that Corollary 2.2 is a special case of Corollary 2.5.

The following lemma uses notation that was defined in the introduction of this

chapter.

Lemma 2.7. Let G be a group, let H be a subgroup, and S ⊂ G. Then Γ̂(G,H, S) is

fine at cone vertices if and only if (H,∠H) is a locally finite metric space.

Proof. Suppose Γ̂(G,H, S) is fine at cone vertices v(gH), for all g ∈ G. Then Tv(H)Γ is

locally finite. It is an observation from the structure of Γ̂(G,H, S), that Tv(H)Γ = H.

Conversely, assume that (H,∠H) is a locally finite metric space. As Tv(H)Γ = H,

Tv(H)Γ is also locally finite. Hence, Γ̂(G,H, S) is fine at v(H). Then by Remark 2.4,

Γ̂(G,H, S) is fine at cone vertices v(gH), for all g ∈ G.

Remark 2.8. For a G-graph Γ, (TvΓ,∠v) and (TgvΓ,∠gv) are isometric spaces via

x 7→ g.x. In particular, if one is locally finite then other one is too.
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2.2 Fineness and Edge G-attachment

Definition 2.9. We will call a subpath of length two of a path a corner.

Theorem 2.10. [14, Lemma 2.9] [2] Let G act on a graph ∆ with finite stabilizer

subgroups of edges. Let Γ be a connected G-invariant subgraph of ∆, and let Γ′ be

obtained from Γ by the edge G-attachment. Then if Γ is fine, Γ′ is fine.

The main result of this chapter is Theorem 2.11 which is a generalization of

Theorem 2.10. This is the main technical contribution of the thesis.

Theorem 2.11. Let Γ be a G-graph such that the G-stabilizers of edges are finite,

and let u, v ∈ V (Γ) such that u 6= v. Suppose that Γ′ is a G-graph obtained from

Γ by the edge G-attachment of the orbit of edges with a representative incident to

u, v ∈ V (Γ). If a ∈ V (Γ) and Γ is fine at a, then Γ′ is fine a.

Proof. To prove that Γ′ is fine at a, by Proposition 2.3, it is enough to show that for

every k ∈ Z+ and for every vertex b ∈ V (Γ′), where b 6= a, ~ab(k)Γ′ is a finite set.

First, we define a sequence of sets Wj, Zj of vertices in TaΓ as follows: Let α be an

embedded path from u to v of length l. Let α̂ be the reverse path from v to u of

length l.

Define subsets W1,W2, . . . ,Wn and Z1, Z2, . . . , Zn−1 of TaΓ as follows: Let

Wn = ~ab(n)Γ ,where n = kl.

35



Suppose Wj has been defined for j ∈ {1, 2, . . . , n}, and let

Zj−1 = Wj ∪ {z ∈ TaΓ | ∃ corner c of α or α̂ such that g.c = [z, a, w] for g ∈ G,w ∈ Wj}.

Wj−1 = Wj ∪ {w ∈ TaΓ | ∃z ∈ Zj−1 such that ∠TaΓ(z, w) ≤ n}.

Note that

Wj ⊆ Zj−1 ⊆ Wj−1. (2.1)

Wj ⊆ Zj−1 holds by definition. Let z ∈ Zj−1. Then ∠TaΓ(z, z) = 0 < n. Hence,

z ∈ Wj−1.

Lemma 2.12. Then for j ≤ n, Zj−1 and Wj are finite sets.

Proof. Claim 1: If Wj is finite, then Zj−1 is finite. By contrary, assume that there

are infinitely many z ∈ TaΓ such that there exists a corner c of α or α̂ for which

g.c = [z, a, w], where w ∈ Wj and g ∈ G. But as Wj is finite, there exists a w ∈ Wj

such that there are infinitely many z ∈ Zj−1 for which there exists a corner c for

which g.c = [z, a, w] for g ∈ G. Note that there are infinitely many g’s. Pick any two

of these g’s, say g1 and g2. Note that g2g
−1
1 is a stabilizer of {a, w} ∈ E(Γ). This

implies the stabilizer of the edge {a, w} is infinite, which contradicts the hypothesis.

Hence, Zj−1 is finite.

Claim 2: If Wj is finite then Wj−1 is finite. As Γ is fine at a, by Proposition 2.3

~abΓ(n) = Wn. Observe that Zn−1 is also finite as Wn is finite by Claim 1. This

implies that the set {w ∈ TaΓ | ∃z ∈ Zn−1 such that ∠TaΓ(z, w) ≤ n} is finite.

Otherwise, TaΓ would not be locally finite which contradicts the fineness of Γ at a.

As Γ is fine at a, Wn is finite. Hence, by Claim 2 and then Claim 1, Wj and Zj−1 are

36



Figure 2.3: Construction of γ.

Figure 2.4: γ in terms of wi and zi.

finite sets for j ≤ n, respectively.

Let γ′ be an escaping path in Γ′ from a to b of length at most k. Let γ be the

path in Γ obtained by replacing each subpath of length one of the form [g.u, g.v]

or [g.v, g.u] for g ∈ G by the path g.α or g.α̂, respectively. Then γ is of the form

[a, γ1, a, γ2, a, . . . , a, γm], where each γi does not contain the vertex a. Note that for

m > 1, γ might not be an escaping path. Let wi and zi denote the initial and terminal

vertices of γi, respectively. See Figure 2.3.

Lemma 2.13. For i < m, zi ∈ Zi; and for i ≤ m, wi ∈ Wi.
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Figure 2.5: Construction of γ.

Proof. Consider Figure 2.4 for this proof.

Claim 1: wm ∈ Wm and zm−1 ∈ Zm−1. Note that [a, γm] is an escaping path of length

at most n from a to b. Which implies wm ∈ ~abΓ(n) = Wn ⊆ Wm for n ≥ m. As

[zm−1, a, wm] is the translation of a corner of α or α̂ and wm ∈ Wm, by the definition,

zm−1 ∈ Zm−1.

Claim 2: If zi+1 ∈ Zi+1, then wi+1 ∈ Wi+1. Observe that ∠TaΓ(zi+1, wi+1) ≤ n and

zi+1 ∈ Zi+1. Then by the definition, wi+1 ∈ Wi+1.

Claim 3: If wi + 1 ∈ Wi + 1 then zi ∈ Zi. As [zi, a, wi+1] is the translation of a

corner of α or α̂ and wi+1 ∈ Wi+1, by the definition zi ∈ Zi.

Lemma 2.14. γ ∩ TaΓ ⊆ W1, where γ ∩ TaΓ = {v ∈ γ | v ∈ TaΓ}.

Proof. Pick a vertex v ∈ γ ∩ TaΓ. There are two cases to consider:

Case 1: v = zi for any integer i < m. Then by the previous Lemma, zi ∈ Zi and by

Equation 2.1, Zi ⊆ Z1 ⊆ W1.

Case 2: v = wj for any integer j ≤ m. Then by the previous Lemma, wi ∈ Wi and

by Equation 2.1, Wi ⊂ W1.
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Figure 2.6: γ in terms of wi and zi.

Figure 2.7: Collection of γ’s.
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Observe that we can write ~ab(k)Γ′ as follows:

~ab(k)Γ′ = {w ∈ γ′ ∩ TaΓ′ | γ′ is an escaping path in Γ′ between a and b of length at most k}.

~ab(n)Γ = {w ∈ γ ∩ TaΓ | γ is an escaping path in Γ between a and b of length at most n}.

By Lemma 2.14, ~ab(n)Γ ⊆ W1. Note that, in the process of constructing γ from γ′,

we are just replacing some subpaths of length one with other paths, while no vertex

is eliminated. In fact, we are adding more vertices to γ′, which implies γ′ ⊆ γ. Now

there are two cases to consider:

Case 1: TaΓ
′ = TaΓ. This means a 6= g.u and a 6= g.v for any g ∈ G. Therefore,

~ab(k)Γ′ ⊆ ~ab(n)Γ ⊆ W1. Then ~ab(k)Γ′ is finite as by Lemma 2.12, W1 is finite.

Case 2: TaΓ ⊂ TaΓ
′. This means a = g.u or a = g.v for any g ∈ G. There is

g ∈ G such that g.u = a and g.v ∈ ~ab(k)Γ′ . Claim: There are finitely many such g’s.

Suppose, by contradiction, that there are infinitely many g’s such that g.v ∈ ~ab(k)Γ′ .

Let γ′g be an escaping path from a to b in Γ′ such that it contains the subpath [a, g.v].

Since g.v might not be in TaΓ, we will replace the edge {a, g.v} by gα which will give

an escaping path in Γ, say γg, of length at most n. See Figure 2.5.

Now consider the collection of such γg’s. As W1 is finite by Lemma 2.12, there exists

a vertex w ∈ W1 such that there are infinitely many G-translates of α from a to g.v

that contains the edge {a, w}, see Figure 2.7. Therefore, there are infinitely many

G-stabilizers of the edge {a, w}, which contradicts the hypothesis, which is that the

edge-stabilizers are finite.
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Chapter 3

Hyperbolic and Relative

Hyperbolic groups

3.1 Hyperbolic Groups

Let G be a group. Then G is a hyperbolic group if there exists a finite generating

set S of G such that the Cayley graph Γ(G,S) is connected and hyperbolic. Observe

that as G is finitely generated, the Svark-Milnor’s Lemma implies that the definition

of the hyperbolic group is independent of the choice of S.

Proposition 3.1. G is hyperbolic if and only if there exists a graph Γ such that:

� Γ is connected and hyperbolic

� and the G-action on Γ is geometric.

Proof. Let G be a hyperbolic group. Consider the Cayley graph Γ(G,S). By the

definition of hyperbolic groups, Γ(G,S) is connected and hyperbolic. And by Propo-
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sition 1.3, the G-action on Γ(G,S) is proper and cocompact.

Converse:

Suppose G is acting properly and cocompactly on a connected and hyperbolic graph

Γ. As G is finitely generated and quasi-isometric to Γ by Svark-Milnor’s Lemma,

Proposition 1.5, there exists a finite generating set S such that Γ(G,S) is a hyper-

bolic graph.

Recall that the G-attachment of an edge {u, v} is attaching the G-orbit of {u, v}

to a graph Γ such that:

V (Γ′) = V (Γ),

E(Γ′) = E(Γ) ∪ {{g.u, g.v} | g ∈ G}.

Lemma 3.2. [14, Lemma 2.7] Let G act on a graph Γ, and let Γ be a connected

G-invariant subgraph of Γ. Suppose Γ′ is obtained from Γ by a G-attachment of an

edge P with at least one of its endpoints in Γ. Then the inclusion Γ ↪→ K ′ is a

quasi-isometry. In particular, if Γ is hyperbolic, then Γ′ is hyperbolic.

3.2 Relatively Hyperbolic groups

The notion of a group, G, hyperbolically relative to a subgroup, H, was introduced by

Gromov in [9]. There are different but equivalent definitions of a relatively hyperbolic

group.

Definition 3.3 is one of the two Bowditch’s definitions in [2], which is the elabo-

ration of the idea of Gromov. This definition includes the properties of the group
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action on a hyperbolic graph, which will be defined in this chapter in detail.

Definition 3.3. [2] A group G is a hyperbolic group relative to H if and only if there

exists a graph Γ such that:

� Γ is connected, hyperbolic and fine,

� the G-action on Γ is cocompact,

� stabilizer subgroups of edges are finite,

� stabilizer subgroups of vertices are either finite or a conjugate of H,

� and there exists a vertex that has the stabilizer subgroup equals to H.

We will call such a graph as a cocompact (G,H)-graph.

The second definition, 3.4, of the relative hyperbolicity of a group, is related to

the definition stated by Farb in [7].

Definition 3.4. [14] A group G is a hyperbolic group relative to a subgroup H if

there exists a finite subset S of G such that the Coned-off Cayley graph, Γ̂(G,H, S),

is connected, hyperbolic and fine.

Examples. Let G = H ∗ Z and S = {s}. Then G is hyperbolic relative to H as

Γ̂(G,H, S) is quasi-isometric to Γ̂(G,H ∪ S) by Lemma 1.12 and Γ̂(G,H ∪ S) is

quasi-isometric to a tree, see Figure 3.1.
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Figure 3.1: Γ(G,H ∪ S) for G = H ∗ Z

3.3 Equivalence of the Definitions

In this chapter, we will see the equivalence of the two definitions of Bowditch and

Martinez-Pedroza and will state some properties of relatively hyperbolic groups.

Proposition 3.5. Definition 3.4 and 3.3 are equivalent.

To prove a part of the equivalence, we need a result mentioned below that has

appeared in other instances by Dahmani [6], Hruska [12] and Martinez-Pedroza and

Wise [14].

Proposition 3.6. [14, Proposition 4.3] Let Γ be a cocompact (G,H)-graph. Suppose

that S is a finite subset of G such that S ∪ H generates G. Then there exists a

cocompact (G,H)-graph Γ′ such that Γ and Γ̂(G,H, S) both embed equivariantly and

simplicially into Γ′.

Proof of Proposition 3.5. Suppose there is a finite subset S of G such that the Coned-

off Cayley graph Γ̂(G,H, S) is connected, hyperbolic and fine. Note that by Propo-

sition 1.13, Γ̂(G,H, S) is a cocompact (G,H)-graph.
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Conversely, suppose there exists a cocompact (G,H)-graph Γ. Then we have to show

that there is a finite S ⊂ G such that the Coned-off Cayley graph Γ̂(G,H, S) is con-

nected, hyperbolic and fine.

Claim 1: There is a finite S ⊂ G such that Γ̂(G,H, S) is connected. Here we will use

Lemma 1.8: As the action on Γ is cocompact and Γ is connected, G = 〈W ⋃
u∈F Gu〉,

where W is a finite subset of G and F is a finite subset of vertices of Γ. Now we will

construct S such that G is 〈S ∪H〉. For each u ∈ F , let Su = Gu if Gu is finite, and

otherwise, let Su = {g} for a choice of g ∈ G such that Gu = gHg−1. Let

S = W ∪
⋃
v∈F

Sv.

Observe that S is finite as W and Sv are finite, for all v ∈ F . Hence, by Lemma 1.11,

G = 〈S ∪H〉 implies that Γ̂(G,H, S) is connected.

Claim 2: Γ̂(G,H, S) is hyperbolic and fine. By Proposition 3.6, there exists a cocom-

pact (G,H)-graph Γ′ such that Γ̂(G,H, S) equivariantly embeds in it. As Γ̂(G,H, S)

equivariantly embeds in Γ′, by Lemma 3.2 and Lemma 2.10 Γ′ is hyperbolic and

fine. Therefore, since Γ′ is a cocompact (G,H)-graph, Γ̂(G,H, S) is also a cocompact

(G,H)-graph.

3.4 Hyperbolic Groups are Relative Hyperbolic

Proposition 3.7. G is hyperbolic if and only if G is relatively hyperbolic to the trivial

subgroup.

Proof. By Lemma 1.12, Γ̂(G,H, S) is quasi-isometric to Γ(G,H ∪ S). Let H be a
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trivial subgroup of G. Then Γ(G,H ∪ S) = Γ(G,S). Hence, Γ(G,S) is hyperbolic if

and only if Γ̂(G,H, S) is hyperbolic.
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Chapter 4

Hyperbolically Embedded

Subgroups

All the Figures in this chapter are taken from [5].

There are several distinct but equivalent definitions of a relatively hyperbolic

group. One characterization of a relatively hyperbolic group is by Bowditch (Defini-

tion 3.3), that was discussed in the previous chapter. In this chapter, we recall the

notion of hyperbolically embedded subgroup, which is a generalization of the notion

of a relatively hyperbolic group. Hyperbolically embedded subgroups were introduced

by Dahmani, Guiraldel and Osin to answer questions on mapping class groups [15].

Our main contribution is a characterization of the notion of a hyperbolically embed-

ded subgroup, which extends the definition by Bowditch of a relatively hyperbolic

group.

Let H be an infinite subgroup of a group G and let S be a subset of G such that
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H ∪ S generates G. Consider the Cayley graph Γ(G,H ∪ S) and observe that the

Cayley graph Γ(H,H \ {e}) is a complete subgraph of it. We will define the angle-

metric on H as follows, for h, k ∈ H, ∠H(h, k) is the minimal length of an edge-path

in Γ(G,H ∪S) between h and k that does not contain a vertex of Γ(H,H \{e}) other

than h and k, and let ∠H(h, k) =∞ if such a path does not exist.

Definition 4.1. [5] The subgroup H is a hyperbolically embedded subgroup of G with

respect to S if:

1. G is generated by H ∪ S,

2. the Cayley graph Γ(G,H ∪ S) is hyperbolic,

3. and (H,∠H) is a locally finite metric space.

We write H ↪→h (G,S) if H is hyperbolically embedded in G with respect to

S ⊆ G.

Examples. [5]

� Finite subgroups are always hyperbolically embedded subgroups. Note that all

finite subgraphs are locally finite metric spaces. By taking S = G, the Cayley

Graph Γ(G,H ∪ S) has diameter one. Hence, the other conditions hold.

� Let G = H × Z and S = {s}, where s is a generator of Z. Let ΓH = Γ(H,H \

{e}). Γ(G,H ∪ S) is hyperbolic as it is quasi-isometric to a line. Note that,

∠H(h1, h2) ≤ 3 for every h1, h2 ∈ H. See Figure 4.1, a path of length three

from h1 to h2 has two edges between ΓH and xΓH and one connecting xh1 and

xh2 but no edges in ΓH . So, if H is infinite, then we can find a ball of finite

radius containing infinitely many elements. Therefore, for an infinite subgroup,

it would not be hyperbolically embedded in G.[5]
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Figure 4.1: Γ(G,H ∪ S) for G = H × Z

� Let G = H ∗ Z and S = {s}. Γ(G,H ∪ S) is hyperbolic as it is quasi-isometric

to a tree. Note that ∠H(h1, h2) = ∞ if h1 6= h2. Hence, H is a hyperbolically

embedded subgroup of G. See Figure 3.1.[5]

Definition 4.2. Let Γ be a G-graph. We will denote V∞(Γ) by the set of vertices that

have infinite stabilizers,

V∞(Γ) = {v ∈ V (Γ) | v has infinite stabilizer}.

Definition 4.3. A graph Γ is a (G,H)-graph if G acts on Γ while satisfying the

following conditions:

� Γ is connected and hyperbolic,

� Γ is fine at V∞(Γ),

� for all w ∈ V∞(Γ), Gw acts on TwΓ with finitely many orbits,

� number of orbits of vertices are finite,
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� stabilizer subgroups of edges are finite,

� stabilizer subgroups of vertices are either finite or a conjugate of H,

� and there exists a vertex that has the stabilizer subgroup equals to H.

A (G,H)-subgraph is a G-subgraph of a (G,H)-graph, which is also a (G,H)-graph.

Remark 4.4. If Γ is a (G,H)-graph according to Definition 4.3 and G acts cocom-

pactly on Γ, then Γ is a cocompact (G,H)-graph in the sense of Definition 3.3. Indeed,

by Lemma 1.7 for v ∈ V (Γ), Gv acts on TvΓ with finitely many orbits, and if v has a

finite G-stabilizer then v has finite degree. Therefore, for all v ∈ V (Γ), TvΓ is locally

finite. Hence Γ is fine.

Remark 4.5. By Remark 4.4, G is a hyperbolic group relative to H if and only if

there is a (G,H)-graph on which G acts cocompactly.

Remark 4.6. If Γ and Γ′ are G-isomorphic and Γ is a (G,H)-graph, then Γ′ is a

(G,H)-graph.

The main result of this thesis is the following:

Theorem 4.7. Let H be an infinite subgroup of G, then H ↪→h (G,S) for some

subset S if and only if there exists a (G,H)-graph.

The proof of Theorem 4.7 relies on the following results:

Proposition 4.8. Let H be an infinite subgroup of G and let S be a subset of G. Then

H ↪→h (G,S) if and only if the Coned-off Cayley graph Γ̂(G,H, S) is a (G,H)-graph.

Proposition 4.9. Let H be an infinite subgroup of G. If there is a (G,H)-graph

then there is a subset S of G such that the Coned-off Cayley graph Γ̂(G,H, S) is a

(G,H)-graph.
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Proof of Theorem 4.7. The only if part follows from Proposition 4.8. For the if part,

first applies Proposition 4.9 and then Proposition 4.8.

Corollary 4.10. [5, Proposition 2.4] A group G is hyperbolic relative to an infinite

subgroup H if and only if H ↪→h G with respect to a finite subset S.

Proof. Let G be a hyperbolic group relative to H. By Proposition 3.5, there exists

a finite subset S of G such that Γ̂(G,H, S) is connected, hyperbolic and fine. By

Proposition 1.13, Γ̂(G,H, S) is a (G,H)-graph. Then by Proposition 4.8, H ↪→h G

with respect to the finite subset S.

Conversely, suppose that H ↪→ G with respect to the finite subset S. Then Propo-

sition 4.8 implies that Γ̂(G,H, S) is a (G,H)-graph. By the definition of a (G,H)-

graph, Γ̂(G,H, S) is connected, hyperbolic and fine at the vertices corresponding to

left cosets of H. Since S is finite, any vertex of Γ̂(G,H, S) that is an element of G

has finite degree. Therefore, Γ̂(G,H, S) is a connected, hyperbolic and fine graph.

Hence, G is hyperbolic relative to H.

The rest of the chapter is organized as follows: The proof of Proposition 4.8 is in

Section 4.1, and the rest of the sections lead towards proving Proposition 4.9.

4.1 Proof of Proposition 4.8

Proof. Let Γ = Γ(G,H ∪ S) be the Cayley graph and let Γ̂ = Γ̂(G,H, S) be the

Coned-off Cayley graph of G with respect to H and S.

Claim 1: Γ̂ is connected if and only if G = 〈S ∪H〉. Note that, by Lemma 1.11:

G = 〈S ∪H〉 ⇐⇒ Γ̂(G,H, S) is connected ⇐⇒ Γ(G,H ∪ S) is connected.
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Claim 2: Γ̂ is hyperbolic if and only if Γ is hyperbolic. By Lemma 1.12, Γ̂ is quasi-

isometric to Γ. Then by Proposition 1.6, quasi-isometry preserves the hyperbolicity.

Claim 3: Γ̂ is fine at cone vertices if and only if (H,∠H) is a locally finite metric

space. This holds by Lemma 2.7.

Then by Proposition 1.13, Γ̂ is a (G,H)-graph.

Therefore, H ↪→h (G,S) for some subset S of G if and only if Γ̂ is a (G,H)-graph.

4.2 (G,H)-graphs and trivial stabilizers

Definition 4.11. We say that a (G,H)-graph is a clamped (G,H)-graph if there are

no edges incident to two distinct vertices in V∞(Γ).

Proposition 4.12. Let Γ be a clamped (G,H)-graph such that there is u ∈ V (Γ)

where Gu is trivial and

V (Γ) = V∞(Γ) ∪G.u.

Then there is S ⊆ G such that the coned-off Cayley graph Γ̂(G,H, S) and Γ are

isomorphic G-graphs.

The proof of this proposition requires some lemmas.

Lemma 4.13. Let Γ be a G-graph with finite edge stabilizers. Suppose that Γ is fine

at V∞(Γ). For u, v ∈ V∞(Γ), if Gu = Gv then u = v.

Proof. This follows directly from Corollary 2.5.

In [14, Lemma 2.4], an analogous result is proved for relatively hyperbolic groups.
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Lemma 4.14. Let H ↪→h (G,S), where H is an infinite subgroup. If Γ if fine at

V∞(Γ), then there are natural G-equivariant bijections

V∞(Γ) −→ {gHg−1 | g ∈ G} −→ G/H

that maps a vertex v to its G-stabilizer and maps a conjugate gHg−1 of H to the left

coset gH.

Proof. First, we show that V∞(Γ) −→ {gHg−1 | g ∈ G} given by v 7→ Gv is a bijec-

tion:

Claim 1: The range of the map is well-defined. Indeed, by the definition of a (G,H)-

graph, vertices with infinite stabilizers have stabilizer subgroups equal to the conju-

gates of H.

Claim 2: The map is surjective. by the definition of a (G,H)-graph there exists a

vertex v that has stabilizer equals to H. Take a conjugate of H, say gHg−1 for g ∈ G.

Note that it is the stabilizer of g.v.

Claim 3: The map is injective. By Lemma 4.13, if the stabilizers of two vertices of

V∞(Γ) are the same then the vertices are equal.

Now we verify that G/H = {gH | g ∈ G} −→ {gHg−1 | g ∈ G} given by

gH 7→ gHg−1 is a bijection:

Claim 1: The range of the map is well-defined. Indeed, if fH = gH then fHf−1 =

gHg−1 for f, g ∈ G.

Claim 2: The map is surjective. As for any subgroup gHg−1 , there exists a left coset

gH.

Claim 3: The map is injective. Suppose that g1Hg1
−1 = g2Hg2

−1. This implies
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g2
−1g1Hg1

−1g2 = H. Since Γ is a (G,H)-graph, there is a vertex v of Γ such that

Gv = H. Hence, the stabilizer of v and g2
−1g1.v are equal. And by Lemma 4.13,

v = g2
−1g1.v. Therefore, g2

−1g1 ∈ H and g1H = g2H.

Proof of Proposition 4.12. We have to find a bijection between V (Γ̂) and V (Γ) such

that

� ∀a, b ∈ V (Γ̂), {a, b} ∈ E(Γ̂)⇐⇒ {φ(a), φ(b)} ∈ E(Γ).

� ∀a ∈ V (Γ̂) and ∀g ∈ G, φ(g.a) = g.φ(a).

Recall:

V (Γ̂) = G ∪ {v(gH) | gH ∈ G/H}

E(Γ̂) = {{g, g.s} | g ∈ G, s ∈ S} ∪ {{gh, v(gH)} | gh ∈ gH, gH ∈ G/H}.

By Lemma 4.14, there is a one-to-one correspondence between V∞(Γ) and the set

of left cosets gH. As there exists a vertex v ∈ V∞(Γ) such that Gv = H, there is

a one-to-one correspondence between the set of left cosets gH and G.v. Therefore,

V∞(Γ) = G.v. This implies we can map H to v and hence, v(gH) ∈ V (Γ̂) to g.v ∈

V (Γ) through a one-to-one correspondence.

Now we have to find u ∈ V (Γ) that is corresponding to 1 ∈ G. As Γ is connected,

there is a path between v and u. Observe that this path will contain vertices in G.v

and G.u. Hence, there will be an edge {g.v, g′.u} for some g, g′ ∈ G, which we can

translate to find a vertex in G.u that is adjacent to v. Assume v and u are adjacent.
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Then we can create a bijection map such that

φ : G ∪G/H −→ V (Γ) = V∞(Γ) ∪G.u = G.v ∪G.u

g 7−→ g.u

gH 7−→ g.v.

Let

S = {g ∈ G | g.u and u are adjacent} and S = S−1

Claim: φ is an isomorphism between Γ̂(G,H, S) and Γ. Observe that g.φ(x) = φ(g.x).

We just have to show that {a, b} ∈ E(Γ̂)⇐⇒ {φ(a), φ(b)} ∈ E(Γ), for all a, b ∈ V (Γ̂).

There are three cases to consider:

1. Suppose a, b ∈ G. Note that a−1b ∈ S as {1, a−1b} = {a, b} ∈ E(Γ̂). By the

definition of φ, φ(a) = a.u and φ(b) = b.u. Then {φ(a), φ(b)} = {a.u, b.u} =

{u, a−1b.u} ∈ E(Γ), as a−1b ∈ S.

2. Suppose a ∈ G and bH ∈ G/H. Note that a−1b ∈ H as {1, a−1bH} =

{a, bH} ∈ E(Γ̂). By the definition of φ, φ(a) = a.u and φ(bH) = b.v. Then

{φ(a), φ(bH)} = {a.u, b.v} = {u, a−1b.v} ∈ E(Γ), as a−1b ∈ H.

3. Suppose aH, bH ∈ G/H. This case does not hold since Γ is clamped.
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4.3 Existence of Clamped (G,H)-graphs

Proposition 4.15. If there is a (G,H)-graph Γ, then there exists a clamped (G,H)-

graph that has a vertex with trivial stabilizer.

To prove this proposition, we need to introduce some lemmas.

Lemma 4.16. The edge G-attachment preserves (G,H)-graph.

Proof. Let Γ′ be a graph after the edge G-attachment to a (G,H)-graph, say Γ.

� Γ′ is connected : Indeed, V (Γ) = V (Γ′) and every path in Γ is a path in Γ′

� Γ′ is hyperbolic: Note that the only difference between Γ′ and Γ is the addition of

the G-orbit of an edge. Suppose the G-orbit of the new edges has representative

incident to u, v ∈ V (Γ). As Γ is connected, there exists a path in Γ from u to

v. Let P be the shortest path from u to v of length k. Pick any two vertices

a, b ∈ V (Γ′). As Γ′ is connected, there exists a path in Γ′ from a to b. But this

path might not be in Γ as there might be some edges that are the translates

of either [u, v] or [v, u]. But we can replace these edges with the corresponding

translates of P . The resulting path from a to b will be in Γ and would be of

length at most k distΓ′(a, b). Then V (Γ) = V (Γ′) implies that the identity map

i is a (k, 0, 0)-quasi-isometry from Γ′ to Γ such that,

distΓ′(a, b) ≤ distΓ(i(a), i(b)) ≤ k distΓ′(a, b),

∀u ∈ V (Γ′),∃a ∈ V (Γ) such that distΓ′(i(a), u) = 0

Then by Proposition 1.6, Γ′ is hyperbolic and Γ is hyperbolic.

� Γ′ is fine at V∞(Γ′): It holds by Theorem 2.11.
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� It is easy to see that all the remaining properties of a (G,H)-graph hold for Γ′.

Therefore, Γ′ is a (G,H)-graph.

Lemma 4.17. If there is a (G,H)-graph, then there is a (G,H)-graph with a vertex

that has trivial G-stabilizer.

Proof. Let Γ be a (G,H)-graph with no vertex that has trivial G-stabilizer. Now add

the G-orbit of a vertex u of trivial G-stabilizer with an edge G-attachment with a

representative incident to u and v ∈ V∞(Γ). We will denote this new graph as Γ′.

V (Γ′) = V (Γ)
⋃
g∈G

g.u

E(Γ′) = E(Γ)
⋃
g∈G

g.{u, v}, for v ∈ V∞(Γ).

We have to show that Γ′ is a (G,H)-graph. Indeed, by Lemma 4.16, the edge G-

attachment preserves (G,H)-graph. Therefore, Γ′ is a (G,H)-graph.

Lemma 4.18. Let Γ be a G-graph and let u, v ∈ V (Γ) such that u and v are adjacent

and there is an embedded path from u to v that does not contain the translate of

either [u, v] or [v, u], say P : [u = u0, u1, . . . , uk = v] such that [ui, ui+1] ∈ E(Γ)

for 0 < i < k − 1. Suppose that Γ′ is a G-graph obtained from Γ by the edge G-

removal of the G-orbit of edges with a representative incident to u, v ∈ V (Γ). If Γ is

a (G,H)-graph, then Γ′ is a (G,H)-graph.

Proof. Let Γ′ be a graph after the edge G-removal from Γ, such that the hypothesis

holds.

� Γ′ is connected and hyperbolic: Pick any two vertices in Γ′. As Γ is connected,

there exists a path in Γ from a to b. But this path might not be in Γ′ as there
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might be some edges that are the translates of either [u, v] or [v, u]. But by the

hypothesis, we know that we can replace the translates of these edges with the

translates of P . The new path from a to b will be in Γ′, which implies that Γ′

is connected. Note that as Γ′ ⊆ Γ and the length of P is k, the identity map i

is a (k, 0, 0)-quasi-isometry from Γ′ to Γ such that,

distΓ′(a, b) ≤ distΓ(i(a), i(b)) ≤ k distΓ′(a, b).

Then V (Γ′) = V (Γ) implies that Γ and Γ′ are quasi-isometric and hence, Γ′ is

hyperbolic by Proposition 1.6.

� Γ′ is fine at V∞(Γ′): Observe that V∞(Γ) = V∞(Γ′). Let a ∈ V∞(Γ′). Then for

b ∈ V (Γ′) and k ∈ Z+, ~abΓ′(k) ⊂ ~abΓ(k). Since Γ is fine at V∞(Γ), ~abΓ(k) is

finite. Hence, Γ′ is fine at V∞(Γ′).

� It is easy to see that all the remaining properties of a (G,H)-graph hold for Γ′.

Therefore, Γ′ is a (G,H)-graph.

Proof of Proposition 4.15. By Lemma 4.17, if there is a (G,H)-graph, then there is

a (G,H)-graph Γ with a vertex that has trivial G-stabilizer. Assume that Γ has a

vertex v with trivial G-stabilizer.

By Lemma 4.14, G acts on V∞(Γ) with a single G-orbit. Let w ∈ V∞(Γ). Since Γ

is a (G,H)-graph, Gw acts on TwΓ with finitely many orbits. Therefore, Gw acts on

TwΓ∩ V∞(Γ) with finitely many orbits. Hence, we need to remove only finitely many

G-orbits of edges represented by w, x with x ∈ Tw ∩ V∞(Γ). This can be done by

applying the following procedure a finite number of times.

Removing the G-orbit of an edge {w, x} where x ∈ TwΓ ∩ V∞(Γ): Add two new G-
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orbits of edges with representatives incident to w and v, and x and v. Since v /∈ V∞(Γ),

by Lemma 4.16, the new graph is a (G,H)-graph.

Then remove the G-orbit of an edge incident to w and x. Then by Lemma 4.18, the

new graph is a (G,H)-graph.

Remark 4.19. In the proof of the main result of the thesis, the property of a (G,H)-

graph stating that for all w ∈ V∞(Γ), Gw acts on TwΓ with finitely many orbits, is

only used in the proof of Proposition 4.15.

4.4 Clamped (G,H)-graphs and Coned-off Cayley

Graphs

Proposition 4.20. If there exists a (G,H)-graph Γ which is clamped and has a

vertex with trivial stabilizer, then there is a clamped (G,H)-graph Γ′ such that there

is u ∈ V (Γ′) where Gu is trivial and

V (Γ′) = V∞(Γ′) ∪G.u.

The proof of this proposition requires the following lemma:

Lemma 4.21. If there exists a clamped (G,H)-graph with a vertex with trivial sta-

bilizer, then there exists a clamped (G,H)-graph with a vertex with trivial stabilizer,

and finite connected subgraph Γ0 such that,

1. V (Γ0) ∩ V∞(Γ) = φ.

2. For all u ∈ V (Γ), there exists g ∈ G such that g.u ∈ V (Γ0).
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3. No two distinct vertices of Γ0 are in the same G-orbit.

Proof. Let α = {v0, v1, . . . , vn} be a collection of representatives of all the G-orbits

of vertices of V (Γ) with finite stabilizers such that no two distinct vertices in α

represent the same G-orbit. For each i ∈ {1, 2, . . . , n}, add a G-orbit of edges with

representative {v0, vi} obtaining a graph Γ′. By Lemma 4.16, Γ′ is still a (G,H)-

graph. As we are not adding any edges incident to two distinct vertices of V∞(Γ), Γ′

remains a clamped graph. Note that Γ′ still contains a vertex with a trivial stabilizer.

Consider a subgraph Γ0 of Γ′ such that,

V (Γ0) = α

E(Γ0) = {{v0, vi} | vi ∈ α, ∀i ∈ {1, 2, . . . , n}}

Clearly by the definition of Γ0, all the three properties are satisfied.

Proof of Proposition 4.20. We can assume that the (G,H)-graph Γ contains a finite

connected subgraph Γ0 as mentioned in Lemma 4.21. Note that by the definition of

E(Γ0), Γ0 has diameter 2. Let Γ′ be a graph such that,

V (Γ′) = {g.Γ0 | g ∈ G} ∪ V∞(Γ)

E(Γ′) = {{g.Γ0, f.Γ0} | g.Γ0 6= f.Γ0 and either g.Γ0 ∩ f.Γ0 6= φ or

∃e ∈ E(Γ) incident to a vertex of g.Γ0 and a vertex of f.Γ0}

Let {v0, . . . , vn} be the vertices of Γ0. Note that there is a surjective map from V (Γ)

to V (Γ′) such that g.vi will map on to g.Γ0, for all i ∈ {0, 1, . . . , n}.

Claim: Γ′ is a (G,H)-graph.
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� Γ′ is connected and hyperbolic: Pick a minimal length path γ in Γ from v0 ∈

V (Γ0) to g.v0 ∈ V (gΓ0). Then by the definition of E(Γ′), there exists a path

in Γ′ from Γ0 to g.Γ0 of length less than or equals to the length of γ. Hence,

Γ′ is connected. Observe that the path in Γ′ induced by γ implies the following

inequality,

distΓ′(Γ0, g.Γ0) ≤ distΓ(v0, g.v0).

Let g ∈ G and consider a minimal length path γ′ in Γ′ from Γ0 to gΓ0. By the

definition of E(Γ′), either the edge in γ′ belongs to E(Γ) incident to vertices of

the G-translates of Γ0 in γ or the G-translates of Γ0 are disjoint. But as Γ0 is

connected, by adding some paths to γ′ we can construct a path γ in Γ from v0

to gv0 of length at most 2 distΓ′(Γ0, g.Γ0) + 2. Hence,

distΓ(v0, g.v0) ≤ 2 distΓ′(Γ0, g.Γ0) + 2.

Therefore, Γ′ is hyperbolic.

� Γ′ is fine at V∞(Γ′):. Observe that V∞(Γ) = V∞(Γ′). Let a ∈ V∞(Γ′). Then for

b ∈ V (Γ′) and k ∈ Z+, ~abΓ′(k) ⊂ ~abΓ(k). Since Γ is fine at V∞(Γ), ~abΓ(k) is

finite. Hence, Γ′ is fine at V∞(Γ′).

� Γ′ has finitely many G-orbits of vertices:. Indeed, there are only two G-orbits

of vertices, which are V∞(Γ′) and G.Γ0.

� Stabilizers of edges are finite: Since Γ0 is finite and all vertices of Γ0 have finite

stabilizers.

� Γ′ has a vertex with trivial stabilizer: Note that every G-translate of Γ0 have
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trivial stabilizers as there exists a vertex in Γ0 that has trivial stabilizer and no

two distinct vertices of Γ0 are in the same G-orbit.

� For all w ∈ V∞(Γ′), Gw acts on TwΓ′ with finitely many orbits. Indeed, the

surjective map from V (Γ) to V (Γ′) preserves the G-action.

4.5 Proof of Proposition 4.9

Proof of Proposition 4.9. Let Γ be a (G,H)-graph. Then by Proposition 4.15, there

exists a clamped (G,H)-graph that has a vertex with trivial stabilizer. By Proposition

4.20, we can construct a clamped (G,H)-graph Γ′ such that there is u ∈ V (Γ′) where

Gu is trivial and

V (Γ′) = V∞(Γ′) ∪G.u.

Now we can apply Proposition 4.12, which implies that there is S ⊆ G such that the

coned-off Cayley graph Γ̂(G,H, S) and Γ′ are isomorphic G-graphs. Hence, Γ̂(G,H, S)

is a (G,H)-graph.
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Chapter 5

The action of SL2(Z) on the Farey

Graph

All the Figures in this chapter are taken from [11].

SL2(Z) is an example of a relatively hyperbolic group with respect to the cyclic

subgroup generated by

1 n

0 1

. This can be seen by the Bowditch’s definition as

SL2(Z) acts on the Farey graph the same way as defined in Definition 3.3. In this

chapter, first we study the structure of the Farey graph with the help of the book [11]

by Allen Hatcher, and then define the action of SL2(Z) on it.

This chapter has two sections: the first one briefly discusses the structure of the

Farey graph, in particular this graph is connected, hyperbolic and fine. The second

section explains the action of SL2(Z) on the Farey graph, by which we can conclude

that SL2(Z) is a relatively hyperbolic group.
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5.1 Farey Graph and its properties

The Farey graph Γ is a two-dimensional pictorial representation of rational numbers

with some interesting relations between them. The vertex set is {Q ∪ {∞}}, and we

regard each vertex as either a reduced fraction p
q

or a 2-vector

p
q

, where p and q

are relatively prime. In particular, ∞ is represented by 1
0

or −1
0

and 0 is represented

by 0
1

and 0
−1

. While the edge set can be defined in two equivalent ways:

1. E(Γ) = {{p
q
, r
s
} | det

p r

q s

 = ±1}. We call it E(1).

2. Mediant Rule: If a
b

and c
d

are adjacent then a+c
b+d

is adjacent to both of them

and a
b
< a+c

b+d
< c

d
. So if we want to construct the Farey graph by this rule, we

can start with the edge {0
1
, 1

0
}. This will give the upper half of Figure 2.1, and

for the lower half, we can use −1
0

instead of 1
0
.

Take E0(Γ) = {{0
1
, 1

0
}}

then, E1(Γ) = {{p
q
, r
s
}| r

s
∈ E0,

u
v
∈ E0, p = r + u, q = s+ v} = {{0

1
, 1

1
}, {1

0
, 1

1
}}.

In general, En+1(Γ) = {{p
q
, r
s
} | { r

s
, u
v
} ∈ En, p = r + u, q = s+ v},

and let E(Γ) =
⋃
Ei(Γ). We call it E(2).

Let F i be the graph obtained using Ei, for i ∈ {1, 2}. We will prove that F 1 and F 2

are the same graphs, which we call the Farey graph.

Lemma 5.1. [11] The Farey graph F 2 is connected.

Sketch of the proof. We will understand the proof with an example. Pick a rational

number; let’s say 67
24

. Now we will apply the Euclidean algorithm as follows:
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Figure 5.1: Interval [0,1] on the Farey Graph

67

24
= 2 +

19

24
= 2 +

1
24
19

= 2 +
1

1 + 5
19

= 2 +
1

1 + 1
19
5

= 2 +
1

1 + 1
3+ 4

5

= 2 +
1

1 + 1
3+ 1

1+1
4

Figure 5.2: Euclidean algorithm

Note that it has 2, 1, 3, 1, 4 as a sequence of partial quotients. We use the last

four partial quotients to build a strip of four large triangles, which we can also denote

it as fans, subdivided into 1, 3, 1 and 4 smaller triangles, respectively. As in Figure

5.2, we begin labelling the vertices of the strip. Note that the horizontal edges do not

play any role in the construction. We always start with 1
0

for every positive rational
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number, otherwise with −1
0

. Now, the adjoint vertex will be the first partial quotient

of the sequence, which is 2 = 2
1
. Now we can use the mediant rule to compute the

remaining vertices in succession as we move from left to right, as shown in Figure 5.2.

This sequence of vertices is a path from 1
0

to 67
24

. As we can find a path from 1
0

to any

rational number, this concludes that the Farey graph is connected.

Lemma 5.2. E(2) is a subset of E(1).

Proof. We argue by induction that Ei ⊆ E(1). Note that E0(Γ) = {{0
1
, 1

0
}} is a subset

of E(1) by definition. By the induction hypothesis, suppose En(Γ) is contained in E(1).

Let {a
b
, c
d
} be an element of En(Γ), and consider the corresponding elements {a

b
, a+c
b+d
}

and {a+c
b+d

, c
d
} of En+1. See Figure 5.3. Since {a

b
, c
d
} has determinant ±1, by simple

arithmetic, we can compute corresponding determinants and verify that they are ±1.

Hence, En+1 is contained in E(1). Since E(2) =
⋃
Ei we conclude that, E(2) ⊆ E(1).

Figure 5.3: Induction on triangles

Lemma 5.3. The Farey graph F 1 is connected.
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Proof. Since E(2) is a subset of E(1), a path in F 2 is a path in F 1. Hence, as F 2 is

connected, F 1 is also connected.

Proposition 5.4. [11, Theorem 2.2] The two definitions of the edge set are equivalent,

and the Farey graph is connected.

The only thing to prove here is that E(1) ⊆ E(2) which is a consequence of the

following lemma. We refer the reader to [11, Page 22] for an argument:

Lemma 5.5. [11, Lemma 2.4] Suppose a and b are integers with no common divisor

greater than 1. If one solution of ay − bx = n is (x, y) = (c, d), then the general

solution is (x, y) = (c+ ka, d+ kb) for k an arbitrary integer.

Figure 5.4: Mediant rule

Proposition 5.6. The Farey graph is a fine graph.

Sketch of the proof. Using the median rule one can show that there is a natural em-

bedding of Farey graph into the plane; each vertex q maps to (q, 0) and each edge

{a
b
, c
d
} maps to the upper semicircle orthogonal to the x-axis with endpoints (a

b
, 0) and

( c
d
, 0). Figure 5.1 illustrates this embedding after composing with the stereographic
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Figure 5.5: Farey tree

projection. In this case, all vertices of the Farey graph are on the unit circle which

we refer as the boundary. Hence the Farey graph is a planar graph [11], and there

are well define subregions that we call triangles. We consider the graph T , whose

vertices are triangles of the Farey graph, as shown in Figure 5.5, and two triangles

are adjacent if they share a common side. Since the Farey graph is connected, T is

connected. One can show that T is a tree by observing that the triangles have all

their vertices on the boundary. Since all the vertices of T have degree equal to 3, T is

locally finite. First observe that a circuit in the Farey graph encloses a region which

is tiled by triangles of the Farey graph. This region induces a connected subgraph

of T , not that connectedness follows from the assumption that the boundary of the

region is an embedded circle. Note that two distinct circuits induce different subtrees

of T, see Figure 5.6. Let n be an arbitrary positive integer and let e be an arbitrary

edge in the Farey graph. Note that this edge corresponds to an edge in T . A circuit

in the Farey graph that contains e of length at most n induces a finite sub-tree ∆ of

T having the following properties:

1. e has exactly one vertex of degree 1 in ∆ (as no vertex is repeated in a circuit).
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Figure 5.6: Subtrees induced by circuits

2. The degree of all vertices in ∆ is either 1 or 3.

3. ∆ has at most n vertices of degree 1.

4. ∆ is connected.

Since T is locally finite, there are finitely many possible such subtrees ∆ for the given

edge e; in other words, there are finitely many circuits containing e. Hence, it is a

fine graph.

Proposition 5.7. The Farey graph is δ-Hyperbolic, where δ = 1.

Proof. Let u and v be two vertices of the graph, and let p and q be two geodesics

from u to v. Suppose that the only vertices in common between p and q are u and

v. Let D be the planar region enclosed by p and q. Observe that this region has no

interior vertices but only edges. No vertex of p has degree 2 in D other than u and

v. Indeed, If we pick a vertex t of p, that has degree two, then there will be an edge

between the vertices adjacent to it, that will contradict the geodesy of p. Since every
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Figure 5.7: 1-thin triangle

vertex has a degree at least three, the third edge would be joining with one of the

vertices of q, otherwise it would again contradict the geodesy of p. Therefore, every

vertex of p is at distance one from a vertex of q.

Consider a geodesic triangle ∆ with vertices u, v and w. Let p, q and r be geodesics

between u and v, u and w, and v and w, respectively. See Figure 5.7. Suppose that

the only vertices in common between p and q is u; between p and r is v; between q

and r is w. Let D be the region enclosed by p, q and r. Recall that this region has

no interior vertices. Suppose the vertices of p are u = p0, p1, ..., pk = v. Since D has

no interior vertices, every vertex of p is adjacent to a vertex of q or r. Note that if pi

is adjacent to a vertex of q, then pj is adjacent to a vertex of q for every j ≤ i. Let

m be the largest index such that pm is adjacent to a vertex of q. Then every pi for

i ≤ m is at a distance one from a vertex of q. As no edge can intersect each other,

by symmetry, every vertex of p is at a distance one from a vertex of q or r. Hence,

the triangle is δ-thin, where δ = 1.

70



5.2 SL2(Z) acts on the Farey Graph

Let µ =

p r

q s

 ∈ SL2(Z). Let d = a
b
∈ Q ∪ {∞}. Then:

1. µ.d =

p r

q s


a
b

 =

pa+ rb

qa+ sb

 =

pa
b

+ r

q a
b

+ s

 ∈ Q ∪ {∞}

2. µ : d 7−→ pd+r
qd+s

. As µ is invertible, it is an element of Aut(Q ∪ {∞}).

Proposition 5.8. The action of SL2(Z) on the Farey Graph has the following prop-

erties:

1. It acts cocompactly,

2. The stabilizer subgroups of edges are finite,

3. The stabilizer subgroups of vertices are conjugates of

〈1 1

0 1

〉.

Proof. 1. Note that every vertex is connected with

1

0

 as shown in the proof of

Proposition 5.4. For any vertex

a
b

 ∈ V (Γ), ∃

a p

b r

 ∈ SL2(Z), such that

a p

b r


1

0

 =

a
b


Hence, there is only one orbit of vertices.

Also, the product of two non-singular matrices is non-singular: every edge can
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be translated to

1 0

0 1

 or

−1 0

0 1

 by multiplying the edge with its inverse.

Hence, there is only one orbit of edges.

2. Let d =

1 0

0 1

 ∈ E(Γ). Note that every edge in the Farey graph is a translate

of d. Also, infinity can be represented as

1

0

 and

−1

0

. Let µ ∈ SL2(Z) be

an element of the stabilizer of d such that:

µ

(
±

1 0

0 1

) = ±

1 0

0 1

 ,
µ

(
±

1 0

0 1

) = ±

−1 0

0 1

 ,
µ

(
±

−1 0

0 1

) = ±

1 0

0 1

 or

µ

(
±

−1 0

0 1

) = ±

−1 0

0 1

 .

This implies, µ ∈
{1 0

0 1

 ,
−1 0

0 −1

 ,
−1 0

0 1

 ,
1 0

0 −1

}. Hence, the

stabilizer subgroup of edges is finite.

3. As all the vertices are the translates of

1

0

, the stabilizer subgroup of any
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vertex would be a conjugate of the stabilizer subgroup of

1

0

. Note that:

±

1 n

0 m


1

0

 = ±

1

0

 ,∀n,m ∈ Z.

Hence, the stabilizer subgroups of vertices are conjugates of

〈
±

1 1

0 1

〉.

Now we can conclude the main result of this chapter.

Proposition 5.9. SL2(Z) is a relatively hyperbolic group with respect to its subgroup

H =

〈1 1

0 1

〉.

Proof. We will show that the action of SL2(Z) on the Farey graph satisfies definition

of relatively hyperbolic group, recall Definition 3.3 by Bowditch. In Section 5.1, we

proved that the Farey graph is connected, hyperbolic and fine. In Section 5.2, we

proved that the action of SL2(Z) on the Farey graph is cocompact, the stabilizer

subgroups of edges are finite, the stabilizer subgroups of vertices are conjugates of H.

And note that the G-stabilizer of

1

0

 is H. Hence, the Farey graph is a cocompact

(SL2(Z), H)-graph.
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Chapter 6

Conclusion

The notion of hyperbolically embedded subgroup generalizes the notion of relatively

hyperbolic group. Just like relatively hyperbolic groups, hyperbolically embedded

subgroups can also be defined in terms of fine graphs: An infinite subgroup H is

hyperbolically embedded in a group G for some subset S of G if and only if there

exists a (G,H)-graph. A graph Γ is a (G,H)-graph if G acts on Γ while satisfying

the following conditions:

� Γ is connected and hyperbolic,

� Γ is fine at V∞(Γ),

� for all w ∈ V∞(Γ), Gw acts on TwΓ with finitely many orbits,

� number of orbits of vertices are finite,

� stabilizer subgroups of edges are finite,

� stabilizer subgroups of vertices are either finite or a conjugate of H,

� and there exists a vertex that has the stabilizer subgroup equals to H.
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