
A general model of MnSi-like helical magnets

by

c© Kyle Hall

A thesis submitted to the School of Graduate Stud-

ies in partial fulfillment of the requirements for the

degree of Master of Science.

Department of Physics and Physical Oceanography

Memorial University

September 2020

St. John’s, Newfoundland and Labrador, Canada



Abstract

MnSi and other magnets belonging to the B20 designation are known to assume exotic

magnetic structures with subtle features. Of these, the most notable is the appearance

of long-wavelength helical structures. Previous analyses of these materials considered

oft-used and non-specific models to describe these systems. I will present a gen-

eral, classical model with only nearest neighbour exchange interactions constructed

through symmetry considerations. This model is complete up to the determination

of the relative strengths of the coupling constants and the inclusion of other inter-

actions. Comparison to other models will reveal a general relationship between this

model and those used in previous analyses. Further comparison with experimentally

observed features is used to produce magnetic order parameters of the structure and

a relationship between their complex values and structure observables.

Also presented are the results of computational simulations using the Effective

Field Method. These simulations are conducted with specific anisotropic and Zeeman

interactions introduced to the model. Periodic boundary conditions are not used to

maintain the incommensurate helical structure. The results of these simulations are

analyzed to extract several lattice structure parameters and the action of individual

exchange constants is considered. Additionally, the relation between this model and

others is discussed and the introduction of isolated skyrmions is observed. Finally,

the results of preliminary simulations with applied magnetic fields oriented along the

helix wavevector are presented. These final results demonstrate the appearance of a

conical phase and illuminate the effect of specific anisotropic terms. The critical field

BC2, i.e., the critical field between the conical and field-induced ferromagnetic states,

and the relationship between canting and field strength are also reported.
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Lay summary

Magnetic materials with a similar structure to manganese silicide (MnSi) are known

to exhibit magnetic structures – i.e., the ordered arrangement of individual magnetic

moments at distinct points – which are nuanced and complex. These materials are the

subject of a large number of experimental and theoretical studies due to the potential

uses and understanding that these structures could provide. Previous analyses of

these materials considered oft-used and non-specific models, attempting to describe

the wide range of behaviours exhibited by the full class of MnSi-like crystals.

I will present a general, classical model considering only a subset of interactions

that are invariant within the symmetry of these lattices. This model will be used

to better describe the observed phases and make predictions of the behaviours of

this material. Further, I will present the results of computational simulations using

the Effective Field Method – a method used to determine low-energy states of a

system. These simulations will be analyzed to view the reaction of the system to

model parameters. From this, I will describe how one may tune model parameters to

produce desired physical features.
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Chapter 1

Magnetic Crystals & Manganese

Silicide

1.1 B20 crystals and space group P213

Manganese silicide (MnSi), or sometimes manganese monosilicide to differentiate from

other MnSix materials, is a magnetic diatomic compound with equal quantity of each

ion. Compounds of this type (labelled MnSi-like) belong to the B20 Strukturbericht

designation, which includes materials isostructural to the prototype compound FeSi.

B20 crystals are notable for their exotic magnetic structures. Materials belonging to

this group have long been known to exhibit long-wavelength helimagnetic ordering [1,

2]. Other exotic phases, specifically skyrmion phases, have been confirmed to exist

in many of the helimagnetic B20 materials including MnSi [3], FeGe [4], FeCoSi [5],

MnGe [6], etc. and are predicted to exist in all such materials [7, 8]. For reference,

a selection of B20 materials displaying helimagnetic ordering – along with properties

of this ordering – is presented in Appendix A.

All B20 materials belong to the P213 space group (No. 198, T 4). This is a primitive,

or simple, cubic group with chiral tetrahedral symmetry, T . In this space group, the

magnetic Mn ions of MnSi reside in the 4a Wyckoff position. This position can be

parametrized by a single variable, x, as
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r1 : {x, x, x}

r2 : {−x+
1

2
,−x, x+

1

2
}

r3 : {−x, x+
1

2
,−x+

1

2
}

r4 : {x+
1

2
,−x+

1

2
,−x}

(1.1)

where the numeric labels applied to each site are maintained throughout this thesis.

For MnSi, the parameter x = 0.138 in units of the cubic lattice parameter a =

4.560Å [9]. One can see that ions 2, 3, and, 4 reside outside of the standard cubic

unit cell with a side length of 1 in units of lattice parameters (this length scale will be

used as the standard throughout this thesis unless otherwise noted). This is normally

useful as the 4 positions are nearest neighbours. However, if one desires to make a

single, repeatable unit cell bounded by [0, 1) a set of translations can be made to move

all ions to equivalent positions within that cell

{x, x, x} + {0,0,0}−−−−−→ {x, x, x}

{−x+
1

2
,−x, x+

1

2
} + {0,1,0}−−−−−→ {−x+

1

2
,−x+ 1, x+

1

2
}

{−x, x+
1

2
,−x+

1

2
} + {1,0,0}−−−−−→ {−x+ 1, x+

1

2
,−x+

1

2
}

{x+
1

2
,−x+

1

2
,−x} + {0,0,1}−−−−−→ {x+

1

2
,−x+

1

2
,−x+ 1}

(1.2)

.

This definition of the positions is utilized throughout. The coordination number of

each of these sites is 6, with nearest neighbours at a distance of approximately 0.613.

The unit cell of MnSi is displayed in Fig 1.1a with some nearest neighbours labelled.

The structure may be described using 4 interlaced cubic sublattices, with corners

associated with each ion position. These sublattices will be referenced using the

associated numerical label of that position. Alternatively, it may be described as a

series of two-dimensional planes along a 〈111〉 axis of the crystal (where 〈...〉 and [...]

follow the definitions of Ashcroft & Mermin [10]). There are two planes within a unit

cell, containing one and three ions. In the specific direction [111] those ions are 1 and
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(a)

(b)

(c)

Figure 1.1: (a) The unit cell of MnSi with magnetic Mn ions shown. The four distinct
ion positions of the unit cell are represented by different colours: (black, 1), (red, 2),
(green, 3), (blue, 4). The 4 numerically labelled ions are within the unit cell, others
are not. The dashed lines connecting ions indicate nearest neighbour pairs. (b) Cross-
section of the lattice along [111] showing the 2D plane containing only sublattice 1.
If only nearest neighbours are considered, there are no interactions in this plane. (c)
Cross-section of the lattice along [111] showing the 2D plane containing sublattices
2, 3, and 4. Each small triangle is a set of nearest neighbours.

{2, 3, 4} as shown in Fig. 1.1b and Fig. 1.1c. These layers will be denoted 1 and 2,

respectively.

The space group P213 is compelling in part due to its lack of inversion symmetry.

Lattices without this symmetry are known to allow interactions which can stabilize

exotic magnetic structures.
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1.2 Magnetic interactions

1.2.1 Heisenberg model

A frequently used phenomenological model is the Heisenberg exchange interaction.

This exchange interaction between two (neighbouring) magnetic moments, Si and Sj,

is represented as a dot product with associated coupling coefficient Jij

− JijSi · Sj. (1.3)

In this simple model it is easy to see that the ground state of any two magnetic

moments can only be either ferromagnetic when J < 0 or antiferromagnetic when

J > 0. These simple relations can be made more complicated through frustration,

producing atypical structures (see Fig. 1.2). Summing over all pairs we find the spin

Hamiltonian

HHeis =
∑

i,j

−JijSi · Sj (1.4)

which is often simplified such that the coupling coefficient is a constant of all equidis-

tant interactions (i.e., Jij = J) or reduced to a small number of constants for specific

sets of interactions, e.g., in-layer and between-layer. However, Jij only need be con-

strained by the symmetry of the lattice. Clearly, these interactions are isotropic as

they depend only on the relative orientation of the interacting magnetic moments.
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(a) (b)

(c)

Figure 1.2: Magnetic orderings produced by the Heisenberg interaction. (a) Ferromag-
netic ordering on a two-dimensional square lattice. (b) Antiferromagnetic ordering on
a two-dimensional square lattice. (c) The q = 0 structure of the two-dimensional
Kagome lattice, an example of a non-trivial ordering arising through frustration [11].

1.2.2 Dzyaloshinskii-Moriya interactions

The introduction of spin-orbit coupling allows for the appearance of anisotropic terms

in the spin hamiltonian. One of these interactions is the antisymmetric exchange

interaction, also known as the Dzyaloshinskii-Moriya interaction (DMI). This inter-

action was first predicted using symmetry as a means for describing the phenomenon
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of helical spin structure in nonmetallic magnetic materials [12]. They are described

by the cross product of two magnetic moments

HDMI =
∑
i,j

Dij · (Si × Sj) (1.5)

where the coupling coefficient Dij is treated like a vector.

Interactions of this form favour magnetic moments canting out of ferromagnetic

or antiferromagnetic alignment. Therefore, through competition with other exchange

interactions, they are able to stabilize helical magnetic structures with a fixed chi-

rality and also play an important role in the formation of skyrmion lattices in these

materials [13, 14].

The microscopic description was later developed by Moriya, in which the spin-orbit

coupling was identified as the mechanism leading to this interaction [15]. In this, a

means for determining the orientation of the coupling vector Dij was also developed.

This term must vanish if the two ions being considered are not identical, including

the coordination number of the ion. In cases of identical ions, the symmetry of the

lattice is considered. For ions located at Ri and Rj, making line Rij with midpoint

O

1. Dij = 0 if a point of inversion is located at O

2. Dij ⊥ Rij if a mirror plane perpendicular to Rij passes through O

3. Dij ⊥ mirror plane if a mirror plane includes Rij

4. Dij ⊥ C2 if there is two-fold rotation axis C2 ⊥ Rij

5. Dij ‖ Rij if there is any rotation axis Cn ‖ Rij where n > 2

From this, we can see that for lattices lacking a centre of inversion, such as those

in the B20 class, these interactions must be present. Further, while in theory, these

interactions can differ for different pairs of magnetic sites, these rules enforce that Dij

must belong to the symmetry of the lattice. Though these interactions are often rela-

tively weak relative to the Heisenberg interactions, the appearance of exotic magnetic

phases in B20 materials reveal their importance.
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1.2.3 Magnetic anisotropy

Other interactions are required for our model to reproduce physical magnetic states.

First, the effect of magnetic anisotropies must be considered. A magnetic anisotropy is

a term that describes how the magnetic properties of an ion may depend on direction.

The causes of magnetic anisotropies and the effects which are modelled by these terms

are numerous. Numerical models may also use anisotropy to simulate other physical

effects, e.g., applied pressure [16]. Common forms of magnetic anisotropy in a single

material include shape anisotropy, magnetoelastic anisotropy, and magnetocrystalline

anisotropy. Of these, only magnetocrystalline anisotropy – produced by the structure

of the crystal lattice – will be included.

The magnetocrystalline anisotropy is equivalent to crystal electric fields (CEF)

expressed using Stevens operator equivalents, given by same-site invariant terms of

even order. Although terms of any order and configuration are permissible, very high

order terms are generally excluded. I will consider only second and fourth-order terms

of the form

A2 =
∑

n,i,κ1 6=κ2

Sκ1
i,nS

κ2
i,n

A4 =
∑
n,i,κ

(Sκi,n)4
(1.6)

where κ1 and κ2 are non-equivalent components of the magnetic moment. Both

anisotropies are invariant under lattice symmetries, as required.

These specific forms are chosen due to their effects on the lattice – the second-order

anisotropy can be shown to prefer planar structures – and the inclusion of similar terms

in other studies [16]. It is known that helical magnetic structures depend on magnetic

anisotropies in multiple ways [17, 18]. Other second and fourth-order anisotropies of

this type may exist – in fact, any combination of κ that is not altogether isotropic

within the symmetry of the lattice is permissible. However, these prove sufficient to

stabilize the structure.
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1.2.4 Zeeman term

The final magnetic interaction to consider is the Zeeman term. The Zeeman term

arises from the Zeeman effect, describing the interaction of a magnetic moment with

an externally applied magnetic field. This interaction takes the form

HZeeman = −
∑
i

B · Si (1.7)

where B is the applied field vector. In general, the Zeeman term includes a factor for

the magnetic moment. Here, all applied fields are scaled such that B includes this

term. The leading negative term favours magnetic moments aligning parallel or to

the applied field.

1.3 Magnetic structure

The magnetic structure refers to the ordered arrangement of the magnetic moments

of a crystal.

1.3.1 Magnetic frustration

Magnetic frustration occurs within magnetic crystals when competing interactions

prevent the system from achieving a state with all bond energies minimized. Frustra-

tion often leads to disordered states well within ranges of predicted magnetic order

and, in some cases, magnetic disorder persists (e.g., spin ices). If magnetic order

is observed, it tends to result in exotic orderings and exotic structures (e.g., heli-

cal magnets). The phases of such materials are often hard to predict and must be

obtained through experimental or numerical studies. Frustration is brought about

through competition engendered by the structure and symmetry of the lattice, re-

ferred to as geometric frustration, or as competition between different interactions,

e.g., long-range vs short-range.

Geometric frustration occurs when a system cannot assume a state in which all

pairwise bonds are minimized due to competition between shared neighbours. A

simple-but-illustrative example is antiferromagnetic interactions in a two-dimensional
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triangular lattice shown in Fig 1.3a [19]. This phenomenon can be observed in MnSi-

like magnets by considering the shared bonds between neighbours of any ion. An

example is depicted in Fig 1.3b.

Frustration induced by competing interactions can come in diverse forms. Compe-

tition could occur between long and short-range interactions, interactions of different

forms, etc. Such competition is known to produce helical states in otherwise mundane

structures [20, 21]. The general model introduced here will include considerable op-

portunity for this form of frustration, and both forms of frustration will be included

implicitly.

(a) (b)

Figure 1.3: Geometric frustration in (a) the antiferromagnetic Ising model on a two-
dimensional triangular lattice and (b) the MnSi crystal structure. (a) The remaining
ion cannot assume a unique ground state. Assuming either orientation will result in
individual bond energies that are minimized and maximized, respectively. (b) The
nearest neighbours of the ion in position 1 in the MnSi crystal lattice. Each neighbour
shares a neighbour with ion 1 and is, therefore, part of a triangle of shared interactions.
The symmetry of the lattice ensures the same for all ions.

1.3.2 Helical magnets

The terms helical magnet, helical magnetism, and helimagnetism are used to denote

the incommensurate, exotic magnetic structure in which magnetic moments rotate
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periodically along some axis in the crystal. The structure was first theorized to de-

scribe anomalous behaviour in MnO2 [22] and Cu2Cr2O5 [23]. They can exist in

both three-dimensional and two-dimensional structures and are stabilized up to room

temperatures [24, 25].

(a) (b)

Figure 1.4: Helical magnetism in a three-dimensional crystal as viewed from (a) nor-
mal to the axis of rotation and (b) along the axis of rotation. The helix depicted is
right-handed with a period of 10 units. The tips of the vector representations trace out
a helix in space. In general, the period of the helix will not align with the underlying
lattice producing an incommensurate structure that breaks translational symmetry.

The helix has a wavevector k and the general form of the orientation of a given

magnetic moment in the lattice is

S(r) = x1 cos (k · r + Φ) + x2 sin (k · r + Φ) (1.8)

where the vectors x1 and x2 form an orthogonal basis with k and Φ is some additive

phase constant. The sign of the wavevector defines the chirality of the helix. The

incommensurate nature of the magnetic phase breaks translational symmetries of the

lattice.

Helical magnets are a contemporary and active area of magnetic research due to

their unique properties and relation to another useful exotic structure, skyrmions [7,

26]. Physical skyrmions were first described in the context of nuclear physics [27] and

analogous structures have been described for magnetic systems. A skyrmion is an

exotic magnetic phase resembling a topological knot that exists both as an excitation

and in stable, lattice-like structures and is shown in Fig. 1.5. These structures have

potential uses in several different fields, e.g., spintronics. The relation between heli-

magnetism and skyrmions is specifically important in MnSi which exhibits a phase of
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(a) (b)

Figure 1.5: Models of magnetic skyrmions in the (a) Néel-type and (b) Bloch-type
configurations.

stable skyrmion lattices [3].

1.4 MnSi

1.4.1 Experimental observations of MnSi

The material MnSi has been highlighted here due to its general importance to this

class of materials. The helical phase was among the first observed in B20 crystals [2].

Likewise, the experimental discovery of a skyrmion phase was among the first [3]. An

example phase diagram of MnSi, displaying both of these phases, is shown in Fig. 1.6.

Of particular concern in this thesis is the helical phase of MnSi. This phase was

determined to exist at low temperatures and is incommensurate to the lattice with

a wavevector k = 0.035Å
−1〈1, 1, 1〉, which corresponds to a wavelength of λ ≈ 39.38

in units of lattice vectors. Since this helix is oriented along a 〈111〉 direction it is

pertinent to measure the wavelength in units of unit cell diagonals. In these units

the wavelength λ ≈ 39.38√
3
≈ 22.74. The orientation of the helix is organized such that

the two unique layers along a 〈111〉 direction are ferromagnetic within each layer with

a phase shift between layers. The angle between a given layer and the similar layer

along one full 〈111〉 vector is θ ≈ 0.276 rad.

Interest in this helical phase has persisted and, in contemporary studies, novel

phenomena have been discovered. Specifically, the helical phase was shown to have

a measurable shift in the phase between the two unique layers [28]. That is, if one

considers the equation for magnetic moments in a helical structure
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Figure 1.6: The magnetic phase diagram for MnSi displaying helical ordering at low
T and applied field B. The skyrmion phase is represented as the A-phase in this
diagram. The listed fields are the usual critical fields Bc1 and Bc2, as well as the
transition to the A-phase Ba1 and Ba2. From Mühlbauer, S, et al. [3]. Reprinted with
permission from AAAS.

S(r) = x1 cos (k · r + Φ) + x2 sin (k · r + Φ) (1.9)

then the phase of positions associated with layer 2 will differ by some amount, φ, from

the value given by this equation. This can also be interpreted as two separate overlap-

ping helices with a phase shift, φ. The phase shift can be calculated as the difference

between the “expected” angle between the two layers in one unit cell (inferred from

the wavevector and the distance between layers), αexp, and that which is observed in

experiment, αobs. In MnSi, αexp ≈ 0.483θ ≈ 0.133 rad and the phase shift was mea-

sured to be φ = αobs − αexp ≈ 2◦ ≈ 0.035 rad. This feature is particularly interesting

as studies of other crystals of this type have not revealed similar behaviour [29].
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(a)

(b)

(c)

Figure 1.7: A representation of the phase shift in MnSi. (a) A three-dimensional
representation of the MnSi crystal lattice with 3 layers highlighted: 2 similar layers at
a distance of one cubic diagonal of the unit cell (Layers 1 and 3) and the layer in the
same unit cell as the layer above it (Layer 2). (b) The expected relative orientation of
the three ferromagnetic layers denoted with dashed arrows. (c) The actual orientation
of the three ferromagnetic layers denoted with solid arrows. Modified from [28].
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(a) (b)

Figure 1.8: Definitions of the angle parameters (a) α and (b) φ using the example from
Fig. 1.7. Here, the term expected refers to the orientation of the magnetic moments
inferred from the measured wavevector and distance between layers.

1.4.2 Other studies of MnSi

The interesting properties and contemporary enthusiasm in MnSi have also attracted

a large number of other experimental and analytical studies of the system. I will take

advantage of these results as a means to test both the model produced here and the

analyses of said model. One such result from Grigoriev et al. surmises that the hand-

edness of the helical phase of MnSi and MnSi-like crystals is dependent on the chirality

of the lattice itself, allowing for both left and right-handed structures [30]. Further,

a known result is that the formation and direction of the helical wavevector are de-

pendent on the sign and magnitude of anisotropic exchange interactions [18]. From

these results, one may determine appropriate coupling strengths for the anisotropies

A2 and A4 such that the desired structure is produced.

Analysis of specific note is the results of Chizhikov and Dmitrienko using a mi-

croscopic model including the usual Heisenberg, DMI, and Zeeman interactions, and

their associated parameters, as discussed in Section 1.2 [31]. Explicitly, the model

used is
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E =
1

2

∑
i

∑
j

(−Jsi · sj + Dij · [si × sj])

− gµB
∑
i

H · si.
(1.10)

In this study, they analyzed the lowest energy states of the model and the associ-

ated structures. Multiple relationships regarding wavevector direction and magnitude,

canting, and the anomalous phase φ are reported. These analyses will form a basis

with which I will compare the model produced here, with each result presented at the

appropriate time.



Chapter 2

The Microscopic Model

To better understand the phenomena, both novel and familiar, present in MnSi and

MnSi-type crystals I will construct a microscopic model using as few assumptions as

necessary. The intention is to construct a completely general model that will capture

all phenomenological features of these crystals. The model will contain only NN

exchange interactions as the second and third nearest neighbours are at a distance ∼
50% larger than the first. However, the model could be easily extended to neighbours

of any order, or to include weaker, long-range interactions.

2.1 Construction through symmetry

To build the most general model possible only symmetry considerations will be used

to generate the terms. Similar work has been done considering spin density mod-

els [32], but I will be constructing a microscopic model with these features. Within

a unit cell, there are 108 possible two-term nearest neighbour exchange interactions,

corresponding to the 4 ions, each with a coordination number of 6, and the 3 spa-

tial components. The total energy of these interactions must be invariant within the

symmetry of the lattice.
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Number ITA Seitz

(1) 1 {1 | 0}
(2) 2(0, 0, 1/2)1/4, 0, z {2001 | 1/2 0 1/2}
(3) 2(0, 1/2, 0)0, y, 1/4 {2010 | 0 1/2 1/2}
(4) 2(1/2, 0, 0)x, 1/4, 0 {2100 | 1/2 1/2 0}
(5) 3−x, x, x {3−111 | 0}
(6) 3−(−1/3, 1/3, 1/3)x+ 1/6,−x+ 1/6,−x {3−

1̄1̄1
| 0 1/2 1/2}

(7) 3−(1/3, 1/3,−1/3)− x+ 1/3,−x+ 1/6, x {3−
1̄11̄
| 1/2 1/2 0}

(8) 3−(1/3,−1/3, 1/3)− x− 1/6, x+ 1/3,−x {3−
11̄1̄
| 1/2 0 1/2}

(9) 3+x, x, x {3+
111 | 0}

(10) 3+ − x+ 1/2, x,−x {3+
1̄11̄
| 1/2 1/2 0}

(11) 3+x+ 1/2,−x− 1/2,−x {3−
11̄1̄
| 1/2 0 1/2}

(12) 3+ − x,−x+ 1/2, x {3−
1̄1̄1
| 0 1/2 1/2}

Table 2.1: The 12 point group symmetries of space group P213, including screw axes,
along with their notation in both ITA and Seitz. These symmetries include both
rotations and screw axes of different order and chirality: 2-fold axes (2 − 4), right-
handed 3-fold axes (5− 8), and left-handed 3-fold axes (9− 12).

P213 contains 12 point group symmetries as denoted in Table 2.1. These symmetry

operations are applied to bilinear terms in the interaction, for example

{3−111 | 0}Sx1Sx2 = Sy1S
y
4 . (2.1)

A guide of the complete list of transformations for each magnetic moment is given in

Table 2.2. Therefore, the 108 possible terms will be organized into 9 invariants of 12

symmetrically equivalent terms.

One may note that, since some nearest neighbours inhabit other unit cells, some

terms involve sites located in different unit cells. Further, as each ion has two nearest

neighbours located in the same sublattice, it is necessary to differentiate which ions

are being discussed. For this purpose, the notation used throughout is

Sκaijl (2.2)

where a refers to the sublattice, ijl represent the lattice translation from the unit
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cell being considered, n + {i, j, l}, and κ represents the component of the magnetic

moment. For example,

Sx101̄1
(2.3)

would represent the x component of the magnetic moment in sublattice 1 and the

unit cell located at n + {0,−1, 1}.

For simplicity, all 9 terms are generated from a bilinear term of the form Sκ1
1000

Sκ2
201̄0

with κ1, κ2 ∈ {x, y, z}. The first of these combinations, corresponding to κ1 = κ2 = x,

is

H1 =
∑
n

[
Sx1000

Sx201̄0
+ Sx1000

Sx201̄1̄
+ Sx3000

Sx41̄01̄
+ Sx3000

Sx4000

+Sy1000
Sy4001̄

+ Sy1000
Sy41̄01̄

+ Sy201̄0
Sy31̄1̄0

+ Sy21̄1̄0
Sy31̄1̄0

+Sz1000
Sz31̄00

+ Sz1000
Sz31̄1̄0

+ Sz201̄1̄
Sz4001̄

+ Sz201̄1̄
Sz401̄1̄

] (2.4)

where the sum is over all unit cells n = {nx, ny, nz}. The other 8 combinations are

H2 =
∑
n

[
Sy1000

Sy201̄0
+ Sy1000

Sy201̄1̄
+ Sy31̄00

Sy41̄01̄
+ Sy31̄01̄

Sy41̄01̄

+Sz1000
Sz4001̄

+ Sz1000
Sz41̄01̄

+ Sz201̄0
Sz31̄1̄0

+ Sz21̄1̄0
Sz31̄1̄0

+Sx1000
Sx31̄00

+ Sx1000
Sx31̄1̄0

+ Sx201̄1̄
Sx4001̄

+ Sx201̄1̄
Sx401̄1̄

] (2.5)

H3 =
∑
n

[
Sz1000

Sz201̄0
+ Sz1000

Sz201̄1̄
+ Sz31̄00

Sz41̄01̄
+ Sz31̄01̄

Sz41̄01̄

+Sx1000
Sx4001̄

+ Sx1000
Sx41̄01̄

+ Sx201̄0
Sx31̄1̄0

+ Sx21̄1̄0
Sx31̄1̄0

+Sy1000
Sy31̄00

+ Sy1000
Sy31̄1̄0

+ Sy201̄1̄
Sy4001̄

+ Sy201̄1̄
Sy401̄1̄

] (2.6)
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H4 =
∑
n

[
Sx1000

Sy201̄0
+ Sy1000

Sx201̄1̄
− Sx31̄00

Sy41̄01̄
− Sy31̄01̄

Sx41̄01̄

+Sy1000
Sz4001̄

+ Sz1000
Sy41̄01̄

− Sy201̄0
Sz31̄1̄0

− Sz21̄1̄0
Sy31̄1̄0

+Sz1000
Sx31̄00

+ Sx1000
Sz31̄1̄0

− Sz201̄1̄
Sx4001̄

− Sx201̄1̄
Sz401̄1̄

] (2.7)

H5 =
∑
n

[
Sy1000

Sx201̄0
+ Sx1000

Sy201̄1̄
− Sy31̄00

Sx41̄01̄
− Sx31̄01̄

Sy41̄01̄

+Sz1000
Sy4001̄

+ Sy1000
Sz41̄01̄

− Sz201̄0
Sy31̄1̄0

− Sy21̄1̄0
Sz31̄1̄0

+Sx1000
Sz31̄00

+ Sz1000
Sx31̄1̄0

− Sx201̄1̄
Sz4001̄

− Sz201̄1̄
Sx401̄1̄

] (2.8)

H6 =
∑
n

[
Sy1000

Sz201̄0
− Sz1000

Sy201̄1̄
− Sy31̄00

Sz41̄01̄
+ Sz31̄01̄

Sy41̄01̄

+Sz1000
Sx4001̄

− Sx1000
Sz41̄01̄

− Sz201̄0
Sx31̄1̄0

+ Sx21̄1̄0
Sz31̄1̄0

+Sx1000
Sy31̄00

− Sy1000
Sx31̄1̄0

− Sx201̄1̄
Sy4001̄

+ Sy201̄1̄
Sx401̄1̄

] (2.9)

H7 =
∑
n

[
Sz1000

Sy201̄0
− Sy1000

Sz201̄1̄
− Sz31̄00

Sy41̄01̄
+ Sy31̄01̄

Sz41̄01̄

+Sx1000
Sz4001̄

− Sz1000
Sx41̄01̄

− Sx201̄0
Sz31̄1̄0

+ Sz21̄1̄0
Sx31̄1̄0

+Sy1000
Sx31̄00

− Sx1000
Sy31̄1̄0

− Sy201̄1̄
Sx4001̄

+ Sx201̄1̄
Sy401̄1̄

] (2.10)

H8 =
∑
n

[
Sz1000

Sx201̄0
− Sx1000

Sz201̄1̄
+ Sz31̄00

Sx41̄01̄
− Sx31̄01̄

Sz41̄01̄

+Sx1000
Sy4001̄

− Sy1000
Sx41̄01̄

+ Sx201̄0
Sy31̄1̄0

− Sy21̄1̄0
Sx31̄1̄0

+Sy1000
Sz31̄00

− Sz1000
Sy31̄1̄0

+ Sy201̄1̄
Sz4001̄

− Sz201̄1̄
Sy401̄1̄

] (2.11)
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H9 =
∑
n

[
Sx1000

Sz201̄0
− Sz1000

Sx201̄1̄
+ Sx31̄00

Sz41̄01̄
− Sz31̄01̄

Sx41̄01̄

+Sy1000
Sx4001̄

− Sx1000
Sy41̄01̄

+ Sy201̄0
Sx31̄1̄0

− Sx21̄1̄0
Sy31̄1̄0

+Sz1000
Sy31̄00

− Sy1000
Sz31̄1̄0

+ Sz201̄1̄
Sy4001̄

− Sy201̄1̄
Sz401̄1̄

] (2.12)

It will prove useful to combine non-colinear terms of the same components into

symmetric and antisymmetric terms. These, in combination with the same-site anisotropic

terms and the Zeeman term discussed in Section 1.2, form the full, general model in

Eq. 2.13.

Hxx = H1

Hyy = H2

Hzz = H3

Hxy
s =

H4 +H5

2

Hxy
a =

H4 −H5

2

Hyz
s =

H6 +H7

2

Hyz
a =

H6 −H7

2

Hzx
s =

H8 +H9

2

Hzx
a =

H8 −H9

2

HA2 =
∑

n,i,κ1 6=κ2

Sκ1
i,nS

κ2
i,n

HA4 =
∑
n,i,κ

(Sκi,n)4

HZeeman = −
∑
i

B · Si

(2.13)

In doing so I change the notation such that each term is associated with the

components of the S1000 and S201̄0
terms from which they were generated (Eg. Hxx ∼

Sx1000
Sx201̄0

).
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The terms of this model can be separated into four groupings that will be refer-

enced throughout: the diagonal terms {Hxx, Hyy, Hzz}, the symmetric terms {Hxy
s , H

yz
s , H

zx
s },

the antisymmetric terms {Hxy
a , H

yz
a , H

zx
a }, and the anisotropic terms {HA2, HA4}. The

full hamiltonian is represented as the sum of these terms with associated coupling con-

stants

H = J xxHxx + J yyHyy + J zzHzz + J xy
s Hxy

s + J xy
a Hxy

a

+ J yz
s Hyz

s + J yz
a Hyz

a + J zx
s Hzx

s + J zx
a Hzx

a

+ JA2HA2 + JA4HA4 +HZeeman

(2.14)

This general model is complete up to the determination of the relative value of

the coupling constants. For the purposes of this thesis J xx = 1 is set. All other

terms are defined relative to this term, defining the energy scale used throughout. All

related measurements are therefore presented in reduced units with this scale.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Sxyz1000
Sx̄ȳz201̄0

Sx̄yz̄31̄00
Sxȳz̄4001̄

Syzx1000
S ȳz̄x4001̄

S ȳzx̄201̄0
Syz̄x̄31̄00

Szxy1000
S z̄x̄y31̄00

S z̄xȳ4001̄
Szx̄ȳ201̄0

Sxyz2000
Sx̄ȳz101̄1

Sx̄yz̄41̄11̄
Sxȳz̄301̄1̄

Syzx4000
S ȳz̄x1101̄

S ȳzx̄31̄1̄1
Syz̄x̄21̄01̄

Szxy3000
S z̄x̄y11̄10

S z̄xȳ211̄1̄
Szx̄ȳ41̄1̄0

Sxyz3000
Sx̄ȳz41̄1̄0

Sx̄yz̄11̄10
Sxȳz̄211̄1̄

Syzx2000
S ȳz̄x301̄1̄

S ȳzx̄101̄1
Syz̄x̄41̄11̄

Szxy4000
S z̄x̄y21̄01̄

S z̄xȳ1101̄
Szx̄ȳ31̄1̄1

Sxyz4000
Sx̄ȳz31̄1̄1

Sx̄yz̄21̄01̄
Sxȳz̄1101̄

Syzx3000
S ȳz̄x211̄1̄

S ȳzx̄41̄1̄0
Syz̄x̄11̄1̄0

Szxy2000
S z̄x̄y41̄11̄

S z̄xȳ301̄1̄
Szx̄ȳ101̄1

Table 2.2: A guide of the transformation of each ion under the symmetries of space
group P213 as described in Table 2.1.

2.2 Relationship to other models

The described model appears distinct from all previous models. However, the details

of previous models are embedded within these terms. Detailing these relations will

elucidate the function of each term and groupings of terms. It is sufficient to make

a comparison to the basic, underlying models described in Section 1.2 since these

interactions serve as a throughline between models.
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First consider the diagonal terms Hxx, Hyy, and Hzz. These terms are composed

of only colinear components of each magnetic moment. If one ignores the coupling

constants, the sum of these terms will contain the inner product of every pair of

nearest neighbours. However, since each term in this product is associated with a

different coupling constant, the sum is of the form

J xxHxx + J yyHyy + J zzHzz =∑
n

J xxSx1000
Sx201̄0

+ J yySy1000
Sy201̄0

+ J zzSz1000
Sz201̄0

+ (similar terms) (2.15)

where S1000 and S201̄0
are chosen as an illustrative example. It is clear that if one

enforces that J xx = J yy = J zz = J that the sum Hxx +Hyy +Hzz reduces to the

familiar Heisenberg interaction in Eq. 1.4.

The DMI described in Eq. 1.5 requires an outer-product-like combination of terms.

Considering the antisymmetric terms – Hxy
a , Hyz

a , and Hzx
a – one can show that the

subtraction of cycled terms provides this structure. Once again summing these terms

with the associated coupling constants one arrives at

J xy
a Hxy

a + J yz
a Hyz

a + J zx
a Hzx

a =∑
n

J xy
a

(
Sx1000

Sy201̄0
− Sy1000

Sx201̄0

)
+ J yz

a

(
Sy1000

Sz201̄0
− Sz1000

Sy201̄0

)
+ J zx

a

(
Sz1000

Sx201̄0
− Sx1000

Sz201̄0

)
+ (similar terms)

=
∑
n

J xy
a

(
Sx1000

× Sy201̄0

)
z

+ J yz
a

(
Sx1000

× Sy201̄0

)
x

+ J zx
a

(
Sx1000

× Sy201̄0

)
y

+ (similar terms)

=
∑
n

{J yz
a ,J zx

a ,J xy
a } ·

(
Sx1000

× Sy201̄0

)
+ (similar terms)

(2.16)

Therefore, the vector-like quantity {J yz
a ,J zx

a ,J xy
a } corresponds to the coupling

vector Dij. It is known that these vectors will differ for any pair of nearest neighbours
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and that they must be related through the symmetry of the lattice. Therefore, the

form of this vector for all terms is constant to within cyclic permutations and parity.

For example, one can show that for nearest neighbour pair S1000 and S31̄1̄0
the vector

is D100031̄1̄0
= {J zx

a ,−J xy
a ,J yz

a }.

If it is assumed that this vector is oriented along one of the 〈111〉 directions, these

terms are equal in magnitude D = |J xy
a | = |J yz

a | = |J zx
a |. Eq. 2.16 then reduces

to a simplified form of DMI sometimes used in the analysis of helical structures

HDMI =
∑
ij

±DSi × Sj. (2.17)

One may note that the DMI (like the Heisenberg interaction) may include interac-

tions over greater distances than NN. The interactions presented here are truncated

to NN interactions only. Therefore, the antisymmetric terms correspond with DMI

only up to NN.

Apropos of the remaining terms: The anisotropy represents physical effects not

modelled by exchange interactions. It is otherwise noteworthy that the symmetric

terms Hxy
s , Hyz

s , and Hzx
s are not included in any of the above definitions. These in-

teractions, which are allowed by the symmetry of the lattice, have not been considered

previously.

Attempting to reduce the symmetric terms as done for the diagonal and antisym-

metric terms is non-trivial. This term is not a standard product of vectors but may be

represented as a vector product akin to the outer product utilizing addition in place

of subtraction. In matrix form this is

v �w =


0 vz vy

vz 0 vx

vy vx 0




wx

wy

wz

 =


vzwy + vywz

vzwx + vxwz

vywx + vxwy

 (2.18)

where � symbolizes a product that defines the symmetric terms. These terms have

no direct analogue but are included here since they conform with the symmetry of

the lattice.
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This model may be compared to the majority of other models through the rela-

tions described here. Numerical and analytic studies of MnSi using microscopic models

are generally constructed of these terms, with the exception of differing anisotropic

terms [16, 31]. Likewise, continuous, spin density models typically use terms repre-

senting the same physical phenomena [13].

This model differs from these in three major facets: the inclusion of the symmetric

terms, the allowance for the Heisenberg interactions to be separated among multiple

constants, and the explicit restriction of the DM vector into three terms that obey

the lattice symmetry.

2.3 Magnetic order parameters

2.3.1 Representations of a space group

In group-theoretical language, a matrix representation of a group is a group of square

matrices that is homomorphic to that group. Irreducible representations (IRs) are the

set of matrix representations that can not be subdivided into blocks of lower-order

matrix representations.

In a space group, the symmetries of the group can be divided into the subgroups of

translational symmetries and the point group. In general, the number of translational

symmetries of a space group corresponds to the number of lattice sites, or equivalently,

the number of points in the Brillouin zone. These translations are commutative which

will allow for the same number of one-dimensional IRs of the form exp(ik · Rn) for

lattice translations Rn. Therefore, the non-equivalent wavevectors k = 2π
N
{gx, gy, gz}

(for gi ∈ [0, Ni], where Ni is the number of unit cells in a given direction and N =

NxNyNz) of the Brillouin zone enumerate the representations.

Each wavevector will define some finite subgroup of the point group containing only

transformations that leave k invariant. This subgroup is commonly called the Little

group of k. Therefore, the IRs of a space group with a wavevector k are associated

with the IRs of the Little group of k.
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2.3.2 Magnetic order parameters

An order parameter (OP) is some quantity that can be measured to be zero in one

phase and non-zero in another, such as the appearance of magnetization in the transi-

tion from paramagnetism to ferromagnetism. In other words, an OP may be used to

determine the phase of a system, as well as any phase transitions. The change in OP

can be either discontinuous, as seen in a first-order phase transition, or continuous,

as seen in a second-order transition.

It is often the case that a phase transition will be associated with a broken sym-

metry. In helical magnets, translational symmetries are lost, and possibly inversion

symmetry (in systems with inversion symmetries) or rotational symmetries. In a

symmetry-breaking phase transition the distinguishing OP must belong to one of the

IRs of the underlying space group.

In general, we can construct magnetic OPs associated with a given wavevector

through Fourier transforms of the magnetic moments of the system. The order param-

eters are defined by the complex-valued vectors, Sik , produced by these transforms.

The Fourier transform is defined as

Sκik =
1

N
1
2

∑
n

exp (−ik · rn)Sκin (2.19)

where rn = an is the real space vector to the corner of the unit cell n, and k is a

wavevector belonging to the Brillouin zone. The inverse Fourier transform is given by

Sκin =
1

N
1
2

∑
n

exp (ik · rn)Sκik (2.20)

2.3.3 k = 0 example

As an example, consider a magnetic phase with k = 0: a structure with infinite wave-

length, i.e., invariant under translations. With a k=0 OP, no crystal lattice translation

symmetries are broken; the Little group is simply the point group associated with the

space group. For P213 the point group is T . The character table for this point group

is shown in Table 2.3.
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T

IR

Class
E 4C3 4C ′3 3C2

A 1 1 1 1

E
1 ε ε2 1

1 ε2 ε 1

T 3 0 0 −1

Sk=0 12 0 0 0 A
⊕

E
⊕

3T =

A
⊕

E+

⊕
E−
⊕

3T

Table 2.3: The character table of the crystallographic point group T . E may be
reduced into 2 one-dimensional IRs E = E+

⊕
E− with opposing chirality. The rep-

resentation of the 4a Wyckoff position magnetic moments is given with its reduction
to the IRs.

The representation of the magnetic moments of Wyckoff position 4a is a twelve-

dimensional space – four magnetic moments with three spatial components. One can

see from the transformations in Table 2.1 that the components form a basis for a

(reducible) representation of the group T , A
⊕

E+

⊕
E−
⊕

3T . This corresponds

to 3 one-dimensional (A, E+, and E−) and 3 three-dimensional (3T ) magnetic order

parameters. The explicit form of the bases for the representations are
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FA =
√

3
−1∑

n

(
Sx1n + Sy1n + Sz1n − S

x
2n − S

y
2n + Sz2n

−Sx3n + Sy3n − S
z
3n + Sx4n − S

y
4n − S

z
4n

)
FE+ =

√
2

3

∑
n

(
ε2
[
−Sx1n + Sx2n + Sx3n − S

x
4n

]
+ ε
[
−Sy1n + Sy2n

−Sy3n + Sy4n
]

+
[
−Sz1n − S

z
2n + Sz3n + Sz4n

])
FE− =

√
2

3

∑
n

(
ε
[
−Sx1n + Sx2n + Sx3n − S

x
4n

]
+ ε2

[
−Sy1n + Sy2n

−Sy3n + Sy4n
]

+
[
−Sz1n − S

z
2n + Sz3n + Sz4n

])
F
T

(1)
x

=
√

3
−1∑

n

(
Sx1n + Sy1n + Sz1n + Sx2n + Sy2n − S

z
2n

+Sx3n − S
y
3n + Sz3n + Sx4n − S

y
4n − S

z
4n

)
F
T

(1)
y

=
√

3
−1∑

n

(
Sx1n + Sy1n + Sz1n + Sx2n + Sy2n − S

z
2n

−Sx3n + Sy3n − S
z
3n − S

x
4n + Sy4n + Sz4n

)
F
T

(1)
z

=
√

3
−1∑

n

(
Sx1n + Sy1n + Sz1n − S

x
2n − S

y
2n + Sz2n

+Sx3n − S
y
3n + Sz3n − S

x
4n + Sy4n + Sz4n

)
F
T

(2)
x

=
√

6
−1∑

n

(
Sx1n − 2Sy1n + Sz1n + Sx2n − 2Sy2n − S

z
2n

+Sx3n + 2Sy3n + Sz3n + Sx4n + 2Sy4n − S
z
4n

)
F
T

(2)
y

=
√

6
−1∑

n

(
−2Sx1n + Sy1n + Sz1n − 2Sx2n + Sy2n − S

z
2n

+2Sx3n + Sy3n − S
z
3n + 2Sx4n + Sy4n + Sz4n

)
F
T

(2)
z

=
√

6
−1∑

n

(
Sx1n + Sy1n − 2Sz1n − S

x
2n − S

y
2n − 2Sz2n

+Sx3n − S
y
3n − 2Sz3n − S

x
4n + Sy4n − 2Sz4n

)
F
T

(3)
x

=
√

2
−1∑

n

(
Sx1n − S

z
1n + Sx2n + Sz2n + Sx3n − S

z
3n + Sx4n + Sz4n

)
F
T

(3)
y

=
√

2
−1∑

n

(
−Sy1n + Sz1n − S

y
2n − S

z
2n − S

y
3n − S

z
3n − S

y
4n + Sz4n

)
F
T

(3)
z

=
√

2
−1∑

n

(
−Sx1n + Sy1n + Sx2n − S

y
2n − S

x
3n − S

y
3n + Sx4n + Sy4n

)

(2.21)
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where, in this case, the Fourier transform does not introduce an exponential factor as

exp (±ik · n) = 1 when k = 0. In general, these terms would carry this exponential

term related to the Fourier transform.

For example, a k = 0 OP is found when describing the ferromagnetic state. If,

for example, one chooses the ferromagnetic state – in which non-zero magnetization

is the usual OP – aligned along the z axis the F
T

(1)
z

and F
T

(2)
z

OPs will necessarily be

non-zero. As demonstrated, a given state may not be fully defined by all associated

non-zero OPs. Secondary order parameters may appear if they result in a symmetry

which forms a supergroup of one that is resultant of a primary order parameter.

2.3.4 k || 〈111〉 helical structure

In the helical structure the translational symmetry of the lattice is broken. The Little

group associated with this wavevector is C3 with character table given in Table 2.4.

C3 Little Group

IR

Class
E C3 C ′3

A 1 1 1

E
1 ε ε2

1 ε2 ε

Sk=[111] 12 0 0 4A
⊕

4E =

4A
⊕

4E+

⊕
4E−

Table 2.4: The character table of the Little group C3. The representation of the 4a
Wyckoff position magnetic moments is given with its reduction to the IRs.

The same process obtains that the magnetic moments belong to the direct sum of

IRs 4A
⊕

4E+

⊕
4E−. In this case, separating the E term into the constituent parts

is appropriate due to the inherent chirality of the helical structure. Therefore, there
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are 12 one-dimensional magnetic order parameters belonging to k || 〈111〉. These are

explicitly detailed in Eq. 2.22.

FA,1 = 3−1
∑
n

exp(−ik · n)
(
Sx1n + Sy1n + Sz1n

)
FA,2 = 3−1

∑
n

exp(−ik · n)
(
Sx2n + Sz3n + Sy4n

)
FA,3 = 3−1

∑
n

exp(−ik · n)
(
Sy2n + Sx3n + Sz4n

)
FA,4 = 3−1

∑
n

exp(−ik · n)
(
Sz2n + Sy3n + Sx4n

)
FE+,1 = 3−1

∑
n

exp(−ik · n)
(
Sx1n + εSy1n + ε2Sz1n

)
FE+,2 = 3−1

∑
n

exp(−ik · n)
(
Sx2n + εSy4n + ε2Sz3n

)
FE+,3 = 3−1

∑
n

exp(−ik · n)
(
Sy2n + εSz4n + ε2Sx3n

)
FE+,4 = 3−1

∑
n

exp(−ik · n)
(
Sz2n + εSx4n + ε2Sy3n

)
FE−,1 = 3−1

∑
n

exp(−ik · n)
(
Sx1n + ε2Sy1n + εSz1n

)
FE−,2 = 3−1

∑
n

exp(−ik · n)
(
Sx2n + ε2Sy4n + εSz3n

)
FE−,3 = 3−1

∑
n

exp(−ik · n)
(
Sy2n + ε2Sz4n + εSx3n

)
FE−,4 = 3−1

∑
n

exp(−ik · n)
(
Sz2n + ε2Sx4n + εSy3n

)

(2.22)

Using phenomenological observations, one can see that the helical state of MnSi

can be either left- or right-handed along the positive 〈111〉 axes. Therefore, the helical

state will belong to only one set of the FE+ or FE− OPs, with the FA terms as potential

secondary OPs. Furthermore, these OPs can be used to determine the structure of

the state, e.g., the way the magnetic moments are aligned relative to one another in

the lattice.

It is useful to invert these terms and represent the magnetic components as a

combination of the order parameters. In doing this Eq. 2.22 is rewritten as
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Sx1n =
∑
k

exp(ik · n)(FA,1 + FE+,1 + FE−,1)

Sy1n =
∑
k

exp(ik · n)(FA,1 + ε2FE+,1 + εFE−,1)

Sz1n =
∑
k

exp(ik · n)(FA,1 + εFE+,1 + ε2FE−,1)

Sx2n =
∑
k

exp(ik · n)(FA,2 + FE+,2 + FE−,2)

Sy2n =
∑
k

exp(ik · n)(FA,3 + FE+,3 + FE−,3)

Sz2n =
∑
k

exp(ik · n)(FA,4 + FE+,4 + FE−,4)

Sx3n =
∑
k

exp(ik · n)(FA,3 + εFE+,3 + ε2FE−,3)

Sy3n =
∑
k

exp(ik · n)(FA,4 + εFE+,4 + ε2FE−,4)

Sz3n =
∑
k

exp(ik · n)(FA,2 + εFE+,2 + ε2FE−,2)

Sx4n =
∑
k

exp(ik · n)(FA,4 + ε2FE+,4 + εFE−,4)

Sy4n =
∑
k

exp(ik · n)(FA,2 + ε2FE+,2 + εFE−,2)

Sz4n =
∑
k

exp(ik · n)(FA,3 + ε2FE+,3 + εFE−,3)

(2.23)

where the inverse Fourier transform is used.

2.4 k || 〈111〉 order parameter analysis

It is important to determine which structures are permitted under each of the order

parameters. However, to make such calculations tractable a number of structural

assumptions must be made.

The first determination to be made is that the OPs are consistent with a specific

chirality for the helical structure. The assumption is that this is a pure structure, and

therefore only one k is non-zero. For simplicity, I also assume that the specific cubic
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diagonal is [111]. Therefore, Eq. 2.23 reduces from a sum over all k to a single term

with k || [111]. Note that now the exponential becomes

exp(ik · n) = exp(ik(nx + ny + nz)) = exp(ikl) (2.24)

where k = |k| and l = nx + ny + nz is unique to each two-dimensional layer along

[111], although a single l represents both layers sharing a unit cell.

The OPs FE− and FE+ describe helical symmetries of opposite handedness. To

determine which of these OPs must be present one can set other OPs to zero and

determine the system structure consistent with each. If FE+,1 is non-zero then the

magnetic moment in position 1 will be

S1,l = exp(ikl){FE+,1, ε
2FE+,1, εFE+,1}. (2.25)

If one takes the real component of this vector

S1,l = FE+,1{cos(kl), cos(kl +
2π

3
), cos(kl − 2π

3
)} (2.26)

it can be verified that the real component of this vector will enforce a left-handed

structure along k. Therefore, it must be that FE− coincides with the right-handed

structure. From this point on, I will analyze only the right-handed structure and

assume all FE+,j = 0.

In the most general form, the magnetic moments of the four sublattices are de-

scribed by

S1,l = exp(ikl){FA,1 + FE−,1, FA,1 + ε2FE−,1, FA,1 + εFE−,1}

S2,l = exp(ikl){FA,2 + FE−,2, FA,3 + FE−,3, FA,4 + FE−,4}

S3,l = exp(ikl){FA,3 + ε2FE−,3, FA,4 + ε2FE−,4, FA,2 + ε2FE−,2}

S4,l = exp(ikl){FA,4 + εFE−,4, FA,2 + εFE−,2, FA,3 + εFE−,3}

(2.27)

These magnetic moments are always reported using only the real space component.

However, it is important to recognize that these are complex-valued vectors, with
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some magnitude aligned with the imaginary axes of the Argand plane.

In this thesis, I will discuss computational simulations using the model developed

here in Ch. 4. In these simulations, I will assume that all magnetic moments have

fixed, equal magnitude. A set of general criteria coinciding with this assumption for

any number of OPs is presented in Appendix B. As an example, it can be shown

that this condition requires that FA,1 = 0 for a pure helical structure. However,

the parameter space generated from these criteria is large. In this section, I will

present only a subset of these that are sufficient to explain structures observed in the

computational studies with the assumptions regarding each.

For a system with no applied field, the physically observed features which should

be modelled are

1. All magnetic moments lie in the plane with normal along 〈111〉.

2. Layers 1 and 2 are ferromagnetically aligned, i.e., sublattices 2, 3, and 4 are

ferromagnetically aligned in any layer, l.

3. Within a unit cell, magnetic moments in sublattice 1 are a consistent measurable

angle, α, from the other three. α should be allowed to differ, by an amount φ,

from the value obtainable using the wavevector and distance between layers 1

and 2.

Approaching these in order, one may find that if it is assumed that all FA,j = 0 then

the magnetic moments of sublattice 1 must be perpendicular to the [111] direction.

If one also chooses FE−,2−4 = FE− the magnitude will be constant for eight pairs of

relative phases. These are

φ3 = φ2 ±
nπ

3
φ4 = φ2 ∓

nπ

3
+mπ (2.28)

for n = 1, 2 and m = 0, 1. Here, φj is the phase of OP FE−,j = |FE−,j| exp(iφj).

If the case in which relative phases are equidistant (i.e., all phases differ by 2π
3

)

is chosen then all magnetic moments will necessarily be perpendicular to the [111]

direction and form a right-handed helix. Further, this choice of phases will enforce

that the magnetic moments in all layers are ferromagnetically aligned.
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If one relaxes the first and second physical properties, then a helical structure with

out-of-plane canting may be observed. In this case, all considered OPs may vary. It

is useful to choose only the values necessary to produce predictable structures. In

the case of canting, a constant FA,j = FA will allow canting along the [111] axis and

coincide with a conical structure. However, with the assumption of equidistant phases

associated with the FE−,j terms, constant non-zero values of FA,j would result in non-

constant magnitude of the magnetic moments. These are, therefore, incompatible

assumptions.

For more complex features, such as a canting of the entire plane of the helices for

a given sublattice, i.e., canting of the normal vector, one can instead choose different

relative phases of equal magnitude FE− terms. Each pair will produce canting towards

different directions, defined by a canted normal vector for each sublattice Ci = [ABC],

as tabulated in Table 2.5. It is apparent in this that the canting of this kind in each

sublattice should vary in direction. A graphical representation of an example canted

normal vector can be viewed in Fig. 2.1. If the assumption that there is a constant

magnitude FE− is removed, canting of this form in any direction is possible and is

controlled by the ratio of these magnitudes. Further, this form of canting matches

with that found in other analytic results referred to in Section 1.4.2.

Note that under the assumptions presented here, a significant canting can not

be produced in S1. Significant canting of this sublattice would only be provoked

through non-zero FA,1, which is not allowed by the assumption of constant magnitude.

Therefore, we should expect no canting in this sublattice.

φ3 − φ2 φ4 − φ2 C2 = [ABC] C3 = [BCA] C4 = [CAB]

±2π
3

∓2π
3

[111] [111] [111]

±π
3

∓π
3

[1̄11] [111̄] [11̄1]

±π
3

±2π
3

[11̄1] [1̄11] [111̄]

±2π
3

±π
3

[111̄] [11̄1] [1̄11]

Table 2.5: The direction of allowable canting for all phase choices of the FE−,j OPs
with the equal magnitude assumption. Canted normal vectors are equivalent to their
vector inverses. A canted normal vector of [111] or [1̄1̄1̄] indicates no canting. All
choices cant each ion toward a different cubic diagonal.
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Finally, the presence of a non-zero phase shift, φ, as defined in Fig. 1.8, is nec-

essarily allowed under any of these structures through an additive phase to the OPs

which construct the magnetic moments of layer 2.

(a) (b)

Figure 2.1: The helical plane in relation to [111] with (a) no canting and (b) canted
normal vector Ci.

This analysis confirms that all desired features of the final magnetic state are

achievable under the assumptions that k || [111] and constant magnetic moment mag-

nitude. Further, these properties are relatively easy to determine from the measured

order parameters – as defined in Eq. 2.23 – alone.



Chapter 3

Computational Methodology

3.1 Effective Field Method

The Effective Field Method (EFM) is a method for determining structures as T → 0.

EFM is used to locate local minima in classical systems with pairwise interactions [33].

The interactions described in the model are all bilinear in nature and may be modelled

through this simulation. Furthermore, this allows for other interactions such as the

Zeeman term, allowing for simulations to be performed with an externally applied

magnetic field.

EFM is an iterative algorithm. In every step, each position is chosen in a random-

ized order – reducing systematic errors arising from the ordering of the moments –

and the moment associated with each position is rotated toward their instantaneous,

effective field Hi. This field is defined by the sum of all interactions experienced by

the selected magnetic moment

Hα
i = −

∑
j,β

J α,β
i,j S β

j (3.1)

where i, j represent a pair of positions, α, β represent global coordinates, J α,β
i,j is the

coupling constant of the interaction, and S β
j is one of the other interactants with

which the magnetic moment interacts, e.g., another magnetic moment or a field. This

defines the energy of a given magnetic moment as
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Ei = −Si ·Hi. (3.2)

It is evident that the outlined process will always reduce energy. The change in

energy for each rotation directly aligning a moment with its local effective field is

∆Ei = −(1− cos θi) |Hi| (3.3)

where θi is the angle between the moment and the field. If this process is allowed

to continue until the change in energy is within the desired precision, then a local

minimum has been found.

This means that only a local minimum can be guaranteed through a single use of

this method. To help ensure that a “ground state” (i.e., global minimum) is found

one can run it a large number of times using randomized starting configurations. This

sampling of space is then filtered for a subset of configurations associated with the

minimum values.

3.1.1 EFM algorithm

The EFM algorithm is:

1. Randomly generate (or import) an initial configuration for the system, S =

{S1,S2, ...,Sn}.

2. Randomly order the elements of S

3. Select the next element, Si, of S and calculate the local effective field Hi at that

position.

4. Align Si with the local effective Hi.

Repeating steps 3−4 over the full configuration S is a single EFM step. The entire

process is repeated many times with many random starting configurations to conform

to the condition that many minima are found. In this thesis, a typical number of

initial configurations used for a single simulation is 2500. The output of an EFM

simulation is a set of magnetic moment configurations.



37

(a)

(b)

(c)

Figure 3.1: An example of the alignment of a magnetic moment (blue) with the
local effective field (red, dashed) produced by interactions with its neighbour in the
(b) Effective Field Method and (c) Progressive Effective Field Method. In (c) the
magnetic moment is rotated through half of the angle between itself and the effective
field.
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3.1.2 Progressive EFM

The method, as described, may involve large, discontinuous jumps between orienta-

tions at any step. That is, the change in orientation is discrete and, in the worst

cases, extreme. This effect could increase the probability of a configuration progress-

ing toward a local minimum (that is not the global minimum) when a rotation results

in a state space which can not reach a lower energy state with any single rotation,

but may do so with multiple rotations. An extreme example of this is presented in

Fig. 3.2. Due to this – as well as in the interest of creating a more “physical”, contin-

uous process – a moment may be rotated only a portion of the angle towards its local

effective field. In the simulations presented here, the altered process will still result

in a reduction of energy with each rotation. However, the reduced step size will allow

the simulation to avoid local minima more efficiently. In the worst case, the same

final states will be achieved with only the addition a proportional number of EFM

steps since the standard EFM algorithm is the same as multiple partial rotations in

the same direction.

The EFM code that was used in this thesis was prepared using the FORTRAN

language and is available in Appendix D.

Figure 3.2: An illustrative example of the progression of both the Effective Field
Method (orange) and the Progressive Effective Field Method (Purple) in a fictitious
energy field. In this example the system starts in the state coloured red and progresses
to a local minimum (EFM) and the global minimum (PEFM).
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3.2 Data analysis

This computational methodology was chosen with the goal of producing the magnetic

structure of the system with varying model parameters. The data collected here

will be predominantly qualitative. The major qualities of interest are the relative

orientations of the magnetic moments which will be represented as spherical angles

relative to k || [111]. These angles are γ, the out-of-plane angle to the plane with

normal vector k (or, equivalently, the angle between k and the canted normal vector

Ci), and θ, the azimuthal angle relative to [1̄10]. A graphical representation of these

angles is presented in Fig. 3.3. All magnetic moments are normalized to 1 and varying

magnitude will not be considered. Therefore, all measurements concerning relative

orientations will be derived from these angles or combinations thereof.

Figure 3.3: The spherical angles, γ and θ, with respect to zenith [111]. γ represents
the out-of-plane angle of the magnetic moment and is equivalent to the altitude angle.
θ represents the azimuthal angle relative to planar vector [1̄10].



40

The angle γ itself will be presented using combinations of two forms: combining

two-dimensional layers to a single, average magnetic moment and combining sublat-

tices to a single, average magnetic moment. These combinations will be utilized to

derive all presented quantities.

Among the values that are derived from these is the wavevector magnitude |k|.
The wavevector magnitude is measured in this way due to the finite system size. For

all lattice sizes that require a reasonable amount of computing time the Brillouin

zone of the lattice is coarse, with |k| being restricted to large areas of the zone. Long-

wavelength features, as helical structures tend to be, have wavevectors that may be

indistinguishable from k = 0 when using discrete Fourier transforms to determine |k|.

The data collected here will be directional, i.e., made of angles θ ∈ [0, 2π). One

may note that, in the case that the averaged measurements occur over the branch cut,

0 = 2π, the mean and variance measurements will need to account for this disconti-

nuity. For this, I employ directional statistics. The processes derived in directional

statistics and used for data analysis measurements are fully presented in Appendix C.

3.2.1 Combining minima

The EFM algorithm requires that a large number of samples be generated to ensure

a minimum is found. In this process, a large amount of useful data may be discarded

or used independently of other samples. To produce more accurate data a sample of

1−2% of the most extreme minima produced from the EFM procedure will be pooled

for appropriate measurements.

All data analysis is performed using Python code available in Appendix E.



Chapter 4

Computational Results

The results of the computational studies of this model will be presented in three

parts: First, the reduced model with coupling D and J discussed in Section 2.2 will

be explored. Following this will be the examination of simulations in which each

model coupling constant is varied individually about a selected helical state with

DMI strength D = 0.50. Finally, a short discussion of the reaction of the system to

an applied field will be provided.

All tests will be conducted without periodic boundary conditions (to allow for the

incommensurate structure) using a 23×23×23 lattice. This lattice size is chosen as it

is large enough to contain one helical wavelength with the wavevector k = 0.035Å
−1

observed experimentally. This is analogous to a thin film and will allow for measurable

edge effects.

4.1 Varying the Dzyaloshinskii-Moriya interaction

strength D

As a test of the model, and to select a benchmark state for other tests, the reduction

of the model to simple Heisenberg and DM-like terms, as discussed in Section 2.2, is

considered. For this, the value of J = 1 is chosen for all diagonal, Heisenberg-like

terms. The strength of the antisymmetric, DM-like terms will be set to constant

D and varied relative to J . All off-diagonal symmetric terms are assumed to be

vanishing and the anisotropy coupling constants are set at the relatively large values
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of JA2 = −0.50 and JA4 = 0.50, which will strongly favour the k || [111] direction.

4.1.1 Dij direction

First, it is important to report the effect of varying the direction of the Dij vectors.

All instances of this vector reported will be in reference to the D1000201̄0
vector unless

otherwise noted. As previously mentioned, other choices of i and j must represent

different vectors which are symmetric in the lattice.

In studies of two-dimensional microscopic systems with DMI, it was noted that

the orientation of the DMI vectors can have large effects on the overall structure

of the system [34]. Specifically, they report different triangular lattices that can be

compared to the two-dimensional layers here. The resultant structures produced by

aligning the Dij vector along different cubic diagonals in the currently considered,

three-dimensional system are tabulated in Table 4.1.

Dij || Structure

[111] Right-handed helix

[1̄11] Left-handed helix

[11̄1] Ferromagnetic

[111̄] Right-handed helix

Table 4.1: The magnetic structure of the lattice for differing Dij directions. Antipar-
allel Dij vectors are associated with opposite handedness structures. That is, Dij is
an odd function of k, Dij(k) = −Dij(−k). For example, Dij || [111] and Dij || [1̄1̄1̄]
represent right and left-handed helical structures, respectively.

The expected result of this test is interpreted from the relation

k =
2(Dz − 2Dx −Dy)

3J
(4.1)

from Chizhikov et al [31]. Dx, Dy, and Dz represent the components of Dij. I note

that the relationship is written differently in the source. That is due to the choice

of Dij varying from the one chosen here. These choices are symmetrically equivalent
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within the lattice, with the C−3 transformation relating the two. I have applied that

transformation here.

In this analysis, I am assuming that all components of the Dij vector are of the

same magnitude, and therefore only differ in sign. Clearly, if ±Dx = ∓Dy = ±Dz,

the relationship predicts a k = 0 wavevector. In all other cases, the sign of Dx will

match the sign of k. It is also apparent that, if this relationship holds, inverting the

vector will simply invert the sign of k. From these results, I conjecture that differing

Dij directions correspond to superpositions of helical structures, as reported in the

two-dimensional case. This corresponds to a mixing of FE− and FE+ order parameters.

It is important to note that the DMI vectors need not be oriented along the cubic

diagonals. For example, previous results show that the DMI vectors in MnSi are

oriented along the bond directions and not the cubic diagonals [35], e.g.,

Dij || {
1

2
− 2x, 1− 2x,

1

2
}. (4.2)

This difference would correlate to a variation in the value of the antisymmetric cou-

pling constants, as is explored in Section 4.2. For simplicity, I choose the direction

Dij || [111] (right-handed helix) for all future simulations. With this assumption, the

expected result reduces to a linear form

|k| = 4D

3
(4.3)

with J = 1 enforced.

4.1.2 Wavevector magnitude |k|

The wavevector is a measure of both the direction and the periodicity of the helical

structure. I am assuming that all wavevectors are aligned such that k || [111] and

their magnitude is derived from the periodicity of the lattice as

|k| = 1

λ̄
=

θ̄

2π
(4.4)

where θ̄ is the average angle change between equivalent lattice positions in unit cells
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located at n and n+{1, 1, 1}. Therefore, all values are measured in the units of inverse

unit cell diagonals. The wavevector does not vary between layers or sublattices and,

therefore, only one is reported.

Measurements of this kind for the three-dimensional system are displayed in Fig. 4.1.

In this figure, D and k are both represented by absolute values as changing the sign

of D corresponds with an equivalent sign change of k. In fact, I have observed that a

sign change of D corresponds with an equivalent structure of opposite handedness in

all measured quantities. Hereafter all values of D will be positive.

Figure 4.1: Average wavevector magnitude as a function of D. The system behaviour
varies in regions. In the region D < 0.6 a linear fit is denoted (red; dashed). The
region D > 0.6 is fit to (a) a logarithmic function (blue; dot-dashed). (b) two power-
law fits (orange, brown; dot-dashed). Error bars are within the size of the markers.

It is clear that the linear relationship predicted in Eq. 4.3 does not hold for large

values of D. Alternatively, it was reported in the two-dimensional numerical study

that |k| behaved differently in distinct domains of D. This behaviour matches the

presented results, with two distinct regions: linear and sub-linear growth. It was

assumed in two-dimensions that these regions fit distinct power laws of the form

|k| ∝ Dβ. (4.5)

with β = 1 for D < 0.3, β ≈ 0.8 for 0.3 < D < 1.0, and β → 0 for D > 1.5. It is

apparent that a linear relationship remains in the three-dimensional system for the

approximate range D < 0.6. Further, the results from simulations above this value

could correspond to a decaying fitting parameter β: β ≈ 0.73 for 0.6 < D < 1.3 and

β ≈ 0.35 for D > 1.3. These boundaries are chosen arbitrarily from observation of the
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data. However, a decaying fitting parameter β may also be reasonably approximated

by a logarithm. If one assumes that the relationship between wavevector magnitude

and DMI strength follows a logarithmic scaling they may use a fit of the form

|k| = A+B log (D) (4.6)

where A and B are the fitting parameters. In this case, for all values D > 0.6, a

reasonable fit is found to be A ≈ 0.13, B ≈ 0.08. All fits discussed here can be viewed

in the appropriate log-log or semi-log plot in Fig. 4.2.

(a)

(b)

(c)

Figure 4.2: Plots of the wavevector magnitude in region (a) 0 < D < 0.6 on a log-log
scale with a linear fit; (b) 0.5 < D < 2.0 on a log-log scale with two power law fits
corresponding with β = 0.73 (orange; dot-dashed) and β = 0.35 (brown; dashed); (c)
0.5 < D < 2.0 on a log-linear scale with logarithmic fit 0.13 + 0.08 log(D).
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4.1.3 Anomalous phase φ

The anomalous phase, as defined in Section 1.4, exhibits similar behaviour as ob-

served with |k|. The angle exhibits distinct domains of variation which goes from

approximately linear in D < 0.6 to sub-linear for D > 0.6. This is displayed in

Fig. 4.3.

Figure 4.3: Anomalous phase φ as a function of D. Similar to Fig. 4.1, the system
varies in regions. In the region D < 0.6, a linear fit is denoted with the red line. The
region D > 0.6 is fit to (a) a logarithmic fit (blue; dot-dashed); (b) two power-law fits
(orange, brown; dot-dashed). Unseen error bars are within the size of the markers.

As observed in |k|, the dependence of the value on D decays for large values. A

linear, logarithmic, and power fits are reported in Fig. 4.4. The reported logarithmic

fit, 0.49 + 0.36 log (D), appears to more closely approximate this parameter than the

wavevector. Considering the power-law fit, the exponent β varies less between the

two regions than in the |k| case. However, the appearance of a clear variation in this

parameter in the same regions for both measurements suggests that the power-law

fit variation is appropriate. The variation seen in these parameters – both linear-to-

sublinear and within the sublinear region – indicates some change in the underlying

structure of the lattice, i.e., a phase transition. In both cases, this should be indicated

by the vanishing or appearance of one of the magnetic order parameters. Particularly,

one should expect the appearance of a pure helical structure with a specific chirality

at some value of D. Section 4.1.5 will discuss this more carefully.

The values of φ observed here are very large in comparison to those reported by

Dalmas de Réotier et al [28]. This discrepancy is confirmed by the linear relationship
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(a)

(b)

(c)

Figure 4.4: Plots of the anomalous phase magnitude in region (a) 0 < D < 0.6 on
a log-log scale with a linear fit and (b) 0.6 < D < 2.0 on a log-log scale with two
power law fits corresponding to β = 0.78 (orange; dot-dashed) and β = 0.57 (brown;
dashed); (c) 0.6 < D < 2.0 on a log-linear scale with logarithmic fit 0.49+0.36 log (D).

φ ∝ −Dy +Dz

J
= −2D (4.7)

where it is apparent that values of D ≈ J will necessarily produce large values of

φ. If this prediction is consistent, which it appears to be for all D < 0.6, then a

different choice of Dij magnitude or direction could produce appropriate φ for those

observations. Further, it is noted in the experimental source that sublattice 1 nearly

aligns with those of the second nearest plane, which is approximately observed here.

Therefore, the relatively large wavevector k describing the helix here will require φ

to be large, as well. It is also possible that the introduction of other interactions or

thermal effects could act to suppress this value. Nonetheless, these results provide an

adequate test of the effect of model terms on this feature.
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To make it easier to understand the significance of these results – and to compare

with those reported from the experimental results – Fig. 4.5 presents a projection of

the helices described by k and φ for a number of simulations.

(a)

(b)

(c)

(d)

Figure 4.5: Two-dimensional projections of the average in-plane orientation of layers
1 (black) and 2 (purple), produced from the average wavelength and φ, as viewed
from the [111] direction for (a) D = 0.50 (b) D = 1.00 (c) D = 1.50 (d) D = 2.00.
Out-of-plane canting is ignored in these depictions. The opacity of a vector represents
the layer position along the [111] axis, with darker vectors further along this direction.
The position of layer 2 predicted from the distance between layers is roughly centred
between the preceding and succeeding layer 1. The value of φ is such that it has
rotated beyond the position of the succeeding layer.

4.1.4 Out-of-plane angle γ

While considering the OPs of a helical phase it was noted that it was not necessary

that layer 2 remain in-plane, i.e., γ ≈ 0. The average measure of these angles over the

entire lattice is presented in Fig. 4.6 for both averaged sublattices (γI) and averaged

layers (γL).

In these measurements, there is a clear transition at D ≈ 0.3, smaller than changes
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in heretofore discussed parameters. Below this value, the absolute out-of-plane angle

is consistent between all sublattices and layers. Above this, sublattices 2, 3 and 4 –

i.e., those which comprise layer 2 – cant further out-of-plane as D increases. The

canting angle for these three remains roughly consistent. In this same region γ
(1)
I

appears to lessen slightly until a slow growth begins around D = 1.0. Consistency

between the three magnetic sites contained within layer 2 is seen in all measurements

and therefore only the average layer canting will be reported.

(a) (b)

Figure 4.6: The average magnitude of the out-of-plane angle γ for both (a) individual

sublattices (γ
(i)
I ) and (b) distinct layers (γ

(i)
L ). In both cases, all ions in a given layer

remain consistent. Therefore, only γL will be reported after this.

The canting observed in this phase is not consistent with a conical phase, in which

γ would be expected to remain relatively constant throughout the lattice. Instead, γ

undergoes sinusoidal variation along the [111] axis and is, therefore, better described

by a canted normal vector as discussed in Section 2.4. This can be viewed in Fig. 4.7.

The orientation of this kind of canting is predicted by

Ci ∼ || (τi). (4.8)

where the vectors τi associated with each sublattice are
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Figure 4.7: An example of the out-of-plane canting of sublattice 1 along the [111]
direction for a portion of a selected D = 0.60 simulation. Error bars are taken from
the error in the absolute value measurements. An interpolated line is included as a
guide for the eye.

τ1 = {1, 1, 1}

τ2 = {−1, 1,−1}

τ3 = {−1,−1, 1}

τ4 = {1,−1,−1}

(4.9)

and the magnitude of canting again follows the proportionality

γ ∝ Dy +Dz

J
= 2D. (4.10)

These equations predict no change or a slight decrease in canting for sublattice 1,

which is seen in these results. For layer 2, it is again apparent that the linear rela-

tionship only holds for a small D, and the relationship decays beyond this.

In such a phase, a large out-of-plane angle will correspond with both a reduction in

magnetization and an increase in error for measurements assuming no canting. These

concerns are addressed in Fig. 4.8. This figure represents the in-layer magnetization



51

calculated as

ML =
|
∑

i∈L Si|
N

(4.11)

for a given layer, L. This value is expected to be near unity for all layers in the helical

structure. If the magnetization is near unity it is reasonable to represent a layer by

the average magnetic moment of the layer. It is clear that magnetization decreases

with D, and therefore γ
(2)
L . This result must be considered for any conclusions made

with this data.

The magnetization exhibits different behaviour in defined regions. For D < 0.3

magnetization is approximately equivalent between the layers and both layers are

nearly ferromagnetic. In the range 0.3 < D < 1.0 both layers are nearly ferromag-

netic, and as D increases the magnetization for each layer separates and decreases

slowly. At D = 1.0 The magnetization discontinuously drops (which does not co-

incide with changes in any other features), then increases in 1.0 < D < 1.3 before

decreasing in 1.3 < D < 1.6. Another discontinuous drop is observed at D = 1.5 with

similar behaviour as other regions occurring in 1.5 < D < 2.0. In all regions, the

magnetization of layer 2 is lesser than that of layer 1. These values coincide closely

with previously defined phases.

Figure 4.8: The magnetization of the distinct layers as a function of D. The magne-
tization decreases as D, with M

(2)
L expressing a stronger decline.
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Finally, it must be noted that the canting of layer 2 magnetic moments need not

occur such that they are ferromagnetic, as seen in the magnetization measurements.

It is predicted by the results of both Section 2.4 and Section 1.4.2 that the sum of

canting angles of each sublattice – when considering the orientation of each canted

normal vector – should sum to zero over a layer, i.e., the average canted normal vector

should align with [111]:

C2 + C3 + C4 || [111]. (4.12)

This is apparent when considering relative canting instead of absolute, which ap-

proaches zero. Further – since these 3 vectors are expected to cant in equidistant

directions as shown in Eq. 4.9 – this predicts that the angle between the average mo-

ment on the three sublattices 2–4, defined here as θij (but differing from the θ defined

in Section 3.2) and given by the usual expression

θij =
1

L

L∑
l=1

arccos(s̄i · s̄j) (4.13)

where L = 3 ∗ N − 2 is the total number of layers, and i and j represent the sub-

lattices being considered, should grow with γ (or, equivalently, D) and should be

approximately the same magnitude for each pair of sublattices. This expectation is

confirmed with the measurements shown in Fig. 4.9. It is clear that the separation

between sublattices increases with D. However, this parameter increases prior to the

stratification of γ between layers at D ≈ 0.3.
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Figure 4.9: The relative angle between sublattices in layer 2. The colour represents
the pair of sublattices being compared (red, θ23; green, θ24; blue, θ34).

4.1.5 k || [111] order parameters

Assuming that for all D there exists a pure k || [111] state one may calculate the

magnetic OPs for a configuration using the definition provided in Eq. 2.22. This

assumption is valid for the non-extreme cases explored here and the normalized mag-

nitudes are displayed in Fig. 4.10a

As previously determined, a pure helical state with constant magnitude magnetic

moments must have all FA,i = 0 for all i. The vanishing of these values appears for

D > 0.2 and coincides with the separation of γL for the two layers. Prior to D = 0.2,

magnetic moments may cant partially towards either [111] direction akin to a conical

phase. This value represents the appearance of a planar state.

Likewise, the FE+ parameters decay and vanish at D ≈ 0.50. This aligns with

the separation between linear and sub-linear growth in k and φ. The OP magnitude

resembles phase transitions at both of these points, as expected. For D < 0.5 the

wavelength of the helix is very long, approaching ferromagnetism. The wavelength of

the helical structure is larger than the simulation space, which correlates with a su-

perposition of each chirality and therefore both FE− and FE+ . This oddity disappears

when the wavelength of the helix is contained within the simulation space.
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(a) (b)

Figure 4.10: (a) Magnetic order parameter magnitude normalized within a single D
value such that the maximum is always 1.0. (b) Magnetic order parameters FE−,j

normalized using the maximum value of all simulations. The legend applied to both
figures. Marker shape represents IR and colour represents the number.

The relative magnitudes of different FE− terms do not remain constant as D in-

creases. This separation is consistent with the aforementioned appearance of canted

normal vectors with the variation displayed here corresponding with partial canting

of sublattices 2–4 towards different diagonal cubic axes which increases with D.

It is worth noting that the relative stability of FE− magnitudes is a consequence

of the normalization. If one instead reports only these terms, normalized using the

maximum value achieved throughout all simulations, it also decays with D. This

decay is much slower than other parameters. This is demonstrated in Fig. 4.10b.

In the range D > 1.50 magnetic order parameters FE+ and FA begin to reemerge.

This corresponds with the appearance of other structures in the lattice at these values.

4.1.6 Isolated skyrmions

For values D > 1.50 isolated skyrmions begin to appear on the boundaries of the

lattice. These are always Bloch-type skyrmions, as was observed in MnSi crystals [3].

These vortex-like structures appear as skyrmion tubes near the edges of the lattice
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(a) (b)

Figure 4.11: A single two-dimensional layer of the MnSi lattice displaying the cross-
section of an isolated Bloch-type skyrmion. (a) The full layer with skyrmion in upper-
right. (b) A zoomed-in image in the region of the skyrmion. The hue of the magnetic
moments represents direction while the saturation represents the magnitude of the
in-plane component of the moment. Both are viewed from the [111] direction.

and are oriented along directions close to the wavevector. Simulations in which these

structures become apparent show a very small energy difference (∆E
E
≈ 0.02%) within

the tolerance of the simulation. An example from a single D = 2.00 simulation is

presented in Fig. 4.11. This result is unexpected as bulk skyrmions are reported to

only appear in small ranges of temperature with non-zero applied fields.

In finite size systems, skyrmions have been shown to be stabilized through finite

size effects in three-dimensional thin films [36, 37], as well as chiral bobber phases

– a similar vortex-like state in which the skyrmion does not penetrate through the

material and terminates in a Bloch-point [38]. The thickness of these thin films

is reported using a “confinement ratio,” i.e., the ratio between layer thickness and

helical wavelength. At the values of D observed here, this ratio is ∼ 3, much larger

than those reported in these studies. Further, these results suggest that skyrmions

should not be stable at zero-field at any thickness. Zero-field skyrmions have been

realized in thin film FeGe [39], however, it has been suggested that a skyrmion phase

can not be detected through Hall effect measurements alone [40].

Alternatively, strong anisotropy is known to help stabilize skyrmion phases. In

two-dimensions, a relationship between skyrmion lattices and anisotropy strength has
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been reported [16]. However, there is no mention of isolated skyrmions in these studies.

In three-dimensions, it has been shown that isolated skyrmions can be stabilized

by specific anisotropy interactions. Specifically, in zero-field isolated skyrmions are

stabilized for particularly strong anisotropy [41]. The relatively strong anisotropy

present in the simulations reported here, along with the anisotropy which will arise

due to edge effects in the simulation space, suggest that the appearance of these

vortices could be explained by these interactions.

Figure 4.12: Magnetization along the [111] direction for magnetic moments in sub-
lattice 2 along the line {1, 22 − z, 4 + z} in Fig. 4.11. The line is produced through
cubic interpolation. A sharp peak characteristic of a skyrmion appears. Edge effects
are apparent at values z ≈ 1 and z ≈ 20.

A skyrmion is always associated with a peak in the magnetization along some

direction. The magnetization along one line in the layer is measured in Fig. 4.12.

This measure shows a clear peak along the [111] direction, as expected.

The appearance of skyrmions produces large disturbances in the helical structure

of the lattice. They also introduce different wavevectors to a lattice and, therefore,

the assumption of a pure helical k || [111] state is inappropriate in regions where they

appear.
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4.2 Varying all model terms about the D = 0.50

helical structure

The ultimate goal of this computational study is to better understand how varying

model terms affect the measured parameters. In doing so, one will be allowed greater

control over the detail of the magnetic structures produced. Therefore, I will begin by

varying the strength of each term around a known k || [111] and measure the variation

of these features.

The value D = 0.5 was selected as the value around which the parameters will be

varied. This state is chosen due to its agreeable behaviour: it displays stratification in

γ but not a large amount, it sits in the area in between linear and sublinear growth of

|k| and approximates the magnitude observed in experimental studies, displays a large

anomalous phase, maintains reasonably high in-layer ferromagnetic magnetization,

and occupies a point in which the FE− order parameters dominate and are of relatively

equivalent magnitude.

In this section, variations will extend approximately 10% to either side of any

value (or to an absolute value of 0.10 in the case of the hitherto unused symmetric

terms).

4.2.1 Wavevector magnitude

Considering the relationship reported in Eq. 4.1, one should expect the magnitude

of the wavevector to vary with the strength of both the diagonal and antisymmetric

terms of the model. However, no relationship to the symmetric and anisotropic terms

was described.

The results presented in Fig. 4.13 confirm the expected results, with antisymmetric

terms displaying the appropriate linear proportionality in these measurements when

the relationship between the Dij vector and the antisymmetric terms is given by

{Dx, Dy, Dz} = {J xy
a ,J yz

a ,J zx
a }. However, it appears as though the individual

diagonal terms do not induce substantial variation in |k| in this range, along with

both the symmetric and anisotropic terms. The lack of variation with diagonal terms

is explained by the denominator of the relationship being the reduced constant, J .

This value is similar to an average of the three diagonal terms and, therefore, varying
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only one of these terms will have only small effects on this value.

The other terms, both symmetric and anisotropic, do not appear to have a signif-

icant relationship with this value. In fact, it will become apparent throughout this

section that the fourth-order anisotropy will have no significant relationship with any

of the measured parameters. Therefore, it is reasonable to suggest that, in the range

around D = 0.50, this parameter is predominantly dependent on the antisymmetric

terms, i.e., Dij.

(a) Diagonal

(b) Antisymmetric

(c) Symmetric

(d) Anisotropy

Figure 4.13: Wavevector magnitude as a function of individual coupling constant
magnitude for each coupling constant. Coupling constants are grouped in the usual
way, with the symbol corresponding to each indicated. The black square represents
the D = 0.50 result from section 4.1. An absolute value is considered in (d) as the
two anisotropic interaction strengths have opposing signs. All other figures in this
section match the definitions here.



59

4.2.2 Anomalous phase

(a) Diagonal

(b) Antisymmetric

(c) Symmetric

(d) Anisotropy

Figure 4.14: Anomalous phase as a function of individual coupling constant magnitude
for each coupling constant. Coupling constants are grouped in the usual way, with the
symbol corresponding to each indicated. The black square represents the D = 0.50
result from section 4.1. Symbols match those in Fig. 4.13.

The variation observed in the parameter φ is minute over the range of values consid-

ered. However, the predicted result (Eq. 4.7) suggests that J yz
a and J zx

a should be

directly proportional (with a negative constant of proportionality) while J xy
a should

have no effect. This can be seen in Fig. 4.14. The dependence of this measurement

on the value of each diagonal term is also observed, with a direct proportionality ap-

parent. This relationship is stronger with the value of J zz, which is not a result of

the previous analysis.

The symmetric and anisotropic terms have little effect, with only a potential small

dependence on J xy
s visible. This correlation between the symmetric and antisym-

metric values, with J xy
s producing variation only if J xy

a does not, is seen throughout
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this section. A relationship between similar symmetric and antisymmetric terms oc-

curs naturally when considering their construction, but the full effect is not explored

here.

4.2.3 Out-of-plane angle

While the antisymmetric terms produce canting as one would expect from all previous

results, the reliance of the system structure on terms that are not directly related to

the standard DMI and Heisenberg interactions is most apparent in the canting and

relative angle of the sublattices. The canting of layer 1 and layer 2 is measured in

Fig. 4.15 and Fig. 4.16, respectively.

(a) Diagonal

(b) Antisymmetric

(c) Symmetric

(d) Anisotropy

Figure 4.15: Layer 1 out-of-plane angle as a function of individual coupling constant
magnitude for each coupling constant. Coupling constants are grouped in the usual
way, with the symbol corresponding to each indicated. The black square represents
the D = 0.50 result from section 4.1. Symbols match those in Fig. 4.13.
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(a) Diagonal

(b) Antisymmetric

(c) Symmetric

(d) Anisotropy

Figure 4.16: Layer 2 out-of-plane angle as a function of individual coupling constant
magnitude for each coupling constant. Coupling constants are grouped in the usual
way, with the symbol corresponding to each indicated. The black square represents
the D = 0.50 result from section 4.1. Symbols match those in Fig. 4.13.

In both cases, it is clear that there is a stronger dependence on the diagonal

term J zz in comparison to J yy and J xx, similar to the anomalous phase. The

relationship between canting and the diagonal terms is complex: each layer can have

constants of proportionality with differing signs for each of the parameters. Further,

the canting of layer 1 exhibits different sign constants of proportionality between the

three terms. Therefore, if one desires to minimize canting in both layers, varying these

parameters alone may not have the desired effect.

Regarding the antisymmetric terms, the expected relative inertness of γ
(1)
L is ap-

parent, and the same can be observed in the symmetric terms. The symmetric terms

also have little-to-no effect on γ
(2)
L , in contrast to the antisymmetric terms. The one

exception being the previously mentioned relation between the terms J xy
s and J xy

a .

These results are more clear in the measurement of inter-sublattice angle for layer 2

in Fig. 4.17, where only θ23 is shown due to the equivalence of all terms.
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The other parameters appear to have small effects on γ
(1)
L and γ

(2)
L . The exception

is the second-order anisotropy, which is known to prefer planar states in the [111]

direction when the value is negative and is strongly correlated with a lower canting

angle. However, anisotropies are generally considered to be relatively small.

Finally, the in-layer magnetization is again presented in Fig. 4.18. Here it is

apparent that the relative strength of Heisenberg-like diagonal terms and the second-

order anisotropy has the strongest effect on the ferromagnetic magnetization of the

layers.

(a) Diagonal

(b) Antrisymmetric

(c) Symmetric

(d) Anisotropy

Figure 4.17: The angle between sublattice 2 and 3 of a layer as a function of individual
coupling constant magnitude for each coupling constant. Coupling constants are
grouped in the usual way, with the symbol corresponding to each indicated. The
black square represents the D = 0.50 result from section 4.1. Symbols match those
in Fig. 4.13.
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(a) Diagonal

(b) Antrisymmetric

(c) Symmetric

(d) Anisotropy

Figure 4.18: The in-layer magnetization of layer 2 as a function of individual cou-
pling constant magnitude for each coupling constant. The magnetization of layer 1 is
consistent with this one. Coupling constants are grouped in the usual way, with the
symbol corresponding to each indicated. The black square represents the D = 0.50
result from section 4.1. Symbols match those in Fig. 4.13.

4.3 Applied field simulations

The final test of the presented model will be with the use of an applied field. Applied

fields are predicted to rotate the direction of k || Bapp, as well as canting of the

system into a conical structure and, at some critical field, a ferromagnetic state. In

the present work, I will consider only the second of these options, presenting results

with fields applied along the k.

It must be noted that, due to the finite size of the system, the effect of magnetic

fields will be altered from those of an infinite system. Applied fields will have relatively

larger effects on magnetic moments with lower coordination numbers, i.e., those near

the edges of the lattice. This will affect the structure of the entire lattice. With this
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caveat, one may still glean some information from this data.

4.3.1 B || k

With the field applied parallel or anti-parallel to the wavevector of the structure there

are two parameters of particular interest. First, one must consider the transition of the

pure helical phase into a conical phase with magnetic moments partially oriented along

the direction of the applied field. Specifically, the magnitude of the conical canting will

be measured and compared to the strength of the applied field. The other parameter

is the critical field between the conical and field-induced ferromagnetic states. That is,

the applied field (denoted BC2 here) at which the helical phase is so strongly aligned

with the field that it is no longer distinguishable from the ferromagnetic phase. The

second of these parameters can be approximated from the stiffness, A, of the helix –

a parameter connected to the strength of the DMI. This relationship is given by

BC2 ≈ Ak2 (4.14)

where the usual constants are included within the field and

A =
|S|D
|k|

=
D

|k|
(4.15)

with |S| = 1 enforced [18]. This definition of stiffness is only true for large k and

may not be applicable here. Alternatively, the minimization analysis performed by

Chizhikov & Dmitrienko predicts that this field and the conical canting can both be

approximated from the equation

sin γ =
6B

(Dz − 2Dx −Dy)2
(4.16)

where, in this case, γ refers to a conical canting and not a canted normal vector. The

critical field will occur at γ = π
2
. Rearranging Eq. 4.16 that is

BC2 =
(Dz − 2Dx −Dy)

2

6
(4.17)
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for the critical field and

γ ∝ arcsin(aB) (4.18)

or

γ ∝ B (4.19)

where the linear approximation applies to arcsin(x) for small x. One can show that

the two predictions for the critical field differ greatly. This is not unexpected due to

the small wavevector k. Further, the inclusion of anisotropies will affect this value

and the behaviour of these terms considerably. As before, the initial results in this

section are produced using simulations with the second and fourth-order anisotropy

strength set to J2A = −0.50 and J4A = 0.50, respectively.

However, while significant effects from the fourth-order anisotropy were not ob-

served in the results of Section 4.2, they become apparent here. Analysis of this term

reveals that – if the coupling of this term is positive – it prefers magnetic moments to

align along a finite set of directions including the cubic lattice vectors. When canting

is small, this has a very small effect. However, when canting is large enough and

magnetic moments approach a cubic lattice vector, as seen with a sufficiently large

applied field, this anisotropy produces “hitching.” That is, the helical rotation of the

magnetic moments is slowed in this area and the measured wavevector is decreased.

The average wavevector magnitude reported in Fig. 4.19 is therefore the average of

two wavevectors: One that is approximately equivalent to the B = 0 case, and one

that is reduced due to this hitching. This is akin to domains of helical and ferromag-

netic structures appearing. Therefore, I must suggest that the fourth-order anisotropy

should be near vanishing, and is much too large. Fortunately, as the results of Sec-

tion 4.2 corroborate, the effects of this anisotropy are very small in the pure helical

phase, and previous results still provide valuable insight. The effect of varying this

parameter for small applied fields is also presented in Fig. 4.19. It can be seen that

the suppression of k is greatly reduced with a smaller anisotropy strength. However,

the larger anisotropy is used in other results reported here as it is observed to have

little effect on the two physical parameters of interest in this section.
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Figure 4.19: The average wavevector magnitude as a function of B. Red markers
represent simulations with J4A = 0.10 and blue markers represent simulations with
J4A = 0.50. The suppression of the magnitude as B increases is due to the averaging
of two separate wavevectors: One that is approximately constant when the magnetic
moments are relatively distant from a cubic lattice vector, and a smaller value deter-
mined by the proximity of a magnetic moments orientation to a cubic lattice vector.

Despite this concern, the measurement of γ follows the expected behaviour. These

measurements are displayed in Fig. 4.19. The two parameters of interest, the canting

angle and critical field, may be interpreted directly from these measurements. The

relationship between canting and field strength is approximately linear in the range

considered and is fit using the function

γ = c+ arcsin(aB). (4.20)

Extrapolating this fit in all sublattices demonstrates an critical field of BC2 = 1
a
≈ 1.0.

This behaviour is observed with all values of JA4 considered. Due to the small-

angle approximation, this closely approximates the relation γ = B for these model

parameters, as well.

Separately, one can confirm that the minimum value of |k| above occurs around γ

values which are closely aligned with the cubic lattice axes, γ = π
4
, as expected.
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Figure 4.20: The out-of-plane canting of (a) individual sublattices and (b) layers as a
function of B. The colouring is the same as that presented in all previous figures.All
fits are of the form c+ arcsin(aB) and all predict an critical of BC2 = a ≈ 1.0.

The relation of this critical field and proportionality of γ to other constants is

not clear from these tests. The value of both constants, 1.0, is easily derived from

all terms considered, and therefore further studies will be required to determine the

relation.

Finally, the magnetic order parameters are displayed in Fig. 4.21. In this, the

appearance and dominance of FA,j order parameters, as predicted for a conical phase,

is visible. Additionally, as the system approaches a ferromagnetic state, the values

of the other magnetic OPs FE+,j and FE−,j become roughly equivalent. All of these

features are expected for an infinite lattice, and their appearance in a finite lattice

provides further confidence in the generality of these results of this study.
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Figure 4.21: Magnetic order parameter magnitude normalized within a single B values
such that the maximum is always 1.0. Markers match Fig. 4.10.



Chapter 5

Conclusion

5.1 Discussion

In this thesis, I have provided the details of the construction of a fully general, classical

model of MnSi-like crystals up to nearest neighbours. Only the relative strength of

9 bilinear invariants remain variable. The process of construction used can easily be

extended to bilinear terms of any order of neighbour, as necessary. This model may

be combined with any applicable anisotropy or external interactions, as done here,

and used as a predictive model of the magnetic state of these crystals. Analysis of

this model provides insight on the relationship between its terms and other common,

classical interactions – useful for predictive analysis of the system based on established

analytic results. Further, an analysis providing the process of defining the magnetic

order parameters of these crystals, based on the symmetry of the lattice and the

wavevector k of a magnetic state was divulged. These OPs may be manipulated with

appropriate assumptions to determine the properties applicable to a given state and

set of interactions.

The provided model, in conjunction with second and fourth-order anisotropic in-

teractions, as well as the Zeeman interaction, was studied through computational sim-

ulations using the Effective Field Method on a finite lattice without periodic boundary

conditions. This analysis allowed the model to be examined in comparison to the lit-

erature based on these systems and provided some predictive analysis of the action of

the coupling associated with each term. This analysis is separated into 3 sections: (1)
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A set using the standard classical Heisenberg interactions and DMI in which the DMI

strength D is varied relative to the Heisenberg strength J . (2) A set of simulations in

which a single, typical helical state is selected and each of the 9 terms is varied about

this state. (3) A set of simulations in which a field is applied along k of the same

typical state and the canting and critical field BC2 of the helical state are measured.

In the first analysis, the predicted helical state with only a set of same-chirality

magnetic order parameters was produced. A linear relationship between the wavevec-

tor magnitude, |k|, and the relative strength of the DMI, is apparent for relatively

small values of D, as predicted. However, a transition to a sublinear relationship for

relatively large values coincides with a large canting of the normal vector of the helix

and the wavelength reducing to fit within one simulation cell of 23 × 23 × 23. The

canting vector and magnitude of the helices differed between the 4 cubic sublattices

of the crystal, as predicted through both the OP analysis and previous minimization

analysis using less general models. This splitting of the normal vectors was observed

to occur only for D > 0.3J with magnitude increasing with D afterwards. Further, the

canting was shown to occur such that the sum of canting in any given two-dimensional

layer along the [111] axis vanishes. The anomalous phase, φ, was observed and shown

to vary with D similarly to |k|. However, the magnitude in these simulations is much

larger than those observed in experiment. This suggests that other interactions are im-

portant to the magnitude of this parameter. Finally, this set of simulations produced

isolated skyrmions near the edge of the simulation cell. These occur only for very

large values of D > 1.50J and introduce other magnetic order parameters. Therefore,

the reported analysis of simulations in this range is affected by these structures.

Analysis of results produced from varying individual parameters confirmed several

properties of the predictive analysis, with the DMI-related antisymmetric terms and

Heisenberg-related diagonal terms providing the most prominent effect on the mag-

netic structure. The other symmetric terms were also shown to have minor effects

on the structure, with a relationship between related antisymmetric and symmetric

terms qualitatively shown. From this, finer control of the measured lattice parameters

is given.

Finally, analysis with a field applied along the helical wavevector revealed the ex-

pected conical phase of the lattice. The canting angle is shown to follow a roughly
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linear relationship with applied field strength. The helical phase transitions to a coni-

cal phase with small applied fields. However, the action of the fourth-order anisotropy

prevents this from approaching a pure conical phase. Nonetheless, the critical field is

extrapolated from the results as saturation of magnetic moments (aligning along B)

and is approximated to be B = 1.0. Further analysis will be required to determine

the relationship between this value and others of the model.

The above results are shaped by the finite size restriction of the lattice and they

may apply more directly to studies of thin films. The chosen lattice size, however,

is large enough that these results present a meaningful origin for the study of the

general model.

5.2 Future Work

The model provided here may be used in the future analysis of any MnSi-like magnet.

A deeper analysis of the included terms, or the introduction of other interactions or

thermal effects, would provide for finer control and a better understanding of the mag-

netic structures. The subtle relationships between model parameters could be further

explored through these analyses or further simulations. Additionally, the order pa-

rameters derived here could be analyzed or a different choice for their definitions could

be made. This change could lead to further predictive power from these values.
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Appendix B

Criteria for constant real

magnitude

Any general vector of n complex numbers can be written as the sum of a real vector

and complex vector

S = R + iJ (B.1)

and therefore the magnitude of the vector is

|S|2 = |R|2 + |J|2. (B.2)

This magnitude is invariant under rotations. These vectors are composed of the

complex magnetic OPs of the exponential form Fj exp(iφj) in which each component

can be represented as one term that is the sum of all magnetic OPs. Therefore, the

above magnitudes can be written

|R|2 =
n∑
i=1

(Fi cos(φi))
2

|J|2 =
n∑
i=1

(Fi sin(φi))
2

(B.3)
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I am concerned with the real magnitude only. The requirement that the real vector

magnitude is constant requires that it does not vary under any additional phase δ.

That is

|R|2 = |exp(iδ)R|2 = |Rδ|2. (B.4)

where the subscript δ represents the rotation. It is easy to see that such a phase will

be represented in the above magnitudes as

|Rδ|2 =
n∑
i=1

(Fi cos(φi + δ))2

|Jδ|2 =
n∑
i=1

(Fi sin(φi + δ))2

(B.5)

One may also show that, after this rotation, that the new real and imaginary

vectors will be made up of portions of both of the original real and imaginary vectors.

This is written

|Rδ|2 = cos2(δ)|R|2 + sin2(δ)|J|2

|Jδ|2 = sin2(δ)|R|2 + cos2(δ)|J|2
(B.6)

and it is easy to see if we treat the full magnitude of each as real and imaginary

numbers and rotate them accordingly. This relationship can be seen graphically in

Fig. B.1.

The goal is R = Rδ. Replacing each R with Rδ and rearranging gives

|Rδ|2 = |Jδ|2 (B.7)

for all δ. This condition for any single value δ is necessary, but not sufficient, to

produce a constant magnitude. To produce a sufficient criteria one can note that this

must be true for any δ. If one chooses two δ such that they do not differ by nπ
2

– in

which case both will correspond to the same set of solutions – then the solution to
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the two equations will be a state of constant real magnitude. These conditions can

then be written as

n∑
i=1

(cos(φi)Fi)
2 =

n∑
i=1

(sin(φi)Fi)
2

n∑
i=1

(cos(φi + δ)Fi)
2 =

n∑
i=1

(sin(φi + δ)Fi)
2

(B.8)

where in the first case δ = 0 is chosen without loss of generality. This can be rewritten

using the double-angle formula cos(2x) = cos2(x)− sin2(x) as

n∑
i=1

cos(2φi)F
2
i = 0

n∑
i=1

cos(2φi + 2δ)F 2
i = 0

(B.9)

which are the criteria used in all discussions in this thesis.

(a) (b)

Figure B.1: A graphical representation of the constant magnitude criteria. (a) The
real and imaginary magnitudes, R and J. (b) The real and imaginary magnitudes of
the rotated vectors, Rδ and Jδ.



Appendix C

Directional Statistics

In this thesis, most of the measured parameters are – or are derived from – angular

(i.e., directional) data. When working with angular data, one must use special-

ized statistical methods to derive the analogues to the usual statistics, e.g., mean or

confidence intervals. As an example of complications that can occur when working

with angular data using standard statistics, consider the branch cut of the angle at

θ = 2π = 0. If a set of data varies over this branch, the standard mean would be ap-

proximately πrad different from the true mean (See Fig. C.1). Due to this and many

other complications, I use directional statistics as described by Mardia & Jupp [46],

throughout this thesis.

Figure C.1: A graphical representation of the mean of random angular data (blue) as
measured by standard statistics (red) and directional statistics (green).
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Of particular note here are the calculation of the mean and the confidence intervals

used throughout the thesis. These values will both be derived from the average value

of the trigonometric functions

C̄ =
1

N

∑
j

cos θj S̄ =
1

N

∑
j

sin θj (C.1)

for data θj for 1 ≤ j ≤ N . These averages are then used to define two values: The

mean angular direction

θ̄ = arctan

(
S̄

C̄

)
+ nπ (C.2)

where n is a correction to the appropriate quadrant handled by the atan2 function in

most programming languages.

The second value is the mean resultant length

R̄ =
√
C̄ + S̄ (C.3)

which can be shown to be the norm of the average vector associated with the data.

This value is used in measurements of most statistical values, along with the resultant

length R = NR̄. In this thesis I make no assumptions on the distribution of the data,

and therefore use the confidence interval for the mean direction defined by Upton &

Fingleton [47]

δT,α = arcsin

(
zα/2

√
N(1−H)

4R2

)
(C.4)

where zα/2 is the z-score of the (1.00−α/2)∗100th percentile of the normal distribution.

For example, the 95th percentile, which is used in this thesis, is z0.05 = 1.96. Therefore,

the interval associated with this has a confidence of 90%. The value H is given by

H =
1

N

[
cos(2θ̄)

∑
j

cos(2θj) + sin(2θ̄)
∑
j

sin(2θj)

]
. (C.5)
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This is the value reported in all pertinent data.

Note that all the details presented here are two-dimensional. The systems consid-

ered in this thesis are three-dimensional, and there are different statistics developed

for three-dimensional data. However, the angles considered here, θ and γ as shown

in Fig. 3.3, are concerned with two-dimensional circles and the above analyses are

applicable.



Appendix D

Simulation Code

D.1 Fortran Code

This appendix contains the computer code used in the EFM simulations in three parts:

The input file (MnSi Input.f), the simulation code (SIM MAIN.f), and a module

containing datatype definitions (type.f). This code was prepared for the Fortran 2008

standard.
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D.1.1 type

MODULE type module

IMPLICIT NONE

INTEGER, PARAMETER, PUBLIC : : sp = KIND( 1 . 0 )

INTEGER, PARAMETER, PUBLIC : : dp = SELECTEDREALKIND(2∗PRECISION( 1 . 0 sp ) )

ENDMODULE type module
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D.1.2 MnSi Input

MODULE input module

USE type module , ONLY : dp

! S imulat ion type de c l a ra t i on ! ! ! !

CHARACTER∗10 , PARAMETER : : SIM TYPE=”SEFM” ! At the moment t h i s i s l im i t e d to EFM

and SEFM

CHARACTER∗10 , PARAMETER : : MC TYPE=”HEATING” ! Heating/Cooling / I s o l a t e d . Note t ha t

only hea t ing changes s imulat ion , a l l o ther are coo l i ng

! Constants

REAL( kind=dp ) , PARAMETER : : PI = 4 .0 dp∗DATAN( 1 . 0 dp ) ! Pi

! La t t i c e se tup

REAL( kind=dp ) , DIMENSION( 1 : 3 ) , PARAMETER : : LAT VECTOR = (/ 4 .558 , 4 . 558 , 4 .558 /)

! The l eng t h o f the l a t t i c e v e c t o r s in each DIMENSION in Angstroms

REAL( kind=dp ) , PARAMETER : : X VALUE = 0.138 ! Distance x used fo r po s i t i on i n g

sp ins i n s i d e un i t c e l l

INTEGER, PARAMETER : : SPINS PER CELL = 4 ! Number o f sp ins per un i t c e l l

INTEGER, PARAMETER : : CELLS = 8 ! Total number o f un i t c e l l s to be used ( in each

DIMENSION: DIMENSION hardcoded to 3)

INTEGER, PARAMETER : : NUM SPINS = SPINS PER CELL∗(CELLS∗∗3) ! Number o f sp ins in the

system

! Simulat ion se tup

REAL( kind=dp ) , DIMENSION( 1 : 3 ) , PARAMETER : : B APP = (/ 0 .2 d0 , 0 . 2 d0 , 0 . 2 d0 /) !

Appl ied magnetic f i e l d

REAL( kind=dp ) , DIMENSION( 1 : 2 , 1 : 13 ) , PARAMETER : : J EX = Reshape ( (/ &

1.00 d0 , 0 .00 d0 , &

0 .00 d0 , 0 .00 d0 , &

0 .00 d0 , 0 .00 d0 , &

0 .00 d0 , 0 .00 d0 , &

0 .00 d0 , 0 .00 d0 , &

0 .00 d0 , 0 .00 d0 , &

0 .00 d0 , 0 .00 d0 , &

0 .00 d0 , 0 .00 d0 , &

0 .00 d0 , 0 .00 d0 , &

0 .00 d0 , 0 .00 d0 , &

0 .00 d0 , 0 .00 d0 , &

0 .00 d0 , 0 .00 d0 , &

0 .00 d0 , 0 .00 d0 /) , (/2 ,13/) ) ! The 2∗13 exchange coup l ing cons tant s f o r NN and NNN

INTEGER, PARAMETER : : STEPS = 5000 ! Number o f s t e p s to be used f o r Simulat ion

LOGICAL, PARAMETER : : PERIODIC BOUNDS = .FALSE. ! I f true , p e r i od i c boundary

cond i t i ons w i l l be app l i ed

LOGICAL, PARAMETER : : PRESET INIT = .FALSE. ! I f true , the code w i l l i n i t i a l i z e the

l a t t i c e us ing the f i l ename below (METROMC ONLY)

LOGICAL, PARAMETER : : CALC Q = .FALSE. ! I f true , the f o u r i e r transform of sp ins

w i l l be produced
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! TODO: Add a b i l i t y to p ick s p e c i f i c coord ina te s and sp ins . Easy , j u s t add an array .

!EFM

INTEGER, PARAMETER : : NUM CONFIG=1000 ! The number o f random con f i gu ra t i on s to use

in an EFM simu la t ion .

INTEGER, PARAMETER : : NUM MIN OUT=10 ! The number o f minima f i l e s to be output .

INTEGER, PARAMETER : : EFM RATIO=10 ! The r a t i o o f the ang le between two vec t o r s

to be ro ta t ed

REAL( kind=dp ) , PARAMETER : : PERCENT OUTPUT=0d−3 ! The percentage o f random

con f i gu ra t i on r e s u l t s to be output

!METROMC

INTEGER, PARAMETER : : EQ STEPS = 250000 ! Number o f e q u i l i b r i a t i o n s t e p s

REAL( kind=dp ) , PARAMETER : : MAX TEMP=0.1 , MIN TEMP=MAX TEMP !Maximum and minimum

temperatures f o r Monte Carlo s imu la t i ons

INTEGER, PARAMETER : : STEP TEMP=1 ! The number o f s t e p s to take between min and max

temperature . Set to 1 fo r i s o l a t e d temperature

INTEGER, PARAMETER : : STEPS PER OUT = 10000 ! Number o f sp ins between a f i l e i s

output

CHARACTER∗14 , PARAMETER : : PRESET FILE=” sp i n inpu t . dat ” ! The f i l e name fo r the sp in

input f i l e . Set CHARACTER∗# to the appropr ia te l eng t h .

! P o t e n t i a l l y change to ” a l l o c a t a b l e ” to a l l ow fo r dynamic s t r i n g l eng t h

! Input v a r i a b l e d e c l a ra t i on ! ! ! !

REAL( kind=dp ) , DIMENSION( 0 :NUM SPINS, 1 : 3 ) : : sp in ! Array conta in ing a l l sp in

components ( x=1, y=2, z=3)

REAL( kind=dp ) , DIMENSION( 0 :NUM SPINS, 1 : 3 ) : : p Table ! Tables conta in ing spin

po s i t i on informat ion

REAL( kind=dp ) : : energy , mag , ch i ! Ins tantaneous ob s e r vab l e va lue s

! REAL( kind=dp ) : : eav , mav , cav ! Average ob s e r vab l e va lue s

INTEGER, DIMENSION( 0 :CELLS−1, 0 :CELLS−1, 0 :CELLS−1, 1 : SPINS PER CELL) : : u Table !

Table conta in ing un i t c e l l p o s i t i on o f each spin . Defined by minimum corner .

INTEGER, DIMENSION( 1 :NUM SPINS, 1 : 4 ) : : invu Table ! Inverse lookup t a b l e f o r un i t

c e l l

INTEGER, DIMENSION( 1 :NUM SPINS, 1 : 2 , 1 : 6 ) : : n Neighbour ! Table conta in ing the 6

neares t and next neares t ne ighbours o f each spin

common / t a b l e s / p Table , u Table , invu Table , n Neighbour , nn Neigbour ! Table used

fo r p o s i t i o n s

common / sp in s / sp in ! Tables used f o r sp in components

ENDMODULE input module
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D.1.3 Sim Main

! Kyle Ha l l 2018

PROGRAM SIM MAIN

USE input module , ONLY : SIM TYPE, CELLS, PERIODIC BOUNDS, PRESET INIT , CALC Q,

PRESET FILE , J EX

IMPLICIT NONE

INTEGER : : i , j

write (∗ ,∗ ) ”// Run Sim i s s e t to a ” , SIM TYPE, ” s imu la t i on with . . . ”

write (∗ ,∗ ) ” L a t t i c e S i z e : ” , CELLS

write (∗ ,∗ ) ” Pe r i od i c Bounds : ” , PERIODIC BOUNDS

write (∗ ,∗ ) ” Preset I n i t i a l i z a t i o n : ” , PRESET INIT

i f (PRESET INIT) then

write (∗ ,∗ ) ” Preset f i l e name : ” , PRESET FILE

endif

write (∗ ,∗ ) ” Ca l cu la te FFT: ” , CALC Q

write (∗ ,∗ ) ” NN Coupling cons tant s : ”

do i =1,3

write (∗ , fmt=’ (A, F7 . 3 , 3 ( ” , ”X, F7 . 3 ) ) ’ ) ” ” ,J EX ( 1 , ( i −1)∗4+1) , J EX ( 1 , ( i −1)

∗4+2) , J EX ( 1 , ( i −1)∗4+3) , J EX ( 1 , ( i −1)∗4+4)

enddo ! i

write (∗ , fmt=’ (A, F7 . 3 , 2 ( ” , ”X, F7 . 3 ) ) ’ ) ” ” ,J EX (1 ,13 )

write (∗ ,∗ ) ” NNN Coupling cons tant s : ”

do i =1,3

write (∗ , fmt=’ (A, F7 . 3 , 3 ( ” , ”X, F7 . 3 ) ) ’ ) ” ” ,J EX ( 2 , ( i −1)∗4+1) , J EX ( 2 , ( i −1)

∗4+2) , J EX ( 2 , ( i −1)∗4+3) , J EX ( 2 , ( i −1)∗4+4)

enddo ! i

write (∗ , fmt=’ (A, F7 . 3 , 2 ( ” , ”X, F7 . 3 ) ) ’ ) ” ” ,J EX (2 ,13 )

write (∗ ,∗ )

ca l l i n i t random seed ( )

write (∗ ,∗ ) ”// Bui ld ing l a t t i c e . . . ”

ca l l L a t t i c e B u i l d

write (∗ ,∗ ) ”// Finding nea r e s t ne ighbours . . . ”

ca l l Find NN

write (∗ ,∗ ) ”// S ta r t i ng ” , SIM TYPE, ” s imu la t i on . . . ”

i f (SIM TYPE. eq . ”SEFM” ) then

ca l l STEPPED EFM

else i f (SIM TYPE. eq . ”EFM” ) then

ca l l EFM

else

write (∗ ,∗ ) ”METROMC i s not c u r r e n t l y a v a i l a b l e ”

! c a l l METROMC

endif !SIM TYPE
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ENDPROGRAM SIM MAIN

!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!SUBROUTINE: La t t i c e Bu i l d

! Def ines l a t t i c e p o s i t i o n s and s t o r e s them as appropr ia te in spin , p t a b l e ,

u t a b l e , and the inve r s e t a b l e s .

SUBROUTINE L a t t i c e B u i l d

USE input module , ONLY : p Table , SPINS PER CELL , CELLS, X VALUE, u Table ,

invu Table

IMPLICIT NONE

INTEGER : : i , x , y , z , spin Num

do i =1,3

p Table (1 , i )=X VALUE ! F i r s t p o s i t i on i s (X,X,X)

enddo ! i

p Table (2 , 1 ) =0.5d0−X VALUE ! Second po s i t i on as de f ined by S . H. Curnoe s h i f t e d

(0 ,1 ,0) un i t s

p Table (2 , 2 )=1−X VALUE

p Table (2 , 3 ) =0.5d0+X VALUE

p Table (3 , 1 )=1−X VALUE ! Third po s i t i on as de f ined by S . H. Curnoe s h i f t e d

(1 ,0 ,0) un i t s

p Table (3 , 2 ) =0.5d0+X VALUE

p Table (3 , 3 ) =0.5d0−X VALUE

p Table (0 , 1 ) =0.5d0+X VALUE ! Fourth po s i t i on as de f ined by S . H. Curnoe s h i f t e d

(0 ,0 ,1) un i t s ( wr i t t en as 0 f o r mod 4)

p Table (0 , 2 ) =0.5d0−X VALUE

p Table (0 , 3 )=1−X VALUE

! Expand f i r s t un i t c e l l to $CELLS

spin Num=0 ! I n i t i a l i z e the counter f o r sp in to current sp in

open(unit=12, f i l e=” l a t t i c e S i t e s . dat ” , position=”APPEND” , action=”WRITE” , status=”

REPLACE” ) ! Output f o r p o s i t i o n s o f the sp in

do x=0,CELLS−1

do y=0,CELLS−1

do z=0,CELLS−1

do i =1,SPINS PER CELL ! i a c t s as Atom # as de f ined by S . H. Curnoe ,

s h i f t e d as above

spin Num=spin Num+1

p Table ( spin Num , 1 )=p Table (Modulo( spin Num , 4 ) ,1 )+x ! Put sp in in

l a t t i c e

p Table ( spin Num , 2 )=p Table (Modulo( spin Num , 4 ) ,2 )+y

p Table ( spin Num , 3 )=p Table (Modulo( spin Num , 4 ) ,3 )+z
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u Table (x , y , z , i )=spin Num ! I n i t i a l i z e un i t c e l l l ookups

invu Table ( spin Num , 1 )=x

invu Table ( spin Num , 2 )=y

invu Table ( spin Num , 3 )=z

invu Table ( spin Num , 4 )=i

write (unit=12, fmt=∗) p Table ( spin Num , 1) , p Table ( spin Num , 2) ,

p Table ( spin Num , 3) , &

invu Table ( spin Num , 1 ) , invu Table ( spin Num , 2 ) , invu Table (

spin Num , 3 ) , invu Table ( spin Num , 4 )

enddo ! i

enddo ! x

enddo ! y

enddo ! z

f l u s h (unit=12) ! Clear and c l o s e output

close (unit=12)

END SUBROUTINE L a t t i c e B u i l d

!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!SUBROUTINE: In i t ia l i z e Sp in Random

! I n i t i a l i z e s a l l sp in on the l a t t i c e to a random con f i gu ra t i on .

! $PRESET INIT i s s e t to FALSE

SUBROUTINE In i t i a l i z e Sp in Random

USE input module , ONLY : dp , PI , NUM SPINS, sp in

IMPLICIT NONE

INTEGER : : i

REAL( kind=dp ) : : theta , phi

open(unit=12, f i l e=” i n i t i a l S p i n D a t a . dat ” , position=”APPEND” , action=”WRITE” ,

status=”REPLACE” ) ! Output f o r i n i t i a l sp in va lue s

do i =1,NUM SPINS

ca l l random number( theta )

theta=PI∗ theta ! Get random the ta and phi ang l e s

ca l l random number( phi )

phi=2∗PI∗phi

sp in ( i , 1 )=ds in ( theta ) ∗dcos ( phi ) ! Use s p h e r i c a l coord ina te s to p lace sp in

on l a t t i c e

sp in ( i , 2 )=ds in ( theta ) ∗ ds in ( phi )

sp in ( i , 3 )=dcos ( theta )

write (unit=12, fmt=∗) sp in ( i , 1) , sp in ( i , 2) , sp in ( i , 3)
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enddo ! i

f l u s h (unit=12)

close (unit=12)

END SUBROUTINE In i t i a l i z e Sp in Random

!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!SUBROUTINE: I n i t i a l i z e S p i n P r e s e t

! I n i t i a l i z e s a l l sp in on the l a t t i c e to a p r e s e t con f i gu ra t i on .

! $PRESET INIT i s s e t to TRUE

SUBROUTINE I n i t i a l i z e S p i n P r e s e t

USE input module , ONLY : NUM SPINS, spin , PRESET FILE

IMPLICIT NONE

INTEGER : : i ! Subrout ine i t e r a t o r

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

open(unit=13, f i l e=PRESET FILE , action=”READ” ) ! Input f o r sp in i n i t i a l i z a t i o n

do i =1,NUM SPINS

read (unit=13,fmt=∗) sp in ( i , 1 ) , sp in ( i , 2 ) , sp in ( i , 3 )

enddo ! i

f l u s h (unit=13) ! Clear and c l o s e input / output

close (unit=13)

open(unit=12, f i l e=” i n i t i a l S p i n D a t a . dat ” , position=”APPEND” , action=”WRITE” ,

status=”REPLACE” ) ! Output f o r i n i t i a l sp in va lue s

do i =1,NUM SPINS

write (unit=12,fmt=∗) sp in ( i , 1 ) , sp in ( i , 2 ) , sp in ( i , 3 )

enddo ! i

f l u s h (unit=12) ! Clear and c l o s e input / output

close (unit=12)

END SUBROUTINE I n i t i a l i z e S p i n P r e s e t

!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!SUBROUTINE: Find NN
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! Finds the neares t neighbour o f each spin in the l a t t i c e and s t o r e s them in t a b l e

n neighbour

! $PERIODIC BOUNDS i s FALSE and pe r i od i c boundary cond i t i ons w i l l not be app l i ed .

SUBROUTINE Find NN ( )

USE input module , ONLY : PERIODIC BOUNDS, u Table , invu Table , n Neighbour , CELLS

, NUM SPINS

IMPLICIT NONE

INTEGER : : x pl , y pl , z p l , x min , y min , z min ! Incremented and decremented

va lue ho l de r s

INTEGER : : a , x , y , z ! Holds atom number and po s i t i on

INTEGER : : i ! Subrout ine i t e r a t o r

DO i =1,NUM SPINS

x=invu Table ( i , 1 ) ! x , y , z ho ld the un i t c e l l p o s i t i on

y=invu Table ( i , 2 )

z=invu Table ( i , 3 )

a=invu Table ( i , 4 ) ! a ho ld s the atom # of the current atom

x min=x−1 ! Set the corresponding va lue s

x p l=x+1

y min=y−1

y p l=y+1

z min=z−1

z p l=z+1

IF (PERIODIC BOUNDS) THEN

i f ( x min . l t . 0 ) x min=CELLS−1 ! Check f o r p e r i od i c boundary cond i t i ons

i f ( x p l . gt . ( CELLS−1) ) x p l=0

i f ( y min . l t . 0 ) y min=CELLS−1

i f ( y p l . gt . ( CELLS−1) ) y p l=0

i f ( z min . l t . 0 ) z min=CELLS−1

i f ( z p l . gt . ( CELLS−1) ) z p l=0

ENDIF

i f ( a . eq . 1 ) then ! De f i n i t i on s o f the 6 NN for each spin po s i t i on in a un i t

c e l l . Ordered by atom # then number o f un i t c e l l s away .

n Neighbour ( i , 1 , 1 )=merge(0 , u Table (x , y min , z , 2 ) , y min . l t . 0 ) ! Check

f o r those ou t s i d e o f l a t t i c e and s e t to zero i f t rue

n Neighbour ( i , 1 , 2 )=merge(0 , u Table (x , y min , z min , 2 ) , z min . l t . 0 .OR.

y min . l t . 0 )

n Neighbour ( i , 1 , 3 )=merge(0 , u Table ( x min , y , z , 3 ) , x min . l t . 0 )

n Neighbour ( i , 1 , 4 )=merge(0 , u Table ( x min , y min , z , 3 ) , y min . l t . 0 .OR.

x min . l t . 0 )

n Neighbour ( i , 1 , 5 )=merge(0 , u Table (x , y , z min , 4 ) , z min . l t . 0 )

n Neighbour ( i , 1 , 6 )=merge(0 , u Table ( x min , y , z min , 4 ) , x min . l t . 0 .OR.

z min . l t . 0 )

n Neighbour ( i , 2 , 1 )=u Table (x , y , z , 2 ) ! Those in same uni t c e l l can not be

ou t s i d e l a t t i c e .

n Neighbour ( i , 2 , 2 )=merge(0 , u Table (x , y , z min , 2 ) , z min . l t . 0 )

n Neighbour ( i , 2 , 3 )=u Table (x , y , z , 3 )
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n Neighbour ( i , 2 , 4 )=merge(0 , u Table (x , y min , z , 3 ) , y min . l t . 0 )

n Neighbour ( i , 2 , 5 )=u Table (x , y , z , 4 )

n Neighbour ( i , 2 , 6 )=merge(0 , u Table ( x min , y , z , 4 ) , x min . l t . 0 )

else i f ( a . eq . 2 ) then

n Neighbour ( i , 1 , 1 )=merge(0 , u Table (x , y pl , z , 1 ) , y p l . gt . ( CELLS−1) )

n Neighbour ( i , 1 , 2 )=merge(0 , u Table (x , y pl , z p l , 1 ) , z p l . gt . ( CELLS−1) .OR.

y p l . gt . ( CELLS−1) )

n Neighbour ( i , 1 , 3 )=u Table (x , y , z , 3 )

n Neighbour ( i , 1 , 4 )=merge(0 , u Table ( x min , y , z , 3 ) , x min . l t . 0 )

n Neighbour ( i , 1 , 5 )=u Table (x , y , z , 4 )

n Neighbour ( i , 1 , 6 )=merge(0 , u Table (x , y pl , z , 4 ) , y p l . gt . ( CELLS−1) )

n Neighbour ( i , 2 , 1 )=u Table (x , y , z , 1 )

n Neighbour ( i , 2 , 2 )=merge(0 , u Table (x , y , z p l , 1 ) , z p l . gt . ( CELLS−1) )

n Neighbour ( i , 2 , 3 )=merge(0 , u Table (x , y , z p l , 3 ) , z p l . gt . ( CELLS−1) )

n Neighbour ( i , 2 , 4 )=merge(0 , u Table ( x min , y , z p l , 3 ) , x min . l t . 0 .OR. z p l .

gt . ( CELLS−1) )

n Neighbour ( i , 2 , 5 )=merge(0 , u Table ( x min , y , z , 4 ) , x min . l t . 0 )

n Neighbour ( i , 2 , 6 )=merge(0 , u Table ( x min , y pl , z , 4 ) , x min . l t . 0 .OR. x p l .

gt . ( CELLS−1) )

else i f ( a . eq . 3 ) then

n Neighbour ( i , 1 , 1 )=merge(0 , u Table ( x pl , y , z , 1 ) , x p l . gt . ( CELLS−1) )

n Neighbour ( i , 1 , 2 )=merge(0 , u Table ( x pl , y pl , z , 1 ) , x p l . gt . ( CELLS−1) .OR.

y p l . gt . ( CELLS−1) )

n Neighbour ( i , 1 , 3 )=u Table (x , y , z , 2 )

n Neighbour ( i , 1 , 4 )=merge(0 , u Table ( x pl , y , z , 2 ) , x p l . gt . ( CELLS−1) )

n Neighbour ( i , 1 , 5 )=u Table (x , y , z , 4 )

n Neighbour ( i , 1 , 6 )=merge(0 , u Table (x , y , z min , 4 ) , z min . l t . 0 )

n Neighbour ( i , 2 , 1 )=u Table (x , y , z , 1 )

n Neighbour ( i , 2 , 2 )=merge(0 , u Table (x , y pl , z , 1 ) , y p l . gt . ( CELLS−1) )

n Neighbour ( i , 2 , 3 )=merge(0 , u Table (x , y , z min , 2 ) , z min . l t . 0 )

n Neighbour ( i , 2 , 4 )=merge(0 , u Table ( x pl , y , z min , 2 ) , x p l . gt . ( CELLS−1) .OR

. z min . l t . 0 )

n Neighbour ( i , 2 , 5 )=merge(0 , u Table (x , y pl , z , 4 ) , y p l . gt . ( CELLS−1) )

n Neighbour ( i , 2 , 6 )=merge(0 , u Table (x , y pl , z min , 4 ) , y p l . gt . ( CELLS−1) .OR

. z min . l t . 0 )

else ! atom # 4 as de f ined by S . H. Curnoe .

n Neighbour ( i , 1 , 1 )=merge(0 , u Table (x , y , z p l , 1 ) , z p l . gt . ( CELLS−1) )

n Neighbour ( i , 1 , 2 )=merge(0 , u Table ( x pl , y , z p l , 1 ) , x p l . gt . ( CELLS−1) .OR.

z p l . gt . ( CELLS−1) )

n Neighbour ( i , 1 , 3 )=u Table (x , y , z , 2 )

n Neighbour ( i , 1 , 4 )=merge(0 , u Table (x , y min , z , 2 ) , y min . l t . 0 )

n Neighbour ( i , 1 , 5 )=u Table (x , y , z , 3 )

n Neighbour ( i , 1 , 6 )=merge(0 , u Table (x , y , z p l , 3 ) , z p l . gt . ( CELLS−1) )

n Neighbour ( i , 2 , 1 )=u Table (x , y , z , 1 )

n Neighbour ( i , 2 , 2 )=merge(0 , u Table ( x pl , y , z , 1 ) , x p l . gt . ( CELLS−1) )

n Neighbour ( i , 2 , 3 )=merge(0 , u Table ( x pl , y , z , 2 ) , x p l . gt . ( CELLS−1) )

n Neighbour ( i , 2 , 4 )=merge(0 , u Table ( x pl , y min , z , 2 ) , x p l . gt . ( CELLS−1) .OR

. y min . l t . 0 )

n Neighbour ( i , 2 , 5 )=merge(0 , u Table (x , y min , z , 3 ) , y min . l t . 0 )
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n Neighbour ( i , 2 , 6 )=merge(0 , u Table (x , y min , z p l , 3 ) , y min . l t . 0 .OR. z p l .

gt . ( CELLS−1) )

endif

ENDDO

END SUBROUTINE Find NN

!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!SUBROUTINE: EFM

!

SUBROUTINE EFM

USE input module , ONLY : dp , spin , STEPS, NUM SPINS, B APP, energy , NUM CONFIG,

CALC Q, PERCENT OUTPUT, NUM MIN OUT, PRESET INIT

IMPLICIT NONE

REAL( kind=dp ) , DIMENSION( 1 : 3 ) : : B Eff , new Spin ! The e f f e c t i v e f i e l d and

new spin components in each dimension

REAL( kind=dp ) : : new Spin L , e Sta r t , rand

REAL( kind=dp ) , DIMENSION( 1 :NUM MIN OUT) : : m f i l e e

INTEGER : : i , j , k ,m, n ! Subrout ine i t e r a t o r

INTEGER, DIMENSION( 1 :NUM SPINS) : : sp in Order ( 1 :NUM SPINS) = (/( i , i =1,NUM SPINS,

1) /) ! I n i t i a l i z e the sp in order ing .

INTEGER, DIMENSION( 1 :NUM MIN OUT) : : m f i l e c ! Store con f i g number f o r minimums

to be output at end o f s imu la t ion

CHARACTER∗15 : : o u t p u t f i l e

INTERFACE

SUBROUTINE S h u f f l e ( a r r )

INTEGER, INTENT(INOUT) : : a r r ( : )

END SUBROUTINE S h u f f l e

SUBROUTINE Get B Eff ( B Eff , ord , sp in Curr )

USE input module , ONLY : dp , n Neighbour , invu tab l e , spin , J EX

IMPLICIT NONE

REAL( kind=dp ) , INTENT(INOUT) : : B EFF ( : )

INTEGER, INTENT(IN) : : sp in Curr

INTEGER, INTENT(IN) : : ord

END SUBROUTINE Get B Eff

END INTERFACE

write (∗ ,∗ ) ” Number o f c o n f i g u r a t i o n s : ” , NUM CONFIG

write (∗ ,∗ ) ” Steps per c o n f i g u r a t i o n : ” , STEPS

write (∗ ,∗ ) ” Percentage o f runs output : ” , PERCENT OUTPUT∗100 , ”%”

m f i l e e=huge( m f i l e e )

do n=1,NUM CONFIG ! Po t en t i a l p a r a l l e l i z a t i o n

IF (PRESET INIT) then

CALL I n i t i a l i z e S p i n P r e s e t

ELSE

CALL In i t i a l i z e Sp in Random

ENDIF

ca l l measure
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e S t a r t=energy

do i =1,STEPS !Can not p a r a l l e l i z e

ca l l S h u f f l e ( sp in Order )

do j =1, NUM SPINS !Can not p a r a l l e l i z e

B Eff ( 1 : 3 ) =(/ 0 .0 dp , 0 . 0 dp , 0 . 0 dp /)

ca l l Get B Eff ( B Eff , 1 , sp in Order ( j ) ) ! Get NN E f f e c t i v e F ie l d

ca l l Get B Eff ( B Eff , 2 , sp in Order ( j ) ) ! Get NNN E f f e c t i v e F ie l d

do k=1,3 ! Ca l cu la t e new spin components from B Eff

new Spin ( k )=B APP( k )+B Eff ( k )

enddo ! k

i f ( new Spin (1 ) . eq . 0 .AND. new Spin (2 ) . eq . 0 .AND. new Spin (3 ) . eq . 0 )

goto 92 ! For sp ins in corner with no change

new Spin L=dsqrt ( new Spin (1 ) ∗∗2+new Spin (2 ) ∗∗2+new Spin (3 ) ∗∗2)

new Spin=new Spin/ new Spin L

sp in ( sp in Order ( j ) , : )=new Spin ( : )

92 continue

enddo ! j

enddo ! i

ca l l measure

open(unit=15, f i l e=”EnergyMeasurement . dat” , position=”APPEND” , action=”WRITE”

, status=”UNKNOWN” )

write (unit=15,fmt=∗) n , e S t a r t /NUM SPINS, energy /NUM SPINS

f l u s h (unit=15)

close (unit=15)

ca l l random number( rand )

i f ( energy . l t .MAXVAL( m f i l e e ) ) then

m=MAXLOC( m f i l e e , 1)

m f i l e e (m)=energy

m f i l e c (m)=n

write ( o u t p u t f i l e , ’ (A8 , I3 . 3 ,A4) ’ ) ’ MinConf ’ , m, ” . dat ”

write (∗ ,∗ ) ”New Minimum”

write (∗ ,∗ ) ” Conf ig : ” , n , ” Energy : ” , energy /NUM SPINS

write (∗ ,∗ ) ” Overwrit ing ” , o u t p u t f i l e

open(unit=16, f i l e=o u t p u t f i l e , action=”WRITE” , status=”REPLACE” )

do i =1,NUM SPINS

write (unit=16, fmt=∗) sp in ( i , 1 ) , sp in ( i , 2 ) , sp in ( i , 3 )

enddo ! j

f l u s h (unit=16)

close (unit=16)

! At t h i s time , a l l sp ins and d i r e c t i o n s w i l l be c a l c u l a t e d

i f (CALC Q) then

write (∗ ,∗ ) ”// Ca l cu l a t ing FFT . . . ”
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do i =1,4

write (∗ ,∗ ) ” Spin Number : ” , i

do j =1,3

ca l l FFT( i , j )

enddo ! j

enddo ! i

endif !CALC Q

else i f ( rand . le .PERCENT OUTPUT) then

write (∗ ,∗ ) ”Random output ”

write (∗ ,∗ ) ” Conf ig : ” , n , ” Energy : ” , energy /NUM SPINS

write ( o u t p u t f i l e , ’ (A5 , I6 . 6 ,A4) ’ ) ” Conf ” , n , ” . dat ”

write (∗ ,∗ ) ” Writing to ” , o u t p u t f i l e

open(unit=16, f i l e=o u t p u t f i l e , position=”APPEND” , action=”WRITE” , status

=”NEW” )

do i =1,NUM SPINS

write (unit=16, fmt=∗) sp in ( i , 1 ) , sp in ( i , 2 ) , sp in ( i , 3 )

enddo ! i

f l u s h (unit=16)

close (unit=16)

endif ! output

enddo ! n

open(unit=16, f i l e=”MinEnergy . dat” , action=” wr i t e ” , status=” r e p l a c e ” ) ! Write

out MinConfig informat ion

do i =1,NUM MIN OUT

write (unit=16, fmt=’ ( I3 . 3 , I10 , F20 . 1 5 ) ’ ) i , m f i l e c ( i ) , m f i l e e ( i ) /NUM SPINS

enddo ! i

f l u s h (unit=16)

close (unit=16)

END SUBROUTINE EFM

SUBROUTINE STEPPED EFM

USE input module , ONLY : dp , spin , STEPS, NUM SPINS, B APP, energy , NUM CONFIG,

CALC Q,&

PERCENT OUTPUT, NUM MIN OUT, PRESET INIT , EFM RATIO, PI , n Neighbour

IMPLICIT NONE

REAL( kind=dp ) , DIMENSION( 1 : 3 ) : : B Eff , new Spin , c ! The e f f e c t i v e f i e l d ,

new spin components and cross product in each dimension

REAL( kind=dp ) : : new Spin L , e Sta r t , rand , theta , dot

REAL( kind=dp ) , DIMENSION( 1 :NUM MIN OUT) : : m f i l e e

REAL( kind=dp ) , DIMENSION( 1 : 3 , 1 : 3 ) : : rot , t r o t

REAL( kind=dp ) , DIMENSION( 1 : 3 , 1 : 3 ) , PARAMETER : : IDEN = &

Reshape ( (/ 1 .0 dp , 0 . 0 dp , 0 . 0 dp , 0 . 0 dp , 1 . 0 dp , 0 . 0 dp , 0 . 0 dp , 0 . 0 dp , 1 . 0 dp

/) , ( /3 , 3/ ) )

INTEGER : : i , j , k ,m, n ! Subrout ine i t e r a t o r

INTEGER, DIMENSION( 1 :NUM SPINS) : : sp in Order ( 1 :NUM SPINS) = (/( i , i =1,NUM SPINS,

1) /) ! I n i t i a l i z e the sp in order ing .
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INTEGER, DIMENSION( 1 :NUM MIN OUT) : : m f i l e c ! Store con f i g number f o r minimums

to be output at end o f s imu la t ion

CHARACTER∗15 : : o u t p u t f i l e

INTERFACE

SUBROUTINE S h u f f l e ( a r r )

INTEGER, INTENT(INOUT) : : a r r ( : )

END SUBROUTINE S h u f f l e

SUBROUTINE Get B Eff ( B Eff , ord , sp in Curr )

USE input module , ONLY : dp , n Neighbour , invu tab l e , spin , J EX

IMPLICIT NONE

REAL( kind=dp ) , INTENT(INOUT) : : B EFF ( : )

INTEGER, INTENT(IN) : : sp in Curr

INTEGER, INTENT(IN) : : ord

END SUBROUTINE Get B Eff

FUNCTION Cross ( a , b) result ( c )

USE input module , ONLY : dp

REAL( kind=dp ) , DIMENSION( 1 : 3 ) : : c

REAL( kind=dp ) , DIMENSION( 1 : 3 ) , INTENT(IN) : : a , b

END FUNCTION

END INTERFACE

write (∗ ,∗ ) ” Number o f c o n f i g u r a t i o n s : ” , NUM CONFIG

write (∗ ,∗ ) ” Steps per c o n f i g u r a t i o n : ” , STEPS

write (∗ ,∗ ) ” Percentage o f runs output : ” , PERCENT OUTPUT∗100 , ”%”

m f i l e e=huge( m f i l e e )

do n=1,NUM CONFIG ! Po t en t i a l p a r a l l e l i z a t i o n

IF (PRESET INIT) then

CALL I n i t i a l i z e S p i n P r e s e t

ELSE

CALL In i t i a l i z e Sp in Random

ENDIF

ca l l measure

e S t a r t=energy

do i =1,STEPS !Can not p a r a l l e l i z e

ca l l S h u f f l e ( sp in Order )

do j =1, NUM SPINS !Can not p a r a l l e l i z e

B Eff ( 1 : 3 ) =(/ 0 .0 dp , 0 . 0 dp , 0 . 0 dp /)

ca l l Get B Eff ( B Eff , 1 , sp in Order ( j ) ) ! Get NN E f f e c t i v e F ie l d

ca l l Get B Eff ( B Eff , 2 , sp in Order ( j ) ) ! Get NNN E f f e c t i v e F ie l d

new Spin=B APP+B Eff ! Ca l cu la t e new spin components from B Eff

i f ( new Spin (1 ) . eq . 0 .AND. new Spin (2 ) . eq . 0 .AND. new Spin (3 ) . eq . 0 )

goto 92 ! For sp ins in corner with no change

new Spin L=dsqrt ( new Spin (1 ) ∗∗2+new Spin (2 ) ∗∗2+new Spin (3 ) ∗∗2)

new Spin=new Spin/ new Spin L
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c=Cross ( sp in ( sp in Order ( j ) , : ) , new Spin )

i f ( c (1 ) . eq . 0 .AND. c (2 ) . eq . 0 .AND. c (3 ) . eq . 0 ) goto 92 ! I f sp ins

are a l i gned to B Eff , no change i s requ i red

c=c/ dsqrt ( c (1 ) ∗∗2+c (2) ∗∗2+c (3) ∗∗2)

dot=dot product ( sp in ( sp in Order ( j ) , : ) , new Spin )

i f ( dot . gt . 1 . 0 dp ) then ! Insure the dot product i s w i th in approrp ia te

parameters [−1 ,1]

dot =1.0 dp

else i f ( dot . l t . (−1.0 dp ) ) then

dot=−1.0 dp

endif

theta=DACOS( dot )

IF ( theta . gt . PI ) THEN ! This may never be needed . . .

theta=(PI−theta )

ENDIF

theta=theta /EFM RATIO

rot ( 1 , : )= (/ 0 .0 dp , −c (3 ) , c (2 ) /)

ro t ( 2 , : )= (/ c (3 ) , 0 . 0 dp , −c (1 ) /)

ro t ( 3 , : )= (/ −c (2 ) , c (1 ) , 0 . 0 dp /)

ro t=IDEN+ds in ( theta ) ∗ ro t+(1−dcos ( theta ) ) ∗MATMUL( rot , ro t )

new Spin=MATMUL( rot , sp in ( sp in Order ( j ) , : ) )

new Spin L=dsqrt ( new Spin (1 ) ∗∗2+new Spin (2 ) ∗∗2+new Spin (3 ) ∗∗2)

new Spin=new Spin/ new Spin L

sp in ( sp in Order ( j ) , : )=new Spin ( : )

92 continue

enddo ! j

enddo ! i

ca l l measure

open(unit=15, f i l e=”EnergyMeasurement . dat” , position=”APPEND” , action=”WRITE”

, status=”UNKNOWN” )

write (unit=15,fmt=∗) n , e S t a r t /NUM SPINS, energy /NUM SPINS

f l u s h (unit=15)

close (unit=15)

ca l l random number( rand )

i f ( energy . l t .MAXVAL( m f i l e e ) ) then

m=MAXLOC( m f i l e e , 1)

m f i l e e (m)=energy

m f i l e c (m)=n

write ( o u t p u t f i l e , ’ (A8 , I3 . 3 ,A4) ’ ) ’ MinConf ’ , m, ” . dat ”

write (∗ ,∗ ) ”New Minimum”

write (∗ ,∗ ) ” Conf ig : ” , n , ” Energy : ” , energy /NUM SPINS

write (∗ ,∗ ) ” Overwrit ing ” , o u t p u t f i l e

open(unit=16, f i l e=o u t p u t f i l e , action=”WRITE” , status=”REPLACE” )

do i =1,NUM SPINS

write (unit=16, fmt=∗) sp in ( i , 1 ) , sp in ( i , 2 ) , sp in ( i , 3 )

enddo ! j

f l u s h (unit=16)
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close (unit=16)

! At t h i s time , a l l sp ins and d i r e c t i o n s w i l l be c a l c u l a t e d

i f (CALC Q) then

write (∗ ,∗ ) ”// Ca l cu l a t ing FFT . . . ”

do i =1,4

write (∗ ,∗ ) ” Spin Number : ” , i

do j =1,3

ca l l FFT( i , j )

enddo ! j

enddo ! i

endif !CALC Q

else i f ( rand . le .PERCENT OUTPUT) then

write (∗ ,∗ ) ”Random output ”

write (∗ ,∗ ) ” Conf ig : ” , n , ” Energy : ” , energy /NUM SPINS

write ( o u t p u t f i l e , ’ (A5 , I6 . 6 ,A4) ’ ) ” Conf ” , n , ” . dat ”

write (∗ ,∗ ) ” Writing to ” , o u t p u t f i l e

open(unit=16, f i l e=o u t p u t f i l e , position=”APPEND” , action=”WRITE” , status

=”NEW” )

do i =1,NUM SPINS

write (unit=16, fmt=∗) sp in ( i , 1 ) , sp in ( i , 2 ) , sp in ( i , 3 )

enddo ! i

f l u s h (unit=16)

close (unit=16)

endif ! output

enddo ! n

open(unit=16, f i l e=”MinEnergy . dat” , action=” wr i t e ” , status=” r e p l a c e ” ) ! Write

out MinConfig informat ion

do i =1,NUM MIN OUT

write (unit=16, fmt=’ ( I3 . 3 , I10 , F20 . 1 5 ) ’ ) i , m f i l e c ( i ) , m f i l e e ( i ) /NUM SPINS

enddo ! i

f l u s h (unit=16)

close (unit=16)

END SUBROUTINE STEPPED EFM

!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!SUBROUTINE: METROMC

! Runs Metropo l i s Monte Carlo code from $MIN TEMP to $MAXTEMP with s t ep s i z e

$STEP TEMP

! Each temperature i s run fo r $STEPS i t e r a t i o n s o f the Monte Carlo code .

! At t h i s time there i s no time g iven fo r e q u i l i b r i a t i o n

SUBROUTINE METROMC

USE input module , ONLY : dp , PI , MC TYPE, spin , MIN TEMP, MAX TEMP, STEP TEMP,

STEPS, energy , NUM SPINS, STEPS PER OUT, EQ STEPS

IMPLICIT NONE
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REAL( kind=dp ) : : theta , phi , s in t , s inp , cost , cosp

REAL( kind=dp ) : : enew , eold , eav , etot , de l ta , T, new spin L , rand

REAL( kind=dp ) , DIMENSION( 1 : 3 ) : : new Spin , B Eff

INTEGER : : i , j , k , l , s p i n c u r r

INTERFACE

SUBROUTINE Get B Eff ( B Eff , ord , sp in Curr )

USE input module , ONLY : dp , n Neighbour , invu tab l e , spin , J EX

IMPLICIT NONE

REAL( kind=dp ) , INTENT(INOUT) : : B EFF ( : )

INTEGER, INTENT(IN) : : sp in Curr

INTEGER, INTENT(IN) : : ord

END SUBROUTINE Get B Eff

END INTERFACE

write (∗ ,∗ ) ” Min temp : ” , MIN TEMP

write (∗ ,∗ ) ” Max temp : ” , MAX TEMP

write (∗ ,∗ ) ” Temp s t ep s : ” , STEP TEMP

write (∗ ,∗ ) ” Steps per temp : ” , STEPS

write (∗ ,∗ ) ” Steps per output : ” , STEPS PER OUT

do i =1,STEP TEMP

i f (MC TYPE. eq . ”HEATING” ) then ! Choose hea t ing or coo l i ng .

T=MIN TEMP+((MAX TEMP−MIN TEMP) /STEP TEMP) ∗( i −1)

else

T=MAX TEMP−((MAX TEMP−MIN TEMP) /STEP TEMP) ∗( i −1)

endif

do j =1,EQ STEPS ! E q u i l i b r i a t e

do k=1,NUM SPINS

B Eff ( 1 : 3 ) =(/ 0 .0 d0 , 0 . 0 d0 , 0 . 0 d0 /)

501 continue

ca l l random number( rand )

s p i n c u r r= int (NUM SPINS∗ rand )

i f ( s p i n c u r r . gt .NUM SPINS . or . s p i n c u r r . l t . 1 ) go to 501 ! Ensure

i n t e g e r l i e s wi th in l a t t i c e

ca l l Get B Eff ( B Eff , 1 , s p i n c u r r ) ! Get NN E f f e c t i v e F ie l d

ca l l Get B Eff ( B Eff , 2 , s p i n c u r r ) ! Get NNN E f f e c t i v e F ie l d

ca l l random number( phi )

ca l l random number( theta )

phi=phi ∗2∗PI

theta=theta ∗PI

cosp=cos ( phi )

s inp=sin ( phi )

co s t=cos ( theta )
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s i n t=sin ( theta )

new spin ( 1 : 3 ) =(/ s i n t ∗ cosp , s i n t ∗ s inp , co s t /)

new spin L=dsqrt ( new Spin (1 ) ∗∗2+new Spin (2 ) ∗∗2+new Spin (3 ) ∗∗2)

new spin ( 1 : 3 )=new spin ( 1 : 3 ) / new Spin L

enew=0.0d0

eo ld =0.0d0

do l =1,3

eo ld=eold−(B Eff ( l ) ∗ sp in ( sp in cur r , l ) ) !Add up the energy terms

enew=enew−(B Eff ( l ) ∗new spin ( l ) )

enddo ! j

d e l t a=enew−eo ld

ca l l random number( rand )

i f ( ( d e l t a . l t . 0 . 0 d0 ) .OR. ( rand . le . ( dexp(−d e l t a /T) /(1.+ dexp(−d e l t a /T) ) ) )

) then

sp in ( sp in cur r , 1 : 3 )=new spin ( 1 : 3 )

endif

enddo ! k

enddo ! j

do j =1,STEPS !Run Metropo l i s MC

do k=1,NUM SPINS

B Eff ( 1 : 3 ) =(/ 0 .0 d0 , 0 . 0 d0 , 0 . 0 d0 /)

502 continue

ca l l random number( rand )

s p i n c u r r= int (NUM SPINS∗ rand )

i f ( s p i n c u r r . gt .NUM SPINS . or . s p i n c u r r . l t . 1 ) go to 502 ! Ensure

i n t e g e r l i e s wi th in l a t t i c e

ca l l Get B Eff ( B Eff , 1 , s p i n c u r r ) ! Get NN E f f e c t i v e F ie l d

ca l l Get B Eff ( B Eff , 2 , s p i n c u r r ) ! Get NNN E f f e c t i v e F ie l d

ca l l random number( phi )

ca l l random number( theta )

phi=phi ∗2∗PI

theta=theta ∗PI

cosp=cos ( phi )

s inp=sin ( phi )

co s t=cos ( theta )

s i n t=sin ( theta )

new spin ( 1 : 3 ) =(/ s i n t ∗ cosp , s i n t ∗ s inp , co s t /)

new spin L=dsqrt ( new Spin (1 ) ∗∗2+new Spin (2 ) ∗∗2+new Spin (3 ) ∗∗2)

new spin ( 1 : 3 )=new spin ( 1 : 3 ) / new Spin L
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enew=0.d0

eo ld =0.d0

do l =1,3

eo ld=eold−(B Eff ( l ) ∗ sp in ( sp in cur r , l ) ) !Add up the energy terms

enew=enew−(B Eff ( l ) ∗new spin ( l ) )

enddo ! j

d e l t a=enew−eo ld

ca l l random number( rand )

i f ( rand . le . ( dexp(−d e l t a /T) /(1.+ dexp(−d e l t a /T) ) ) ) then

sp in ( sp in cur r , 1 : 3 )=new spin ( 1 : 3 )

endif

enddo ! k

ca l l measure

e to t=eto t+energy

i f (Modulo( j ,STEPS PER OUT) . eq . 0 ) then

write (∗ ,∗ ) ” TEMP: ” , T, j , energy /NUM SPINS

ca l l measure ! measure the energy o f the system

open(unit=12, f i l e=” e n e r g y t i m e s e r i e s . dat” , position=”APPEND” , action

=”WRITE” , status=”UNKNOWN” ) ! Output f o r energy

write (unit=12,fmt=∗) T, j , energy /NUM SPINS

f l u s h (unit=12) ! Clear and c l o s e output

close (unit=12)

do k=1,NUM SPINS

write ( i ∗1000+( j /STEPS PER OUT) ,∗ ) sp in (k , 1 ) , sp in (k , 2 ) , sp in (k , 3 )

enddo ! k

f l u s h ( i ∗1000+( j /STEPS PER OUT) ) ! Clear the sp in o r i en t a t i on output

endif

enddo ! j

eav=( e to t /NUM SPINS) /STEPS

write (∗ ,∗ ) ” STEP: ” , i , eav

open(unit=12, f i l e=” e n e r g y f i n a l . dat ” , position=”APPEND” , action=”WRITE” ,

status=”UNKNOWN” ) ! Output f o r energy

write (unit=12,fmt=∗) T, eav , e t o t

f l u s h (unit=12) ! Clear and c l o s e output

close (unit=12)

do k=1,NUM SPINS

write (1050 ,∗ ) sp in (k , 1 ) , sp in (k , 2 ) , sp in (k , 3 )



103

enddo ! k

f l u s h (1050) ! Clear the sp in o r i en t a t i on output

enddo ! i

END SUBROUTINE METROMC

!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! Function : Cross (a , b )

! Ca l cu l a t e s the cross product o f two vec t o r s

FUNCTION Cross ( a , b ) result ( c )

USE input module , ONLY : dp

REAL( kind=dp ) , DIMENSION( 1 : 3 ) : : c

REAL( kind=dp ) , DIMENSION( 1 : 3 ) , INTENT(IN) : : a , b

c (1 ) = a (2) ∗ b (3) − a (3 ) ∗ b (2)

c (2 ) = a (3) ∗ b (1) − a (1 ) ∗ b (3)

c (3 ) = a (1) ∗ b (2) − a (2 ) ∗ b (1)

END FUNCTION Cross

!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!SUBROUTINE: Get B Eff ( )

! Ca l cu l a t e s the e f f e c t i v e f i e l d f e l t by $spin Curr as a r e s u l t o f a l l neares t

neighbour i n t e r a c t i o n s

SUBROUTINE Get B Eff ( B Eff , ord , sp in Curr )

USE input module , ONLY : dp , n Neighbour , invu tab l e , spin , J EX

IMPLICIT NONE

REAL( kind=dp ) , INTENT(INOUT) : : B Eff ( : )

INTEGER, DIMENSION( 1 : 6 ) : : neighbour ! Store neighbours in sma l l e r array fo r

each spin

INTEGER, INTENT(IN) : : sp in Curr ! Current sp in be ing cons idered

INTEGER, INTENT(IN) : : ord ! The order o f neares t neighbour be ing

cons idered

INTEGER : : j

INTEGER : : a ! Holds the atom #

do j =1,6 ! Make sma l l e r array o f ne ighbour ing sp in (For s i z e e f f i c i e n c y I

guess . )

neighbour ( j )=n Neighbour ( spin Curr , ord , j )

enddo ! j

a=invu Table ( spin Curr , 4 ) ! Get the atom# for current sp in

i f ( a . eq . 1 ) then ! A l l ne ighbours de f ined s p e c i f i c to atom # 1
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! (1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9)−>(1,2,3,4+5,4−5,6+7,6−7,8+9,8−9)

B Eff (1 )=B Eff (1 )+J EX( ord , 1 ) ∗( sp in ( neighbour (1 ) ,1 )+sp in ( neighbour (2 ) ,1 ) ) !

Ca l cu la t e e f f e c t i v e f i e l d a long x from each energy term

B Eff (1 )=B Eff (1 )+J EX( ord , 2 ) ∗( sp in ( neighbour (3 ) ,1 )+sp in ( neighbour (4 ) ,1 ) )

B Eff (1 )=B Eff (1 )+J EX( ord , 3 ) ∗( sp in ( neighbour (5 ) ,1 )+sp in ( neighbour (6 ) ,1 ) )

B Eff (1 )=B Eff (1 )+J EX( ord , 4 ) ∗( sp in ( neighbour (1 ) ,2 )+sp in ( neighbour (4 ) ,3 )+sp in

( neighbour (2 ) ,2 )+sp in ( neighbour (3 ) ,3 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 5 ) ∗( sp in ( neighbour (1 ) ,2 )+sp in ( neighbour (4 ) ,3 )−sp in

( neighbour (2 ) ,2 )−sp in ( neighbour (3 ) ,3 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 6 ) ∗(− sp in ( neighbour (6 ) ,3 )+sp in ( neighbour (3 ) ,2 )+

sp in ( neighbour (5 ) ,3 )−sp in ( neighbour (4 ) ,2 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 7 ) ∗(− sp in ( neighbour (6 ) ,3 )+sp in ( neighbour (3 ) ,2 )−
sp in ( neighbour (5 ) ,3 )+sp in ( neighbour (4 ) ,2 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 8 ) ∗(− sp in ( neighbour (2 ) ,3 )+sp in ( neighbour (5 ) ,2 )+

sp in ( neighbour (1 ) ,3 )−sp in ( neighbour (6 ) ,2 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 9 ) ∗(− sp in ( neighbour (2 ) ,3 )+sp in ( neighbour (5 ) ,2 )−
sp in ( neighbour (1 ) ,3 )+sp in ( neighbour (6 ) ,2 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 1 ) ∗( sp in ( neighbour (5 ) ,2 )+sp in ( neighbour (6 ) ,2 ) ) !

Ca l cu la t e e f f e c t i v e f i e l d a long y from each energy term

B Eff (2 )=B Eff (2 )+J EX( ord , 2 ) ∗( sp in ( neighbour (1 ) ,2 )+sp in ( neighbour (2 ) ,2 ) )

B Eff (2 )=B Eff (2 )+J EX( ord , 3 ) ∗( sp in ( neighbour (3 ) ,2 )+sp in ( neighbour (4 ) ,2 ) )

B Eff (2 )=B Eff (2 )+J EX( ord , 4 ) ∗( sp in ( neighbour (2 ) ,1 )+sp in ( neighbour (5 ) ,3 )+sp in

( neighbour (1 ) ,1 )+sp in ( neighbour (6 ) ,3 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 5 ) ∗( sp in ( neighbour (2 ) ,1 )+sp in ( neighbour (5 ) ,3 )−sp in

( neighbour (1 ) ,1 )−sp in ( neighbour (6 ) ,3 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 6 ) ∗( sp in ( neighbour (1 ) ,3 )−sp in ( neighbour (4 ) ,1 )−sp in

( neighbour (2 ) ,3 )+sp in ( neighbour (3 ) ,1 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 7 ) ∗( sp in ( neighbour (1 ) ,3 )−sp in ( neighbour (4 ) ,1 )+sp in

( neighbour (2 ) ,3 )−sp in ( neighbour (3 ) ,1 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 8 ) ∗(− sp in ( neighbour (6 ) ,1 )+sp in ( neighbour (3 ) ,3 )+

sp in ( neighbour (5 ) ,1 )−sp in ( neighbour (4 ) ,3 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 9 ) ∗(− sp in ( neighbour (6 ) ,1 )+sp in ( neighbour (3 ) ,3 )−
sp in ( neighbour (5 ) ,1 )+sp in ( neighbour (4 ) ,3 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 1 ) ∗( sp in ( neighbour (3 ) ,3 )+sp in ( neighbour (4 ) ,3 ) ) !

Ca l cu la t e e f f e c t i v e f i e l d a long z from each energy term

B Eff (3 )=B Eff (3 )+J EX( ord , 2 ) ∗( sp in ( neighbour (5 ) ,3 )+sp in ( neighbour (6 ) ,3 ) )

B Eff (3 )=B Eff (3 )+J EX( ord , 3 ) ∗( sp in ( neighbour (1 ) ,3 )+sp in ( neighbour (2 ) ,3 ) )

B Eff (3 )=B Eff (3 )+J EX( ord , 4 ) ∗( sp in ( neighbour (6 ) ,2 )+sp in ( neighbour (3 ) ,1 )+sp in

( neighbour (4 ) ,1 )+sp in ( neighbour (5 ) ,2 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 5 ) ∗( sp in ( neighbour (6 ) ,2 )+sp in ( neighbour (3 ) ,1 )−sp in

( neighbour (4 ) ,1 )−sp in ( neighbour (5 ) ,2 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 6 ) ∗(− sp in ( neighbour (2 ) ,2 )+sp in ( neighbour (5 ) ,1 )+

sp in ( neighbour (1 ) ,2 )−sp in ( neighbour (6 ) ,1 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 7 ) ∗(− sp in ( neighbour (2 ) ,2 )+sp in ( neighbour (5 ) ,1 )−
sp in ( neighbour (1 ) ,2 )+sp in ( neighbour (6 ) ,1 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 8 ) ∗( sp in ( neighbour (1 ) ,1 )−sp in ( neighbour (4 ) ,2 )−sp in

( neighbour (2 ) ,1 )+sp in ( neighbour (3 ) ,2 ) ) /2 .0 dp
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B Eff (3 )=B Eff (3 )+J EX( ord , 9 ) ∗( sp in ( neighbour (1 ) ,1 )−sp in ( neighbour (4 ) ,2 )+sp in

( neighbour (2 ) ,1 )−sp in ( neighbour (3 ) ,2 ) ) /2 .0 dp

else i f ( a . eq . 2 ) then ! A l l ne ighbours de f ined s p e c i f i c to atom # 2

B Eff (1 )=B Eff (1 )+J EX( ord , 1 ) ∗( sp in ( neighbour (1 ) ,1 )+sp in ( neighbour (2 ) ,1 ) ) !

Ca l cu la t e e f f e c t i v e f i e l d a long x from each energy term

B Eff (1 )=B Eff (1 )+J EX( ord , 2 ) ∗( sp in ( neighbour (5 ) ,1 )+sp in ( neighbour (6 ) ,1 ) )

B Eff (1 )=B Eff (1 )+J EX( ord , 3 ) ∗( sp in ( neighbour (3 ) ,1 )+sp in ( neighbour (4 ) ,1 ) )

B Eff (1 )=B Eff (1 )+J EX( ord , 4 ) ∗( sp in ( neighbour (2 ) ,2 )−sp in ( neighbour (6 ) ,3 )+sp in

( neighbour (1 ) ,2 )−sp in ( neighbour (5 ) ,3 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 5 ) ∗( sp in ( neighbour (2 ) ,2 )−sp in ( neighbour (6 ) ,3 )−sp in

( neighbour (1 ) ,2 )+sp in ( neighbour (5 ) ,3 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 6 ) ∗( sp in ( neighbour (3 ) ,3 )+sp in ( neighbour (5 ) ,2 )−sp in

( neighbour (4 ) ,3 )−sp in ( neighbour (6 ) ,2 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 7 ) ∗( sp in ( neighbour (3 ) ,3 )+sp in ( neighbour (5 ) ,2 )+sp in

( neighbour (4 ) ,3 )+sp in ( neighbour (6 ) ,2 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 8 ) ∗( sp in ( neighbour (1 ) ,3 )+sp in ( neighbour (4 ) ,2 )−sp in

( neighbour (2 ) ,3 )−sp in ( neighbour (3 ) ,2 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 9 ) ∗( sp in ( neighbour (1 ) ,3 )+sp in ( neighbour (4 ) ,2 )+sp in

( neighbour (2 ) ,3 )+sp in ( neighbour (3 ) ,2 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 1 ) ∗( sp in ( neighbour (3 ) ,2 )+sp in ( neighbour (4 ) ,2 ) ) !

Ca l cu la t e e f f e c t i v e f i e l d a long y from each energy term

B Eff (2 )=B Eff (2 )+J EX( ord , 2 ) ∗( sp in ( neighbour (1 ) ,2 )+sp in ( neighbour (2 ) ,2 ) )

B Eff (2 )=B Eff (2 )+J EX( ord , 3 ) ∗( sp in ( neighbour (5 ) ,2 )+sp in ( neighbour (6 ) ,2 ) )

B Eff (2 )=B Eff (2 )+J EX( ord , 4 ) ∗( sp in ( neighbour (1 ) ,1 )−sp in ( neighbour (4 ) ,3 )+sp in

( neighbour (2 ) ,1 )−sp in ( neighbour (3 ) ,3 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 5 ) ∗( sp in ( neighbour (1 ) ,1 )−sp in ( neighbour (4 ) ,3 )−sp in

( neighbour (2 ) ,1 )+sp in ( neighbour (3 ) ,3 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 6 ) ∗(− sp in ( neighbour (2 ) ,3 )−sp in ( neighbour (6 ) ,1 )+

sp in ( neighbour (1 ) ,3 )+sp in ( neighbour (5 ) ,1 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 7 ) ∗(− sp in ( neighbour (2 ) ,3 )−sp in ( neighbour (6 ) ,1 )−
sp in ( neighbour (1 ) ,3 )−sp in ( neighbour (5 ) ,1 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 8 ) ∗(− sp in ( neighbour (3 ) ,1 )−sp in ( neighbour (5 ) ,3 )+

sp in ( neighbour (4 ) ,1 )+sp in ( neighbour (6 ) ,3 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 9 ) ∗(− sp in ( neighbour (3 ) ,1 )−sp in ( neighbour (5 ) ,3 )−
sp in ( neighbour (4 ) ,1 )−sp in ( neighbour (6 ) ,3 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 1 ) ∗( sp in ( neighbour (5 ) ,3 )+sp in ( neighbour (6 ) ,3 ) ) !

Ca l cu la t e e f f e c t i v e f i e l d a long z from each energy term

B Eff (3 )=B Eff (3 )+J EX( ord , 2 ) ∗( sp in ( neighbour (3 ) ,3 )+sp in ( neighbour (4 ) ,3 ) )

B Eff (3 )=B Eff (3 )+J EX( ord , 3 ) ∗( sp in ( neighbour (1 ) ,3 )+sp in ( neighbour (2 ) ,3 ) )

B Eff (3 )=B Eff (3 )+J EX( ord , 4 ) ∗(− sp in ( neighbour (3 ) ,2 )−sp in ( neighbour (5 ) ,1 )−
sp in ( neighbour (4 ) ,2 )−sp in ( neighbour (6 ) ,1 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 5 ) ∗(− sp in ( neighbour (3 ) ,2 )−sp in ( neighbour (5 ) ,1 )+

sp in ( neighbour (4 ) ,2 )+sp in ( neighbour (6 ) ,1 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 6 ) ∗( sp in ( neighbour (1 ) ,2 )−sp in ( neighbour (4 ) ,1 )−sp in

( neighbour (2 ) ,2 )+sp in ( neighbour (3 ) ,1 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 7 ) ∗( sp in ( neighbour (1 ) ,2 )−sp in ( neighbour (4 ) ,1 )+sp in

( neighbour (2 ) ,2 )−sp in ( neighbour (3 ) ,1 ) ) /2 .0 dp
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B Eff (3 )=B Eff (3 )+J EX( ord , 8 ) ∗(− sp in ( neighbour (2 ) ,1 )+sp in ( neighbour (6 ) ,2 )+

sp in ( neighbour (1 ) ,1 )−sp in ( neighbour (5 ) ,2 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 9 ) ∗(− sp in ( neighbour (2 ) ,1 )+sp in ( neighbour (6 ) ,2 )−
sp in ( neighbour (1 ) ,1 )+sp in ( neighbour (5 ) ,2 ) ) /2 .0 dp

else i f ( a . eq . 3 ) then

B Eff (1 )=B Eff (1 )+J EX( ord , 1 ) ∗( sp in ( neighbour (5 ) ,1 )+sp in ( neighbour (6 ) ,1 ) ) !

Ca l cu la t e e f f e c t i v e f i e l d a long x from each energy term

B Eff (1 )=B Eff (1 )+J EX( ord , 2 ) ∗( sp in ( neighbour (1 ) ,1 )+sp in ( neighbour (2 ) ,1 ) )

B Eff (1 )=B Eff (1 )+J EX( ord , 3 ) ∗( sp in ( neighbour (3 ) ,1 )+sp in ( neighbour (4 ) ,1 ) )

B Eff (1 )=B Eff (1 )+J EX( ord , 4 ) ∗(− sp in ( neighbour (6 ) ,2 )+sp in ( neighbour (1 ) ,3 )−
sp in ( neighbour (5 ) ,2 )+sp in ( neighbour (2 ) ,3 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 5 ) ∗(− sp in ( neighbour (6 ) ,2 )+sp in ( neighbour (1 ) ,3 )+

sp in ( neighbour (5 ) ,2 )−sp in ( neighbour (2 ) ,3 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 6 ) ∗(− sp in ( neighbour (4 ) ,3 )−sp in ( neighbour (2 ) ,2 )+

sp in ( neighbour (3 ) ,3 )+sp in ( neighbour (1 ) ,2 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 7 ) ∗(− sp in ( neighbour (4 ) ,3 )−sp in ( neighbour (2 ) ,2 )−
sp in ( neighbour (3 ) ,3 )−sp in ( neighbour (1 ) ,2 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 8 ) ∗(− sp in ( neighbour (5 ) ,3 )−sp in ( neighbour (3 ) ,2 )+

sp in ( neighbour (6 ) ,3 )+sp in ( neighbour (4 ) ,2 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 9 ) ∗(− sp in ( neighbour (5 ) ,3 )−sp in ( neighbour (3 ) ,2 )−
sp in ( neighbour (6 ) ,3 )−sp in ( neighbour (4 ) ,2 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 1 ) ∗( sp in ( neighbour (3 ) ,2 )+sp in ( neighbour (4 ) ,2 ) ) !

Ca l cu la t e e f f e c t i v e f i e l d a long y from each energy term

B Eff (2 )=B Eff (2 )+J EX( ord , 2 ) ∗( sp in ( neighbour (5 ) ,2 )+sp in ( neighbour (6 ) ,2 ) )

B Eff (2 )=B Eff (2 )+J EX( ord , 3 ) ∗( sp in ( neighbour (1 ) ,2 )+sp in ( neighbour (2 ) ,2 ) )

B Eff (2 )=B Eff (2 )+J EX( ord , 4 ) ∗(− sp in ( neighbour (5 ) ,1 )−sp in ( neighbour (3 ) ,3 )−
sp in ( neighbour (6 ) ,1 )−sp in ( neighbour (4 ) ,3 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 5 ) ∗(− sp in ( neighbour (5 ) ,1 )−sp in ( neighbour (3 ) ,3 )+

sp in ( neighbour (6 ) ,1 )+sp in ( neighbour (4 ) ,3 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 6 ) ∗(− sp in ( neighbour (6 ) ,3 )+sp in ( neighbour (1 ) ,1 )+

sp in ( neighbour (5 ) ,3 )−sp in ( neighbour (2 ) ,1 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 7 ) ∗(− sp in ( neighbour (6 ) ,3 )+sp in ( neighbour (1 ) ,1 )−
sp in ( neighbour (5 ) ,3 )+sp in ( neighbour (2 ) ,1 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 8 ) ∗( sp in ( neighbour (4 ) ,1 )−sp in ( neighbour (2 ) ,3 )−sp in

( neighbour (3 ) ,1 )+sp in ( neighbour (1 ) ,3 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 9 ) ∗( sp in ( neighbour (4 ) ,1 )−sp in ( neighbour (2 ) ,3 )+sp in

( neighbour (3 ) ,1 )−sp in ( neighbour (1 ) ,3 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 1 ) ∗( sp in ( neighbour (1 ) ,3 )+sp in ( neighbour (2 ) ,3 ) ) !

Ca l cu la t e e f f e c t i v e f i e l d a long z from each energy term

B Eff (3 )=B Eff (3 )+J EX( ord , 2 ) ∗( sp in ( neighbour (3 ) ,3 )+sp in ( neighbour (4 ) ,3 ) )

B Eff (3 )=B Eff (3 )+J EX( ord , 3 ) ∗( sp in ( neighbour (5 ) ,3 )+sp in ( neighbour (6 ) ,3 ) )

B Eff (3 )=B Eff (3 )+J EX( ord , 4 ) ∗(− sp in ( neighbour (4 ) ,2 )+sp in ( neighbour (2 ) ,1 )−
sp in ( neighbour (3 ) ,2 )+sp in ( neighbour (1 ) ,1 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 5 ) ∗(− sp in ( neighbour (4 ) ,2 )+sp in ( neighbour (2 ) ,1 )+

sp in ( neighbour (3 ) ,2 )−sp in ( neighbour (1 ) ,1 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 6 ) ∗( sp in ( neighbour (5 ) ,2 )+sp in ( neighbour (3 ) ,1 )−sp in

( neighbour (6 ) ,2 )−sp in ( neighbour (4 ) ,1 ) ) /2 .0 dp
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B Eff (3 )=B Eff (3 )+J EX( ord , 7 ) ∗( sp in ( neighbour (5 ) ,2 )+sp in ( neighbour (3 ) ,1 )+sp in

( neighbour (6 ) ,2 )+sp in ( neighbour (4 ) ,1 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 8 ) ∗( sp in ( neighbour (6 ) ,1 )+sp in ( neighbour (1 ) ,2 )−sp in

( neighbour (5 ) ,1 )−sp in ( neighbour (2 ) ,2 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 9 ) ∗( sp in ( neighbour (6 ) ,1 )+sp in ( neighbour (1 ) ,2 )+sp in

( neighbour (5 ) ,1 )+sp in ( neighbour (2 ) ,2 ) ) /2 .0 dp

else

B Eff (1 )=B Eff (1 )+J EX( ord , 1 ) ∗( sp in ( neighbour (5 ) ,1 )+sp in ( neighbour (6 ) ,1 ) ) !

Ca l cu la t e e f f e c t i v e f i e l d a long x from each energy term

B Eff (1 )=B Eff (1 )+J EX( ord , 2 ) ∗( sp in ( neighbour (3 ) ,1 )+sp in ( neighbour (4 ) ,1 ) )

B Eff (1 )=B Eff (1 )+J EX( ord , 3 ) ∗( sp in ( neighbour (1 ) ,1 )+sp in ( neighbour (2 ) ,1 ) )

B Eff (1 )=B Eff (1 )+J EX( ord , 4 ) ∗(− sp in ( neighbour (5 ) ,2 )−sp in ( neighbour (3 ) ,3 )−
sp in ( neighbour (6 ) ,2 )−sp in ( neighbour (4 ) ,3 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 5 ) ∗(− sp in ( neighbour (5 ) ,2 )−sp in ( neighbour (3 ) ,3 )+

sp in ( neighbour (6 ) ,2 )+sp in ( neighbour (4 ) ,3 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 6 ) ∗( sp in ( neighbour (1 ) ,3 )−sp in ( neighbour (4 ) ,2 )−sp in

( neighbour (2 ) ,3 )+sp in ( neighbour (3 ) ,2 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 7 ) ∗( sp in ( neighbour (1 ) ,3 )−sp in ( neighbour (4 ) ,2 )+sp in

( neighbour (2 ) ,3 )−sp in ( neighbour (3 ) ,2 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 8 ) ∗( sp in ( neighbour (6 ) ,3 )−sp in ( neighbour (2 ) ,2 )−sp in

( neighbour (5 ) ,3 )+sp in ( neighbour (1 ) ,2 ) ) /2 .0 dp

B Eff (1 )=B Eff (1 )+J EX( ord , 9 ) ∗( sp in ( neighbour (6 ) ,3 )−sp in ( neighbour (2 ) ,2 )+sp in

( neighbour (5 ) ,3 )−sp in ( neighbour (1 ) ,2 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 1 ) ∗( sp in ( neighbour (1 ) ,2 )+sp in ( neighbour (2 ) ,2 ) ) !

Ca l cu la t e e f f e c t i v e f i e l d a long y from each energy term

B Eff (2 )=B Eff (2 )+J EX( ord , 2 ) ∗( sp in ( neighbour (5 ) ,2 )+sp in ( neighbour (6 ) ,2 ) )

B Eff (2 )=B Eff (2 )+J EX( ord , 3 ) ∗( sp in ( neighbour (3 ) ,2 )+sp in ( neighbour (4 ) ,2 ) )

B Eff (2 )=B Eff (2 )+J EX( ord , 4 ) ∗(− sp in ( neighbour (6 ) ,1 )+sp in ( neighbour (2 ) ,3 )−
sp in ( neighbour (5 ) ,1 )+sp in ( neighbour (1 ) ,3 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 5 ) ∗(− sp in ( neighbour (6 ) ,1 )+sp in ( neighbour (2 ) ,3 )+

sp in ( neighbour (5 ) ,1 )−sp in ( neighbour (1 ) ,3 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 6 ) ∗( sp in ( neighbour (5 ) ,3 )+sp in ( neighbour (3 ) ,1 )−sp in

( neighbour (6 ) ,3 )−sp in ( neighbour (4 ) ,1 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 7 ) ∗( sp in ( neighbour (5 ) ,3 )+sp in ( neighbour (3 ) ,1 )+sp in

( neighbour (6 ) ,3 )+sp in ( neighbour (4 ) ,1 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 8 ) ∗( sp in ( neighbour (1 ) ,1 )+sp in ( neighbour (4 ) ,3 )−sp in

( neighbour (2 ) ,1 )−sp in ( neighbour (3 ) ,3 ) ) /2 .0 dp

B Eff (2 )=B Eff (2 )+J EX( ord , 9 ) ∗( sp in ( neighbour (1 ) ,1 )+sp in ( neighbour (4 ) ,3 )+sp in

( neighbour (2 ) ,1 )+sp in ( neighbour (3 ) ,3 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 1 ) ∗( sp in ( neighbour (3 ) ,3 )+sp in ( neighbour (4 ) ,3 ) ) !

Ca l cu la t e e f f e c t i v e f i e l d a long z from each energy term

B Eff (3 )=B Eff (3 )+J EX( ord , 2 ) ∗( sp in ( neighbour (1 ) ,3 )+sp in ( neighbour (2 ) ,3 ) )

B Eff (3 )=B Eff (3 )+J EX( ord , 3 ) ∗( sp in ( neighbour (5 ) ,3 )+sp in ( neighbour (6 ) ,3 ) )

B Eff (3 )=B Eff (3 )+J EX( ord , 4 ) ∗( sp in ( neighbour (1 ) ,2 )−sp in ( neighbour (4 ) ,1 )+sp in

( neighbour (2 ) ,2 )−sp in ( neighbour (3 ) ,1 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 5 ) ∗( sp in ( neighbour (1 ) ,2 )−sp in ( neighbour (4 ) ,1 )−sp in

( neighbour (2 ) ,2 )+sp in ( neighbour (3 ) ,1 ) ) /2 .0 dp
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B Eff (3 )=B Eff (3 )+J EX( ord , 6 ) ∗(− sp in ( neighbour (6 ) ,2 )−sp in ( neighbour (2 ) ,1 )+

sp in ( neighbour (5 ) ,2 )+sp in ( neighbour (1 ) ,1 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 7 ) ∗(− sp in ( neighbour (6 ) ,2 )−sp in ( neighbour (2 ) ,1 )−
sp in ( neighbour (5 ) ,2 )−sp in ( neighbour (1 ) ,1 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 8 ) ∗(− sp in ( neighbour (5 ) ,1 )−sp in ( neighbour (3 ) ,2 )+

sp in ( neighbour (6 ) ,1 )+sp in ( neighbour (4 ) ,2 ) ) /2 .0 dp

B Eff (3 )=B Eff (3 )+J EX( ord , 9 ) ∗(− sp in ( neighbour (5 ) ,1 )−sp in ( neighbour (3 ) ,2 )−
sp in ( neighbour (6 ) ,1 )−sp in ( neighbour (4 ) ,2 ) ) /2 .0 dp

endif

! Same S i t e Anisotropy terms

! ! These terms would be the same fo r a l l sp ins

B Eff (1 )=B Eff (1 )+J EX( ord , 1 0 ) ∗( sp in ( spin Curr , 1 ) ) ! 2nd

Order CEF terms (Same c i t e i n va r i an t s )

B Eff (1 )=B Eff (1 )+J EX( ord , 1 1 ) ∗( sp in ( spin Curr , 2 )+sp in ( spin Curr , 3 ) ) ! !

B Eff (1 )=B Eff (1 )+J EX( ord , 1 2 ) ∗( sp in ( spin Curr , 1 ) ∗∗3) ! 4 th

Order CEF terms

B Eff (1 )=B Eff (1 )+J EX( ord , 1 3 ) ∗( sp in ( spin Curr , 1 ) ∗∗3 + 2∗ sp in ( spin Curr , 1 ) ∗ sp in (

spin Curr , 2 ) ∗∗2 & ! !

+ 2∗ sp in ( spin Curr , 1 ) ∗ sp in ( spin Curr , 3 ) ∗∗2) ! ! !

B Eff (2 )=B Eff (2 )+J EX( ord , 1 0 ) ∗( sp in ( spin Curr , 2 ) ) !CEF

terms are same s i t e i n va r i an t s

B Eff (2 )=B Eff (2 )+J EX( ord , 1 1 ) ∗( sp in ( spin Curr , 1 )+sp in ( spin Curr , 3 ) ) !

B Eff (2 )=B Eff (2 )+J EX( ord , 1 2 ) ∗( sp in ( spin Curr , 2 ) ∗∗3) ! 4 th

Order CEF terms

B Eff (2 )=B Eff (2 )+J EX( ord , 1 3 ) ∗( sp in ( spin Curr , 2 ) ∗∗3 + 2∗ sp in ( spin Curr , 2 ) ∗ sp in (

spin Curr , 1 ) ∗∗2 & ! !

+ 2∗ sp in ( spin Curr , 2 ) ∗ sp in ( spin Curr , 3 ) ∗∗2)

B Eff (3 )=B Eff (3 )+J EX( ord , 1 0 ) ∗( sp in ( spin Curr , 3 ) ) !CEF

terms are same s i t e i n va r i an t s

B Eff (3 )=B Eff (3 )+J EX( ord , 1 1 ) ∗( sp in ( spin Curr , 1 )+sp in ( spin Curr , 2 ) ) !

B Eff (3 )=B Eff (3 )+J EX( ord , 1 2 ) ∗( sp in ( spin Curr , 3 ) ∗∗3) ! 4 th

Order CEF terms

B Eff (3 )=B Eff (3 )+J EX( ord , 1 3 ) ∗( sp in ( spin Curr , 3 ) ∗∗3 + 2∗ sp in ( spin Curr , 3 ) ∗ sp in (

spin Curr , 2 ) ∗∗2 & ! !

+ 2∗ sp in ( spin Curr , 3 ) ∗ sp in ( spin Curr , 1 ) ∗∗2)

! i f ( ord . eq . 1 ) then

! open ( un i t =17, f i l e =”BEFF. dat ” , p o s i t i on=”APPEND” , ac t ion=”WRITE” , s t a t u s=”

UNKNOWN”)

! wr i t e ( un i t =17, fmt=∗) ord , B Eff (1) , B Eff (2) , B Eff (3)

! f l u s h ( un i t=17)

! c l o s e ( un i t=17)

! end i f

END SUBROUTINE Get B Eff
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!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!SUBROUTINE: in i t random seed ()

! I n i t i a l i z e s the seed f o r the b u i l t−in RNG

SUBROUTINE i n i t random seed ( )

IMPLICIT NONE

Integer : : i , n , c l o ck

Integer , Dimension ( : ) , Allocatable : : seed

Call random seed ( s ize = n)

Allocate ( seed (n) )

Call system clock (Count=c lock )

seed = c lock + 37 ∗ (/ ( i − 1 , i = 1 , n) /)

Call random seed (PUT = seed )

Deallocate ( seed )

END SUBROUTINE

!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!SUBROUTINE: Shu f f l e ( arr )

! Takes an array , $arr , and s h u f f l e s i t ’ s e lements according to the Knuth s h u f f l e

SUBROUTINE S h u f f l e ( a r r )

! Subrout ine v a r i a b l e s d e c l a ra t i on ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

INTEGER, INTENT(INOUT) : : a r r ( : ) ! Array to be s hu f f l e d , taken in and

returned

INTEGER : : i , rand Pos , temp ! U t i l i t y INTEGERs

DOUBLE PRECISION : : rand ! Random number

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

do i = s ize ( a r r ) , 2 , −1

ca l l random number( rand )

rand Pos = int ( rand ∗ i ) + 1

temp = arr ( rand Pos )

a r r ( rand Pos ) = ar r ( i )

a r r ( i ) = temp

end do

END SUBROUTINE S h u f f l e
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!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!SUBROUTINE: Measure

! Measure the energy o f the current con f i gu ra t i on

SUBROUTINE measure

USE input module , ONLY : dp , NUM SPINS, spin , energy ! , mag , ch i

IMPLICIT NONE

REAL( kind=dp ) , DIMENSION( 1 : 3 ) : : B Eff ! The e f f e c t i v e f i e l d in each

dimension

INTEGER : : i , j ! Subrout ine i t e r a t o r

INTERFACE

SUBROUTINE Get B Eff ( B Eff , ord , sp in Curr )

USE input module , ONLY : dp , n Neighbour , invu tab l e , spin , J EX

IMPLICIT NONE

REAL( kind=dp ) , INTENT(INOUT) : : B EFF ( : )

INTEGER, INTENT(IN) : : sp in Curr

INTEGER, INTENT(IN) : : ord

END SUBROUTINE Get B Eff

END INTERFACE

energy =0.d0

do i =1,NUM SPINS ! I t e r a t i v e l y f i nd the e f f e c t i v e f i e l d o f each spin ( Should be

done some other way)

B Eff ( 1 : 3 ) =(/ 0 .0 d0 , 0 . 0 d0 , 0 . 0 d0 /)

ca l l Get B Eff ( B Eff , 1 , i ) ! Get NN E f f e c t i v e F ie l d

ca l l Get B Eff ( B Eff , 2 , i ) ! Get NNN E f f e c t i v e F ie l d

do j =1,3

energy=energy−(B Eff ( j ) ∗ sp in ( i , j ) ) !Add up the energy terms

enddo ! j

enddo ! i

energy=energy /2 ! Remove doub le count ing

END SUBROUTINE measure

!

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!SUBROUTINE: FFT

! Perform Fast Fourier Transform on sp ins be l ong ing to s u b l a t t i c e $spin num

! cons ider ing the d i r e c t i on $coord num

SUBROUTINE FFT( spin num , coord num )

USE input module , ONLY : dp , CELLS, spin , u Table

use , intr ins ic : : i s o c b i n d i n g
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include ’ f f tw3 . f03 ’

INTEGER, INTENT(IN) : : spin num , coord num

TYPE(C PTR) : : plan

REAL(C DOUBLE) , DIMENSION(CELLS,CELLS,CELLS) : : in

COMPLEX(C DOUBLE COMPLEX) , DIMENSION(CELLS,CELLS,CELLS) : : out

REAL : : tmp

INTEGER : : i , j , k

CHARACTER∗10 : : FILE OUT

plan = f f t w p l a n d f t r 2 c 3 d (CELLS,CELLS,CELLS, in , out ,FFTW ESTIMATE)

do i =0,CELLS−1

do j =0,CELLS−1

do k=0,CELLS−1

in ( i +1, j +1,k+1)=sp in ( u Table ( i , j , k , spin num ) , coord num ) ! Mismatch

o f numbers

enddo ! k

enddo ! j

enddo ! i

ca l l f f t w e x e c u t e d f t r 2 c ( plan , in , out )

write (FILE OUT, ’ (A, I1 ,A, I1 ,A) ’ ) ”Q S” , spin num , ”C” , coord num , ” . dat ”

open(unit=14, f i l e=FILE OUT, action=”WRITE” , status=”REPLACE” )

do i =1,CELLS

do j =1,CELLS

do k=1,CELLS

write (unit=14,fmt=∗) i −1, j −1,k−1, real (out ( i , j , k ) ) ,aimag(out ( i , j , k ) ) !

Mismatch o f numbers

enddo

enddo

enddo

f l u s h (14)

close (14)

ca l l f f t w d e s t r o y p l a n ( plan )

END SUBROUTINE FFT



Appendix E

Analysis Code

E.1 Python Code

This appendix contains the computer code used in the analysis of the simulation

data simulations in two parts: The analysis of individual data (Analyze.py), and the

combination of analyses of different data (Combine.py). This code was prepared using

Python 3.
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E.1.1 Analyze

# Kyle Ha l l 2020

import numpy as np

from s c ipy . s t a t s import ch i2

from s c ipy . s t a t s import vonmises

from s c ipy . s t a t s import norm

from s c ipy . s t a t s import circmean , c i r c v a r

import os

import sys

# Check fo r command l i n e arguments . I f none present , ask f o r arguments

i f not sys . s td in . i s a t t y ( ) :

d i r e c=input ( ” Di rec to ry Name : ” )

confRange=int ( input ( ” Input number o f minimum c o n f i g u r a t i o n s : ” ) )

else :

d i r e c=sys . argv [ 1 ]

confRange=int ( sys . argv [ 2 ] )

#DATA FUNCTION DEFINITION###############################################

def ReadFile ( d i r ec , f i l e ) :

’ ’ ’

’ ’ ’

i n p u t f i l e = d i r e c+”/”+f i l e

data = np . genfromtxt ( i n p u t f i l e )

return data

def RawToUC( rawData , d i r ec , f i leNum ) :

’ ’ ’

’ ’ ’

ucCount = round( len ( rawData ) /4)

s i d e = round( ucCount ∗∗ ( 1 . 0 / 3 . 0 ) )

ucData = np . z e r o s ( ( s ide , s ide , s ide , 4 , 3 ) )

count=0

for i in range ( s i d e ) :

for j in range ( s i d e ) :

for k in range ( s i d e ) :

for a in range (4 ) :

ucData [ i , j , k , a , : ] = rawData [ count , : ]

count+=1

o u t d i r e c = d i r e c+”/MinUC”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/MinUC ” + fileNum

out data = np . empty ( [ 7 ] )

for i in range ( s i d e ) :

for j in range ( s i d e ) :

for k in range ( s i d e ) :
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for a in range (4 ) :

out data=np . vstack ( ( out data , [ i , j , k , a , ucData [ i , j , k , a , 0 ] , ucData [ i ,

j , k , a , 1 ] , ucData [ i , j , k , a , 2 ] ] ) )

out data = out data [ 1 : : ]

form = [ ’%1d ’ , ’%1d ’ , ’%1d ’ , ’%1d ’ , ’ %20.19 f ’ , ’ %20.19 f ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )

return ucData

# PRIMARY FUNCTION DEFINITION ###########################################

def CalcGamma( ucData , d i r ec , fileNum ,

n=np . array ( [ 1 , 1 , 1 ] ) ,

r=np . array ( [ −1 ,1 , 0 ] ) ,

y=np . array ([−1 ,−1 ,2]) ) :

’ ’ ’

’ ’ ’

s i d e = len ( ucData )

n = n/np . l i n a l g . norm(n)

r = r /np . l i n a l g . norm( r )

y = y/np . l i n a l g . norm( y )

gData = np . z e r o s ( ( s ide , s ide , s ide , 4 ) )

for i in range ( s i d e ) :

for j in range ( s i d e ) :

for k in range ( s i d e ) :

for a in range (4 ) :

ndot = np . dot ( ucData [ i , j , k , a ] , n )

rdot = np . dot ( ucData [ i , j , k , a ] , r )

ydot = np . dot ( ucData [ i , j , k , a ] , y )

ndot = ndot/np . abs ( ndot ) i f (np . abs ( ndot ) >1.0) else ndot #Clip to

[ −1.0 ,1 .0 ]

rdot = rdot /np . abs ( rdot ) i f (np . abs ( rdot ) >1.0) else rdot

ydot = ydot/np . abs ( ydot ) i f (np . abs ( ydot ) >1.0) else ydot

arcgamma = ndot / np . s q r t ( ndot ∗∗2 + rdot ∗∗2 + ydot ∗∗2)

gamma = np . p i /2 − np . a r c co s ( arcgamma) #Check t h i s

gData [ i , j , k , a ] = gamma

o u t d i r e c = d i r e c+”/Gamma/UC”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/GammaUC ” + fileNum

out data = np . empty ( [ 5 ] )

for i in range ( s i d e ) :

for j in range ( s i d e ) :

for k in range ( s i d e ) :

for a in range (4 ) :

out data=np . vstack ( ( out data , [ i , j , k , a , gData [ i , j , k , a ] ] ) )

out data = out data [ 1 : : ]
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form = [ ’%1d ’ , ’%1d ’ , ’%1d ’ , ’%1d ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )

return gData

def CalcTheta ( ucData , d i r ec , fileNum ,

r=np . array ( [ −1 ,1 , 0 ] ) ,

n=np . array ( [ 1 , 1 , 1 ] ) ,

y=np . array ([−1 ,−1 ,2]) ) :

’ ’ ’

’ ’ ’

s i d e = len ( ucData )

r = r /np . l i n a l g . norm( r )

n = n/np . l i n a l g . norm(n)

y = y/np . l i n a l g . norm( y )

tData = np . z e r o s ( ( s ide , s ide , s ide , 4 ) )

for i in range ( s i d e ) :

for j in range ( s i d e ) :

for k in range ( s i d e ) :

for a in range (4 ) :

ndot = np . dot ( ucData [ i , j , k , a ] , n )

rdot = np . dot ( ucData [ i , j , k , a ] , r )

ydot = np . dot ( ucData [ i , j , k , a ] , y )

ndot = ndot/np . abs ( ndot ) i f (np . abs ( ndot ) >1.0) else ndot #Clip to

[ −1.0 ,1 .0 ]

rdot = rdot /np . abs ( rdot ) i f (np . abs ( rdot ) >1.0) else rdot

ydot = ydot/np . abs ( ydot ) i f (np . abs ( ydot ) >1.0) else ydot

a r c the ta = ydot/ rdot

theta = np . arctan ( a r c the ta )

theta = theta + np . p i ∗ theta /abs ( theta ) i f ( rdot < 0) else theta

tData [ i , j , k , a ] = theta + 2∗np . p i i f ( theta < 0 . 0 ) else theta

o u t d i r e c = d i r e c+”/Theta/UC”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/ThetaUC ” + fileNum

out data = np . empty ( [ 5 ] )

for i in range ( s i d e ) :

for j in range ( s i d e ) :

for k in range ( s i d e ) :

for a in range (4 ) :

out data=np . vstack ( ( out data , [ i , j , k , a , tData [ i , j , k , a ] ] ) )

out data = out data [ 1 : : ]

form = [ ’%1d ’ , ’%1d ’ , ’%1d ’ , ’%1d ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )
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return tData

def CalcOP(kMean , ucData , d i r ec , f i leNum ) :

’ ’ ’

’ ’ ’

s i d e = len ( ucData )

ftSum = np . z e r o s ( ( 4 , 3 ) , dtype=np . complex )

for i in range ( s i d e ) :

for j in range ( s i d e ) :

for k in range ( s i d e ) :

l = i + j + k

for a in range (4 ) :

for c in range (3 ) :

ftSum [ a , c ] += np . exp(−1 j ∗ kMean ∗ l ) ∗ ucData [ i , j , k , a , c ]

# for a in range (4) :

# fo r c in range (3) :

# pr in t ( s t r ( ftSum [ a , c ] ) )

F1r = np . z e r o s ( ( 4 ) , dtype=np . complex ) #Rectangular form arrays

F2r = np . z e r o s ( ( 4 ) , dtype=np . complex )

F3r = np . z e r o s ( ( 4 ) , dtype=np . complex )

F1 = np . z e r o s ( ( 4 , 2 ) ) #Exponent ia l form arrays

F2 = np . z e r o s ( ( 4 , 2 ) )

F3 = np . z e r o s ( ( 4 , 2 ) )

eps = np . exp ( −1 j ∗ 2∗ np . p i /3 )

F1r [ 0 ] = np .sum( ftSum [ 0 ] ) # S1x + S1y + S1z

F1r [ 1 ] = ftSum [ 1 , 0 ] + ftSum [ 2 , 2 ] + ftSum [ 3 , 1 ] # S2x + S3z + S4y

F1r [ 2 ] = ftSum [ 1 , 1 ] + ftSum [ 2 , 0 ] + ftSum [ 3 , 2 ] # S2y + S3x + S4z

F1r [ 3 ] = ftSum [ 1 , 2 ] + ftSum [ 2 , 1 ] + ftSum [ 3 , 0 ] # S2z + S3y + S4x

F2r [ 0 ] = ftSum [ 0 , 0 ] + eps ∗ ftSum [ 0 , 1 ] + ( eps ∗∗2) ∗ ftSum [ 0 , 2 ] # S1x + e S1y + e2

S1z

F2r [ 1 ] = ftSum [ 1 , 0 ] + eps ∗ ftSum [ 3 , 1 ] + ( eps ∗∗2) ∗ ftSum [ 2 , 2 ] # S2x + e2 S3z + e

S4y

F2r [ 2 ] = ftSum [ 1 , 1 ] + eps ∗ ftSum [ 3 , 2 ] + ( eps ∗∗2) ∗ ftSum [ 2 , 0 ] # S2y + e2 S3x + e

S4z

F2r [ 3 ] = ftSum [ 1 , 2 ] + eps ∗ ftSum [ 3 , 0 ] + ( eps ∗∗2) ∗ ftSum [ 2 , 1 ] # S2z + e2 S3y + e

S4x

F3r [ 0 ] = ftSum [ 0 , 0 ] + ( eps ∗∗2) ∗ ftSum [ 0 , 1 ] + eps ∗ ftSum [ 0 , 2 ] # S1x + e2 S1y + e

S1z

F3r [ 1 ] = ftSum [ 1 , 0 ] + ( eps ∗∗2) ∗ ftSum [ 3 , 1 ] + eps ∗ ftSum [ 2 , 2 ] # S2x + e S3z + e2

S4y

F3r [ 2 ] = ftSum [ 1 , 1 ] + ( eps ∗∗2) ∗ ftSum [ 3 , 2 ] + eps ∗ ftSum [ 2 , 0 ] # S2y + e S3x + e2

S4z

F3r [ 3 ] = ftSum [ 1 , 2 ] + ( eps ∗∗2) ∗ ftSum [ 3 , 0 ] + eps ∗ ftSum [ 2 , 1 ] # S2z + e S3y + e2

S4x
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F1 [ : , 0 ] = np . abs ( F1r ) #Convert to exponen t i a l form . F[ x , 0 ] i s magnitude , F[ x , 1 ]

i s phase .

F2 [ : , 0 ] = np . abs ( F2r )

F3 [ : , 0 ] = np . abs ( F3r )

F1 [ : , 1 ] = np . ang le ( F1r )

F2 [ : , 1 ] = np . ang le ( F2r )

F3 [ : , 1 ] = np . ang le ( F3r )

F1max = np .max(F1 [ : , 0 ] )

F2max = np .max(F2 [ : , 0 ] )

F3max = np .max(F3 [ : , 0 ] )

Fmax = np .max(np . array ( ( F1max , F2max , F3max) ) )

# F1 [ : , 0 ] /= Fmax

# F2 [ : , 0 ] /= Fmax

# F3 [ : , 0 ] /= Fmax

o u t d i r e c = d i r e c+”/OP”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

VarOP = [ F1 , F2 , F3 ]

for i in range (3 ) :

o u t f i l e = o u t d i r e c + ”/F” + str ( i +1) + ” ” + fileNum

out data = np . empty ( [ 3 ] )

for j in range (4 ) :

out data=np . vstack ( ( out data , [ j +1,VarOP [ i ] [ j , 0 ] , VarOP [ i ] [ j , 1 ] ] ) )

out data = out data [ 1 : : ]

form = [ ’%1d ’ , ’ %20.19 f ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )

return None

# LAYER AND ION FUNCTION DEFINITION ######################################

def CalcLayerGamma ( gData , d i r ec , f i leNum ) :

’ ’ ’

’ ’ ’

s i d e=len ( gData )

gLayer = [ [ [ ] , [ ] ] for i in range (3∗ s ide −2) ]

gLMean = np . z e r o s ( (3∗ s ide −2 ,2) )

gLAbsMean = np . z e r o s ( (3∗ s ide −2 ,2) )

gLVar = np . z e r o s ( (3∗ s ide −2 ,2) )

gLCon = np . z e r o s ( (3∗ s ide −2 ,2) )

gLAbsVar = np . z e r o s ( (3∗ s ide −2 ,2) )

gLAbsCon = np . z e r o s ( (3∗ s ide −2 ,2) )

l S i z e = np . z e r o s ( (3∗ s ide −2 ,2) )

t S i z e = np . z e r o s ( ( 2 ) )

gMean = np . z e r o s ( ( 2 ) )
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gCon = np . z e r o s ( ( 2 ) )

gAbsMean = np . z e r o s ( ( 2 ) )

gAbsCon = np . z e r o s ( ( 2 ) )

gAbsVar = np . z e r o s ( ( 2 ) )

cSum = np . z e ro s ( (3∗ s ide −2 ,2) ) # Sum of cos ine va lue s

sSum = np . z e r o s ( (3∗ s ide −2 ,2) ) # Sum of s ine va lue s

c2Sum = np . z e ro s ( (3∗ s ide −2 ,2) ) # Sum of cos ine va lue s

s2Sum = np . z e ro s ( (3∗ s ide −2 ,2) ) # Sum of s ine va lue s

cSumAbs = np . z e r o s ( (3∗ s ide −2 ,2) ) # Sum of ab so l u t e cos ine va lue s

sSumAbs = np . z e r o s ( (3∗ s ide −2 ,2) ) # Sum of ab so l u t e s ine va lue s

c2SumAbs = np . z e r o s ( (3∗ s ide −2 ,2) ) # Sum of ab so l u t e cos ine va lue s

s2SumAbs = np . z e r o s ( (3∗ s ide −2 ,2) ) # Sum of ab so l u t e s ine va lue s

def Conf Inte rva l ( alpha , vm, r , l S i z e , t , c2Sum , s2Sum) :

i f vm==0:

npercent = norm . ppf (1.− alpha / 2 . )

H = ( 1 . / l S i z e ) ∗(np . cos (2∗ t ) ∗c2Sum + np . s i n (2∗ t ) ∗s2Sum)

H = 1.0 i f (H>1.0) else H # Clip H to range [ 0 , 1 ]

sigma = np . s q r t ( ( l S i z e ∗(1.−H) ) /(4∗ r ∗∗2) )

conf = np . a r c s i n ( npercent ∗ sigma )

i f np . i snan ( conf ) :

print ( l S i z e , r , c2Sum , s2Sum , t , sigma ,H)

e l i f r < ( 2 . / 3 . ) :

cpercent = ch i2 . ppf (1.− alpha )

temp = np . s q r t ( (2∗ l S i z e ∗(2∗ r ∗∗2 − l S i z e ∗ cpercent ) ) /((4∗ l S i z e − cpercent ) ∗
r ∗∗2) )

temp /= r

conf = np . a r c co s ( temp )

e l i f r >= ( 2 . / 3 . ) :

cpercent = ch i2 . ppf (1.− alpha )

temp = np . s q r t ( l S i z e ∗∗2 − ( l S i z e ∗∗2 − r ∗∗2) ∗np . exp ( cpercent / l S i z e ) )

temp /= r

conf = np . a r c co s ( temp )

return conf

for i in range ( s i d e ) :

for j in range ( s i d e ) :

for k in range ( s i d e ) :

l = i+j+k

gLayer [ l ] [ 0 ] . append ( gData [ i , j , k , 0 ] )

gLayer [ l ] [ 1 ] . append ( gData [ i , j , k , 1 ] )

gLayer [ l ] [ 1 ] . append ( gData [ i , j , k , 2 ] )

gLayer [ l ] [ 1 ] . append ( gData [ i , j , k , 3 ] )

l S i z e [ l , 0 ] += 1

l S i z e [ l , 1 ] += 3

cSum [ l , 0 ] += np . cos ( gData [ i , j , k , 0 ] )

sSum [ l , 0 ] += np . s i n ( gData [ i , j , k , 0 ] )

c2Sum [ l , 0 ] += np . cos (2∗ gData [ i , j , k , 0 ] )
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s2Sum [ l , 0 ] += np . s i n (2∗ gData [ i , j , k , 0 ] )

cSumAbs [ l , 0 ] += np . cos (abs ( gData [ i , j , k , 0 ] ) )

sSumAbs [ l , 0 ] += np . s i n (abs ( gData [ i , j , k , 0 ] ) )

c2SumAbs [ l , 0 ] += np . cos (2∗abs ( gData [ i , j , k , 0 ] ) )

s2SumAbs [ l , 0 ] += np . s i n (2∗abs ( gData [ i , j , k , 0 ] ) )

for a in range ( 1 , 4 ) :

cSum [ l , 1 ] += np . cos ( tData [ i , j , k , a ] )

sSum [ l , 1 ] += np . s i n ( tData [ i , j , k , a ] )

c2Sum [ l , 1 ] += np . cos (2∗ tData [ i , j , k , a ] )

s2Sum [ l , 1 ] += np . s i n (2∗ tData [ i , j , k , a ] )

cSumAbs [ l , 1 ] += np . cos (abs ( gData [ i , j , k , a ] ) )

sSumAbs [ l , 1 ] += np . s i n (abs ( gData [ i , j , k , a ] ) )

c2SumAbs [ l , 1 ] += np . cos (2∗abs ( gData [ i , j , k , a ] ) )

s2SumAbs [ l , 1 ] += np . s i n (2∗abs ( gData [ i , j , k , a ] ) )

for l in range (3∗ s ide −2) :

for i in range (2 ) :

# Re la t i v e va lue s

cSum [ l , i ] /= l S i z e [ l , i ]

sSum [ l , i ] /= l S i z e [ l , i ]

rbar = np . s q r t ( ( cSum [ l , i ] ) ∗∗2 + (sSum [ l , i ] ) ∗∗2) # Divide by s i z e i n s i d e

or ou t s i d e ?

r = l S i z e [ l , i ]∗ rbar

gLMean [ l , i ] = np . arctan2 (sSumAbs [ l , i ] , cSumAbs [ l , i ] )

gLVar [ l , i ] = 2∗(1 − rbar )

gLCon [ l , i ] = Conf Inte rva l ( 0 . 0 5 , 0 , r , l S i z e [ l , i ] , gLMean [ l , i ] , c2Sum [ l , i ] ,

s2Sum [ l , i ] )

# Abso lute va lue s

cSumAbs [ l , i ] /= l S i z e [ l , i ]

sSumAbs [ l , i ] /= l S i z e [ l , i ]

rbar = np . s q r t ( ( cSumAbs [ l , i ] ) ∗∗2 + (sSumAbs [ l , i ] ) ∗∗2) # Divide by s i z e

i n s i d e or ou t s i d e ?

r = l S i z e [ l , i ]∗ rbar

gLAbsMean [ l , i ] = np . arctan2 ( sSumAbs [ l , i ] , cSumAbs [ l , i ] )

gLAbsVar [ l , i ] = 2∗(1 − rbar )

gLAbsCon [ l , i ] = Conf Inte rva l ( 0 . 0 5 , 0 , r , l S i z e [ l , i ] , gLAbsMean [ l , i ] , c2SumAbs [

l , i ] , s2SumAbs [ l , i ] )

for j in range (2 ) : # This c a l c u l a t i o n does not v a l v u l a t e conf idence

i n t e r v a l s or use appropr ia t e d i r e c t i o n a l s t a t i s t i c s

for l in range (3∗ s ide −2) :

gMean [ j ] += l S i z e [ l , j ]∗gLMean [ l , j ]

gCon [ j ] += ( l S i z e [ l , j ]∗∗2 ) ∗gLCon [ l , j ]

gAbsMean [ j ] += l S i z e [ l , j ]∗ gLAbsMean [ l , j ]

gAbsCon [ j ] += ( l S i z e [ l , j ]∗∗2 ) ∗gLAbsCon [ l , j ]

t S i z e [ j ] = sum( l S i z e [ : , j ] )

gMean [ j ] /= t S i z e [ j ]

gCon [ j ] /= t S i z e [ j ]∗∗2
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gAbsMean [ j ] /= t S i z e [ j ]

gAbsCon [ j ] /= t S i z e [ j ]∗∗2

o u t d i r e c = d i r e c+”/Gamma/Layer”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/GammaL ” + fileNum

out data = np . empty ( [ 7 ] )

for i in range (2 ) :

out data=np . vstack ( ( out data , [−1 , i , t S i z e [ i ] , gMean [ i ] , gCon [ i ] , gAbsMean [ i ] ,

gAbsCon [ i ] ] ) )

for l in range (3∗ s ide −2) :

for i in range (2 ) :

out data=np . vstack ( ( out data , [ l , i , l S i z e [ l , i ] , gLMean [ l , i ] , gLCon [ l , i ] ,

gLAbsMean [ l , i ] , gLAbsCon [ l , i ] ] ) )

out data = out data [ 1 : : ]

form = [ ’%2d ’ , ’%2d ’ , ’%5d ’ , ’ %20.19 f ’ , ’ %20.19 f ’ , ’ %20.19 f ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )

return gLMean , gLCon , l S i z e , gLayer

def CalcLayerTheta ( tData , l S i z e , d i r ec , f i leNum ) :

’ ’ ’

’ ’ ’

s i d e=len ( tData )

tLayer = [ [ [ ] , [ ] ] for i in range (3∗ s ide −2) ]

tLMean = np . z e r o s ( (3∗ s ide −2 ,2) )

tLVar = np . z e r o s ( (3∗ s ide −2 ,2) )

tLCon = np . z e r o s ( (3∗ s ide −2 ,2) )

cSum = np . z e ro s ( (3∗ s ide −2 ,2) ) # Sum of cos ine va lue s

sSum = np . z e r o s ( (3∗ s ide −2 ,2) ) # Sum of s ine va lue s

c2Sum = np . z e ro s ( (3∗ s ide −2 ,2) ) # Sum of cos ine va lue s

s2Sum = np . z e ro s ( (3∗ s ide −2 ,2) ) # Sum of s ine va lue s

def Conf Inte rva l ( alpha , vm, r , l S i z e , t , c2Sum , s2Sum) :

i f vm==0:

npercent = norm . ppf (1.− alpha / 2 . )

H = ( 1 . / l S i z e ) ∗(np . cos (2∗ t ) ∗c2Sum + np . s i n (2∗ t ) ∗s2Sum)

H = 1.0 i f (H>1.0) else H # Clip H to range [ 0 , 1 ]

sigma = np . s q r t ( ( l S i z e ∗(1.−H) ) /(4∗ r ∗∗2) )

conf = np . a r c s i n ( npercent ∗ sigma )

i f np . i snan ( conf ) :

print ( l S i z e , r , c2Sum , s2Sum , t , sigma ,H)

e l i f r < ( 2 . / 3 . ) :

cpercent = ch i2 . ppf (1.− alpha )

temp = np . s q r t ( (2∗ l S i z e ∗(2∗ r ∗∗2 − l S i z e ∗ cpercent ) ) /((4∗ l S i z e − cpercent ) ∗
r ∗∗2) )

temp /= r
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conf = np . a r c co s ( temp )

e l i f r >= ( 2 . / 3 . ) :

cpercent = ch i2 . ppf (1.− alpha )

temp = np . s q r t ( l S i z e ∗∗2 − ( l S i z e ∗∗2 − r ∗∗2) ∗np . exp ( cpercent / l S i z e ) )

temp /= r

conf = np . a r c co s ( temp )

return conf

for i in range ( s i d e ) :

for j in range ( s i d e ) :

for k in range ( s i d e ) :

l = i+j+k

tLayer [ l ] [ 0 ] . append ( tData [ i , j , k , 0 ] )

tLayer [ l ] [ 1 ] . append ( tData [ i , j , k , 1 ] )

tLayer [ l ] [ 1 ] . append ( tData [ i , j , k , 2 ] )

tLayer [ l ] [ 1 ] . append ( tData [ i , j , k , 3 ] )

cSum [ l , 0 ] += np . cos ( tData [ i , j , k , 0 ] )

sSum [ l , 0 ] += np . s i n ( tData [ i , j , k , 0 ] )

c2Sum [ l , 0 ] += np . cos (2∗ tData [ i , j , k , 0 ] )

s2Sum [ l , 0 ] += np . s i n (2∗ tData [ i , j , k , 0 ] )

for a in range ( 1 , 4 ) :

cSum [ l , 1 ] += np . cos ( tData [ i , j , k , a ] )

sSum [ l , 1 ] += np . s i n ( tData [ i , j , k , a ] )

c2Sum [ l , 1 ] += np . cos (2∗ tData [ i , j , k , a ] )

s2Sum [ l , 1 ] += np . s i n (2∗ tData [ i , j , k , a ] )

for l in range (3∗ s ide −2) :

for i in range (2 ) :

rbar = np . s q r t ( ( cSum [ l , i ] / l S i z e [ l , i ] ) ∗∗2 + (sSum [ l , i ] / l S i z e [ l , i ] ) ∗∗2) #

Divide by s i z e i n s i d e or ou t s i d e ?

r = l S i z e [ l , i ]∗ rbar

r2 = np . s q r t ( ( c2Sum [ l , i ] / l S i z e [ l , i ] ) ∗∗2 + (s2Sum [ l , i ] / l S i z e [ l , i ] ) ∗∗2)

cSum [ l , i ] /= l S i z e [ l , i ]

sSum [ l , i ] /= l S i z e [ l , i ]

tLMean [ l , i ] = np . arctan2 (sSum [ l , i ] , cSum [ l , i ] )

tLMean [ l , i ] = tLMean [ l , i ] + 2∗np . p i i f ( tLMean [ l , i ] < 0 . 0 ) else tLMean [ l ,

i ]

tLVar [ l , i ] = 2∗(1 − rbar )

tLCon [ l , i ] = Conf Inte rva l ( 0 . 0 5 , 0 , r , l S i z e [ l , i ] , tLMean [ l , i ] , c2Sum [ l , i ] ,

s2Sum [ l , i ] )

o u t d i r e c = d i r e c+”/Theta/Layer”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/ThetaL ” + fileNum

out data = np . empty ( [ 6 ] )

for l in range (3∗ s ide −2) :

for i in range (2 ) :



122

out data=np . vstack ( ( out data , [ l , i , l S i z e [ l , i ] , tLMean [ l , i ] , tLVar [ l , i ] , tLCon

[ l , i ] ] ) )

out data = out data [ 1 : : ]

form = [ ’%1d ’ , ’%1d ’ , ’%1d ’ , ’ %20.19 f ’ , ’ %20.19 f ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )

return tLMean , tLVar , tLCon , tLayer

def CalcLayerMag ( ucData , l S i z e , d i r ec , f i leNum ) :

’ ’ ’

’ ’ ’

s i d e=len ( ucData )

lMag = np . z e r o s ( (3∗ s ide −2 ,2) )

lSum = np . z e ro s ( (3∗ s ide −2 ,2 ,3) )

magMean = np . z e r o s ( ( 2 ) )

magVar = np . z e r o s ( ( 2 ) )

t S i z e = np . z e r o s ( ( 2 ) )

for i in range ( s i d e ) :

for j in range ( s i d e ) :

for k in range ( s i d e ) :

l=i+j+k

lSum [ l , 0 ] += ucData [ i , j , k , 0 ]

lSum [ l , 1 ] += ucData [ i , j , k , 1 ] + ucData [ i , j , k , 2 ] + ucData [ i , j , k , 3 ]

for l in range (3∗ s ide −2) :

lMag [ l , 0 ] = np . l i n a l g . norm( lSum [ l , 0 ] ) / l S i z e [ l , 0 ]

lMag [ l , 1 ] = np . l i n a l g . norm( lSum [ l , 1 ] ) / l S i z e [ l , 1 ]

for j in range (2 ) :

for l in range (3∗ s ide −2) :

magMean [ j ] += l S i z e [ l , j ]∗ lMag [ l , j ]

t S i z e [ j ] = sum( l S i z e [ : , j ] )

magMean [ j ] /= t S i z e [ j ]

magVar [ j ] = np . var (np . vstack ( lMag [ : , j ] ) )

o u t d i r e c = d i r e c+”/Mag/Layer”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/MagL ” + fileNum

out data = np . empty ( [ 5 ] )

for i in range (2 ) :

out data=np . vstack ( ( out data , [−1 , i , t S i z e [ i ] , magMean [ i ] , magVar [ i ] ] ) )

for l in range (3∗ s ide −2) :

for i in range (2 ) :

out data=np . vstack ( ( out data , [ l , i , l S i z e [ l , i ] , lMag [ l , i ] , 0 ] ) )

out data = out data [ 1 : : ]

form = [ ’%2d ’ , ’%1d ’ , ’%5d ’ , ’ %20.19 f ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )

return lMag
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def CalcIonGamma( gData , d i r ec , f i leNum ) :

’ ’ ’

’ ’ ’

s i d e=len ( gData )

gIon = np . z e r o s ( ( 4 , s i d e ∗∗3) )

gIMean = np . z e r o s ( ( 4 ) )

gIAbsMean = np . z e r o s ( ( 4 ) )

gIVar = np . z e r o s ( ( 4 ) )

gIAbsVar = np . z e r o s ( ( 4 ) )

gICon = np . z e r o s ( ( 4 ) )

gIAbsCon = np . z e r o s ( ( 4 ) )

cSum = np . z e ro s ( ( 4 ) ) # Sum of cos ine va lue s

sSum = np . z e r o s ( ( 4 ) ) # Sum of s ine va lue s

c2Sum = np . z e ro s ( ( 4 ) ) # Sum of cos ine va lue s

s2Sum = np . z e ro s ( ( 4 ) ) # Sum of s ine va lue s

cSumAbs = np . z e r o s ( ( 4 ) ) # Sum of ab so l u t e cos ine va lue s

sSumAbs = np . z e r o s ( ( 4 ) ) # Sum of ab so l u t e s ine va lue s

c2SumAbs = np . z e r o s ( ( 4 ) ) # Sum of ab so l u t e cos ine va lue s

s2SumAbs = np . z e r o s ( ( 4 ) ) # Sum of ab so l u t e s ine va lue s

def Conf Inte rva l ( alpha , vm, r , l S i z e , t , c2Sum , s2Sum) :

i f vm==0:

npercent = norm . ppf (1.− alpha / 2 . )

H = ( 1 . / l S i z e ) ∗(np . cos (2∗ t ) ∗c2Sum + np . s i n (2∗ t ) ∗s2Sum)

H = 1.0 i f (H>1.0) else H # Clip H to range [ 0 , 1 ]

sigma = np . s q r t ( ( l S i z e ∗(1.−H) ) /(4∗ r ∗∗2) )

conf = np . a r c s i n ( npercent ∗ sigma )

i f np . i snan ( conf ) :

print ( l S i z e , r , c2Sum , s2Sum , t , sigma ,H)

e l i f r < ( 2 . / 3 . ) :

cpercent = ch i2 . ppf (1.− alpha )

temp = np . s q r t ( (2∗ l S i z e ∗(2∗ r ∗∗2 − l S i z e ∗ cpercent ) ) /((4∗ l S i z e − cpercent ) ∗
r ∗∗2) )

temp /= r

conf = np . a r c co s ( temp )

e l i f r >= ( 2 . / 3 . ) :

cpercent = ch i2 . ppf (1.− alpha )

temp = np . s q r t ( l S i z e ∗∗2 − ( l S i z e ∗∗2 − r ∗∗2) ∗np . exp ( cpercent / l S i z e ) )

temp /= r

conf = np . a r c co s ( temp )

return conf

count=0

for i in range ( s i d e ) :

for j in range ( s i d e ) :

for k in range ( s i d e ) :
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for a in range (4 ) :

gIon [ a , count ] = gData [ i , j , k , a ]

cSum [ a ] += np . cos ( gData [ i , j , k , a ] )

sSum [ a ] += np . s i n ( gData [ i , j , k , a ] )

c2Sum [ a ] += np . cos (2∗ gData [ i , j , k , a ] )

s2Sum [ a ] += np . s i n (2∗ gData [ i , j , k , a ] )

cSumAbs [ a ] += np . cos (abs ( gData [ i , j , k , a ] ) )

sSumAbs [ a ] += np . s i n (abs ( gData [ i , j , k , a ] ) )

c2SumAbs [ a ] += np . cos (2∗abs ( gData [ i , j , k , a ] ) )

s2SumAbs [ a ] += np . s i n (2∗abs ( gData [ i , j , k , a ] ) )

count+=1

for a in range (4 ) :

# Re la t i v e va lue s

cSum [ a ] /= count

sSum [ a ] /= count

rbar = np . s q r t ( ( cSum [ a ] ) ∗∗2 + (sSum [ a ] ) ∗∗2) # Divide by s i z e i n s i d e or

ou t s i d e ?

r = count∗ rbar

gIMean [ a ] = np . arctan2 ( sSumAbs [ a ] , cSumAbs [ a ] )

gIVar [ a ] = 2∗(1 − rbar )

gICon [ a ] = Conf Inte rva l ( 0 . 0 5 , 0 , r , count , gIMean [ a ] , c2Sum [ a ] , s2Sum [ a ] )

# Abso lute va lue s

cSumAbs [ a ] /= count

sSumAbs [ a ] /= count

rbar = np . s q r t ( ( cSumAbs [ a ] ) ∗∗2 + (sSumAbs [ a ] ) ∗∗2) # Divide by s i z e i n s i d e or

ou t s i d e ?

r = count∗ rbar

gIAbsMean [ a ] = np . arctan2 (sSumAbs [ a ] , cSumAbs [ a ] )

gIAbsVar [ a ] = 2∗(1 − rbar )

gIAbsCon [ a ] = Conf Inte rva l ( 0 . 0 5 , 0 , r , count , gIAbsMean [ a ] , c2SumAbs [ a ] , s2SumAbs [ a

] )

o u t d i r e c = d i r e c+”/Gamma/ Ion ”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/GammaI ” + fileNum

out data = np . empty ( [ 5 ] )

for i in range (4 ) :

out data=np . vstack ( ( out data , [ i , gIMean [ i ] , gICon [ i ] , gIAbsMean [ i ] , gIAbsCon [ i ] ] )

)

out data = out data [ 1 : : ]

form = [ ’%1d ’ , ’ %20.19 f ’ , ’ %20.19 f ’ , ’ %20.19 f ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )

return gIMean , gICon , gIon

# SECONDARY FUNCTION DEFINITION ###############################
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def CalcAlpha ( tLMean , tLCon , l S i z e , d i r ec , f i leNum ) :

’ ’ ’

’ ’ ’

lNum = len ( tLMean)

aLData = np . z e r o s ( ( lNum) )

aMean = 0 .0

aLCon = np . z e r o s ( ( lNum) )

aCon = 0 .0

t S i z e = 0

for l in range ( lNum) :

pS ize = ( l S i z e [ l , 1 ] + l S i z e [ l , 0 ] )

aLData [ l ] = tLMean [ l , 1 ] − tLMean [ l , 0 ] i f (abs ( tLMean [ l , 1 ] − tLMean [ l , 0 ] ) < np

. p i ) else ( tLMean [ l , 1 ] − tLMean [ l , 0 ] ) − ( ( ( tLMean [ l , 1 ] − tLMean [ l , 0 ] ) ) /(

abs ( ( tLMean [ l , 1 ] − tLMean [ l , 0 ] ) ) ) ) ∗2∗np . p i

aLCon [ l ] = l S i z e [ l , 1 ] ∗ tLCon [ l , 1 ] + l S i z e [ l , 0 ] ∗ tLCon [ l , 0 ]

aLCon [ l ] /= pSize

i f ( l != 0) :

aMean += pSize ∗( aLData [ l ] )

aCon += pSize ∗(aLCon [ l ] )

t S i z e += pSize

aMean /= t S i z e

aCon /= t S i z e

o u t d i r e c = d i r e c+”/Alpha”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/Alpha ” + fileNum

out data = np . empty ( [ 3 ] )

out data=np . vstack ( ( out data , [−1 ,aMean , aCon ] ) )

for i in range (1 , lNum) :

out data=np . vstack ( ( out data , [ i , aLData [ i ] , aLCon [ i ] ] ) )

out data = out data [ 1 : : ]

form = [ ’%1d ’ , ’ %20.19 f ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )

return aMean , aCon , aLData , aLCon

def CalcBeta ( tLMean , tLVar , l S i z e , d i r ec , f i leNum ) :

’ ’ ’

’ ’ ’

lNum = len ( tLMean)

bLData = np . z e r o s ( ( lNum−3) )

bMean = 0 .0

bLCon = np . z e r o s ( ( lNum−3) )
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bCon = 0 .0

t S i z e = 0

for l in range ( lNum−3) :

pS ize = ( l S i z e [ l , 0 ] + l S i z e [ l +3 ,0 ])

bLData [ l ] = ( tLMean [ l +3 ,0] − tLMean [ l , 0 ] )

i f abs ( bLData [ l ] ) > np . p i :

bLData [ l ] += (−1) ∗(abs ( bLData [ l ] ) /bLData [ l ] ) ∗2∗np . p i

bLCon [ l ] = l S i z e [ l , 0 ] ∗ tLCon [ l , 0 ] + l S i z e [ l +3 ,0]∗ tLCon [ l +3 ,0]

bLCon [ l ] /= pSize

i f ( l != 0) :

bMean += pSize ∗( bLData [ l ] )

bCon += pSize ∗(bLCon [ l ] )

t S i z e += pSize

bMean /= t S i z e

bCon /= t S i z e

o u t d i r e c = d i r e c+”/Beta”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/ Beta ” + fileNum

out data = np . empty ( [ 3 ] )

out data=np . vstack ( ( out data , [−1 ,bMean , bCon ] ) )

for i in range (1 , lNum−3) :

out data=np . vstack ( ( out data , [ i , bLData [ i ] , bLCon [ i ] ] ) )

out data = out data [ 1 : : ]

form = [ ’%1d ’ , ’ %20.19 f ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )

return bMean , bCon , bLData , bLCon

def CalcPhi ( bLData , aLData , bLCon , aLCon , bMean , aMean , bCon , aCon , l S i z e , d i r ec , fileNum ,

eRatio = 0 .4827) :

’ ’ ’

’ ’ ’

lNum = len ( bLData )

pLData = np . z e r o s ( ( lNum−3) )

pLMean = 0 .0

pMean = eRatio ∗bMean − aMean # Is t h i s co r r ec t or shou ld I do i t the long way?

pLConData = np . z e r o s ( ( lNum−3) )

pLCon = 0 .0

pCon = eRatio ∗bCon + aCon

for l in range ( lNum−3) :

pLData [ l ] = eRatio ∗bLData [ l ] − aLData [ l ]

pLConData [ l ] = eRatio ∗bLCon [ l ] + aLCon [ l ] # Is t h i s co r r ec t or shou ld I

account f o r s i z e again?

i f ( l != 0) :
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pLMean += pLData [ l ]

pLCon += pLConData [ l ]

pLMean /= (lNum−4)

pLCon /= (lNum−4)

o u t d i r e c = d i r e c+”/Phi”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/ Phi ” + fileNum

out data = np . empty ( [ 3 ] )

out data=np . vstack ( ( out data , [−1 ,pMean , pCon ] ) )

out data=np . vstack ( ( out data , [−2 ,pLMean , pLCon ] ) )

for i in range (1 , lNum−3) :

out data=np . vstack ( ( out data , [ i , pLData [ i ] , pLConData [ i ] ] ) )

out data = out data [ 1 : : ]

form = [ ’%1d ’ , ’ %20.19 f ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )

return pMean , pCon , pLMean , pLCon

def CalcLambda ( bLData , bLCon , bMean , bCon , l S i z e , d i r ec , f i leNum ) :

’ ’ ’

’ ’ ’

lNum = len ( bLData )

lLData = np . z e r o s ( ( lNum) )

lLConData = np . z e r o s ( ( lNum) )

lLMean = 0 .0

lLCon = 0 .0

lMean = 2∗np . p i / bMean

lCon = (2∗np . p i / bMean∗∗2) ∗bCon

for l in range ( lNum) :

lLData [ l ] = 2∗np . p i / bLData [ l ]

lLConData [ l ] = (2∗np . p i / bLData [ l ]∗∗2 ) ∗bCon # Is t h i s co r r ec t or shou ld I

account f o r s i z e again?

i f ( l != 0) :

lLMean += lLData [ l ]

lLCon += lLConData [ l ]

lLMean /= (lNum−1)

lLCon /= (lNum−1)

o u t d i r e c = d i r e c+”/Lambda”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/Lambda ” + fileNum

out data = np . empty ( [ 3 ] )

out data=np . vstack ( ( out data , [−1 , lMean , lCon ] ) )
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out data=np . vstack ( ( out data , [−2 , lLMean , lLCon ] ) )

for i in range (1 , lNum−3) :

out data=np . vstack ( ( out data , [ i , lLData [ i ] , lLConData [ i ] ] ) )

out data = out data [ 1 : : ]

form = [ ’%1d ’ , ’ %20.19 f ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )

return lMean , lCon , lLMean , lLCon , lLData , lLConData

def CalcKVec ( lMean , lCon , lLData , lLCon , d i r ec , f i leNum ) :

’ ’ ’

’ ’ ’

lNum = len ( lLData )

kLData = np . z e r o s ( ( lNum) )

kLConData = np . z e r o s ( ( lNum) )

kLMean = 0 .0

kLCon = 0 .0

kMean = 1 / lMean

kCon = (1 / lMean ∗∗2) ∗ lCon

for l in range ( lNum) :

kLData [ l ] = 1 / lLData [ l ]

kLConData [ l ] = (1 / lLData [ l ]∗∗2 ) ∗ lLCon [ l ] # Is t h i s co r r ec t or shou ld I

account f o r s i z e again?

i f ( l != 0) :

kLMean += kLData [ l ]

kLCon += kLConData [ l ]

kLMean /= (lNum−1)

kLCon /= (lNum−1)

o u t d i r e c = d i r e c+”/KMag”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/KMag ” + fileNum

out data = np . empty ( [ 3 ] )

out data=np . vstack ( ( out data , [−1 ,kMean , kCon ] ) )

out data=np . vstack ( ( out data , [−2 ,kLMean , kLCon ] ) )

for i in range (1 , lNum−3) :

out data=np . vstack ( ( out data , [ i , kLData [ i ] , kLConData [ i ] ] ) )

out data = out data [ 1 : : ]

form = [ ’%1d ’ , ’ %20.19 f ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )

return kMean , kCon , kLMean , kLCon

# OTHER #######################################################

def FastFour ie r ( ucData ) :
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’ ’ ’

’ ’ ’

return None

def IonAngle ( ucData , a , b , f i leNum ) :

’ ’ ’

IonAngle −
Ca lcu la t e the average ang le between two g iven ions .

@params : : ucData − The ion data separated in to un i t c e l l s

a , b − The two ion numbers to be measured

fi leNum − The f i l e number be ing cons idered

@return : : angleMean , angleVar − The average and var iance o f ang l e s between ions

a and b in a g iven un i t c e l l .

ang le − The data f o r each un i t c e l l

sumAngleMean − The average sum of ang l e s in each un i t c e l l

’ ’ ’

s i d e=len ( ucData )

ang le=np . z e r o s ( ( s ide , s ide , s i d e ) )

for i in range ( s i d e ) :

for j in range ( s i d e ) :

for k in range ( s i d e ) :

dot = np . dot ( ucData [ i , j , k , a ] , ucData [ i , j , k , b ] )

dot = dot/abs ( dot ) i f (abs ( dot ) > 1 . 0 ) else dot # Clip to

[ −1.0 ,1 .0 ]

ang le [ i , j , k ] = abs (np . a r c co s ( dot ) ) # Only care about magnitude

angleMean = circmean ( ang le )

angleVar = c i r c v a r ( ang le ) #This var iance i s NOT a conf idence i n t e r v a l as the

o ther s are

o u t d i r e c = d i r e c+”/ Layer2Angles / Ions ” + str ( a ) + str (b)

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/ Angles ” + fileNum

out data = np . empty ( [ 5 ] )

out data=np . vstack ( ( out data ,[−1 ,−1 ,−1 , angleMean , angleVar ] ) )

for i in range (1 , s i d e ) :

for j in range (1 , s i d e ) :

for k in range (1 , s i d e ) :

out data=np . vstack ( ( out data , [ i , j , k , ang le [ i , j , k ] , 0 . 0 ] ) )

out data = out data [ 1 : : ]

form = [ ’%1d ’ , ’%1d ’ , ’%1d ’ , ’ %20.19 f ’ , ’ %20.19 f ’ ]

np . save txt ( o u t f i l e , out data , fmt=form , d e l i m i t e r=’ ’ , newl ine=’ \n ’ )

return angleMean , angleVar , ang le
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# main ########################################################

for n in range (1 , confRange+1) :

fNum = str (n) . z f i l l ( 3 )

f i l e = ’ MinConf ’+fNum+” . dat ”

print ( ” F i l e : ” + d i r e c + ”/” + f i l e )

data = ReadFile ( d i r ec , f i l e )

ucData = RawToUC( data , d i r ec , fNum)

gData = CalcGamma( ucData , d i r ec , fNum)

tData = CalcTheta ( ucData , d i r ec , fNum)

gLMean , gLVar , l S i z e , = CalcLayerGamma ( gData , d i r ec , fNum)

lMag = CalcLayerMag ( ucData , l S i z e , d i r ec , fNum)

tLMean , tLVar , tLCon , = CalcLayerTheta ( tData , l S i z e , d i r ec , fNum)

gIMean , gIVar , = CalcIonGamma( gData , d i r ec , fNum)

aMean , aCon , aLData , aLCon = CalcAlpha ( tLMean , tLCon , l S i z e , d i r ec , fNum)

bMean , bCon , bLData , bLCon = CalcBeta ( tLMean , tLCon , l S i z e , d i r ec , fNum)

pMean , pCon , , = CalcPhi ( bLData , aLData , bLCon , aLCon , bMean , aMean , bCon , aCon , l S i z e

, d i r ec , fNum)

lMean , lCon , , , lLData , lLCon = CalcLambda (bLData , bLCon , bMean , bCon , l S i z e , d i r ec ,

fNum)

kMean , kCon , , = CalcKVec ( lMean , lCon , lLData , lLCon , d i r ec , fNum)

for a in range ( 1 , 4 ) :

for b in range ( a+1 ,4) :

angleMean , angleVar , , = IonAngle ( ucData , a , b , fNum)

CalcOP(kMean , ucData , d i r ec , fNum)

# UCToLayer( ucData , d irec , s t r (n) . z f i l l (3) )

# UCToIon(ucData , d irec , s t r (n) . z f i l l (3) )
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E.1.2 Combine

# Kyle Ha l l 2020

import numpy as np

import os

import sys

# Check fo r command l i n e arguments . I f none present , ask f o r arguments

i f not sys . s td in . i s a t t y ( ) :

d i r e c=input ( ” Di rec to ry Name : ” )

confRange=int ( input ( ” Input number o f minimum c o n f i g u r a t i o n s : ” ) )

temp=f loat ( input ( ” Input the temperature o f the s imu la t i on : ” ) )

else :

d i r e c=sys . argv [ 1 ]

confRange=int ( sys . argv [ 2 ] )

temp=f loat ( sys . argv [ 3 ] )

q u a n t i t i e s = ( ’Lambda ’ , ’KMag ’ , ’ Phi ’ , ’Gamma ’ , ’Mag ’ , ’ Layer2Angles ’ , ’OP’ ) #

Choose only the va lue s you want combined .

# DATA IN #############################################

def ReadFile ( d i r ec , f i l eType , dataType=None ) :

’ ’ ’

’ ’ ’

global confRange

i f ( dataType == ”Layer” ) :

f i leName = dataType + ”/” + f i l eType +”L”

e l i f ( dataType == ”UC” ) :

f i leName = dataType + ”/” + f i l eType + ”UC”

e l i f ( dataType == ” Ion ” ) :

f i leName = dataType + ”/” + f i l eType + ” I ”

e l i f ( dataType == ” Angles ” ) :

f i leName = ” Angles ”

e l i f ( f i l eType == ”OP” ) :

f i leName = ”F” + str ( dataType )

else :

f i leName = f i l eType

data = [ ]

form = [ ’%d ’ , ’ %20.19 f ’ , ’ %20.19 f ’ ]

for i in range (1 , confRange+1) :

i n p u t f i l e = d i r e c + ”/” + fi leName + ” ” + str ( i ) . z f i l l ( 3 )

data . append (np . genfromtxt ( i n p u t f i l e , de fau l t fmt=form ) )

data = np . array ( data )

return data
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# DATA COMBINE #############################################

def CombineSecondary ( d i r ec , quantity , data ) :

’ ’ ’

’ ’ ’

global confRange , temp

meanData = np . z e r o s ( ( confRange ) )

varData = np . z e r o s ( ( confRange ) )

mean = 0 .0

var = 0 .0

e r r = 0 .0

for i in range ( len ( data ) ) :

meanData [ i ] = data [ i , 0 , 1 ]

varData [ i ] = data [ i , 0 , 2 ]

mean += meanData [ i ]

var += varData [ i ]∗∗2

print (np . var ( meanData ) )

var = var + np . var ( meanData )

mean /= confRange

var = var /confRange

e r r = np . s q r t ( var ) /(np . s q r t ( confRange−1) ) #

o u t d i r e c = ” . / Means”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/” + quant i ty

i f not os . path . e x i s t s ( o u t f i l e ) : # Make f i l e i f i t doesn ’ t e x i s t . Otherwise

append to i t

aw switch = ’w ’

else :

aw switch = ’ a ’

f = open( o u t f i l e , aw switch )

out data = np . array ( [ temp , mean , var , e r r ] )

np . save txt ( f , ( out data ) , fmt=’ %20.19 f ’ , d e l i m i t e r=’ ’ , newl ine=’ ’ )

f . wr i t e ( ’ \n ’ )

f . c l o s e ( )

return mean , var , err , meanData , varData

def CombineGamma( d i rec , quantity , data ,

dataType = ’ Ion ’ ) :
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’ ’ ’

’ ’ ’

global temp , confRange

def GammaIon( data ) :

global temp , confRange

meanData = np . z e r o s ( ( confRange , 4 , 2 ) )

varData = np . z e r o s ( ( confRange , 4 , 2 ) )

mean = np . z e r o s ( ( 4 , 2 ) )

var = np . z e r o s ( ( 4 , 2 ) )

e r r = np . z e r o s ( ( 4 , 2 ) )

for i in range ( len ( data ) ) :

for j in range (4 ) :

for k in range (2 ) :

meanData [ i , j , k ] = data [ i , j , 2∗ k+1]

varData [ i , j , k ] = data [ i , j , 2∗ ( k+1) ]

mean [ j , k ] += meanData [ i , j , k ]

var [ j , k ] += varData [ i , j , k ]∗∗2

for j in range (4 ) :

for k in range (2 ) :

var [ j , k ] = var [ j , k ] + np . var ( meanData [ : , j , k ] )

mean [ j , k ] /= confRange

var [ j , k ] /= confRange

e r r [ j , k ] = np . s q r t ( var [ j , k ] ) /np . s q r t ( confRange−1)

for j in range (4 ) :

o u t d i r e c = ” . / Means”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/” + quant i ty + ” Ion ” + str ( j +1)

i f not os . path . e x i s t s ( o u t f i l e ) : # Make f i l e i f i t doesn ’ t e x i s t .

Otherwise append to i t

aw switch = ’w ’

else :

aw switch = ’ a ’

f = open( o u t f i l e , aw switch )

out data = np . array ( [ temp , mean [ j , 0 ] , var [ j , 0 ] , e r r [ j , 0 ] , mean [ j , 1 ] , var [ j , 1 ] ,

e r r [ j , 1 ] ] )

np . save txt ( f , ( out data ) , fmt=’ %20.19 f ’ , d e l i m i t e r=’ ’ , newl ine=’ ’ )

f . wr i t e ( ’ \n ’ )

f . c l o s e ( )

return mean , var , err , meanData , varData

def GammaLayer( data ) :

’ ’ ’

Todo

’ ’ ’
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global temp , confRange

meanData = np . z e r o s ( ( confRange , 2 , 2 ) )

varData = np . z e r o s ( ( confRange , 2 , 2 ) )

mean = np . z e r o s ( ( 2 , 2 ) )

var = np . z e r o s ( ( 2 , 2 ) )

e r r = np . z e r o s ( ( 2 , 2 ) )

for i in range ( len ( data ) ) :

for j in range (2 ) :

for l in range (2 ) :

meanData [ i , l , j ] = data [ i , l , 2∗ ( j +1)+1]

varData [ i , l , j ] = data [ i , l , 2∗ ( j +2) ]

mean [ l , j ] += meanData [ i , l , j ]

var [ l , j ] += varData [ i , l , j ]∗∗2

for l in range (2 ) :

for k in range (2 ) :

var [ l , k ] = var [ l , k ] + np . var ( meanData [ : , l , k ] )

mean [ l , k ] /= confRange

var [ l , k ] /= confRange

e r r [ l , k ] = np . s q r t ( var [ l , k ] ) /np . s q r t ( confRange−1)

for j in range (2 ) :

o u t d i r e c = ” . / Means”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/” + quant i ty + ”Layer” + str ( j +1)

i f not os . path . e x i s t s ( o u t f i l e ) : # Make f i l e i f i t doesn ’ t e x i s t .

Otherwise append to i t

aw switch = ’w ’

else :

aw switch = ’ a ’

f = open( o u t f i l e , aw switch )

out data = np . array ( [ temp , mean [ j , 0 ] , var [ j , 0 ] , e r r [ j , 0 ] , mean [ j , 1 ] , var [ j , 1 ] ,

e r r [ j , 1 ] ] )

np . save txt ( f , ( out data ) , fmt=’ %20.19 f ’ , d e l i m i t e r=’ ’ , newl ine=’ ’ )

f . wr i t e ( ’ \n ’ )

f . c l o s e ( )

return None , None , None , None , None

def GammaUC( data ) :

’ ’ ’

Todo

’ ’ ’

return None , None , None , None , None

i f ( dataType == ”Layer” ) :

mean , var , err , meanData , varData = GammaLayer( data )

e l i f ( dataType == ”UC” ) :

mean , var , err , meanData , varData = GammaUC( data )
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e l i f ( dataType == ” Ion ” ) :

mean , var , err , meanData , varData = GammaIon( data )

else :

print ( ’ Error : Gamma type not v a l i d . ’ )

return None , None , None , None , None

def CombineMag( d i r ec , quantity , data ) :

’ ’ ’

’ ’ ’

global temp , confRange

meanData = np . z e r o s ( ( confRange , 2 ) )

varData = np . z e r o s ( ( confRange , 2 ) )

mean = np . z e r o s ( ( 2 ) )

var = np . z e r o s ( ( 2 ) )

e r r = np . z e r o s ( ( 2 ) )

for i in range ( len ( data ) ) :

for l in range (2 ) :

meanData [ i , l ] = data [ i , l , 3 ]

varData [ i , l ] = data [ i , l , 4 ]

mean [ l ] += meanData [ i , l ]

var [ l ] += varData [ i , l ]∗∗2

for l in range (2 ) :

var [ l ] += np . var ( meanData [ : , l ] )

mean [ l ] /= confRange

var [ l ] /= confRange

e r r [ l ] = np . s q r t ( var [ l ] ) /np . s q r t ( confRange−1)

for j in range (2 ) :

o u t d i r e c = ” . / Means”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/” + quant i ty + ”Layer” + str ( j +1)

i f not os . path . e x i s t s ( o u t f i l e ) : # Make f i l e i f i t doesn ’ t e x i s t .

Otherwise append to i t

aw switch = ’w ’

else :

aw switch = ’ a ’

f = open( o u t f i l e , aw switch )

out data = np . array ( [ temp , mean [ j ] , var [ j ] , e r r [ j ] ] )

np . save txt ( f , ( out data ) , fmt=’ %20.19 f ’ , d e l i m i t e r=’ ’ , newl ine=’ ’ )
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f . wr i t e ( ’ \n ’ )

f . c l o s e ( )

return None , None , None , None , None

def CombineLayerAngles ( d i r ec , quantity , data ) :

’ ’ ’

’ ’ ’

global confRange , temp

meanData = np . z e r o s ( ( confRange ) )

varData = np . z e r o s ( ( confRange ) )

mean = 0 .0

var = 0 .0

e r r = 0 .0

for i in range ( len ( data ) ) :

meanData [ i ] = data [ i , 0 , 3 ]

varData [ i ] = data [ i , 0 , 4 ]

mean += meanData [ i ]

var += varData [ i ]∗∗2

print (np . var ( meanData ) )

var = var + np . var ( meanData )

mean /= confRange

var /= confRange

e r r = np . s q r t ( var ) /(np . s q r t ( confRange−1) ) #

o u t d i r e c = ” . / Means”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

o u t f i l e = o u t d i r e c + ”/” + quant i ty

i f not os . path . e x i s t s ( o u t f i l e ) : # Make f i l e i f i t doesn ’ t e x i s t . Otherwise

append to i t

aw switch = ’w ’

else :

aw switch = ’ a ’

f = open( o u t f i l e , aw switch )

out data = np . array ( [ temp , mean , var , e r r ] )

np . save txt ( f , ( out data ) , fmt=’ %20.19 f ’ , d e l i m i t e r=’ ’ , newl ine=’ ’ )

f . wr i t e ( ’ \n ’ )

f . c l o s e ( )

return mean , var , err , meanData , varData

def CombineOP( d i rec , quantity , op , data ) :

’ ’ ’

Magnitude only
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’ ’ ’

global confRange , temp

meanData = np . z e r o s ( ( confRange , 4 ) )

mean = np . z e r o s ( ( 4 ) )

for i in range ( len ( data ) ) :

for j in range (4 ) :

meanData [ i , j ] = data [ i , j , 1 ]

mean [ j ] += meanData [ i , j ]

mean /= confRange

o u t d i r e c = ” . / Means”

i f not os . path . e x i s t s ( o u t d i r e c ) :

os . makedirs ( o u t d i r e c )

for j in range (4 ) :

o u t f i l e = o u t d i r e c + ”/F” + str ( op ) + ” ” + str ( j +1)

i f not os . path . e x i s t s ( o u t f i l e ) : # Make f i l e i f i t doesn ’ t e x i s t .

Otherwise append to i t

aw switch = ’w ’

else :

aw switch = ’ a ’

f = open( o u t f i l e , aw switch )

out data = np . array ( [ temp , mean [ j ] ] )

np . save txt ( f , ( out data ) , fmt=’ %20.19 f ’ , d e l i m i t e r=’ ’ , newl ine=’ ’ )

f . wr i t e ( ’ \n ’ )

f . c l o s e ( )

return mean , meanData

return None

# main ################################################

print ( d i r e c )

for q in q u a n t i t i e s :

d a t a d i r e c = d i r e c + ”/” + q

print ( ’ \ t ’+q )

i f ( q == ’Gamma ’ ) :

for dataType in [ ” Ion ” , ”Layer” ] :

data = ReadFile ( da ta d i r e c , q , dataType )

mean , var , err , , = CombineGamma( d i r ec , q , data , dataType )

e l i f ( q == ’Mag ’ ) :

data = ReadFile ( da ta d i r e c , q , ”Layer” )

mean , var , err , , = CombineMag( d i r ec , q , data )

e l i f ( q == ’ Layer2Angles ’ ) :

for i in range ( 1 , 4 ) :

for j in range ( i +1 ,4) :
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a n g l e d i r e c = d a t a d i r e c + ”/ Ions ” + str ( i ) + str ( j )

data = ReadFile ( a n g l e d i r e c , q , ” Angles ” )

mean , var , err , , = CombineLayerAngles ( d i r ec , q+str ( i )+str ( j ) ,

data )

e l i f ( q == ’OP’ ) :

for k in range (3 ) :

data = ReadFile ( da ta d i r e c , q , k+1)

mean , = CombineOP( d i r ec , q , k+1, data )

else :

data = ReadFile ( da ta d i r e c , q , None )

mean , var , err , , = CombineSecondary ( d i r ec , q , data )
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