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Abstract 

 

In this thesis, fault diagnosis approaches for direct online induction motors are proposed using 

signal processing and graph-based semi-supervised learning (GSSL). These approaches are 

developed using experimental data obtained in the lab for two identical 0.25 HP three-phase 

squirrel-cage induction motors. Various electrical and mechanical single- and multi-faults are 

applied to each motor during experiments. Three-phase stator currents and three-dimensional 

vibration signals are recorded simultaneously in each experiment. In this thesis, Power Spectral 

Density (PSD)-based stator current amplitude spectrum analysis and one-dimensional Complex 

Continuous Wavelet Transform (CWT)-based stator current time-scale spectrum analysis are 

employed to detect broken rotor bar (BRB) faults. An effective single- and multi-fault diagnosis 

approach is developed using GSSL, where discrete wavelet transform (DWT) is applied to extract 

features from experimental stator current and vibration data. Three GSSL algorithms (Local and 

global consistency (LGC), Gaussian field and harmonic functions (GFHF), and greedy-gradient 

max-cut (GGMC)) are adopted and compared in this study. To enable machine learning for 

untested motor operating conditions, mathematical equations to calculate features for untested 

conditions are developed using curve fitting and features obtained from experimental data of tested 

conditions.   
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Chapter 1 

Introduction  

 

1.1 Background Information 

Due to rugged construction, lower operating cost, and fewer maintenance requirements, 

induction motors are widely used in various industry sectors, such as centrifugal pumps, 

automotive, aerospace, conveyors, elevators, and packaging processes. Because of their robust 

build quality, they are often employed in hazardous locations, including oil fields, natural gas 

plants, and coal plants [1], [2]. 

 

Induction motors are subjected to various faults. The operational environment such as high 

ambient temperature, tasks performed, and installation issues may be combined to accelerate 

induction motor failure far sooner than the designed motor lifetime. If these faults are not 

diagnosed during impending stages, the motor can suffer severe damage, and production processes 

may come to a complete halt. Such unscheduled downtimes can increase the production cost to 

approximately twice the normal because of production shutdown, overhauling, and wastage of raw 

materials. Operators are under continual pressure to prevent this kind of unscheduled disruption 

and escalation in maintenance costs. Early detection of induction motor faults can attenuate this 

issue and ensure the reliable operation of critical industrial processes.  

The faults of induction motors can be categorized, as shown in Fig. 1.1: rotor bar fault (5%), 

bearing fault (51%), stator winding fault (16%), shaft/coupling fault (2%), and the rest are 

classified as unknown faults or faults due to external reasons [3].  
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Fig. 1. 1. Different types of faults’ distribution of an induction motor [3]. 

Similar statistical surveys are conducted by the IEEE Industrial Application Society (IAS) and 

electric power research institute (EPRI) on induction motor faults [4]. The percentages of different 

motor faults to the total number of faults are listed in Table 1.1. 

Table 1. 1: Comparison of surveys from IEEE IAS and EPRI [4]. 

Major Components IEEE IAS (%) EPRI (%) 

Rotor related 8 9 

Bearing related 44 41 

Stator related 26 36 

Others 22 14 

 

 

The most vulnerable parts of induction motors are bearing, stator winding, rotor bar, and shaft. 

Besides, faults also occur due to non-uniformity in the air gap between the stator-inner surface and 

the rotor-outer surface. Faults in induction motors can be categorized into electrical, mechanical, 

and environmental faults. Electrical faults include unbalanced supply voltage or current, under or 

over voltage or current, reverse phase sequence, earth fault, overload, and inter-turn short-circuit 

fault of the stator. Mechanical faults include broken rotor bar, mass unbalance, air gap eccentricity, 

5%

51%

16%

16%

10% 2%

Rotor Bar Bearing Stator Winding

External Unknown Shaft/Coupling
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bearing damage, rotor winding failure, and stator winding failure. Environmental faults are mainly 

caused by the effect of ambient temperature and moisture. Vibrations due to installation defect and 

foundation defect also affect the performance of induction motors [2].  

 

In induction motors, multiple faults may occur, and fault diagnosis becomes more challenging 

than single-fault [2], [5]. The effects of such faults in induction motors include unbalanced stator 

currents and voltages, oscillations in torque, reduction in efficiency and torque, overheating, and 

vibration. These faults can also increase the magnitude of specific harmonic components of 

currents and voltages [6].  

 

Different failure modes call for comprehensive maintenance of induction motors. The 

maintenance can be categorized into: 1) scheduled maintenance, 2) breakdown maintenance, and 

3) condition-based maintenance [7]. Scheduled maintenance includes planned check-up and repair 

of machines at a previously scheduled instance but results in extended downtime. This type of 

maintenance also requires an expert to precisely point out the defects, repairing or replacing the 

parts before the motor resumes working. In breakdown maintenance, the motor is allowed to run 

until it eventually wears out, which requires replacing that machine with an added cost to the 

process. Condition-based maintenance includes monitoring data, such as voltage and current 

spectrum, torque profile, during motor operation and taking necessary steps to prevent a fault at 

the developing stage to minimize the machine’s downtime. Therefore, a condition-based 

monitoring system is desired because it requires less maintenance, lower cost, and drastically 

reduced production downtime [8]. 

 

In the age of industrial automation, significant progress has been made in computer-based data or 

signal acquisition and analysis, which has opened up a new pathway towards condition-based 
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maintenance as scheduled and breakdown maintenance are not sufficient as practicable choices 

anymore. The primary goal of the condition monitoring mechanism is to form a map between 

recorded signals and motor conditions to detect faults in incipient stages. By observing the 

aberrations in voltage, current, vibration, torque, and leakage flux, condition monitoring and fault 

diagnosis methods for induction motors can be developed. 

 

1.2 Thesis Outline   

This thesis consists of three manuscripts, two have already been published, and one has been 

accepted for publication. 

 

Chapter 1  

In Chapter 1, the importance of the research topic and background information are introduced; and 

objectives of the research are provided. 

 

Chapter 2   

In Chapter 2, a literature review is conducted for advanced signal processing and machine 

learning techniques for induction motor fault diagnosis. 

 

Chapter 3   

In Chapter 3, a stator current signature analysis method is proposed for fault diagnosis of 

squirrel-cage induction motor broken rotor bar (BRB) faults. Two different techniques are 

proposed and evaluated: Power Spectral Density (PSD) based stator current amplitude spectrum 

analysis; and one-dimensional Complex Continuous Wavelet Transform (CWT) based stator 

current time-scale spectrum analysis using Complex Morlet Wavelet (CMW). The performance of 
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the two techniques is compared using experimental stator current data measured in a lab for a 0.25 

HP three-phase squirrel-cage induction motor. The stator current under healthy and faulty states 

of the motor was measured; the faults include one, two, and three BRBs. For 2 and 3 BRB faults, 

the holes were drilled on the rotor bars 90 degrees apart. The data of two motor loading conditions, 

30%, and 85%, were used. It is found that CWT has better performance than PSD estimates for 

BRB fault detection. A version of this chapter has been published in proceedings of 2019 IEEE 

Canadian Conference of Electrical and Computer Engineering (CCECE). 

 

Chapter 4   

In Chapter 4, a GSSL-based fault diagnosis approach for direct online induction motors using 

both labeled and unlabeled data is proposed. Experimental data for two 0.25 HP induction motors 

under healthy and faulty conditions are used. Discrete Wavelet Transform (DWT) is employed to 

extract features from recorded stator current signals. Three GSSL algorithms (local and global 

consistency (LGC), Gaussian field and harmonic function (GFHF), and greedy-gradient max cut 

(GGMC)) are evaluated in this study, and GGMC shows superior performance over LGC and 

GFHF. They are also compared with a supervised learning algorithm, support vector machine 

(SVM). As induction motors often operate under variable loadings, curve fitting equations to 

calculate features for untested operating conditions are developed based on experimental data to 

enable machine learning for such untested conditions. A version of this chapter has been published 

in proceedings of 2020 Industrial and Commercial Power Systems Technical Conference. 
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Chapter 5   

In Chapter 5, a GSSL-based fault diagnosis method for direct online induction motors is 

proposed using stator current and vibration signals. A 0.25 HP induction motor under healthy, 

single- and multi-fault states is tested in the lab. Three-phase stator currents and three-dimensional 

vibration signals of the motor are recorded simultaneously under steady-state operation in each 

test. Features for machine learning are extracted from the raw experimental stator current and 

vibration data using the DWT. Three GSSL algorithms, local and global consistency (LGC), 

Gaussian field and harmonic function (GFHF), and greedy-gradient max cut (GGMC), are used in 

the paper. It is found that both stator current and vibration signals perform well for one individual 

fault diagnosis using GSSL algorithms, but for classification of a combination of five different 

faults, the stator current outperforms the vibration signal significantly. Among the three GSSL 

algorithms, GGMC shows better classification results over LGC and GFHF for both stator current 

and vibration signals.  A version of this chapter has been accepted by 2020 IEEE Canadian 

Conference of Electrical and Computer Engineering (CCECE). 

 

Chapter 6   

In Chapter 6, research outcomes are summarized, and future work is recommended.  

 

 1.3 Objectives and Main Contributions of the Thesis  

The objectives of this research focus on developing effective fault diagnosis methods for direct 

online induction motors using signal processing and graph-based semi-supervised learning (GSSL) 

techniques.  

The main contributions of the thesis include:  
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1. In Chapter 3, the advanced signal processing-based broken rotor bar detection method for 

direct online induction motors is explored using experimental stator current signals. By 

comparing two signal processing methods, PSD and CWT, it is found that the CWT 

performs better in diagnosing BRB faults and distinguishing among different types of BRB 

faults. 

2. In Chapter 4, an effective GGMC-based GSSL approach is proposed for induction motor 

single- and multi-fault diagnosis using experimental stator current signals. It is found the 

proposed method can effectively detect fault with high accuracy. Among the three GSSL 

algorithms, GGMC shows better classification results over LGC and GFHF. 

3. In Chapter 5, a GSSL method is proposed for fault diagnosis of direct online induction 

motors using both stator current and vibration signals. It is found that both stator current 

and vibration signals perform well for the binary fault detection involving one individual 

fault; while the stator current outperforms vibration signals for the multiclass classification 

involving a combination of five different faults. Among the three GSSL algorithms, 

GGMC shows better classification results over LGC and GFHF for both stator current and 

vibration signals. 
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Chapter 2  

Literature Review  

 

Induction motors are the most commonly used electric machines in critical industrial 

applications. Although protective measures are employed, different electrical and mechanical 

faults still occur in induction motors, causing system breakdown and operational cost increase [1]. 

In the literature, three streams of work are reported in the literature for induction motors fault 

diagnosis, as shown in Fig. 2.1: 1) signature extraction-based approaches, 2) model-based 

approaches, and 3) knowledge-based approaches. The methods in bold in Fig. 2.1 are explored in 

this thesis. 

Induction Motor Fault 

Diagnostic approaches

Signature 

Extraction Based
Model Based Knowledge Based

Feature Extraction 

as an interim stage 

of fault diagnosis

Direct fault 

diagnosis

Supervised 

learning based 

fault diagnosis

Semi-supervised 

learning based 

fault diagnosis

Unsupervised 

learning based 

fault diagnosis
 

Fig. 2. 1. Induction motor fault diagnosis reported in the literature 

 

2.1 Signature Extraction-Based Approaches 

The signature extraction-based approaches are based on the analysis of fault signatures in time 

and frequency domains with respect to the recorded current, voltage, power, vibration, 

temperature, and acoustic signals [1]. The motor current signature analysis (MCSA) is one of the 

most popular techniques for online condition monitoring of induction motors [3]. MCSA is most 

successful in detecting broken rotor bars or end ring faults. Broken rotor bar faults are usually 
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diagnosed through characteristic harmonic sidebands [4], [5]. However, harmonic sidebands might 

also result from the design, construction, or load characteristics of induction motors. If these 

harmonic sidebands overlap with fault-related spectrum components, it is difficult to distinguish 

between a normal motor operating condition and a failure mode. Other advanced signal processing 

techniques including short-time Fourier transform (STFT), Wigner-Ville distribution (WVD), 

power spectral density (PSD), wavelet transform (WT) [6]–[8], multiple signal classification 

(MUSIC) [9], Hilbert transform [10], maximum covariance methods [11], and hybrid techniques 

(such as combining Wavelet and Hilbert transform [12], and homogeneity analysis with the 

Gaussian probability density function [13]) are reported in the literature for induction motor fault 

diagnosis. By choosing an appropriate signal processing approach, faults can be detected 

accurately. These signal processing techniques can also be utilized to extract features from 

recorded signals for machine learning [14]. 

 

2.2 Model-Based Approaches 

The model-based fault diagnosis approaches require to model appropriate characteristics of 

induction motors under different fault modes [15]-[21]. Stator inter-turn short circuit fault 

diagnosis using a winding function approach is proposed in [16], but not suitable for industrial 

applications due to its inherent complexity. Fault diagnosis using negative sequence current [17], 

current vector radius [18], and multiple reference frame theory strategies [19] are proposed. 

Model-based approaches are the least explored in the literature as obtaining precise motor models 

for fault diagnosis is often infeasible [22]. 
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2.3 Knowledge-Based Approaches 

Knowledge-based approaches are data-driven machine learning-based techniques using data 

samples in online and offline applications [23]. 

 

The majority of the knowledge-based approaches uses supervised learning [24]. Artificial 

neural network (ANN) or other hybrid schemes of ANN is one of the most reported machine 

learning methods in the literature for fault diagnosis. The ANN methods include neural network 

with analytical redundancy method [25], Park’s vector pattern learning [26], convolutional 

discriminative feature learning [27], fuzzy logic [28]. However, neural networks for online fault 

diagnosis of induction motors are mostly unsupervised [29], [30]. Other supervised machine 

learning approaches for induction motor fault diagnosis, such as support vector machine (SVM), 

k- nearest neighbor (KNN), ensemble and decision tree, are reported in the literature [24]. 

 

Obtaining the dataset is not a difficult task as condition data are continuously monitored in 

industries, but the process of labeling the collected data samples requires expert intervention. 

Updating the trained machine learning model for new data is also computationally expensive [31].  

 

To alleviate this issue, semi-supervised learning methods are adopted that use only a few 

numbers of labeled samples along with a large number of unlabeled samples to construct a 

classification model [32]. These few labeled data can extract useful information from unlabeled 

data without any human involvement for labeling. Several diagnostic systems are designed based 

on semi-supervised learning strategies to improve efficiency and accuracy of the fault diagnostic 

systems. 
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Semi-supervised smooth alpha layering, semi-supervised label consistent dictionary learning, 

semi-supervised deep learning, semi-supervised multiple association layers network, and semi-

supervised learning with manifold regularization based machine fault diagnostic methods are 

proposed in [23], [33]–[36]. 

 

Graph-based semi-supervised learning is a promising new area in the semi-supervised learning 

domain for active propagation of a limited number of initial labels to a large amount of unlabeled 

data. Fault detection and classification in PV arrays using GSSL is proposed in [31]. In [37], three 

different semi-supervised learning algorithms, local and global consistency (LGC), the Gaussian 

random field (GRF) method, and the graph transduction via alternating minimization (GTAM), 

are used and compared based on simulated and real benchmark datasets. Residential non-intrusive 

load monitoring using multi-label GSSL is proposed in [38].  

 

This thesis focuses on two prime components for induction motor fault diagnosis: 1) an 

approach solely based on comparison of two distinctive signal processing methods, and 2) a 

proposed novel approach using graph-based semi-supervised learning.  
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Abstract- Induction motors are widely used in various industrial sectors, fault diagnosis of 

induction motors are critical to prevent equipment failure and production downtime. In this paper, 

a stator current signature analysis method is proposed for squirrel cage induction motors’ broken 

rotor bar (BRB) fault diagnosis. Two different techniques are implemented: Power Spectral 

Density (PSD) based stator currents’ amplitude spectrum analysis; and one dimensional Complex 

Continuous Wavelet Transform (CWT) based stator currents’ time-scale spectrum analysis using 

Complex Morlet Wavelet (CMW). The performance of the two techniques are compared using 

experimental stator current data measured in a lab for a 0.25 HP induction motor. The stator current 

under healthy and faulty states of the motor were measured, the faults include one, two and three 

BRBs. For 2 and 3 BRB faults, the holes were drilled on the rotor bars 90 degree apart. Two 

loading conditions of the motor were used during the measurement, 30% and 85%. It is found that 

the CWT has better performance than the PSD estimates for the BRB fault detection. 

 

Keywords- Fault diagnosis, Complex continuous wavelet transform, Complex Morlet wavelet, 

Power spectral density estimate. 

 
 

3.1 Introduction  

Induction motors are most widely used electrical machines. Fault diagnosis is critical especially 

for machines operating in important industry processes or harsh environment. The squirrel cage 

induction motor consists of rotor bars and a shorted end ring. When a rotor bar is damaged or 

partially cracked, it is known as a broken rotor bar fault. The main causes of broken rotor bars of 
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an induction motor include manufacturing defects, fatigue of the metal due to thermal stresses, 

mechanical stress resulting from bearing faults, frequent starts and stops of the motor [1]. For 

induction motors, the broken rotor bar (BRB) faults are about 10% among various faults, such as 

bearing fault, stator winding inter-turn fault and insulation failure, and air-gap eccentric fault 

[2][3]. Therefore, the effective BRB fault diagnosis is important for the operation of induction 

motors. Advanced signal processing methods, such as Hilbert transform, Wigner-Ville 

distribution, stochastic resonance, and wavelet transform, have been applied in fault diagnosis of 

induction motors [4]-[8]. 

 

The most popular technique for BRB fault detection of induction motors is the motor current 

signature analysis (MCSA). The power spectrum estimation, fast Fourier transform (FFT), 

envelope spectrum analysis have been used to detect BRB faults. However, the traditional FFT 

cannot process non-stationary signals [5]. To overcome such issues, the Power Spectral Density 

(PSD) analysis, which analyzes the spectrogram based on the PSD estimates, is applied for the 

motor fault detection in [4]. Considering non-stationary and non-linear nature of the motor fault 

current signals, Wavelet analyzer can serve as a time-frequency analyzing tool, as it allows multi-

resolution analysis in both time and frequency domains. There are basically two types of wavelet 

transforms: Discrete Wavelet Transform (DWT) and Continuous Wavelet Transform (CWT) [6]-

[8]. The CWT algorithm is used to analyze different BRB faults in [6]. A new signal processing 

technique, known as complex CWT, has been used in [7]-[8], as the complex CWT has no endpoint 

effect and has small computation requirements, so it can enhance the accuracy of fault diagnosis. 

The bearing fault detection of induction motors is investigated by complex CWT in [8], but the 

BRB fault is not analyzed. 
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In this paper, two techniques are implemented for fault diagnosis of BRB faults in induction 

motors using experimental stator current signals: 1) power spectral density (PSD) analysis; and 2) 

one dimensional Complex CWT using Complex Morlet Wavelet (CMW). The experiments were 

conducted in a lab for a 0.25 HP squirrel cage induction motor. The healthy and BRB faults were 

tested for the motor. One, two and three BRB faults were created by drilling a hole on the motor 

bar. The size of the hole is the diameter of 4.2 mm and the depth of 18 mm. For two or three BRB 

faults, the bars with a hole on them were 90 mechanical degrees apart. The stator currents at three 

phases were measured using a power quality analyzer. The measured stator current at phase A is 

used as signal in this paper. 

 

The paper is organized as follows: in Section 3.2, the principle of the CMW based CWT and 

the PSD algorithms are described; In Section 3.3, the measured stator current signals are analyzed 

using the two algorithms; Conclusions are drawn in Section 3.4. 

 
 

3.2 Principle of Complex CWT and PSD 

 

3.2.1 Complex Morlet Wavelet Based CWT Algorithm 

The CWT algorithm is used to decompose a signal into wavelets. To compute each part of the 

time-domain signal individually, a window function, known as the mother wavelet, is used in the 

CWT. The mother wavelet 𝛹(𝑡) satisfies (1). 

∫ 𝛹(𝑡)𝑑𝑡 = 0 
∞

−∞
      (1) 

The CWT or the coefficient of the wavelet can be expressed by 

𝐶𝑊𝑇(𝑏, 𝑎) = ∫ 𝑓(𝑡)𝛹∗
𝑏,𝑎(𝑡)𝑑𝑡    (2) 
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The function f(t) is decomposed into a set of basic functions 𝛹∗ (
𝑡−𝑏

𝑎
), known as wavelets, which 

are generated from the mother wavelet by scaling and translation. 

𝛹𝑏,𝑎(𝑡) = |𝑎|−
1

2  𝛹 (
𝑡−𝑏

𝑎
)              (3) 

Where, a is the scale factor or window length, and b is the translation factor. The factor |𝑎|−
1

2 is 

for energy normalization across different scales, and 𝛹∗
𝑏,𝑎(𝑡) is conjugate to the mother wavelet 

function 𝛹𝑏,𝑎(𝑡). If the wavelet function in (2) is complex, it is defined as a complex wavelet 

transformation. The Complex Morlet Wavelet (CMW) is particularly useful for fault diagnosis due 

to its smallest time-frequency window area, smoothness and harmonic-like waveform [7][9]. The 

CMW is able to separate amplitude and phase information of the signal. The complex Morlet 

mother wavelet is given as follows [7]: 

𝛹0(𝑡) =  
1

√𝜋𝑓𝑏
𝑒𝑥𝑝 (2𝑖𝜋𝑓𝑐𝑡) exp (−

𝑡2

𝑓𝑏
)             (4) 

Where, 𝑓𝑏 is the wavelet bandwidth and 𝑓𝑐 is the wavelet center frequency. 

 
 

3.2.2 Power Spectral Density Algorithm 

Fourier Transform of the auto-correlation function is defined as the PSD of a discrete time 

process [10]. The periodogram is a PSD estimator of a complex discrete-time wide sense stationary 

random process 𝑥 [𝑛], which is defined as follow: 

𝑃𝑥(𝑓) = 𝑁−1| ∑ 𝑥[𝑛]exp(
−𝑗2πfn

𝐹𝑠
)𝑁−1

𝑛=0 |2           (5) 

The frequency resolution is equal to the inverse of the signal acquisition duration. The periodogram 

is usually implemented using the FFT algorithm since it can rapidly compute the discrete Fourier 

transform (DFT) [11]. 
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When a BRB fault occurs in induction motors, harmonic sidebands around the supply frequency 

can be expected in the phase current power spectrum. The sideband situated on the left of the 

supply frequency is due to electrical or magnetic rotor asymmetry caused by BRBs, while the 

sideband situated on the right is due to speed ripples [12]. The amplitudes of the sidebands are 

affected by the position of BRBs, speed and loading conditions. The sidebands might be observed 

when the motor has no BRB faults but with rotor ellipticity or shaft misalignment, which could 

induce rotor asymmetry. However, the sideband amplitudes in these cases are typically smaller 

than that produced by BRB faults [13].  

 

3.3 Analysis Using Complex CWT and PSD 

 

3.3.1 Periodogram PSD Estimates 

Fourier coefficients [14] based PSD can be used for BRB fault detection in induction motors. 

The motor stator current signature is analyzed during normal operation. Since the sideband situated 

on the left of the supply frequency is caused by electrical or magnetic rotor asymmetry under a 

BRB fault condition, so the amplitudes of the left sidebands are investigated. The amplitudes in 

decibels (dB) at the frequencies of 30 Hz and 60 Hz are considered in the analysis, because 30 Hz 

(the first order sideband) is the most significant frequency component in the periodogram, which 

is situated on the left of the supply frequency of 60 Hz. 

  

To perform PSD analysis, 3072 sample points of the measured stator current signal are taken 

for the healthy and faulty cases with 1 BRB, 2 BRB and 3 BRB faults. The sampling frequency of 

15.38 kHz is used for the PSD analysis in all cases. Figs. 3.1 and 3.2 show the periodogram PSD 

estimates of the healthy and faulty motors at two different motor loading factors, 30% and 85%. 

The power amplitudes in dB of a healthy motor at 60 Hz are 4.80 dB and 2.38 dB for 30% and 
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85% loading, respectively. At the left sideband frequency of 30 Hz, the power amplitudes in dB 

are 46.91 dB and 54.76 dB for 30% and 85% loading, respectively. The amplitudes for the 

motor with 1 BRB, 2 BRB and 3 BRB faults with respect to 60 Hz and 30 Hz are tabulated in 

Table 3.1. 

 

In Table 3.1, it can be seen that the differences in amplitudes between 60 Hz and 30 Hz 

frequency components for the healthy motor, 1 BRB, 2 BRB, and 3 BRB faulty motor under 30% 

loading are 42.11 dB, 41.64 dB, 41.18 dB and 35.95 dB, respectively. Similarly, the 

difference in amplitudes between 60 Hz and 30 Hz frequency components for healthy, 1 BRB, 2 

BRB, and 3 BRB conditions under 85% loading are 52.38 dB, 47.99 dB, 43.80 dB, and 38.55 

dB, respectively. 

 

 
(a) 

 
(b) 



24 

 

 
(c) 

 
(d) 

Fig. 3. 1. PSD analysis of the current signatures at 30% motor loading: (a) Healthy; (b) 1 BRB; 

(c) 2 BRB; (d) 3 BRB. 

 
(a) 

 
(b) 

 
(c)  

(d) 

Fig. 3. 2. PSD analysis of the current signatures at 85% motor loading: (a) Healthy; (b) 1 BRB; 

(c) 2 BRB; (d) 3 BRB. 
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Table 3. 1: Power Amplitudes Extracted from PSD Estimates 

Motor 

loading, 

% 

Amplitude 

(dB) 

(Healthy 

motor at 

60 Hz) 

Left 

sideband 

amplitude 

(dB) 

(Healthy 

motor at 

30 Hz) 

Amplitude 

(dB) 

(Motor 

with 1 

BRB at 60 

Hz) 

Left 

sideband 

amplitude 

(dB) 

(Motor 

with 1 

BRB at 

30 Hz) 

Amplitude 

(dB) 

(Motor 

with 2 

BRB at 60 

Hz) 

Left 

sideband 

amplitude 

(dB) 

(Motor 

with 2 

BRB at 

30 Hz) 

Amplitude 

(dB) 

(Motor 

with 3 

BRB at 60 

Hz) 

Left 

sideband 

amplitude 

(dB) 

(Motor 

with 3 

BRB at 

30 Hz) 

30 4.80 46.91 5.29 46.93 5.15 46.33 5.02 40.97 

85 2.38 54.76 2.43 50.42 2.34 47.14 2.19 40.74 

 

 

It is found that for a light loading condition (30%), the differences in amplitudes between the 

60 Hz and 30 Hz components are very close to one another for healthy and faulty cases. For a 

robust fault diagnosis, the differences are desired to increase with the increase of the fault severity. 

For a 30% loading, although the amplitude differences allow successful identification between 

healthy and faulty conditions, distinguishing the severity of faults can be difficult. For a heavier 

loading (85%), there is a significant increase in the difference in amplitudes between 60 Hz and 

30 Hz components for healthy, 1 BRB, 2 BRB and 3 BRB conditions, so the PSD analysis can 

detect BRB faults and differentiate them according to the severity of the fault. 

 

3.3.2 One dimensional (1-D) Complex CWT 

One dimensional complex CWT is carried out using the Wavelet Analyzer Toolbox of 

MATLAB 2018b to visualize the time-scale scalograms of the measured stator current signals. 

The current signals are decomposed into 128 scales with a step size of 1, using the CMW as the 

mother wavelet. The bandwidth parameter is selected as ‘1-1.5’ for a better resolution of the time-

scale representation of the complex CWT magnitude coefficients. The time-scale plots of the 
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complex CWT magnitude coefficients for the two motor loadings, 30% and 85%, are shown in 

Figs. 3.3 and 3.4. 

 

The complex CWT magnitude coefficients at lower scale values correspond to higher frequency 

components, and at higher scale values correspond to lower frequency components. Higher and 

lower harmonic components may be observed even when the motor has no BRB faults as there 

might be speed ripple or induced rotor asymmetry due to rotor ellipticity and shaft misalignment. 

 

Figs. 3.3(a) and 3.4(a) show the time-scale scalogram representation of the complex CWT 

magnitude coefficients for healthy motor with 30% and 85% loading, respectively. The 

coefficients are mostly concentrated within two scale ranges for each graph. For the 30% loading, 

the lower scale range from 52 to 71, and the upper scale range from 74 to 92; for 85% loading, the 

lower scale range from 52 to 66, and the upper scale range from 69 to 81. At the areas below or 

above the lower and upper ranges, very small amount of harmonic components are present. Figs. 

3.3(b)-(d) and Figs. 3.4(b)-(d) show the scalograms of complex CWT magnitude coefficients for 

faulty motor with 1 BRB, 2 BRB, and 3 BRB faults under 30% and 85% loading. Significant 

harmonic components appear at the three faulty conditions compared to the healthy one. Due to 

broken rotor bars, the rotor current becomes asymmetrical causing harmonics in upper scale 

ranges. This further causes ripples in torque and speed and results in harmonics in lower scale 

ranges. More harmonics appear for the case with the increasing number of BRBs. The severity of 

the fault can be easily observed. 
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(a) 

 

(b) 

 

(c) 
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Fig. 3. 3. Scalogram of the complex CWT magnitude coefficients at 30% motor loading: (a) 

Healthy; (b) 1 BRB; (c) 2 BRB; (d) 3 BRB. 

 

(a) 

 

(b) 



29 

 

 

(c) 

 

(d) 

Fig. 3. 4. Scalogram of complex CWT magnitude coefficients at 85% motor loading: (a) 

Healthy; (b) 1 BRB; (c) 2 BRB; (d) 3 BRB. 

Table 3.2 contains statistical features extracted from the Complex CWT magnitude coefficients. 

It can be seen that all features increase with the increase of the fault severity except one feature 

“Mean”, which decreases gradually. 
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Table 3. 2: Statistical Features Extracted from Complex CWT Magnitude Coefficients 

Condition Features 30% Loading 85% Loading 

1 BRB 

Maximum Value 0.4225 0.7286 

Mean 0.0663 0.0823 

Crest Factor 21.3524 31.2915 

Skewness 17.9150 27.3016 

Kurtosis 479.5 1121.8 

2 BRB 

Maximum Value 0.4299 0.7376 

Mean 0.0633 0.0789 

Crest Factor 22.8760 32.7231 

Skewness 20.0716 28.2711 

Kurtosis 538.3 1145.9 

3 BRB 

Maximum Value 0.4310 0.7546 

Mean 0.0631 0.0785 

Crest Factor 24.3992 33.9207 

Skewness 20.9149 29.5825 

Kurtosis 583.8 1228.1 

 

3.4 Conclusion  

In this paper, two BRB fault diagnosis algorithms, PSD and 1-D CMW based complex CWT 

algorithms, for induction motors are implemented using experimental stator current signals 

measured in a lab. Both methods can successfully identify healthy and faulty conditions of the 

motor. However, the PSD analysis cannot distinguish the severity of the BRB faults under light 

loading conditions, although it works well under heavy loading conditions. The complex CWT 

analysis can successfully distinguish between healthy and faulty motor conditions through 

significant presence of harmonic components under faulty conditions. The severity of the faults 

can be observed through the increasing amount of harmonic components in the scalograms of 
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complex CWT magnitude coefficients. Most statistic features increase with the increase of fault 

severity. This method works well for any loading conditions. Therefore, the complex CWT 

method is an effective approach for BRB fault diagnosis for induction motors. 

  



32 

 

References 

[1] A. H. Bonnett and G. C. Soukup, "Cause and analysis of stator and rotor failures in three-

phase squirrel-cage induction motors," IEEE Trans. Ind. Appl., vol. 28, no. 4, pp. 921-937, July-

Aug. 1992. 

[2] A. Gugaliya, G. Singh, and V.N.A. Naikan, “Effective combination of motor fault diagnosis 

techniques,” 2018 International Conference on Power, Instrumentation, Control and 

Computing (PICC), pp. 1-5, 2018. 

[3] X. Liang, and K. Edomwandekhoe, “Condition monitoring techniques for induction motors,” 

2017 IEEE Industry Applications Society Annual Meeting, pp. 1-10, 2017. 

[4] J. Cusidó, L. Romeral, J. A. Ortega, J. A. Rosero, and A. G. Espinosa “Fault detection in 

induction machines using power spectral density in Wavelet decomposition,” IEEE Trans. Ind. 

Electron., vol. 55, no. 2, pp. 633 – 643, Feburary 2008. 

[5] Z.K. Peng, and F.L. Chu, “Application of the Wavelet Transform in machine condition 

monitoring and fault diagnostics: a review with bibliography,” Mechanical Systems and Signal 

Processing, vol. 18, no. 2, pp. 199-221, March 2004. 

[6] A. Saghafinia, S. Kahourzade, A. Mahmoudi, W. P. Hew, and M. N. Uddin, “On line trained 

Fuzzy logic and adaptive continuous Wavelet transform based high precision fault detection of 

IM with broken rotor bars,” 2012 IEEE Industry Applications Society Annual Meeting, pp. 1-8, 

2012. 

[7] D. Gao, Y. Zhu, X. Wang, K. Yan, and J. Hong, “A fault diagnosis method of rolling bearing 

based on Complex Morlet CWT and CNN,” 2018 Prognostics and System Health Management 

Conference (PHM Chongqing), pp. 1101 – 1105, 2018. 

[8] H. Li, “Complex Morlet Wavelet amplitude and phase map based bearing fault diagnosis,” 

2010 8th World Congress on Intelligent Control and Automation, pp. 6923 – 6926, 2010. 

[9] H. Li,"Gear fault diagnosis based on Continuous Morlet Wavelet amplitude and phase map," 

2010 7th international Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 6, 

pp. 2619 – 2622, 2010. 

[10] S. Kay, “Modern Spectral Estimation: Theory and Application,” Prentice Hall, Englewood 

Cliffs, New Jersey, 1998. 

[11] S. Kay and S. Marple, ‘‘Spectrum analysis - a modern perspective,’’ Proceedings of the 

IEEE, vol. 69, no. 11, pp. 1380-- 1419, November 1981. 



33 

 

[12] F. Filippetti, G. Franceschini, C. Tassoni and P. Vas, "AI techniques in induction machines 

diagnosis including the speed ripple effect," IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 98-108, 

1998. 

[13] B. Yazici, and G. Kliman, "An adaptive statistical time-frequency method for detection of 

broken bars and bearing faults in motors using stator current," IEEE Trans. Ind. Appl., vol. 35, 

no. 2, pp. 432-452, 1999. 

[14] B. Ayhan, M. Y. Chow, H. J. Trussell, M. H. Song, E. S. Kang, and H. J. Woe, ‘‘Statistical 

analysis on a case study of load effect on PSD technique for induction motor broken rotor bar 

fault detection,’’ in Proc. SDEMPED, Atlanta, GA, Aug. 24--26, pp. 119--123, 2003. 

 

  



34 

 

Chapter 4 

Graph-Based Semi-Supervised Learning for Induction Motors 

Single- and Multi-Fault Diagnosis Using Stator Current Signal  

Shafi Md Kawsar Zaman1, Student Member, IEEE, Xiaodong Liang2, Senior Member, IEEE, 

and Huaguang Zhang3, Fellow, IEEE 

1Department of Electrical and Computer Engineering, Memorial University of Newfoundland, 

St. John's, Newfoundland, Canada. 

2Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, 

Saskatchewan, Canada. 

3College of Information Science and Engineering, Northeastern University, Shenyang, 

Liaoning, China. 

A version of this chapter has been published in Proceedings of 2020 Industrial and Commercial 

Power Systems Technical Conference. Shafi Md Kawsar Zaman developed this work under the 

supervision of Dr. Xiaodong Liang. Shafi’s contributions in this paper are listed as follows:  

 Performed literature review for induction motors fault diagnosis.  

 Used experimental stator current data to develop a signal processing and machine 

learning-based fault diagnosis approach. 

 Examined results and reported findings. 

 Involved writing the paper draft as the first author. 

 

Dr. Xiaodong Liang provided continuous technical guidance, checked the results, reviewed the 

manuscript, provided valuable suggestions to accomplish the work, and modified the final version 

of the manuscript. Dr. Huaguang Zhang modified the manuscript. 

 



35 

 

In this chapter, the manuscript is presented with altered figure numbers, table numbers, and 

reference formats to match the thesis formatting guidelines set out by Memorial University of 

Newfoundland. 

 

Abstract- Supervised learning has been commonly used for induction motor fault diagnosis, and 

requires large amount of labeled samples. However, labeling recorded data is expensive and 

challenging, while unlabeled samples are available abundantly and contain significant information 

about motor conditions. In this paper, a graph-based semi-supervised learning (GSSL) approach 

using both labeled and unlabeled data is proposed. Experimental data for two 0.25 HP induction 

motors under healthy and faulty conditions are used. Discrete Wavelet Transform (DWT) is 

employed to extract features from recorded stator current signals. Three GSSL algorithms (local 

and global consistency (LGC), Gaussian field and harmonic function (GFHF), and greedy-gradient 

max cut (GGMC)) are evaluated in this study, and GGMC shows superior performance over other 

two. They are also compared with a supervised learning algorithm, support vector machine (SVM). 

As induction motors often operate under variable loadings, curve fitting equations are developed 

based on experimental data to generate training data for untested motor loadings. 

 

Keywords- Graph-based semi-supervised learning (GSSL), greedy-gradient max-cut (GGMC), 

induction motor, fault diagnosis, Discrete Wavelet Transform (DWT). 

 

4.1 Introduction  

Induction motors are the workhorse in various industry sectors due to their compact and robust 

features with low maintenance costs. Although deemed as reliable, induction motors still fail due 

to electrical and mechanical faults [1]. Effective induction motor fault diagnosis is essential for 

critical industrial processes. In the literature, induction motor fault diagnosis can be divided into 
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three streams [2]-[6]: 1) signature extraction-based approaches, which analyze fault signatures in 

time- and frequency-domain using recorded current, voltage, power, vibration, temperature, or 

acoustic signals [1]; 2) model-based approaches, which provide satisfactory performance [4], but 

require precise motor models for faulty conditions that are often difficult to develop [5]; and 3) 

knowledge-based approaches, which are based on machine learning techniques, and do not require 

explicit machine models or load characteristics [3][5][6]. 

 

Most knowledge-based approaches use supervised learning (SL) in which a large number of 

labeled data containing healthy or faulty signatures are required for accurate classification [2]. 

Artificial neural network (ANN) and hybrid ANN are mostly reported. Hybrid ANN are neural 

networks combined with the analytical redundancy method [6], Park’s Vector pattern learning [7], 

statistical approach [8], convolutional discriminative feature learning [9], or Fuzzy logic [10]. 

When used for online fault diagnosis, neural networks are mostly unsupervised [11][12]. Other 

common SL approaches include support vector machine (SVM), k-nearest neighbor (kNN), 

ensemble, and decision tree [13][14]. 

 

Obtaining datasets in industrial applications may not be difficult as condition data can be 

continuously monitored, but labeling collected samples requires expert intervention. Also, 

updating trained machine learning models using new datasets can be complex and computationally 

expensive [15]. To alleviate this issue, semi-supervised learning (SSL) methods are increasingly 

used in industrial processes for fault diagnosis [16]-[19]. SSL requires a small number of labeled 

samples along with a large number of unlabeled samples to construct a classification model [16]. 

In [16], the data is labeled using an iterative self-labeling process, a differential evolution-based 

positioning optimization algorithm is used for classification. Several SSL-based fault diagnostic 
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systems are designed to improve accuracy and efficiency[17][18]. The modified kernel semi-

supervised locally linear embedding is used for fault detection of electrical fused magnesia furnace 

[19]. 

 

In the SSL domain, graph-based semi-supervised learning (GSSL) is a promising new paradigm 

for effective propagation of a limited number of initial labeled data to a large amount of unlabeled 

data[15],[23]-[28]. Fault detection and classification in PV arrays using GSSL is proposed in [15]. 

Three SSL algorithms (local and global consistency (LGC), the Gaussian random field (GRF) 

method, and the graph transduction via alternating minimization (GTAM)) are compared based on 

simulated and real benchmark datasets in [23]. A bivariate formulation of GSSL that can be solved 

using a greedy-gradient max cut (GGMC) strategy is proposed in [24]. The extension of GSSL to 

multi-class classification problems is shown in [25][28]. In [26], a graph construction method over 

data lying on multiple data manifolds is formulated, which characterizes the global pairwise data 

similarity using geodesic distance-based joint probability. Residential non-intrusive load 

monitoring using multi-label GSSL is proposed in [27]. 

 

Although GSSL has been applied in various fields using different datasets, to the authors’ best 

knowledge, it hasn’t been explored in induction motor fault diagnosis. For the very first time, we 

propose an GSSL-based induction motor single- and multi-fault diagnosis method using stator 

current signals in this paper. Three GSSL algorithms (LGC, GFHF, and GGMC) are evaluated, 

and their performance is compared with a SL algorithm, SVM. 

 

The major contribution of this paper is summarized as follows: 1) An effective GSSL-based 

approach is proposed for induction motor single- and multi-fault diagnosis using lab/field recorded 
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stator current signals; and 2) Mathematical equations are developed using experimental data by 

curve fitting to calculate features for untested motor loadings.  

 

The paper is arranged as follows: the main idea of the proposed approach along with 

fundamental theory and notations of GSSL are introduced in Section 4.2; experimental setup is 

shown in Section 4.3; signal processing and feature extraction by DWT is covered in Section 4.4; 

results analysis is shown in Section 4.5; equations development to calculate features for untested 

motor loadings are shown in Section 4.6; and conclusions are drawn in Section 4.7. 

 
 

4.2 Proposed GGMC-Based Fault Diagnosis Approach 

The main idea of the proposed approach is demonstrated by the following five steps: 1) conduct 

experiments for an direct online induction motor under healthy, single- and multi-fault conditions 

under various motor loadings; 2) record three-phase stator currents using a power quality analyzer 

for each test case; 3) choose the Discrete Wavelet Transform (DWT) as a signal processing method 

for feature extraction; 4) conduct classification using the selected GSSL algorithms for fault 

diagnosis based on experimental data; and 5) develop curve fitting equations to calculate features 

for untested motor loading conditions. The flowchart of the proposed approach is shown in Fig. 

4.1.  



39 

 

Start

Calibration of equipment

Experimental Setup

Signal Processing with 

DWT

Feature Extraction

Classification using Graph-

based Semi-supervised 

Learning Algorithms

Reasonable 

Accuracy?

Motor 1 

(mechanical faults)

Motor 2 

(electrical faults)

Comparison 

with SVM

Output

Data collection

Yes

Curve fitting

No

 
Fig. 4. 1. The flow chart of the proposed approach. 

 

4.2.1 Problem Formulation and Notations for GSSL 

It is assumed that the dataset under consideration contains labeled samples {(𝑥1, 𝑧1), … , (𝑥𝑙 , 𝑧𝑙)} 

and unlabeled samples {𝑥𝑙+1, … , 𝑥𝑙+𝑢}. The set of labeled inputs are defined as Xl = {x1,...,xl} and 

the set of unlabeled inputs as Xu = {xl+1,...,xl+u}, where l and u are the number of labeled and 

unlabeled inputs, respectively. Xl contains labels Zl = {z1,…,zl}, where, zi ∈ {1,…,c}(c represents 

the number of classes), and i = 1,2,…,l. GSSL algorithms learn the unknown labels {zl+1,…,zn} 

pertaining to the unlabeled data {xl+1,··· ,xn}, where typically l << n (n = l + u) and estimates a 

weighted sparse graph G from the input data X = Xl ∪ Xu. Subsequently, a labeling algorithm uses 

G and the known labels Zl = {z1,...,zl} to provide estimate 𝑍̂𝑢 = {𝑍̂𝑙+1, … , 𝑍̂𝑙+𝑢}, and the actual 
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labels Zu = {zl+1,...,zl+u} are estimated by optimizing an objective function chosen appropriately 

[33]. 

 

In this paper, it is assumed that G = {X, E, W} is the undirected graph produced from the data 

X, where the set of vertices is X = {xi}, and the set of edges is E = {eij}. Each sample xi is a vertex, 

and the weight of edge eij is wij. Typically, a kernel function k (·) is used over pairs of points to 

compute weights. The weights for edges are used to build a weight matrix, which is denoted by W 

= {wij}. The vertex degree matrix D = diag ([d1,…,dn]) is defined as 𝑑𝑖 = ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 . The graph 

Laplacian is defined as ∆ = D  W and the normalized graph Laplacian can be represented by 

𝐿 = 𝐷
−1

2⁄ ∆𝐷
−1

2⁄ = 𝐼 − 𝐷
−1

2⁄ 𝑊𝐷
−1

2⁄                (1) 

The graph Laplacian and its normalized version can be viewed as operators in function space f, 

which are used to define a smoothness measure in a graph over highly connected regions [29]. The 

smoothness measurement of functions f using L over a graph is defined by 

〈𝑓, 𝐿𝑓〉 = ∑ ∑ 𝑤𝑖𝑗𝑗𝑖 ‖
𝑓(𝑥𝑖)

√𝑑𝑖
−

𝑓(𝑥𝑗)

√𝑑𝑗
‖

2

     (2) 

Finally, a label matrix is formulated as Y = yijcontaining label information where yij = 1 if xi 

is associated with label j for j ∈1,2,,c(c represents the number of classes), and yij = 0 

otherwise. Let F = f (X) be the values of classification function over the data set X. The GSSL 

methods use W along with the known labels to recover a continuous classification function F by 

minimizing a predefined objective function on the graph G.    

   

A graph can be built in two typical ways: the ε-neighborhood graph connecting samples within 

a distance of ε, and the kNN graph connecting k-nearest neighbors. In practice, a kNN graph is a 

universal approach as it is more adaptive to variation in scale and anomalies in data density, while 
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an improperly chosen threshold value in the ε-neighborhood graph may result in disconnected 

components or subgraphs in the dataset or even isolated singleton vertices [30]. In this work, kNN 

neighborhood graphs are adopted. 

 

4.2.2 Graph Edge Reweighting 

After construction of the graph, sparsification is carried out to improve efficiency, accuracy, 

and robustness to noise during label inference. Graph sparsification removes edges by finding a 

binary matrix B ∈ B {1,0}n×n , where Bij = 1 indicates that an edge is present between nodes xi and 

xj, while Bij = 0 suggests that the edge is absent. Two possible schemes, binary weighting, fixed 

Gaussian kernel weighting [23], are commonly considered for graph edge reweighting. 

 

4.2.2.1 Binary Edge Weighting 

The most straightforward approach to build the weighted graph is the binary weighting, where 

the weight 1 is assigned to all linked edges and the weight 0 is assigned to disconnected vertices 

in the graph. However, this uniform weight on graph edges can be sensitive, especially if the 

sparsification procedure incorrectly connects some graph vertices.    

 

4.2.2.2 Fixed Gaussian Kernel Edge Weighting 

Gaussian kernel weighting is an alternative approach, often used to modulate sample similarity. 

The edge weight between two connected samples xi and xj can be calculated by 

𝑤𝑖𝑗 = 𝐵𝑖𝑗 (−
𝑑2(𝑥𝑖,𝑥𝑗)

2𝜎2
)      (3) 

Where, the function d (xi,xj) evaluates the dissimilarity of samples xi and xj, and σ is the kernel 

bandwidth parameter. 
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4.2.3 Univariate Graph Regularization 

In this work, GFHF [31] and LGC [32] methods are considered under the univariate formulation 

of graph regularization. In LGC and GFHF, an objective function Q is defined, which involves the 

combined contribution of two penalty terms: the global smoothness Qsmooth and local fitting 

accuracy Qfit. The final prediction function F is obtained by minimizing the objective function by 

𝐹∗ = 𝑎𝑟𝑔 min
𝐹∈𝑅𝑛×𝑐

𝑄(𝐹) = 𝑎𝑟𝑔 min
𝐹∈𝑅𝑛×𝑐

(𝑄𝑠𝑚𝑜𝑜𝑡ℎ(𝐹) + 𝑄𝑓𝑖𝑡(𝐹)) (4) 

The formulation of the above objective function is given in [33] for LGC as 

𝑄𝐿𝐺𝐶(𝐹) = ‖𝐹‖𝐺
2 +

𝜇

2
‖𝐹 − 𝑌‖2              (5) 

Where, ‖𝐹‖𝐺
2  is function smoothness over the graph G, and ‖𝐹 − 𝑌‖2 measures the empirical loss 

of given labeled samples. The function smoothness in LGC is defined by 

𝑄𝑠𝑚𝑜𝑜𝑡ℎ = ‖𝐹‖𝐺
2 =

1

2
〈𝐹, 𝐿𝐹〉 =

1

2
𝑡𝑟(𝐹𝑇𝐿𝐹)     (6) 

The coefficient µ in (5) balances global smoothness and local fitting terms. If µ = ∞ and a standard 

graph Laplacian quantity ∆ for the smoothness term is used, the above framework reduces to the 

GFHF formulation [31], i.e., the objective function only preserves the smoothness term in GFHF 

by 

𝑄𝐺𝐹𝐻𝐹(𝐹) = 𝑡𝑟(𝐹𝑇∆𝐹)                     (7) 

 

4.2.4 Bivariate Graph Regularization and Label Propagation by Greedy Gradient Max-Cut 

The optimization problem in LGC and GFHF can be divided into separate parallel problems as 

the objective function decomposes into additive terms that only depend on individual columns of 

the prediction matrix [34]. Such decomposition can result in biases if input labels are imbalanced 
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in proportion. When the graph contains noise and non-separable class manifolds, LGC and GFHF 

fail to output consistent classification results. To solve this problem, a bivariate optimization 

framework that explicitly optimizes over both the classification function F and the label matrix Y 

is proposed in [24] as follows: 

𝑄(𝐹, 𝑌) =
1

2
𝑡𝑟(𝐹𝑇𝐿𝐹 + 𝜇(𝐹 − 𝑌)𝑇(𝐹 − 𝑌))           (8) 

Rewriting the objective function as a summation [32] results in a more natural formulation as 

follows:  

𝑄(𝐹, 𝑌) =
1

2
∑ ∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 ‖

𝐹𝑖

√𝑑𝑖
−

𝐹𝑗

√𝑑𝑗
‖

2

+
𝜇

2
∑ ‖𝐹𝑖 − 𝑌𝑖‖

2𝑛
𝑖=1   (9) 

In order to reduce computational complexity, the bivariate optimization problem is reduced to a 

univariate one [24] for implementing label propagation by GGMC. 

 

The greedy gradient-based strategy is to find local optima by assigning each unlabeled vertex to 

the label set with minimal connectivity, and iteratively maximizing cross-set edge weights. To 

alleviate issues, such as biased partitioning, poor graph-cuts and outlier effects, the weighted 

connectivity between all unlabeled vertices to existing labeled sets is defined to reduce label 

imbalance across different classes. If the unlabeled vertex 𝑥𝑖∗ has the least connectivity with label 

set 𝑆𝑗∗, 𝑆𝑗∗ is updated by adding the vertex 𝑥𝑖∗ as one greedy step so that the cross-set edge weights 

are maximized. This greedy search is repeated until all unlabeled vertices are assigned to labeled 

sets. The weighted connectivity of all unlabeled vertices to labeled sets is recalculated in each 

iteration of the greedy cut process. The algorithm is known as GGMC, where unlabeled vertices 

are assigned to labeled sets in a way that lowers the value of objective function Q along the steepest 

descent direction in the greedy step [24][25]. The above formulations are extended to multi-class 

classification in this work. 
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4.3 Experimental Setup 

In this paper, the proposed approach is developed using lab experimental data. Two identical 

4-pole, 0.25-HP, 208–230/460 V, 1725 rpm rated squirrel-cage induction motors (Model 

LEESON-101649) are tested under various healthy (H), single- and multi-fault conditions. The 

motors named “Motor 1” and “Motor 2” are treated as sister units. 

 

The five faults applied to Motor 1 are mainly mechanical faults including: 1) an unbalance shaft 

rotation (UNB); 2) a bearing fault (BF); 3) a multi-fault with BF and UNB (BF+UNB); 4) a multi-

fault with BF and one broken rotor bar (BRB) (BF+1BRB); and 5) a multi-fault with BF, UNB, 

and unbalanced voltage (UV) from the three-phase power supply (BF+UNB+UV)). The five faults 

applied to Motor 2 are mainly electrical faults including: 1) a UV from the three-phase power 

supply; 2) one BRB fault (1BRB); 3) two BRBs fault (2BRB); 4) three BRBs fault (3BRB), and 

5) a multi-fault with UV and 3BRB (UV+3BRB). Various tests applied to the two motors are 

shown in Fig. 4.2. 

Motor 1

H

Single 

Faults: 

BF, UNB

Multi Faults: 

(BF+1BRB), 

(BF+UNB), 

(BF+UNB+UV)

Motor 2

H

Single Faults:

1BRB, 2BRB, 

3BRB, UV

Multi Fault:

(UV+3BRB)

 

Fig. 4. 2. Two motors with single- and multi-faults. 
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The experimental test bench is shown in Fig. 4.3, it consists of the direct online three-phase 

induction motor, and a dynamometer coupled to the motor shaft through a belt pulley serving as 

the load. The motor loadings are changed by adjusting the dynamometer’s control knob. An eight-

channel power quality analyzer (PQPro by CANDURA Instruments) is used to record three-phase 

stator currents. In each test, three-phase stator currents (I1, I2, and I3) are recorded for 2 min with 

a sampling frequency of 15.38 kHz. A fault creates unbalance inside the motor, and is reflected in 

the stator current signal. 

 

A BRB fault was created by drilling a hole of a 4.2 mm diameter and 18 mm depth in the rotor 

bar. One hole was drilled for one BRB fault (Fig. 4.4a); two and three holes with 90° separations 

were drilled for two and three BRBs faults, respectively (Figs. 4.4b and 4.4c). A general roughness 

type bearing fault (BF) was realized by the sandblasting process; the outer and inner raceway of 

the bearing became very rough, as shown in Fig. 4.4d. The UNB is due to uneven mechanical load 

distribution causing unbalanced shaft rotation, and it was created by adding extra weight on part 

of the pulley (Fig. 4e). A UV condition was produced by adding extra resistance at the second 

phase of the power supply. Six motor loadings (10%, 30%, 50%, 70%, 85%, and 100% of full 

load) were tested for each healthy or faulty condition. 
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Fig. 4. 3. Experimental test bench. 

 

            (a)                     (b)                  (c) 

 

                        (d)                        (e) 

Fig. 4. 4. Different faults implemented on the motors in the lab: (a) 1BRB; (b) 2BRB; (c) 3BRB; 

(d) BF; and (e) UNB. 
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4.4 Feature Extraction Using DWT 

A wavelet transform is defined as the decomposition of a stationary or nonstationary signal into 

a set of basic functions consisting of contractions, expansions, and translations of a mother 

function ψ(t), called the wavelet. The discrete wavelet transform (DWT) [35],[36] uses orthogonal 

wavelets such as Daubechies wavelet series to decompose a signal into different frequency bands 

[37]. In this paper, one phase of the measured three-phase stator current I2 is processed by DWT 

through MATLAB Wavelet Analyzer toolbox to extract fault features. The length of the dataset 

was selected uniformly with 90,000 data points for each test, the dataset was further segmented 

into 10 data windows, each contains 9,000 data points.  

 

In this study, the Daubechies wavelet with four vanishing moments as db4 is selected as the 

mother wavelet with up to 6th level of decomposition. Ten time-domain statistical features are 

extracted from the dataset: 1) the maximum value of the data window, 2) the minimum value of 

the data window, 3) mean, 4) median, 5) median absolute deviation, 6) mean absolute deviation, 

7) L1 norm, 8) L2 norm, 9) maximum norm, and 10) standard deviation [22][38].  

 

Motors 1 and 2 each has one healthy and five faulty cases, and thus, there are six class labels for 

each motor within one data window. Since there are 10 data windows for a dataset under each 

motor loading, it leads to a total of 6×10=60 class labels for a dataset. Using DWT, 10 features are 

extracted for each data window under a specific class label, so we have 6×10×10=600 features for 

each motor under one loading.  
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Fig. 4.5 shows the DWT processed experimental stator current signal I2 for Motor 2 under a 

1BRB fault and 100% motor loading. Table I shows the corresponding sample of features for the 

same case. Every set of ten features under a specific class label, such as s1 at the first row of Table 

4.1, is processed using DWT by choosing a data window containing 9,000 sample data points. The 

remaining nine sets of features (from s2 to s10) are determined in the same way based on sample 

data points from nine remaining data windows. 

 

Fig. 4. 5. DWT processed stator current for Motor 2 (1BRB @ 100% loading). 
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Table 4. 1: Sample of Features extracted by DWT Using Stator Current I2 (Motor 2, 1 BRB, 

100% loading) 

Features 
Maximum 

value 

Minimum 

value 
Mean Median 

Median 

Absolute 

Deviation 

Mean 

Absolute 

Deviation 

L1 

norm 

L2 

norm 

Max 

norm 

Standard 

Deviation 

s1 1.308 1.309 0.00396 0.01295 0.8438 0.7641 6877 80.47 1.309 0.8482 

s2 1.306 1.314 0.00111 0.00405 0.8440 0.7644 6880 80.53 1.314 0.8489 

s3 1.306 1.313 0.00370 0.00486 0.8486 0.7670 6904 80.74 1.313 0.8511 

s4 1.311 1.306 0.00229 0.00297 0.8467 0.7662 6896 80.67 1.311 0.8503 

s5 1.315 1.307 0.00202 0.00593 0.8421 0.7627 6865 80.38 1.315 0.8473 

s6 1.296 1.306 0.00601 0.01052 0.8489 0.765 6885 80.53 1.306 0.8488 

s7 1.300 1.303 0.00524 0.01079 0.8459 0.7642 6878 80.44 1.303 0.8479 

s8 1.300 1.304 0.00127 0.00351 0.8408 0.7611 6849 80.21 1.304 0.8456 

s9 1.298 1.310 0.00346 0.00567 0.8432 0.7636 6873 80.39 1.310 0.8474 

s10 1.305 1.314 0.00365 0.00432 0.8451 0.7655 6890 80.58 1.314 0.8494 

 

4.5 Result Analysis and Discussion  

In this section, fault classification using experimental datasets of the two motors is conducted 

using the three GSSL algorithms, LGC, GFHF, and GGMC. Their accuracies are evaluated, and 

compared with that of the SL algorithm, SVM.  

 

For LGC and GGMC, the value of hyper-parameter µ = 0.01 was used for all cases. The three 

algorithms were all run using 100 independent folds with random sampling to determine the 

average classification accuracy, and they appeared to require similar run-times to output a 

prediction. The same graph construction procedure mentioned in Section II is used. The 

sparsification is performed using the standard approach, k-nearest-neighbors (kNN), and k=4 was 

used uniformly across all three algorithms. Both binary and fixed Gaussian kernel weighting are 

used.  
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4.5.1 Support Vector Machine 

SVM is a well-known supervised learning method, and suitable for a dataset where separable 

and non-separable data manifolds are present. It classifies a dataset into positive and negative 

classes. A statistical learning theory-based algorithm, known as a support vector, is used to train 

the dataset. It provides information about the classification and builds the hyperplane. The 

hyperplane maximizes the separation margin between positive and negative classes [39] and is 

used to distinguish data points. Different kernel functions are employed in SVM when a nonlinear 

transformation is required. A kernel function converts nonlinearly separable objects into linearly 

separable ones, by mapping them into higher dimensional feature space [40]. Common types of 

kernel functions for SVM include linear, polynomial, and Gaussian radial basis function (RBF) 

kernels [41].  

 

In this paper, six SVM classifiers named linear, quadratic, cubic, fine Gaussian, medium 

Gaussian, and coarse Gaussian SVM are used through MATLAB Classification Learner Toolbox. 

Linear SVM using the linear kernel is the simplest SVM by making a simple linear separation 

between classes. Quadratic and cubic SVMs use quadratic and cubic kernel functions, respectively. 

Fine Gaussian SVM using the Gaussian kernel makes detailed distinctions between classes, with 

kernel scale set to √𝑃 4⁄ , where P is the number of predictors. Medium Gaussian SVM using the 

Gaussian kernel makes fewer distinctions than a Fine Gaussian SVM, with kernel scale set to √𝑃. 

Coarse Gaussian SVM using the Gaussian kernel makes coarse distinctions between the classes, 

with kernel scale set to 4√𝑃.    
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4.5.2 Comparison among Three GSSL Algorithms and SVM 

In this study, among 60 class labels for a dataset of each motor, only 30 labels (5 labels from 

each of the six classes to prevent class imbalance) are made available to SVM. When a binary 

classifier like SVM is used for multi-class classification, the One-vs.-All (OvA) strategy performs 

better [42], and thus, is adopted for training SVM classifiers in this paper. The performance is 

validated by the rest 50% of the dataset with unknown labels. In SVM training, five-fold cross-

validation is used to prevent overfitting. 

 

The three GSSL algorithms, LGC, GFHF and GGMC, are programed in MATLAB. Unlike 

SVM, the number of labels for each GSSL algorithm is varied. The three algorithms are designed 

to initiate from a random stratified selection of 6 known labels to ensure that at least one 

representative instance of each class is selected. The number of known labels gradually increases 

from 6 up to 30, as SVM classifiers are also trained for 30 known labels. The two graph edge 

reweighting schemes, binary edge weighting and fixed Gaussian kernel edge weighting, are 

implemented for the three algorithms. 

 

The average classification accuracy (by averaging accuracies of 100 iterations) of the three 

GSSL algorithms and SVM classifiers is tabulated in Tables II and III for the dataset with 30 

known and 30 unknown labels. Table II is for the dataset of Motor 1 at 100% loading and Table 

III is for Motor 2 at 10% loading, with all single- and multi-faults considered. 

 

Tables 4.2 and 4.3 indicate that SVM classifiers all have below 67% classification accuracy, 

while the three GSSL algorithms perform much better with the accuracy up to 94.7%. GGMC 

consistently performs better than LGC and GFHF. 
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Table 4. 2: Comparison Between GSSL and SL Algorithms Based on Classification Accuracies 

for I2, Motor 1 (100% Loading) 

Learning 

Category 
Algorithm 

Edge reweighting scheme 

for GSSL/ Classifier type 

for SVM 

Average classification 

accuracy in % (30 

known and 30 

unknown labels) 

Graph-

based 

Semi-

Supervised 

Learning 

(GSSL) 

Local and Global 

Consistency (LGC) 

Binary edge weighting 74.4 

Fixed Gaussian kernel 

edge weighting 

78.33 

Gaussian Field and 

Harmonic Function 

(GFHF) 

Binary edge weighting 83.67 

Fixed Gaussian kernel 

edge weighting 

83.83 

Greedy- Gradient 

Max- Cut (GGMC) 

Binary edge weighting 88.7 

Fixed Gaussian kernel 

edge weighting 

90.03 

Supervised 

Learning 

(SL) 

SVM 

Linear SVM 56.7 

Quadratic SVM 66.7 

Cubic SVM 46.7 

Fine Gaussian SVM 40 

Medium Gaussian SVM 43.3 

Coarse Gaussian SVM 33.3 

Table 4. 3: Comparison Between GSSL and SL Algorithms Based on Classification Accuracies 

for I2, Motor 2 (10% Loading) 

Learning 

Category 
Algorithm 

Edge reweighting scheme 

for GSSL/ Classifier type 

for SVM 

Average classification 

accuracy in % (30 

known and 30 

unknown labels) 

Graph-

based 

Semi-

Supervised 

Learning 

(GSSL) 

Local and Global 

Consistency (LGC) 

Binary edge weighting 80.7 

Fixed Gaussian kernel 

edge weighting 

79.07 

Gaussian Field and 

Harmonic Function 

(GFHF) 

Binary edge weighting 91 

Fixed Gaussian kernel 

edge weighting 

84.9 

Greedy- Gradient 

Max- Cut (GGMC) 

Binary edge weighting 94.7 

Fixed Gaussian kernel 

edge weighting 

91.23 

Supervised 

Learning 

(SL) 

SVM 

Linear SVM 50 

Quadratic SVM 63.3 

Cubic SVM 56.7 

Fine Gaussian SVM 40 

Medium Gaussian SVM 56.7 

Coarse Gaussian SVM 53.8 
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In Table 4.2, among the three GSSL algorithms, the lowest average classification accuracy is 

74.4% by LGC (with binary edge weighting), and the highest is 90.03% by GGMC (with fixed 

Gaussian kernel edge weighting). In Table III, the lowest classification accuracy is 79.07% by 

LGC (with fixed Gaussian kernel edge weighting), and the highest is 94.7% by GGMC (with 

binary edge weighting). The accuracies achieved by GFHF for both graph edge reweighting 

schemes are higher than LGC but lower than GGMC. LGC, GFHF, and GGMC all have better 

classification accuracies using fixed Gaussian kernel edge weighting than binary edge weighting 

for Motor 1 (mechanical faults), but for Motor 2 (electrical faults), binary edge weighting leads to 

better accuracies. Nevertheless, GGMC has the best performance. 

 

Figs. 4.6 and 4.7 show the average classification accuracy vs. the number of labels (ranging 

from 6 to 30 labels) for Motor 1 at 100% loading and Motor 2 at 10% loading, respectively. Binary 

edge weighting and fixed Gaussian kernel edge weighting are both considered.   

 

 

(a) Binary edge weighting 
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(b) Fixed Gaussian kernel edge weighting 

Fig. 4. 6. Average classification accuracy in % vs. the number of labels (for all faults, Motor 1 @ 

100% loading). 

 

 

(a) Binary edge weighting 
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(b) Fixed Gaussian kernel edge weighting 

Fig. 4. 7. Average classification accuracy in % vs. number of labels (for all faults, Motor 2 @ 

10% loading). 

4.5.3 Impact of Label Ratio (LR) on Classification Accuracy 

Figs. 4.6 and 4.7 show that the number of labels does affect classification accuracies. The effect 

of the label ratio (LR) for LGC, GFHF, and GGMC is thus analyzed here. If L is the number of 

known labels and U is the number of unknown labels, then 𝐿𝑅 =  𝐿 (𝐿 + 𝑈)⁄ . Figs. 4.8a and 4.8b 

show average classification accuracies vs. LR for Motor 1 at 50% loading and Motor 2 at 100% 

loading, respectively, where LR varies from 0.1 to 0.9. With increasing LR, more labeled data 

become available, classification accuracies are expected to increase. Fig. 8 shows that GGMC 

outperforms LGC and GFHF. 

 

In Fig. 4.8a, at LR = 0.6, the average classification accuracy of GGMC reaches the peak of 

92.08% with binary edge weighting and the peak of 92.75% with fixed Gaussian kernel edge 

weighting. Similarly, in Fig. 4.8b, at LR = 0.5, the average accuracy of GGMC reaches the peak 

of 97.03% for both edge weighting schemes. Larger LR beyond the two peak points will lead to 
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the performance of GGMC degrades slightly because the superiority of a SSL algorithm starts 

deteriorating when the percentage of labeled samples reaches a particular value in a dataset [28]. 

However, average classification accuracies are not that consistent for LGC and GFHF.    

 

 

(a) Motor 1, 50% loading, for all faults 

 

(b) Motor 2, 100% loading, for all faults 

Fig. 4. 8. Average classification accuracy in % vs. label ratio for the motors using binary and 

fixed Gaussian kernel edge weighting. 
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Table 4.4 shows a sample of average classification accuracies and standard deviations for LGC, 

GFHF and GGMC with LR equal to 0.2, 0.3, 0.4 and 0.5 for Motor 1 at 50% loading. The 

improvement can be observed in terms of standard deviations with increasing LR. GGMC has the 

least sensitivity towards changes in LR compared to LGC and GFHF, as standard deviations for 

each LR are the lowest in GGMC, no matter what edge weighting scheme is used. This is also 

visible in Fig. 4.8. GGMC calculates a normalization of label weight per class, which directly 

compensates for differences in label proportions [24]. Thus, GGMC is the most stable algorithm 

among the three. It is observed that standard deviations for GGMC using binary and fixed 

Gaussian kernels are very close to each another at each LR, so both graph edge reweighting options 

are excellent for GGMC. 

 

Table 4. 4: Average Classification Accuracies ± Standard Deviations with Respect to Label 

Ratios for Motor 1 (50% Loading) 

Algorithm 
Edge weighting 

scheme 

Accuracy (average ± standard deviation), % 

Label ratio = 

0.2 

Label ratio = 

0.3 

Label ratio = 

0.4 

Label ratio = 

0.5 

Local and Global 

Consistency (LGC) 

Binary 85.38 ± 1.509 84.76 ± 1.176 84.92 ± 0.9975 85.27 ± 0.8743 

Fixed Gaussian kernel 86.48 ± 1.174 85.74 ± 0.9692 85.47 ± 0.8323 86.6 ± 0.7335 

Gaussian Field and 

Harmonic Function 

(GFHF) 

Binary 89.5 ± 1.016 89.62 ± 0.9987 89.75 ± 0.8537 89.53 ± 0.7596 

Fixed Gaussian kernel 88.96 ± 1.235 88.88 ± 1.213 88.83 ± 1.068 89.37 ± 1.099 

Greedy- Gradient 

Max- Cut (GGMC) 

Binary 89.88 ± 0.6039 91.21 ± 0.4779 91.61 ± 0.4662 91.83 ± 0.4461 

Fixed Gaussian kernel 91.48 ± 0.6109 91.83 ± 0.4942 92.22 ± 0.4568 92.53 ± 0.4252 

 

4.6 Features Calculation for Untested Cases  

In experiments of this study, the two motors were tested under six loadings: 10%, 30%, 50%, 

70%, 85%, and 100%. In real life, the motor may run at any loading factors. Previously, features 



58 

 

for machine learning are extracted by DWT using experimental data, but for untested cases, such 

as the motor loading is 80%, features cannot be determined as no experimental data available, 

which results in unavailability of training data for machine learning algorithms. To address this 

issue, a feature calculation method for untested motor loadings is formulated through curve fitting 

using experimental data of tested motor loadings. 

 

Bisquare robustness algorithm is used to improve the accuracy of curve fitting equations, where 

a weight is assigned to each data point based on the distance of that point from the fitted line. The 

minimization of the weighted sum of squares is carried out. Points that are in proximity of the line 

get full weight, and points that are farther away from the line get reduced weight. Bisquare is 

preferable in most applications as it seeks to find a curve so that the bulk of the data is fitted using 

the conventional least-square approach, and the effect of the outliers is minimized. Bisquare 

algorithm develops a function by an iterative process, and residuals are calculated by [43] 

𝑟 =
1

𝑛
∑ 𝑤𝑖

𝑛−1
𝑖=1 (𝑓(𝑥𝑖) − 𝑦𝑖)

2     (10) 

Where, n is the number of data samples, wi is the ith element of the weights array for data samples, 

f (xi) is the fitted model’s y-value, and yi is the ith element of the data set. 

 

4.6.1 Derive Equations for Feature Calculation 

To derive curve fitting equations to calculate features for untested motor loadings, the motor 

loading in percentage is an independent variable, each feature is the dependent variable. R-squared 

values and relative errors between experimental and calculated data using fitted equations are 

calculated to evaluate the accuracy of the developed equations. R-squared values (ranging from 0 

to 1) represent the fitted model’s performance following the variance of the actual dataset, and the 

value close to 1 represents a better fit [44]. 
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Table 4.5 shows the equations to calculate features for Motor 2 with a multi-fault (3BRB + UV) 

along with R-squared values, where x represents the percentage of motor loading, and y represents 

a feature, such as “Mean”. The second-order polynomial equations are developed for almost all 

features except for “mean” and “median”. Mean and median use fourth-order polynomial 

equations. R-squared values are all close to 1 in this table. Relative errors between experimental 

and calculated data using the fitted equations are shown in Table 4.6 with the highest error equal 

to 0.7278%.  

 

Table 4. 5: Regression Models for Features calculation for Motor 2, a Multi- Fault case 

(3BRB+UV) 

Features Name Equations R-square values 

Maximum value of data 

window 
y = 3.359E-05x2  0.0007837x + 0.4173 0.9976 

Minimum value of data window y = 3.455E-05x2 + 0.0009034x  0.418 0.9944 

Mean 
y = 7.95E-11x4+ 1.273E-08x3  

4.093E-   07x2  4.707E-06x + 0.003653 
0.9888 

Median 
y = 2.374E-10x4 + 1.163E-07x3  

1.469E-05x2 + 0.0006294x  0.001147 
0.9821 

Median Absolute Deviation y = 1.029E-05x2 +  0.00135x + 0.2253 0.9996 

Mean Absolute Deviation y = 1.116E-05x2 + 0.0007844x + 0.204 0.9994 

L1 Norm y = 0.1004x2 + 7.072x + 1836 0.9993 

L2 Norm y = 0.001151x2 + 0.08647x + 21.48 0.9994 

Maximum Norm y = 3.391E-05x2  0.0008145x + 0.4182 0.9968 

Standard Deviation y = 1.213E-05x2 + 0.000912x + 0.2264 0.9994 
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 Table 4. 6: Relative Errors Between Experimental and Calculated Data from Fitted Equations 

for Motor 2, 3BRB+UV, 100% Loading 

Features Name Experiment based data Calculated data 
Relative 

Error, % 

Maximum value of data window 0.6765 0.674823 0.2479 

Minimum value of data window 0.6781 0.67317 0.7278 

Mean 0.003878 0.003874 0.1138 

Median 0.007553 0.007515 0.4985 

Median Absolute Deviation 0.4645 0.463179 0.2843 

Mean Absolute Deviation 0.3955 0.394049 0.3667 

L1 Norm 3560 3546.618 0.3759 

L2 Norm 41.78 41.64092 0.3329 

Maximum Norm 0.6781 0.675852 0.3315 

Standard Deviation 0.4404 0.438908 0.3387 

 

Fig. 4.9 shows the features versus motor loadings for Motor 2 for a multi-fault (3BRB+UV). 

The dots are DWT processed features using experimental data, while the solid line is determined 

by fitted equations. Features of other types of faults can be determined in a similar way. 

 

 

(a) Maximum value of data window 

 

(b) Minimum value of data window 
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(c) Mean 

 

(d) Median 

 

(e) Median absolute deviation 

 

(f) Mean absolute deviation 

 

(g) L1 norm 

 

(h) L2 norm 
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(i) Max norm 

 

(j) Standard deviation 

Fig. 4. 9. Features vs. motor loadings through curve fitting technique for Motor 2 with a multi-

fault (3BRB+UV). 

4.6.2 Machine Learning Results Using Fitted Equations 

Feature sets are calculated for two untested loadings for Motor 2, 20%, and 80%, using the 

developed equations. Fault diagnosis using LGC, GFHF, and GGMC is conducted. Fig. 4.10 

shows classification accuracies for all faults. It is found that GGMC outperforms LGC and GFHF 

for both loadings. With the binary edge weighting, GGMC achieves an average classification 

accuracy of 89.13% at 20% loading, and 90.63% at 80% loading. With the fixed Gaussian kernel 

edge weighting, GGMC achieves an average classification accuracy of 88.53% at 20% loading 

and 90.3% at 80% loading. 
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Fig. 4. 10. Classification accuracies for all faults based on I2 with features extracted from curve 

fitting equations for Motor 2 at 20% and 80% loadings, using the three GSSL algorithms. 

 

4.7 Conclusion  

In this study, an effective GGMC-based induction motor single- and multi-fault diagnosis using 

the stator current signal is proposed. Three GSSL algorithms, LGC, GFHF, and GGMC, are 

evaluated, and GGMC shows the best classification accuracy among the three GSSL algorithms. 

All the GSSL algorithms performed better than the chosen SL method, SVM, for a limited number 

of labeled data. Therefore, GGMC is proposed in this work and can offer accurate fault diagnosis 

for various healthy and faulty operating conditions for induction motors.    
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In this chapter, the manuscript is presented with altered figure numbers, table numbers and 

reference formats in order to maintain the thesis formatting guidelines set out by the Memorial 

University of Newfoundland.  

 

Abstract- In this paper, a graph-based semi-supervised learning (GSSL) method is proposed for 

fault diagnosis of direct online induction motors using stator current and vibration signals. A 0.25 

HP induction motor under healthy, single- and multi-fault conditions is tested in the lab. Three-

phase stator currents and three-dimensional vibration signals of the motor are recorded 

simultaneously under steady-state operation in each test. Features for machine learning are 

extracted from the raw experimental stator current and vibration data using the discrete wavelet 

transform (DWT). Three GSSL algorithms, local and global consistency (LGC), Gaussian field 

and harmonic function (GFHF), and greedy-gradient max cut (GGMC), are used in the paper. It is 

found that both stator current and vibration signals perform well for one individual fault diagnosis 

using GSSL algorithms, but for classification of a combination of five different faults, the stator 

current outperforms the vibration signal significantly. Among the three GSSL algorithms, GGMC 

shows better classification results over LGC and GFHF for both stator current and vibration 

signals. 

 

Keywords- Induction motor, fault diagnosis, discrete wavelet transform (DWT), graph-based 

semi-supervised learning (GSSL), greedy-gradient max cut (GGMC). 

 
 

5.1 Introduction  

Induction motors are widely used in various industrial sectors. To prevent production downtime 

of critical industrial processes, reduce operational costs and improve the system reliability, 

induction motors fault diagnosis for various electrical and mechanical faults is very important. 
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With the advancement of signal processing techniques and artificial intelligence, induction motor 

fault diagnosis has attracted renewed interests in the past decade. There are three streams of 

research reported in the literature in this area: 1) signature extraction-based approaches, 2) model-

based approaches, and 3) knowledge-based approaches. The knowledge-based approaches are 

more prevalent and data-driven machine learning techniques for both online and offline 

applications are increasingly employed [1]. Among various machine learning methods, semi-

supervised learning shows advantages as only a few numbers of labeled samples are required to 

infer useful information from a vast amount of unlabeled samples, without requiring any expert 

involvement [2]. 

 

The propagation of the limited number of known labels to the remaining large proportion of 

unlabeled data can be executed using graph-based semi-supervised learning (GSSL), which is a 

promising new area in the semi-supervised learning field [3]–[8]. GSSL has been implemented in 

fault detection and classification in PV arrays in [3]. Comparison of three different graph-based 

semi-supervised learning algorithms, local and global consistency (LGC), Gaussian random field 

(GRF), and graph transduction via alternating minimization (GTAM) have been carried out on 

simulated and benchmark datasets in [4]. A greedy-gradient max cut (GGMC)-based bivariate 

formulation strategy for GSSL is proposed in [5], and extension of this strategy for multi-class 

problems is shown in [6][8]. In [7], Multi-label GSSL based residential load monitoring is 

proposed. Very limited research on induction motor fault diagnosis using GSSL has been reported 

in the literature. In the few published papers using GSSL, only vibration signals are utilized, and 

only one individual fault versas healthy machine cases are dealt with [1][9][10]. 
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In this paper, three GSSL algorithms, LGC, Gaussian field and harmonic function (GFHF), and 

greedy-gradient max cut (GGMC), are used for induction motor fault diagnosis. Both stator current 

and vibration signals measured simultaneously in the lab for a 0.25 HP induction motor under 

healthy and various faulty conditions are used. The fault classification performance using the three 

GSSL algorithms with stator current and vibration signals is evaluated.  

 

The paper is organized as follows: an overview of the GSSL algorithms is introduced in Section 

5.2; the experimental setup and feature extraction using DWT is provided in Section 5.3; the result 

analysis is conducted in Section 5.4, and conclusions are drawn in Section 5.5. 

 
 

5.2 Overview of GSSL Algorithms and Notations 

Assuming that the data set under consideration have both labeled and unlabeled data, GSSL 

algorithms approximate a weighted sparse graph from the total input data, and provide an estimate 

of unknown labels using the known ones. The actual labels are determined later on by optimizing 

a fitness function chosen appropriately. The graph can be formulated in two typical ways: the ε-

neighborhood graph connecting samples within a distance of ε, and the kNN graph connecting k-

nearest neighbors. In practice, a kNN graph is a more conventional approach as it is more robust 

to scale variation and abnormalities in data density [11]. As a result, the kNN neighborhood graphs 

are adopted in all cases in this work. 

 

5.2.1 Graph Edge Re-weighting 

Two schemes, binary edge weighting and fixed Gaussian kernel weighting [4], are mostly 

considered for graph edge reweighting. In binary weighting, the weight 1 is given to all linked 

edges in the graph, and the weight 0 is assigned as the edge weights of disconnected vertices. 
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However, this uniform weight on graph edges can be sensitive, especially when the sparsification 

procedure incorrectly links some of the graph vertices. Gaussian kernel weighting is an alternative 

approach to binary weighting, which is often used for sample similarity regularization. The edge 

weight between two connected samples xi and xj, can be calculated as  

𝑤𝑖𝑗 = 𝐵𝑖𝑗 (−
𝑑2(𝑥𝑖,𝑥𝑗)

2𝜎2 )       (1)  

Where, 𝐵𝑖𝑗 (0 or 1) denotes the connectivity between xi and xj, the function d (xi, xj) evaluates the 

dissimilarity of samples xi and xj, and σ is the kernel bandwidth parameter. 

 

5.2.2 Three GSSL Methods: LGC, GFHF, and GGMC 

In LGC and GFHF algorithms, a fitness function Q is defined, which involves the combined 

contribution of two penalty terms: the global smoothness Qsmooth and local fitting accuracy Qfit. 

The final prediction function F is obtained by minimizing the fitness function as follows: 

𝐹∗ = 𝑎𝑟𝑔 min
𝐹∈𝑅𝑛×𝑐

𝑄(𝐹) = 𝑎𝑟𝑔 min
𝐹∈𝑅𝑛×𝑐

(𝑄𝑠𝑚𝑜𝑜𝑡ℎ(𝐹) + 𝑄𝑓𝑖𝑡(𝐹)) (2) 

Formulation of the above objective function is given in [12] for LGC by 

𝑄(𝐹) = ‖𝐹‖𝐺
2 +

𝜇

2
‖𝐹 − 𝑌‖2      (3)  

Where, the first term ‖𝐹‖𝐺
2  represents function smoothness over graph G and ‖𝐹 − 𝑌‖2 estimates 

the empirical loss of given labeled samples. The coefficient µ in (3) provides a balance between 

global smoothness and local fitting terms. If µ = ∞ is set, the above formulation reduces to the 

Gaussian field and harmonic function (GFHF) [13]. 

 

The optimization problem in LGC and GFHF can be broken up into separate problems as 

additive terms [14]. Such a decomposition can result in biases if the input labels are not 

proportionally balanced, which in turn can cause inconsistent classification results. A bivariate 
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formulation that explicitly optimizes over both the classification function F and the label matrix Y 

to solve this drawback was proposed in [5] as follows: 

𝑄(𝐹, 𝑌) =
1

2
𝑡𝑟(𝐹𝑇𝐿𝐹 + 𝜇(𝐹 − 𝑌)𝑇(𝐹 − 𝑌))   (4)  

Where, L is the normalized graph Laplacian. This formulation is called GGMC since, in the greedy 

step, the unlabeled vertices are assigned to labeled sets in a way that lowers the value of fitness 

function Q along the steepest descent direction. The above formulations are extended for multi-

class classification cases in this work [5][6]. 

 

5.3 Experimental Setup and Feature Extraction 

In this paper, a 4-pole, 0.25 HP, 208-230/460 V, 1725 r/min rated squirrel-cage induction motor 

(Model LEESON-101649) connected direct online is used in a lab experiment for healthy (H) and 

various single- and multi-faults conditions. A dynamometer coupled to the motor shaft through a 

belt pulley serves as the load. A total of five faults are applied to the motor including: 1) unbalance 

shaft rotation (UNB) (by adding extra weight on the pulley); 2) bearing fault (BF) (the general 

roughness type created with sandblasting); 3) a multi-fault by combining BF and UNB; 4) a multi-

fault by combining BF and one broken rotor bar (BRB) (one BRB fault is realized by drilling a 

hole of a 4.2 mm diameter and 18 mm depth in a rotor bar); and 5) a multi-fault by combining BF, 

UNB, and unbalanced voltage (UV) of the power supply (UV is done by adding extra resistance 

at the 2nd phase of the power supply). 

 

An eight-channel power quality analyzer is used to record three-phase currents (I1, I2, and I3) 

with a sampling frequency of 15.38 kHz. A tri-axial accelerometer with a four-channel sensor 

signal conditioner mounted on top of the motor near the face end is used to record X, Y, and Z-

axes vibration signals with a sampling frequency of approximately 1.3 kHz. The stator currents 
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and vibration signals were measured simultaneously under steady-state operating conditions. Six 

different motor loadings (10%, 30%, 50%, 70%, 85%, and 100%) were tested for each heathy or 

faulty case. From the measurement data, only the stator current from the 2nd phase, I2, and Z-axis 

vibration were used for feature extraction through DWT. The current and vibration data was 

selected uniformly for each condition with 90,000 data points under each motor loading, which 

was further partitioned into the fixed window size of 9,000, resulting in 10 data windows. 

 

DWT available in MATLAB Wavelet Analyzer toolbox is implemented to process the data in 

each window for feature extraction. Among wavelet families, the Daubechies wavelet with four 

vanishing moments as db4 is chosen as the mother wavelet with up to the 6th level of 

decomposition. Ten time-domain statistical features (the maximum and minimum values of the 

data window, mean, median, median absolute deviation, mean absolute deviation, L1 norm, L2 

norm, maximum norm, and standard deviation), are used for GSSL in this paper. 

 

Fig. 5.1 shows the DWT processed Z-axis vibration signal under a BF with 10% motor loading, 

where s denotes the actual signal, a6 and d1-d6 are approximation and detail levels, respectively. 
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Fig. 5. 1. DWT processed Z-axis vibration signal for the motor with a BF and under 10% motor 

loading. 

 

5.4 Result Analysis 

In this section, the fault classification accuracy for the three GSSL algorithms, LGC, GFHF, 

and GGMC, are compared using features extracted by DWT from the stator current and vibration 

signals. For LGC and GGMC, the value of hyper-parameter µ = 0.01 is used across all cases. The 

three GSSL algorithms implemented in MATLAB all run with 100 independent folds with random 

sampling using the graph construction procedure mentioned in Section II. It is found that they 
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require very similar run-time to output a prediction. The sparsification is performed using the k-

nearest-neighbors (kNN) approach. For edge weighting, both binary and fixed Gaussian kernel 

weightings are used in the paper. For the kNN graph construction, k=2 is used uniformly for cases 

between healthy and one individual fault; while k=4 is used for cases with healthy and all five 

faults (single- and multi-faults).  

 

5.4.1 GSSL Algorithms for One Individual Fault Classification 

For one individual fault diagnosis vs. healthy machine, the GSSL algorithms need a random 

stratified selection of 2 known labels to ensure at least one representative instance from two 

different classes is chosen. The number of known labels gradually increases up to 10 in each case, 

denoting half of the data are labeled. The fault classification performance of the three GSSL 

algorithms for one individual fault diagnosis is shown in Tables 5.1 and 5.2 using the stator current 

and vibration signal, respectively. The motor is under 50% loading. 

 

In Table 5.1, using the stator current, the lowest average classification accuracy is 92.5% by 

LGC and GFHF for a individual multi-fault (BF+1BRB) case vs. a healthy case. The highest 

average classification accuracy is 100% by GFHF and GGMC for three individual fault cases: a 

multi-fault (BF+UNB) vs. a healthy case; a multi-fault (BF+UNB+UV) vs. a healthy case; and a 

single-fault (UNB) vs. a healthy case. Similarly, in Table 5.2, using the vibration signal, the lowest 

average classification accuracy is 97.1% by LGC with fixed Gaussian kernel edge weighting 

method for a multi-fault (BF+1BRB) vs. a healthy case. The highest average classification 

accuracy is 100% by GFHF and GGMC for two individual fault cases:  a single-fault (BF) vs. a 

healthy case; and a multi-fault (BF+UNB+UV) vs. a healthy case. Tables 5.1 and 5.2 indicate that 
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for individual fault diagnosis, all three GSSL algorithms perform well with comparable accuracies 

using both stator current and vibration signals. 

 

5.4.2 GSSL Algorithms for All Five Faults Classification 

When the classification is performed for all five faults vs. the healthy case, there are six different 

class labels, the three GSSL algorithms were tuned to commence from a random stratified choice 

of 6 known labels to ensure one representative instance from six different classes is chosen. In this 

case, the number of known labels was gradually increased up to 30, denoting half of the data are 

labeled. Both binary and fixed Gaussian kernel edge weighting schemes are implemented. Table 

5.3 shows classification accuracies using the stator current and vibraton signals. Table 5.3 shows 

very low classification accuracy (below 58%) using the three GSSL algorithms and vibration 

signal. However, the classification accuracy using the three GSSL algorithms and stator current is 

good, up to 92.53% for GGMC; in this case, GGMC shows the best performance, and LGC shows 

the worst. 

 

Fig. 5.2 shows the average fault classification accuracy vs. the number of labels using the three 

GSSL algorithms with binary and fixed Gaussian kernel edge weighting, respectively. Both the 

stator current and vibration signals are used for the motor under 50% loading. The average 

accuracies are computed by averaging classification accuracies of 100 iterations for each GSSL 

algorithm. 
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Table 5. 1: Classification accuracies of GSSL algorithms using stator current I2 and 50% motor 

loading for one individual fault vs. healthy case 

GSSL 

Algorithm 

Edge Reweighting 

Scheme 

Average accuracy, % 

H vs. BF 
H vs. 

BF+1BRB 

H vs. 

BF+UNB 

H vs. 

BF+UNB+UV 

H vs. 

UNB 

Local and 

Global 

Consistency 

(LGC) 

Binary edge 

weighting 
97.3 92.5 99.4 99.4 99.4 

Fixed Gaussian 

Kernel edge 

weighting 

96.3 92.5 99.7 99.8 99.1 

Gaussian Field 

and Harmonic 

Function 

(GFHF) 

Binary edge 

weighting 
97.3 92.5 100 100 100 

Fixed Gaussian 

Kernel edge 

weighting 

97.3 92.5 100 100 100 

Greedy- 

Gradient Max- 

Cut (GGMC) 

Binary edge 

weighting 
97.6 94.5 100 100 100 

Fixed Gaussian 

Kernel edge 

weighting 

97.3 94.5 100 100 100 

 

Table 5. 2: Classification accuracies of GSSL algorithms using Z-axis vibration and 50% motor 

loading for one individual fault vs. healthy case 

GSSL 

Algorithm 

Edge Reweighting 

Scheme 

Average accuracy, % 

H vs. BF 
H vs. 

BF+1BRB 

H vs. 

BF+UNB 

H vs. 

BF+UNB+UV 

H vs. 

UNB 

Local and 

Global 

Consistency 

(LGC) 

Binary edge 

weighting 
99.3 97.7 97.8 99.3 97.2 

Fixed Gaussian 

Kernel edge 

weighting 

98.7 97.1 96.9 98.7 96.6 

Gaussian Field 

and Harmonic 

Function 

(GFHF) 

Binary edge 

weighting 
100 98.4 97.8 100 97.4 

Fixed Gaussian 

Kernel edge 

weighting 

100 98.4 97.8 100 97.4 

Greedy- 

Gradient Max- 

Cut (GGMC) 

Binary edge 

weighting 
100 98.4 97.8 100 97.4 

Fixed Gaussian 

Kernel edge 

weighting 

100 98.4 97.8 100 97.4 
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Table 5. 3: Classification accuracies of GSSL algorithms using stator current I2 and Z-axis 

vibration signal for five faults vs, healthy case 

GSSL Algorithm 
Edge Reweighting 

Scheme 

Average accuracy 

%, using Z-axis 

vibration 

Average accuracy 

%, using the 

current of phase 2, 

I2 

Local and Global 

Consistency (LGC) 

Binary edge weighting 55.07 85.27 

Fixed Gaussian Kernel 

edge weighting 
54.3 86.6 

Gaussian Field and 

Harmonic Function 

(GFHF) 

Binary edge weighting 57.63 89.53 

Fixed Gaussian Kernel 

edge weighting 
56.53 89.37 

Greedy- Gradient 

Max- Cut (GGMC) 

Binary edge weighting 59 91.83 

Fixed Gaussian Kernel 

edge weighting 
56.6 92.53 

 

 

 
(a) 

 
(b) 

Fig. 5. 2. Average classification accuracy vs. the number of labels for all five faults: (a) Binary 

edge weighting; (b) Fixed Gaussian kernel edge weighting. 
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5.5 Conclusion  

In this study, induction motor fault diagnosis method is developed using GSSL algorithms and 

experimental stator current and vibration signals. Three GSSL algorithms, LGC, GFHF and 

GGMC, are evaluated in the paper. For individual fault diagnosis, all three GSSL algorithms 

perform well with comparable accuracies using both stator current and vibration signals. For five 

faults classification, GGMC shows the best performance using the stator current, while none of 

the three GSSL algorithms perform well using vibration signal. It is recommended that the GGMC 

algorithm combined with the stator current signal should be used to obtain consistently good fault 

classification performance for induction motors. 

  



81 

 

References: 

[1] R. Razavi-Far, E. Hallaji, M. Farajzadeh-Zanjani, and M. Saif, “A semi-supervised diagnostic 

framework based on the surface estimation of faulty distributions,” IEEE Trans. Ind. 

Inform., vol. 15, no. 3, pp. 1277–1286, March 2019. 

[2]     D. Wu, X. Luo, G. Wang, M. Shang, Y. Yuan, and H. Yan, “A Highly Accurate Framework 

for Self-Labeled Semisupervised Classification in Industrial Applications,” IEEE Trans. Ind. 

Inform., vol. 14, no. 3, pp. 909–920, March 2018. 

[3] Y. Zhao, R. Ball, J. Mosesian, J.-F. de Palma, and B. Lehman, “Graph-based semi-supervised 

learning for fault detection and classification in solar photovoltaic arrays,” IEEE Trans. 

Power Electron., vol. 30, no. 5, pp. 2848–2858, May 2015. 

[4] T. Jebara, J. Wang, and S.-F. Chang, “Graph construction and b-matching for semi-

supervised learning,” Proceedings of the 26th annual international conference on machine 

learning, pp. 441–448, 2009. 

[5] J. Wang, T. Jebara, and S.-F. Chang, “Semi-supervised learning using greedy max-cut,” J. 

Mach. Learn. Res., vol. 14, no. Mar, pp. 771–800, 2013. 

[6] Z.-J. Zha, T. Mei, J. Wang, Z. Wang, and X.-S. Hua, “Graph-based semi-supervised learning 

with multiple labels,” J. Vis. Commun. Image Represent., vol. 20, no. 2, pp. 97–103, 2009. 

[7] D. Li and S. Dick, “Residential household non-intrusive load monitoring via graph-based 

multi-label semi-supervised learning,” IEEE Trans. Smart Grid, vo. 10, no. 4, pp. 4615 – 

4627, July 2019. 

[8] S. Wang, X. Guo, Y. Tie, I. Lee, L. Qi, and L. Guan, “Graph-based safe support vector 

machine for multiple classes,” IEEE Access, vol. 6, pp. 28097–28107, May 2018. 

[9] W. Jiang, Z. Zhang, F. Li, L. Zhang, M. Zhao, and X. Jin, “Joint label consistent dictionary 

learning and adaptive label prediction for semisupervised machine fault classification,” 

IEEE Trans. Ind. Inform., vol. 12, no. 1, pp. 248–256, Feb. 2016. 

[10] R. Razavi-Far et al., “Information Fusion and Semi-Supervised Deep Learning Scheme for 

Diagnosing Gear Faults in Induction Machine Systems,” IEEE Trans. Ind. Electron., vol. 

66, no. 8, pp. 6331–6342, Aug. 2019. 

[11] M. Maier, U. V. Luxburg, and M. Hein, “Influence of graph construction on graph-based 

clustering measures,” Proceedings of the Advances in neural information processing 

systems, pp. 1025–1032, 2009. 



82 

 

[12] W. Liu, J. Wang, and S.-F. Chang, “Robust and scalable graph-based semisupervised 

learning,” Proc. IEEE, vol. 100, no. 9, pp. 2624–2638, Sept. 2012. 

[13] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning using gaussian fields 

and harmonic functions,” Proceedings of the 20th International Conference on Machine 

Learning, pp. 912–919, 2003. 

[14] J. Wang, S.-F. Chang, X. Zhou, and S. T. Wong, “Active microscopic cellular image 

annotation by superposable graph transduction with imbalanced labels,” Proceedings of the 

2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, 2008. 

  



83 

 

Chapter 6 

Conclusion  

 

6.1 Summary and Conclusions 

In this thesis, effective fault diagnosis methods for direct online induction motors using signal 

processing and machine learning are developed. The main research outcomes of Chapters 3, 4, and 

5 are summarized as follows: 

 

In Chapter 3, two BRB fault diagnosis algorithms for direct online induction motors, PSD and 

1-D CMW based complex CWT algorithms, are implemented using experimental stator current 

signals measured in a lab. Both methods can successfully identify the healthy and faulty conditions 

of the motor. However, the PSD analysis cannot distinguish the severity of BRB faults under light 

loading conditions. The complex CWT analysis can successfully differentiate between healthy and 

faulty motor conditions through the significant presence of harmonic components under fault 

conditions. The severity of faults can be observed through the increasing amount of harmonic 

components in the scalograms of complex CWT magnitude coefficients. This method works well 

for any motor loading conditions. Therefore, the complex CWT method is a practical approach for 

BRB fault diagnosis for direct online induction motors. 

 

In Chapter 4, an effective single- and multi-fault diagnosis method for direct online induction 

motors is demonstrated using a graph-based semi-supervised learning approach. Three GSSL 

algorithms- LGC, GFHF, and GGMC, are evaluated based on features extracted by DWT from 

experimental stator currents, which carry signatures of healthy, single-, and multi-fault motor 

states. All three GSSL algorithms perform better than the selected supervised learning algorithm 
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for a given number of labeled data. GGMC is more effective than LGC and GFHF. To enable 

machine learning for untested motor operating conditions, mathematical equations to calculate 

features for such untested conditions are developed using curve fitting based on features extracted 

from experimental data for tested conditions.  

 

In Chapter 5, the induction motor fault diagnosis method is developed using experimental stator 

current and vibration signals. Three GSSL algorithms, LGC, GFHF, and GGMC, are evaluated in 

the paper. For individual fault diagnosis, all three GSSL algorithms perform well with comparable 

accuracies using both stator current and vibration signals. For all faults classification, GGMC 

shows the best performance using the stator current, while none of the three GSSL algorithms 

perform well using vibration signals. GGMC, combined with stator current signals, can offer 

consistently good fault classification performance. 

 

The following conclusions of the thesis can be drawn: 

1. CWT is a better signal processing approach compared to PSD estimates for broken rotor 

bar (BRB) fault detection of direct online induction motors. 

2. Among the three GSSL algorithms considered in this thesis for single- and multi-fault 

diagnosis, GGMC outperforms LGC and GFHF with both stator current and vibration 

signals. 

3. Stator current signal is a more practicable choice for single- and multi- fault diagnosis 

of direct online induction motors. 

 
 

6.2 Future Works  

 The future research can be extended to develop fault diagnosis methods for variable 

frequency drive (VFD)-driven induction motors. The feasibility of the proposed methods 
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such as the CWT and PSD estimates based stator current signature analysis, the graph-

based semi-supervised learning based single- and multi-fault diagnosis with both stator 

current and vibration data can be verified in the future for VFD-fed induction motors. 

 Other monitoring signals, such as voltage and instantaneous power, may also be 

considered in future work. Both signal processing and machine learning methods can be 

applied to validate the significance of these signals in comparison to stator current and 

vibration signals, and their performance can also be evaluated. 
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