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A b s t r a c t

It is shown that a large class of flexible manufacturing
cells can be modeled by timed Petri nets. Several net
transformations are proposed to simplify the structure
of the modeling nets while preserving their performance
properties. The throughput of the model can be ob-
tained by applying simple rules of operational analysis
to simplified nets. Several extensions of the proposed
approach are also indicated.

1. INTRODUCTION

Flexible manufacturing systems fill the gap between
flow shops which manufacture a large quantity of similar
products, and job shops which produce a large diversity
of products in small quantities. They utilize versatile
machines usually clustered in manufacturing cells and
connected by automatic material–handling equipment
such a robots which perform sequences of pickup, move,
load, unload and drop operations, transporting the man-
ufactured parts from one machine of the cell to another
[SSS92, Cl83]. The throughput of the cell depends on
the sequence of robot activities as well as on the se-
quence in which different parts enter the cell [DH90].
The problem of maximizing the throughput of a robotic
cell can thus be considered as a scheduling problem.
The behavior of flexible manufacturing systems is rep-

resented by events and activities; an event corresponds
to a change of system’s state while an activity corre-
sponds to an operation performed by a machine or a
robot. Different sets of (simultaneous) activities deter-
mine the states of the system. In each state, several
activities can occur concurrently, for example, several
machines can perform their operations simultaneously
and the robot can also transport a part. Petri nets pro-
vide a simple and convenient formalism for modeling
systems that exhibit parallelism and concurrency [Mu89,
Re85]. In fact, one of the very first applications of Petri
net models was to analyze production schemata [Ha72].

However, the complexity of realistic manufacturing sys-
tems combined with not well–understood nature of con-
currency, seem to be the reasons of limited popularity
of these models for a number of years [Su85].
In order to study performance aspects of Petri net

models, the duration of activities must also be taken into
account and included into model specifications. Several
types of Petri nets ‘with time’ have been proposed by as-
signing ‘firing times’ to the transitions or places of a net.
In stochastic, the transition firings are instantaneous
events, as in ordinary (i.e., ‘untimed’) nets, however, to-
kens are delayed in places for (exponentially distributed)
time periods, determined by transitions connected with
the place. In timed nets, transition firings are ‘real–time’
events, i.e., tokens are removed from input places at the
beginning of the firing period, and they are deposited
to the output places at the end of this period (some-
times this is also called a “three–phase” firing mecha-
nism). The firing times may be either deterministic or
stochastic, i.e., described by some probability distribu-
tion function. In both cases the concepts of state and
state transitions have been formally defined and used in
derivation of different performance characteristics of the
model [Zu91].
Analysis of net models can be based on their behav-

ior (i.e., the space of reachable states) or on the struc-
ture of the net; the former is called reachability analysis
while the latter structural analysis. Structural meth-
ods eliminate the derivation of the state space, so they
avoid the ‘state explosion’ problem of reachability analy-
sis, but they cannot provide as much information as the
reachability approach does. Quite often, however, all
the detailed results of reachability analysis are not re-
ally needed, and more synthetic performance measures,
that can be provided by structural methods, are quite
satisfactory [Hi89].
This paper investigates the steady–state behavior of

flexible manufacturing cells. Simple schedules, i.e.,
schedules in which exactly one part enters and one leaves
the cell in each cycle, are modeled by conflict–free timed
Petri nets. The throughput of the whole model is deter-
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mined by reduction of the modeling net to an equivalent
net with a very simple structure, for which the through-
put can be directly determined from the net.
Section 2 recalls basic concepts of timed Petri nets.

The definition and some properties of throughput in
timed nets are presented in Section 3 while Section 4
introduced several useful net transformations which sim-
plify net structure but preserve net performance prop-
erties. Timed net models of simple schedules and their
throughput analysis are discussed in Section 5. Section
6 concludes the paper.

2. TIMED PETRI NETS

Only the few most important definitions of conepts
related to timed Petri nets are recalled in this section.
More detailed presentation can be found in [Zu88, Zu91].
A Petri net (or a Petri net structure) N is a triple

N=(P, T,A) where P is a finite, nonempty set of places,
T is a finite, nonempty set of transitions, and A is a set
of directed arcs, A ⊆ P × T ∪ T × P , such that for each
transition there is at least one place connected with it.
A marked Petri net M is a pair M = (N ,m0) where
N is a Petri net, N = (P, T,A), and m0 is an initial
marking function, m0 : P → {0, 1, ...}, assigning tokens
places of the net.
A shared place p is shared if it is connected to more

than one transition. A net is conflict–free if it does not
contain shared places. Only conflict–free net are consid-
ered in this paper since the models of schedules discussed
here are conflict–free nets. A very similar approach can
be used for more general class of free–choice nets.
A transition t is enabled by a marking m iff every

input place of this transition contains at least one token.
Every transition enabled by a markingm can fire. When
a transition fires, a token is removed from each of its
input places and a token is added to each of its output
places. This determines a new marking in a net, a new
set of enabled transitions, and so on.
A conflict–free timed Petri net T is a pair T = (M, f)

where M is a conflict–free marked Petri net, M =
(N ,m0), N = (P, T,A), and f is a firing time func-
tion which assigns the nonnegative (average) firing time
f(t) to each transition t of the net, f : T → R⊕, and
R⊕ denotes the set of nonnegative real numbers.
The behavior of a timed Petri net can be represented

by a sequence of ‘states’ where each ‘state’ describes
the distribution of tokens in places and in firing transi-
tions of the net; detailed definitions of states and state
transitions are given in [Zu88, Zu91]. The states and
state transitions can be combined into a graph of reach-
able states or simply state graph; this graph is a semi–
Markov process defined by the timed net T . The timed

net is bounded iff its state graph is finite. Only bounded
nets are considered in this paper.
The state graph for bounded conflict–free nets is ei-

ther a simple (finite) path or a simple cycle. Net models
of manufacturing cells have cyclic state graphs which
represent the cyclic behavior of the manufacturing cells.
The cycle time of the model determines the cycle time
and the throughput of the modeled cell. It appears the
the throughput of the model can easily be determined
without the exhaustive analysis of the state space by us-
ing a few simple net transformations which simplify the
structure of the net while preserving its performance
properties.

3. THROUGHPUTS IN NETS

Intuitively, throughput of a place p in a timed net T ,
θT (p), is equal to the average number of tokens entering
p in a unit time, or leaving p (or t) in a unit time; in the
steady–state of the net, the average numbers of tokens
entering and leaving p must be equal since no ‘accumu-
lation’ of tokens can occur. Similarly, throughput of a
transition t in a net T , θT (t), is equal to the average
number of new (or completed) transition’s firings in a
unit time. It should be noted that the throughput of a
transition does not depend upon the number of incom-
ing or outgoing arcs.
More formally, the throughput of a timed net T is

defined as a function θ : P ∪ T → R⊕ which assigns a
nonegative number to each place and each transition of
the net in such a way that:

∀(x ∈ P ∪ T ) θ(x) = lim
n→∞

n

τn(x)

where τn(x) denotes the time instant at which the n-th
consecutive token enters (or leaves) the place x or at
which the transition x initiates (or terminates) its n-th
firing.

It follows immediately from the definition of through-
put that:

• the throughput of a place p is equal to the sum of
throughputs of its input transitions as well as the
sum of throughputs of its output transitions:

∀(p ∈ P ) θ(p) =
∑

ti∈Inp(p) θ(ti)

=
∑

tj∈Out(p) θ(tj)

• for each (non–shared) place p, the throughput of p’s
output transition is equal to the throughput of p:

∀(p ∈ P ) Out(p) = {t} ⇒ θ(t) = θ(p),
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An elementary net is a connected net in which there
is exactly one input place and exactly one output place
for each transition of the net, and one input transition
and one output transition for each place of the net. In
other words, the (directed) graph of an elementary net
is a (simple) cycle. It follows from property 1 that in
elementary nets the throughputs of all transitions and
all places are the same. To determine the value of these
throughputs, the Little’s law [Ki90] can be applied to
an elementary net considered as an open system (by
braking one of the arcs) in which the mean response
time is equal to the sum of (the average) firing times of
all transitions.

For a timed elementary net T :

∀(x ∈ P ∪ T ) θ(x) =

∑
p∈P m0(p)

∑
t∈T f(t)

Analysis of nets in which transitions can have more
than one input arc must take into account ‘synchroniza-
tion delays’ which do not exist in state graphs (and ele-
mentary nets). Since firing of a transition removes (sin-
gle) tokens from all input places simultaneously, some
tokens may wait (in places) for the enabling of a tran-
sition. Such waiting times will affect the response time
of timed models. However, there are simple solutions to
some special cases of nets.

An omega net is a net composed of two elementary
nets which have exactly one common transition. Conse-
quently, the throughput of all elements is the same, and
is equal to

θ(T ) = min(θ(T1), θ(T2))

where θ(T1) and θ(T2) are throughputs of the first and
the second elementary subnets, respectively (when con-
sidered independently of the other).

4. NET TRANSFORMATIONS

It can easily be shown that different timed nets may
have isomorphic state graphs, which means that the be-
havior of such nets is “equivalent” in the sense of station-
ary probabilities of states and performance properties
which can be derived from these stationary probabili-
ties [Zu82]. Some of net transformation which preserve
such “equivalence” are as follows:

(a) Backward split: A simple transition followed by a
“fork” one, as shown in Fig.1(a), is equivalent to a
simple transition replaced by a “fork” with parallel
paths.

(b) Forward split: A “join” transition followed by a
simple one, as shown in Fig.1(b), is equivalent to
the simple transition replaced by a “join” and two
parallel transitions replacing the original “join”.

(c) Removal of parallel paths: In the case of paral-
lel paths (as shown in Fig.1(c)), the first transition
has the firing time which is equal to the smaller of
the two original firing times, and the the second
transition has the firing time equal to the differ-
ence of the two original firing times. The transfor-
mation can be applied not only to simple parallel
transitions but any parallel paths. In particular, if
one of parallel paths contains only a place, the path
can be removed without affecting the performance
of the model (Fig.1(d)).
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Fig.1. Net transformations.

5. SIMPLE SCHEDULES AND THEIR
THROUGHPUTS

Simple schedules are schedules in which exactly one
part enters and one leaves the cell in each cycle. A de-
tailed description of timed Petri net models of simple
schedules is given in [ZK94]; only main aspects are re-
called here. Timed net models of manufacturing cells
are composed of:

• transitions representing machine operations; firing
times associated with these transitions are average
operation times; for each machine there are also
two places representing conditions “part ready for
operation” (i.e., loaded) and “operation finished”
(and the part ready for unloading),
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• a cyclic directed path modeling the robot’s sched-
ule; this path is composed of transitions and places
connected by directed arcs; the transitions model
robot’s operations “pick–move–load”, “unload–
move–load” and “unload–move–drop” with firing
times representing durations of the operations; the
places represent “readiness for another operation”.

The robot actions are ‘naturally’ synchronized with
machine operations; a machine cannot start its opera-
tion unless it is loaded; the robot cannot unload a ma-
chine until its operation is finished, etc. All such syn-
chronizations are represented by transitions with two
input places (robot and machine).
A simple manufacturing cell composed of three ma-

chines and a robot is sketched in Fig.2 [SSS92]; the ma-
chines are denoted by M1, M2 and M3, In represents a
conveyor bringing the parts in, while Out a conveyor for
outgoing parts. It is assumed (for simplicity) that each
part has to go through M1, M2 and M3, in that order
before leaving the cell.

M3

M1

M2

M3

In Out

Robot

Fig.2. An outline of a three–machine cell.

There are six possible robot’s simple schedules
[SSS92]; the schedules differ in the order of robot’s ac-
tions. Denoting the robot moves fromX to Y byX ⇒ Y
if the robot carries a part and by X → Y otherwise, the
schedules are as follows:

A: In ⇒ M1 ⇒ M2 ⇒ M3 ⇒ Out → In

B: In ⇒ M1 ⇒ M2 → M3 ⇒ Out → M2 ⇒ M3 → In

C: In ⇒ M1 → M3 → Out → M1 ⇒ M2 ⇒ M3 → In

D: In ⇒ M1 → M2 ⇒ M3 → M1 ⇒ M2 → M3 ⇒ Out → In

E: In ⇒ M1 → M2 ⇒ M3 ⇒ Out → M1 ⇒ M2 → In

F: In ⇒ M1 → M3 ⇒ Out → M2 ⇒ M3 → M1 ⇒ M2 → In

A timed Petri net model of the cell from Fig.2 with
the schedule A is shown in Fig.3. The three machines (or
rather machine operations) are represented by t1, t2 and

t3, each transition with its input and output place (for
the conditions ‘part loaded’ – p10, p21 and p32 – and
‘machine operation finished’ – p12, p23 and p34). The
firing times associated with these transitions, f(t1) = o1,
f(t2) = o2 and f(t3) = o3, represent the average times
of performing the operations on machines M1, M2 and
M3, respectively.
The sequence of robot actions is represented by the

path t01, t12, t23, t34, t40 with the following ‘execution’
times (‘a’ denotes the pickup time, ‘b’ the unload time,
‘c’ the load time, ‘d’ the drop time and ‘e’ the ‘travel’
time between machines; it is assumed, for simplicity,
that all travel times between two adjacent machines are
the same, and are also the same for Out to In move, In
to M1 as well as M3 to Out move):

operation time

t01 pick from In, move to M1, load a+ c+ e
t12 unload M1, move to M2 and load b+ c+ e
t23 unload M2, move to M3 and load b+ c+ e
t34 unload M3, move to Out, drop b+ d+ e
t40 move from Out to In e

It is assumed that there is always an available part in
In and that Out removes manufactured parts so quickly,
that there is never any waiting; consequently, In and
Out are not shown in the model although they could
easily be added if needed.
It can be observed that the arcs incident with p11,

p22 and p33 form parallel paths to transitions t1, t2 and
t3, respectively. Removal of all these arcs results in an
an elementary net, so the throughput for schedule A is
simply:

θA = 1/(o1 + o2 + o3 + a+ 3b+ 3c+ d+ 5e)

A model of the robot’s schedule B is shown in Fig.4;
t1, t2 and t3 represent the machine operations, as in
Fig.3, and the remaining transitions correspond to the
following robot’s actions:

operation time

t01 pick from In, move to M1, load a+ c+ e
t12 unload M1, move to M2 and load b+ c+ e
t23 unload M2, move to M3 and load b+ c+ e
t30 move from M3 to In 2e
t32 move from M2 to M3 e
t34 unload M3, move to Out, drop b+ d+ e
t42 move from Out to M2 2e

The initial marking function corresponds to the dis-
tribution of parts in the cell; for the schedule B (Fig.4),
the initial token in p03 represents the robot ready to pick
a part from the input conveyor, while the token in p32
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Fig.3.  Net model of schedule A.
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Fig.4.  Net model of schedule B.
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Fig.5.  Transformed model of schedula B.
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Fig.6. Simplified model of schedule B.

f(tx) = max(f(t3), f(t30)+ f(t01)+ f(t1)+ f(t12)+ f(t32))

creates an omega net shown in Fig.6. Its throughput is:

θB = min(1/(o1 + o2 + a+ 2b+ 3c+ 5e),
1/(2b+ c+ d+ 4e+max(o3, o1 + a+ b+ 2c+ 5e)))
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Similar models can easily be derived for other simple
schedules.

6. CONCLUDING REMARKS

It has been shown that timed Petri nets can conve-
niently model (at least a class of) flexible manufactur-
ing cells. For simple schedules, the modeling nets are
composed of conflict–free nets, and the throughput can
easily be determined by reducing the original model to
a simpler one, for which the solution can be obtained
directly. The solution is obtained in an analytical (or
symbolic) form, in which all times of basic operations
(like ”load”, “unload”, “move”) are parameters.
The evaluation of the net models discussed in Sec-

tions 5 can be used for the determination of optimal
schedules. For example, for the manufacturing cell of
Fig.2, there are six different simple schedules (models of
two of them are shown in Fig.3 and Fig.4); the optimal
schedule in this case is the schedule which maximizes
the throughput:

θopt = max(θA, θB , ..., θF )

The optimization procedure (based on systematic
analysis of feasible schedules) can be automated. How-
ever, the number of schedules can grow very quickly with
the number of cell components. This large number can
be significantly reduced if specific values of (some) pa-
rameters are taken into account.
Several simplifying assumptions were used in the dis-

cussion presented in previous sections, e.g., all parts are
identical, robot ‘travel times’ are equal, etc. It should be
noted, however, that all these assumptions were made
to simplify the discussion and they can easily be re-
moved by straightforward modification of the presented
approach because all these assumptions do not affect the
structure of the model.
Only simple schedules are discussed in this paper, but

a similar approach can be developed for schedules in
which several parts enter (and leave) the cell within a
single cycle. All such ‘composite’ schedules can be ob-
tained from of a number of simple schedules combined
together. A systematic method of ‘consistent’ compo-
sitions of simple schedules, combined with a similar
method of analysis can be applied to composite sched-
ules.
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