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Abstract

An extension to the popular SPICE circuit simulator is
described that analyses analog circuits with digital com-
ponents represented at the gate, functional or behavioral
levels. The analog-to-digital conversion is performed by
(multilevel) “thresholders” which assign digital signals to
subranges of voltages determined by a set of voltage thresh-
olds. The digital-to-analog conversion is implemented by
voltage sources with “controlled” characteristics that ap-
proximate (discrete) digital signals by continuous piecewise
linear functions. The paper outlines internal organization
of mixed, analog/digital simulation, presents modification
of analyses and extensions to the input language needed for
analog-digital interactions, and describes the specification
of digital circuits.

1. INTRODUCTION

The phrase “mixed-mode” or “mixed analog/digital”
simulation has been used to refer to the simulation of elec-
trical networks consisting of both analog and digital parts,
regardless of the level of design abstraction. Design ab-
straction, in this context, means the level at which the net-
work is specified for simulation; it can be device, circuit,
functional or behavioral level [MAR].
The popularity of mixed-mode simulation

[CoWi,MAR,SaDi,Samp] is due to analog circuitry
that exists in virtually all digital systems. Some of that
circuitry is now showing up in application-specific ICs. It
is expected that by 1990, half of all semicustom circuitry,
and one third of standard-cell designs will be more than 10
percent analog [Goer]. Roughly 80 percent of all printed
circuit boards contain some analog components today.
It appears, however, that even sophisticated users of de-

sign automation tools prefer to separate the analog and
digital portions of their systems; the analog circuitry is gen-
erally verified using some derivation of the popular SPICE
circuit simulator [Coh, Vlad], and there are many com-
mercially available logic simulators that can be used for
simulation of digital circuits [VLSI]. Unfortunately, it is
rather difficult to correlate these two distinct simulations,
and to analyze how analog and digital parts affect each
other. Clearly, an “integrated” approach is needed which
can handle both analog and digital simulation within one,
consistent simulation environment.
Three basic approaches have been taken toward mixed

analog-digital simulation. The first method uses an ana-
log simulator to perform both analog and digital simula-
tion [Getr, ORou]; the second uses a digital simulator to

perform both digital and analog simulation [SaDi]; in the
third method two simulators, a digital and analog one, are
coupled together [CoWi]. In the first method, the digital
elements are usually analyzed by the same mechanisms as
the analog ones, which results in too accurate but also too
inefficient simulation. The second approach extends the
digital (discrete) methods to analog elements; this usually
provides quite efficient but rather inaccurate simulation.
Only the coupled approach combines the advantages of ana-
log (accuracy) and digital (efficiency) simulations but this
depends upon the level of coupling. Loosely coupled sim-
ulators basically execute two independent simulation pro-
grams (analog and digital) that “communicate” whenever
they need information from the other part of the circuit;
they are relatively simple to design but perform simulation
of mixed analog–digital circuits neither really accurately
nor efficiently. Tightly coupled or integrated simulators
“synchronize” the two simulation mechanisms at the level
of internal timesteps and time event control, so they can
easily avoid any redundant evaluations without any loss of
accuracy.
Any implementation of integrated mixed-mode simula-

tion must solve two basic questions [Samp], (i) conversion
of analog to digital and digital to analog information on
interfaces of analog and digital components, and (ii) syn-
chronization of the (usually variable) timesteps of the ana-
log simulation [McC,Pede] with the event list that drives
the (event-driven) digital simulation [MME]. The analog-
to-digital conversion can be handled by establishing voltage
thresholds and corresponding digital signals (the conversion
is performed by elements called “thresholders” [MAR]).
The digital-to-analog conversion is more difficult because it
must generate a continuous analog waveform on the basis
of discrete digital values. Two popular simple solutions as-
sume that the converted waveforms are piecewise linear and
piecewise exponential. A more sophisticated conversion has
been implemented for example in SAMSON [SaDi].

This paper describes an approach to integrated mixed-
mode simulation in which analog simulation is provided by
SPICE-PAC [Zub1], a modified SPICE simulator. SPICE-
PAC is a simulation package that is upward compatible
with the popular SPICE simulation program [Coh,Vlad]. It
means that SPICE-PAC accepts the same circuit descrip-
tion and performs all the analyses which are available in the
SPICE programs, but also provides a number of features
that do not exist in SPICE, for example an access to inter-
nal values of circuit elements, hierarchical naming scheme,
parameterized subcircuit expansion, dynamic definitions of
parameters and outputs, and also “enhanced” circuit sim-
ulation in which users can extend or modify some standard
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simulation capabilities by their own routines in order to
increase efficiency, accuracy or applicability of simulators.
Digital simulation capability is an example of such enhance-
ments.
In mixed-mode simulation, analysis of digital circuits is

performed either by user-defined simulation routines (at
any level of abstraction), or is performed by a “standard”
digital simulator with a flexible time control mechanism
needed for synchronization with the analog simulation al-
gorithm. General organization of mixed-mode simulator is
shown in Fig.1.
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Fig.1. Organization of mixed-mode simulation.

The paper is organized in three main sections. Sec-
tion 2 describes modified time-domain analysis, extended
by an interface to digital simulation. Section 3 presents
extensions to the input language for specification of ana-
log/digital and digital/analog interfaces, it also describes
the interfacing routines in some detail. Simulation of the
digital part of a circuit is discussed in section 4.

2. MODIFIED TIME-DOMAIN ANALYSIS

SPICE-PAC, similarly to the SPICE program, imple-
ments the time-domain (transient) analysis in two consecu-
tive steps, the so called “Initial Transient” analysis and the
proper “Transient” analysis. Initial transient analysis finds
the “initial” solution (i.e., the solution of circuit equations
for the zero time instant) with user-specified or default ini-
tial conditions. The proper transient analysis integrates the
differential equations describing the circuit from one time-
point to another, using either the trapezoidal rule (default)
or backward differentiation (or Gear’s) method [Coh,Vlad].
The proper time–domain analysis is controlled by two

mechanisms, (i) the variable timestep which is determined
by user specified parameters as well as truncation errors
estimated during integration steps, and (ii) the so called
“breakpoint table”, BPT, which contains all “characteris-
tic” time instances of time-dependent source functions as
well as contributions introduced by transmission lines.
The variable timestep is controlled by iteration count

and an estimated truncation error [Coh]. The iteration
count uses the number of Newton-Raphson iteration steps
required to converge at a given timepoint; if this num-
ber is less than the parameter (or “OPTION”) ITL3, the
timestep is doubled provided it does not exceed the maxi-
mum timestep determined by the value of DELMAX. DEL-
MAX (TMAX in [Vlad]) is either specified as one of pa-
rameters of time-domain analysis, or (by default) DEL-
MAX = (Time stop - Time start)/50, where “Time stop”
and “Time start” are parameters of time-domain analy-
sis (TSTOP and TSTART in [Vlad]). Furthermore, if

the number of iterations is greater than the limit ITL4,
the Newton-Raphson iteration is terminated as nonconver-
gent, the timestep is divided by 8, and the iterative so-
lution begins for a new timepoint, provided the reduced
timestep is greater than the minimum timestep, DELMIN
= 10−9DELMAX (otherwise the notorious message “inter-
nal timestep too small” is reported and the analysis termi-
nates).
The estimation of (local) truncation errors determines

the minimum timestep for which the truncation errors are
“acceptable”. When the truncation errors (for the assumed
timestep) are “unacceptable”, the integration backtracks in
time, and the new, “acceptable” timestep is used provided
it is greater than the minimum timestep DELMIN.
In SPICE-PAC, the original implementation of the time-

domain analysis has been extended by invocations of an
auxiliary routine digital for simulation of digital parts
of circuits. These additional invocations are within the
initial section of analysis, within the iterative integration
scheme, and in the error termination sequence. digital is
an (internal) interfacing routine, which returns the “time”
of the next event TNEXT if the digital simulation is event-
driven (otherwise TNEXT is zero). digital is discussed in
greater detail in the following section.

initialize;

TIME:=0;

update_time_dependent_sources(TIME);

solve_the_initial_system_of_circuit_equations;

create_breakpoint_table(BPT);

DELTA:=Time_step;

DELBKP:=DELTA;

DELMIN:=1D-9*DELMAX;

if (mixed-simulation) then

call digital(initial_parameters);

IBRTAB:=1;

BREAKP:=true;

error:=false;

while (not error) do

if (mixed_simulation) then

{ call digital(current_parameters,TNEXT);

if (reset) then mixed_simulation:=false;

if (terminate) then Time_stop:=TIME;

if (TNEXT>0) then

if (TNEXT<TIME+DELTA) then DELTA:=TNEXT-TIME;

store_the_solution;

if (TIME > Time_stop) then

interpolate_output_results_and_return;

if (BREAKP) then

{ IBRTAB:=IBRTAB+1;

DELTA:=

min(DELTA,0.1*min(DELBKP,BPT[IBRTAB]-TIME));

if (IBRTAB=2) then DELTA:=0.1*DELTA;

BREAKP:=false }

else if (TIME+DELTA > BPT[IBRTAB]) then

{ DELBKP:=DELTA;

DELTA:=BPT[IBRTAB]-TIME;

BREAKP:=true };

call solve_timepoint;

endwhile;

if (mixed_simulation) then

call digital(termination_parameters);

stop_analysis(error_termination);
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“BREAKP” is a logical flag that is used in coordination
of the variable timestep DELTA with the BPT; its “true”
value indicates that a breakpoint from BPT has been used,
and then the timestep is reduced at least 10 times (and it
is reduced once more 10 times for the initial step) in antic-
ipation of “special” changes of voltages and/or currents at
the breakpoint.
It should be observed that the digital simulation is in-

voked before the store_the_solution operation as the
digital simulation may change the timepoint (iterating a
threshold value of an analog-to-digital signal, as shown in
the next section).
The procedure solve_timepoint is as follows:

timepoint:

TIME:=TIME+DELTA;

if (ITL5>0 and total_number_of_iterations>ITL5) then

set_error("limit of iteration steps reached")

else if (execution_time > time_limit) then

set_error("execution time limit reached")

else

{ update_time_dependent_sources(TIME);

solve_the_system_of_circuit_equations;

if (converged) then

{ DELOLD:=DELTA;

estimate_integration_errors_and_adjust(DELTA);

if (integration_error_is_acceptable) then

return;

TIME:=TIME-DELOLD }

else

{ TIME:=TIME-DELTA;

DELTA:=DELTA/8 };

BREAKP:=false;

if (DELTA >= DELMIN) then go to timepoint };

set_error ("timestep too small");

return;

The solve_timepoint procedure is also used in analog-
to-digital conversion when “threshold timepoints” are iter-
ated.

3. INTERFACE TO DIGITAL SIMULATION

A basic analog-digital interface implemented in SPICE-
PAC provides a table-driven conversion of analog to (multi-
valued) digital signals and vice versa. Piecewise linear char-
acteristics of independent voltage and/or current sources
[Coh, Vlad] are used for interactions between digital and
analog subnetworks; the “smoothing” of discrete digital sig-
nals is thus implemented by piecewise linear functions. The
interface is composed of two sections, one for analog-to-
digital communication, and the second for communication
in the opposite direction. In the input (circuit specifica-
tion) language, these two sections are described by two new
directives, PUTLIST and GETLIST, respectively:

.PUTLIST:Tname1 Voutput1,Voutput2,...

.GETLIST:Tname1:Tname2 Vsource1,Vsource2,...

where “Tname1” indicates a TABLE pseudoelement [Zub2]
that defines the conversion table for analog-to-digital
(and digital-to-analog) interface; “Tname2” indicates an-
other TABLE pseudoelement that defines the delay ta-
ble for digital-to-analog conversion; each “Voutput” is

a voltage output in the SPICE sense, i.e., it is either
“V(node1,node2)” or “V(node1)” if the second node is
zero; each “Vsource” is the name of an independent voltage
source with a piecewise linear time-dependent function.
The conversion table is defined as an ordered sequence

of increasing (threshold) voltages interposed with (internal)
values of corresponding digital signals:

.TABLE Tname Volt0 Num1 Volt1 Num2 Volt2 ... Numk Voltk

The digital equivalent of voltages in the range “Volt0”
to “Volt1” is a signal represented by the value “Num1”,
etc. For digital-to-analog conversions, the extreme val-
ues “Num1” and “Numk” are translated into “Volt0” and
“Voltk”, respectively, while all intermediate values are con-
verted into “median” voltages, i.e., “Num2” corresponds to
“(Volt1+Volt2)/2”, etc.
In the present implementation, the delay table contains

just three parameters, the delay time of the converted
digital-to-analog signals (indicated in GETLIST), the rise
rate (i.e., the rise time per 1V) and the fall rate.
In the following example, the digital part (not shown

here) is a two-input one-output block, with inputs indicated
by the PUTLIST and the output by GETLIST. It should
be observed that there are two different conversion tables
for analog-to-digital and digital-to-analog conversions, and
also the rise and fall rates are different:

VV 1 0 PULSE(-5.0,+5.0,0.5US,10NS,10NS,2US,5US)

R1 1 2 1K

C1 2 0 1NF

R2 1 3 1K

C2 3 0 200PF

VX 5 0 PWL(0 -5.0,15U -5.0)

RX 5 0 1K

.TRAN 50NS 10US

.PRINT TR V(2) V(3) V(5)

.PUTLIST:TCONV1 V(2),V(3)

.GETLIST:TCONV2:TDEL VX

.TABLE TCONV1 (-5.0,-1,-1.0,1,+5.0)

.TABLE TCONV2 (-5.0,-1,+1.0,1,+5.0)

.TABLE TDEL (2E-7,5E-8,2E-8)

.END

The condition mixed_simulation used in the modified
time-domain analysis (previous section) is satisfied only if
both PUTLIST and GETLIST are nonempty, and then the
interfacing routine digital is invoked for each successfully
solved timepoint. The interfacing routine performs analog-
to-digital conversion of all PUTLIST voltages, and then
checks if if any digital value created during this conver-
sion differs from the “previous” value, and if all digital
values remain the same, if the present timepoint has been
explicitly requested by the digital simulation routines (for
example, because of the “internal” timing mechanisms). If
both checks fail, the interfacing routine terminates, and the
time-domain analysis continues otherwise the digital sim-
ulation is performed. If any one of the PUTLIST signals
changes its (digital) value, before invocation of the digi-
tal simulator the timepoint is (iteratively) adjusted to a
value corresponding to the closest analog-digital conversion
threshold.
Digital simulation is performed either by a “standard”

digital (or logic) simulator, or by a user-defined routine
which analyzes the digital part at the gate, functional or
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behavioral level. After completion of digital simulation,
the digital-to-analog conversions are performed for all those
(digital) signals which are indicated in the GETLIST speci-
fications and which change their (digital) values during the
simulation.
The outline of the interfacing routine is as follows:

digital_simulation:=false;

min_threshold:=max_value;

for i:=1 to length_of_PUTLISTs do

{ extract_the_voltage(i,voltage);

convert_analog_to_digital(voltage,signal);

if (signal <> old_input_signal[i]) then

{ digital_simulation:=true;

find_the_closest_conversion_threshold(voltage,x);

if (x < min_threshold) then

{ min_threshold:=x;

n:=i };

old_input_signal[i]:=signal }};

if (digital_simulation) then iterate(n,min_threshold)

else if (TIME=next_event_time) then

digital_simulation:=true;

perform_one_step_of_digital_simulation;

for j:=1 to length_of_GETLIST do

{ extract_the_signal(j,signal);

if (signal <> old_output_signal[j]) then

{ update_the_voltage_source(j,signal);

old_output_signal:=signal }};

check_pending_events(TNEXT);

and the iterate(n,threshold) procedure performs a sim-
ple but robust K-step iteration (K is a parameter) in which
the old_input_signal is now the “new” value of the cor-
responding signal:

Dmin:=0.0;

Dmax:=DELTA;

tol:=epsilon*abs(threshold+epsilon)

i:=0;

while i < K do

{ TIME:=TIME-DELTA;

DELTA:=(Dmin+Dmax)/2;

call solve_timepoint;

extract_the_voltage(n,voltage);

if (abs(threshold-voltage) < tol) then return

convert_analog_to_digital(voltage,signal);

if (signal=old_input_signal[n]) then Dmax:=DELTA

else Dmin:=DELTA;

i:=i+1 };

epsilon is another parameter that determines relative ac-
curacy of “threshold iteration”; its default value is 0.05 .

4. DIGITAL SIMULATION

Digital simulation is performed (or controlled) by a rou-
tine called SPUSIM, which is either a simple interfacing
routine to a “standard” logic simulation program [MME,
VLSI], or a user-supplied routine (that “drives” or enhances
a logic simulator). Its definition must be consistent with
the following (FORTRAN) header:

SUBROUTINE SPUSIM (TIME,LINP,NINP,LOUT,NOUT,MARK)

DOUBLE PRECISION TIME

INTEGER LINP(NINP),LOUT(NOUT),MARK

where the parameters are:

TIME - the value of the actual (simulated) time,

LINP - an array of length NINP which contains the con-
verted values of PUTLIST data,

NINP - the length of LINP, i.e., the number of analog-to-
digital signals,

LOUT - an array of length NOUT which return the new (dig-
ital) values of GETLIST variables; on entry, LOUT con-
tains “previous” values of GETLIST variables, so only
changes need to be stored in LOUT,

NOUT - the length of LOUT, i.e, the number of digital-to-
analog signals,

MARK - an entry/return flag; on entry: MARK=-1 indicates
the initial invocation, MARK=0 indicates an accepted
timepoint (i.e., a “regular” invocation), while noncon-
vergence (and termination of analog simulation) is in-
dicated by MARK=+1; on exit: MARK=0 indicates contin-
uation of analysis, and MARK=+1 a request to terminate
the analysis at the current timepoint.

The following (Fortran) SPUSIM routine simulates a
two-input XOR (exclusive-OR) gate and prints a trace of
all invocations:

SUBROUTINE SPUSIM (TIME,LINP,NINP,LOUT,NOUT,MARK)

DOUBLE PRECISION TIME

DIMENSION LINP(NINP),LOUT(NOUT)

IF (LINP(1).EQ.LINP(2)) THEN

LOUT(1)=-1

ELSE

LOUT(1)=+1

ENDIF

WRITE(NROUT,500) ATIM,LINP(1),LINP(2),LOUT(1)

500 FORMAT(’ ... *spusim* :- time :’,1PD9.2,’ inp ’,

+ 2I3,’ out ’,I3)

RETURN

END

When it is used with the analog circuit shown previously
(section 3), it produces – at the analog and digital side of
the interface – waveforms shown in Fig.2 and Fig.3.
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Fig.2. Analog PUTLIST and digital GETLIST waveforms.
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Fig.3. Analog and digital GETLIST waveforms.

It also generates the trace which is shown below:

... *spusim* :- time : 0.00D+00 inp -1 -1 out -1

... *spusim* :- time : 6.08D-07 inp -1 1 out 1

... *spusim* :- time : 1.52D-06 inp 1 1 out -1

... *spusim* :- time : 2.70D-06 inp 1 -1 out 1

... *spusim* :- time : 3.43D-06 inp -1 -1 out -1

... *spusim* :- time : 5.61D-06 inp -1 1 out 1

... *spusim* :- time : 6.22D-06 inp 1 1 out -1

... *spusim* :- time : 7.70D-06 inp 1 -1 out 1

... *spusim* :- time : 8.59D-06 inp -1 -1 out -1

If a typical gate-level simulator is used for digital simu-
lation, the description (as a section of the input data) may
look like:

input : x1,x2;

output : y;

begin

y:=xor(x1,x2)

end

where the “input” signals x1 and x2 correspond to consec-
utive (analog) PUTLIST elements, and the “output” signal
y controls the GETLIST voltage source.

5. CONCLUDING REMARKS

The basic interface has been used to simulate a num-
ber of mixed analog-digital circuits, and in particular sev-
eral A/D converters. In all cases a significant reduction
of simulation times with respect to “all analog simulation”
has been observed (in the range of one to two orders of
magnitude depending on the level of digital simulation, be-
havioral, functional or gate-level). However, the develop-
ment process of such simulations is quite unreliable and
time-consuming because an independent simulation code
(SPUSIM routines) has to be developed for each applica-
tion, and this code must be tested and validated before ac-
tual simulations. Therefore, a “better” approach is needed,
in which the digital simulation is derived directly from de-
sign specifications. This can be provided by a new “flexi-
ble” digital (multilevel) simulator that is being developed
specifically for integration with SPICE-PAC.
The modifications presented in this paper are imple-

mented in SPICE-PAC versions 2G6c.90 and beyond.
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