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Abstract 
 

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized 

by the progressive loss of upper and lower motor neurons. In contrast, Parkinson Disease 

(PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons 

within the substantia nigra region of the brain. Recently, a number of genes have been 

identified to be involved in the progression of these diseases, this study focuses upon four 

ALS-related genes: TARDBP(TBPH), p62/SQSTM1(Ref(2)P), TBK1(IK2), and 

VCP(TER94). These genes have been linked to the autophagy pathway and its sub-type, 

mitophagy, which have been suggested to play substantial roles in the progression of ALS 

and PD. Employing the Drosophila model organism, I have investigated the consequences 

of the altered expression of these ALS-related genes in combination with modified PD 

gene activities in an attempt to discover potential interactions and similarities between the 

biological basis of neurodegenerative diseases and aging. Notable observations show that 

the inhibition of TBPH in the motor neurons leads to a reduction in longevity and 

locomotor ability, and, in complementary experiments, inhibition of TBPH in the 

developing neuron-rich Drosophila eye reduces the ommatidia and interommatidial bristle 

counts. The overexpression of IK2 in the motor neurons reduces longevity and locomotor 

ability. The inhibition of Ref(2)P in the motor neurons, as well as in the dopaminergic 

neurons, increases median lifespan, slightly, while severely reducing locomotor ability, 

which may suggest a compensational relationship between longevity and motor function. 

The inhibition of Ref(2)P and parkin in the ddc-Gal4-expressing neurons provided an 

increase in lifespan, while resulting in a reduction in locomotor ability. Investigation of 
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the inhibition of TER94 provided variable results, however I have shown that inhibition of 

TER94 in the dopaminergic neurons can reduce longevity and locomotor ability over 

time. The co-inhibition of TER94 and parkin has shown a marked reduction in lifespan 

(by ~30%) and a reduction in locomotor ability. In contrast, the inhibition of TER94 in 

combination with the expression of alpha-synuclein has shown an large increase in 

lifespan (by ~28%), with an accompanying reduction in locomotor ability over time. 

Investigation of these candidate genes and their role in a model of human disease 

progression has provided some clues to our understanding of ALS and PD.  
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 1 

Chapter 1 – Introduction And Overview 
 

1.1 Purpose 

The neurodegenerative diseases, Amyotrophic Lateral Sclerosis (ALS) and 

Parkinson Disease (PD), have a high prevalence in our society. Despite being very 

common, much has been left unclear with regards to the pathogenesis of the diseases. The 

research presented herein focuses on four ALS-related genes: TARDBP(TBPH), 

p62/SQSTM1(Ref(2)P), TBK1(IK2), and VCP(TER94). The aim of this study is that 

through the manipulation of the expression of a select group of ALS and PD genes, there 

is the great potential to create extremely versatile models of these diseases through 

Drosophila melanogaster. These models have the potential to develop a better 

understanding of how these genes influence the longevity and locomotor ability of the 

organism. Specifically, the relationship between mitochondrial function and the 

consequences that ALS and PD genes may have upon this organelle is of great emphasis 

in this study. 

 

1.2 Amyotrophic Lateral Sclerosis  

The neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS) is one of the 

most common adult-onset motor neuron diseases. Characterized by the progressive loss of 

upper and lower motor neurons of the spinal cord, brain stem, and motor cortex, ALS 

progression eventually leads to muscle weakness and atrophy (Scotter, Chen, & Shaw, 

2015). To date, at least three major ALS-associated genes have been identified, along 

with several other, less prominent ALS-linked genes that have been associated with the 
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disease. The major genes include superoxide dismutase 1 (SOD1), Fused in Sarcoma 

(FUS) and TAR DNA Binding Protein (TARDBP), and the others include Sequestosome-1 

(p62/SQSTM1), Optineurin (OPTN), TANK-binding kinase 1 (TBK1), VAMP-associated 

protein B (VAPB), and Valosin Containing Protein (VCP) (Andersen & Al-Chalabi, 2011; 

Nguyen, Thombre, & Wang, 2018). For the most part, these genes are linked to the 

cellular process of autophagy and its mitochondrial-directed sub-type mitophagy, both of 

which have been suggested to play substantial roles in the progression of 

neurodegenerative diseases such as ALS. As age increases, the prevalence of ALS 

continues to grow, with a median age of onset of 55 years (Pasinelli & Brown, 2006), and 

patients are typically surviving for three to five years after diagnosis (Schmolck, Mosnik, 

& Schulz, 2007). In general it is believed widely that genetics can explain only a fraction 

of many ALS cases, as the majority seem to arise sporadically, to suggest that 

approximately 10% of cases to have a familial basis. Most research involving ALS 

pathogenesis has been centred around mutations in the SOD1 gene. However, the focus 

has recently shifted to other ALS-associated genes and their protein products, such as the 

DNA/RNA-binding protein TDP-43, encoded by the TARDBP gene, along with the recent 

discovery of TBK1 as an ALS gene (Lagier-Tourenne & Cleveland, 2009; Oakes, Davies, 

& Collins, 2017). There is currently no cure and few treatments for this motor neuron 

disease. Focusing research upon a number of ALS-linked genes opens the possibility of 

the development of treatments and therapies.  
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1.3 Parkinson Disease  

Parkinson Disease (PD) is a common neurogenerative disease with a prevalence 

of 4 to 5% of the population over the age of 85 (Trinh et al., 2014). Similar to ALS,  the 

majority of PD cases are considered to be sporadic, while the remaining ~10% seem to 

have a familial basis (Eriksen, Wszolek, & Petrucelli, 2005). The central pathology of PD 

involves cell loss within the substantia nigra, a basal structure located in the human 

midbrain. When compared to unaffected individuals, this brain region has been shown to 

have a 50 to 70% loss of neurons by the time of the individuals death (Cheng, Ulane, & 

Burke, 2011). The progression of this disease results in individuals that exhibit a resting 

tremor, muscular rigour, posture instability, and bradykinesia. The primary PD genes 

include alpha-synuclein (SCNA), parkin and PINK1, along with others such as leucine-

rich repeat kinase 2 (LRRK2) and Parkinsonism associated deglycase (PARK7). Similar 

to ALS, several PD genes, including parkin and PINK1, have vital roles in mitophagy. 

The alpha-synuclein protein is essential in PD, as it is highly expressed in the neurons and 

is involved in a range of neurodegenerative disorders, including Alzheimer disease, the 

accumulation of this protein is toxic to human neurons (Polymeropoulos et al., 1997). A 

well-known indicator of PD is the presence of alpha-synuclein-immunoreactive 

inclusions, also referred to as Lewy bodies, comprised of proteins that are responsible for 

proteolysis and the degradation of proteins. These inclusions are known to reside in 

various locations such as the substantia nigra, hypothalamus, cerebral cortex, locus 

ceruleus, nucleus basalis, cranial nerve motor nuclei and the central and peripheral 

divisions of the autonomic nervous system (Polymeropoulos et al., 1997). Mutations in 
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the alpha-synuclein gene, as well as mutations in parkin and PINK1, two proteins 

essential in mitophagy, are known to result in the progression of PD (Evans & Holzbaur, 

2018). As PD has no cure although some treatments exist that provide some temporary 

relief, the cellular and molecular pathways governing disease progression must be 

investigated further.  

 

1.4 Mitochondria and Neurodegenerative Disease 

Mitochondria are cytoplasmic organelles that are responsible for the maintenance 

of homeostasis, carrying out vital cellular functions such as ATP production, redox 

signalling and programmed cell death (Franz, Kevei, & Hoppe, 2015; Reddy, 2009). The 

quality and quantity of mitochondria are kept at equilibrium due to regulated biogenesis 

and the process of mitophagy, a form of selective autophagy responsible for the 

degradation of damaged and dysfunctional mitochondria (Franz et al., 2015; Oakes et al., 

2017). In particular, mitophagy is a vital process in neurons as these cells seem to be 

more vulnerable to mitochondrial dysfunction than other cell types (Rodolfo, Campello, 

& Cecconi, 2018). Evidence has shown that compromised mitophagy can be a strong 

factor in the progression of PD, as a functional decline in mitophagy within the 

dopaminergic neurons has been identified as a characteristic of PD (Bingol & Sheng, 

2016). The PD genes, PINK1 and parkin, encode protein components essential to 

regulation of mitophagy: PINK1-parkin-mediated mitophagy being a widely investigated 

mechanism. In this pathway, PINK1 and parkin, among others, act together to mark, 

degrade and clear damaged mitochondria (Ashrafi, Schlehe, LaVoie, & Schwarz, 2014; 
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Whitworth & Pallanck, 2017). Parkinson Disease has been reported to arise when 

mutations occur in the PINK1 and parkin genes to impair mitophagy (Heo, Ordureau, 

Paulo, Rinehart, & Harper, 2015). However, compromised mitophagy has been linked to 

cases of ALS as well as PD. A reduction in mitophagy function, specifically within the 

motor neurons, in combination with an increase in dysfunctional mitochondria has been 

linked to degeneration of ALS neuromuscular junctions (NMJs) and ALS neuropathy 

(Rogers et al., 2017). Processes such as mitophagy, are essential in the homeostasis of 

many cell types, without proper clearance of damaged organelles, the perfect scenario for 

rapid disease pathogenesis is created. The desire for a more complete understanding of 

the link between mitochondrial dysfunction and neurodegenerative disease provides a 

strong motive to conduct further research into this relationship.  

 

1.5 Mitochondria and Age 

Impairment, coupled with abnormalities of the mitochondria, represent a major 

factor in both aging and age-related diseases, particularly neurodegenerative diseases. 

However, causal factors for many age-related neurodegenerative diseases, such as PD and 

ALS, are unknown (Reddy, 2009). Many studies have been conducted to investigate the 

link between the nervous system, age, autophagy and mitophagy, but many unanswered 

questions still remain. Compromised autophagy in conjunction with an increasing age 

further contributes to disease (Martinez-lopez, Athonvarangkul, & Singh, 2015). 

Abnormal macroautophagic processes, such as mitophagy, has been reported to associate 

with age in many systems, such as Saccharomyces cerevisiae and Caenorhabditis elegans 
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(Hansen & Rubinsztein, 2018). Based upon such observations, many studies have linked 

macroautophagy to the quality control of the mitochondrial population and suggests that 

the mechanisms that contribute to the continuous loss of the responsible processes of 

control strongly influence the aging process. (Hansen & Rubinsztein, 2018; Martinez-

lopez et al., 2015). Advanced age is considered to be a significant risk factor in the 

development of neurodegenerative disease and is known to be an essential contributor in 

both genetic and sporadic forms of the disorders. The mechanisms that are behind the 

interaction between aging and genetic predispositions to contribute to neurodegeneration 

are still unclear (Xu et al., 2018). However, the aging process is linked to a reduction of 

the physiological functions within tissues. Therefore, understanding the roles that 

autophagy may play in specific tissue types, such as nervous system and muscle tissues, 

with an emphasis upon aging is extremely important (Hansen & Rubinsztein, 2018). As 

the nervous system and muscle are essential tissue types in neurodegenerative disease, the 

mechanisms responsible must be further investigated. 

 

1.6 Drosophila melanogaster as a Model Organism 

Drosophila melanogaster has been a standard model organism in many scientific 

laboratories throughout the world, in particular to those who study models of human 

diseases, for over a hundred years. The popularity of this model organism stems from the 

many advantages that the organism offers that other model organisms lack. These benefits 

include short lifespan, which allows for the quick production of data. A rapid generation 

time of ten to twelve days, to provide a large amount of offspring and allow experiments 
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to be conducted in a relatively short period; as well as they are inexpensive to maintain 

and require little resources (Jeibmann & Paulus, 2009). However, the most essential 

advantage that the Drosophila system offers may be the similarity to humans in regards to 

many biological, physiological and neurological properties. Using the fly as a model 

organism is particularly important in those interested in studying human disease, as 

according to genomic studies, approximately 75% of human disease-causing genes 

having a functional homologue in Drosophila melanogaster (Pandey & Nichols, 2011). 

By investigating the consequences of altered expression of such disease-causing genes in 

the fly, we may gain a better understanding of the mechanisms that contribute to disease 

progression.  

 

Many genetic techniques can be carried out in Drosophila that allows for gene 

manipulation and provides researchers with the ability to understand biological processes 

in non-human species. A commonly used method for tissue-specific expression of a gene 

in Drosophila is the transcription activation system known as the UAS/Gal4 system, a 

method of genetic manipulation in which gene expression can be studied in model 

organisms. The two key parts of this system are a transactivator gene, Gal4, and a effector 

gene, containing the upstream activation sequence (UAS). The Gal4 gene encodes the 

yeast transcription activator protein Gal4, while the UAS sequence is an enhancer which 

Gal4 binds to in order to activate the transcription of a gene. It is when the Gal4 portion 

binds to the UAS enhancer sequences located in the DNA that the transgene can be 

expressed in a time/tissue-dependent manner, allowing for the Drosophila homologue of 
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the gene to be inserted in various tissues of the fly, such as the motor neurons (Barwell et 

al., 2017; Jeibmann & Paulus, 2009). The UAS/Gal4 system is a critical molecular tool in 

the investigation of genes in the fly, allowing us to study human disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 9 

 

 

 
 
Figure 1.1: Comparison of Homo sapiens TDP-43 protein (A) and Drosophila 
melanogaster TBPH protein (B) with conserved domains. Highlighted are the N-terminal 
domain (red), the RRM1 domain (blue) and the RRM2 domain (green).  
 

 
 
 
 
 
 

Figure 1.2: Comparison of Homo sapiens TBK1 protein (A) and Drosophila 
melanogaster IK2 protein (B) with conserved domains. Highlighted are the P kinase 
domain (red), the ULD domain (blue) and the CCD domain (green).  

 

 

 

 
Figure 1.3: Comparison of Homo sapiens p62/SQSTM1 protein (A) and Drosophila 
melanogaster Ref(2)P protein (B) with conserved domains. Highlighted are the PB1 
domain (green), the ZZ domain (yellow) and the UBA domain (red).  

Figure 1.4: Comparison of Homo sapiens VCP protein (A) and Drosophila melanogaster 
TER94 protein (B) with conserved domains. Highlighted are the CDC48 domain (blue), 
the AAA ATPase domain (purple), the ATPase AAA domain (green), the Lid domain 
(red), the C-terminal domain (yellow) and the CDC N-terminal sub-domain (pink).  
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1.7 Research Goals  
 

While TARDBP, TBK1, p62/SQSTM1 and VCP have been suggested as candidate 

genes in the development of neurodegenerative diseases, their role in disease progression 

has not been fully characterized. This study aims to study the effects of genes directly 

related to ALS and PD and to study biological outcomes of the altered expression of such 

significant genes that associate and interact. This study aims to examine the effects of 

altered ALS gene expression in combination with altered PD gene activity and to 

investigate the consequences of altered ALS gene expression in the dopaminergic 

neurons. By manipulating gene expression of selected genes in D. melanogaster, 

researchers may gain insight into how their alteration, both the overexpression and 

inhibition, impacts Drosophila lifespan, motor functions, and, in complementary 

experiments, the developing compound eye.  
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Chapter 2 – Methodology 

 
2.1 Drosophila melanogaster stocks and culture  
 

Drosophila melanogaster was maintained on a standard media comprised of 65 

g/L cornmeal, 50 ml/L fancy grade molasses, 10 g/L yeast and 5.5 g/L agar which was 

then treated with 2.5 ml propionic acid and 5 ml of 0.1 g/ml methylparaben. This mixture 

was then allowed to solidify at the bottom of vials and stored in 4 to 6º C until use. Stocks 

were stored at room temperature (~ 21º C) due to limited incubator space.  

 
2.2 Longevity Assay 
 

Critical class male progeny were collected daily and placed in vials with fresh 

medium. A sample size of 300 males was collected in total and stored at 25º C for the 

duration of the experiment. The flies were scored every two days to examine if any death 

had occurred. A fly was considered dead when no movement was observed. Males were 

transferred onto fresh media every four days to obtain a healthy environment. The data 

was analyzed using the Graphpad Prism 8 software (Graphpad Software Inc.) with a 

comparison of the survival curves analyzed by the Log-rank (Mantel-Cox) test. 

Significance was determined at 95%, at a P-value less than or equal to 0.05 with 

Bonferroni correction. 

 

2.3 Locomotive Assay  
 

Critical class male progeny were collected within a 24-hour time period for a 

sample size of 70 male progeny. Critical class males were maintained in vials with ten 
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flies per vial, stored at 25º C, and placed on new medium once per week throughout the 

experiment. The climbing ability of critical class flies was carried out to examined the 

motor function of the flies over time. The analysis began one week after collection and 

then every seven days after until flies had a minimum climbing score for two consecutive 

weeks, or less than ten flies remained alive. Climbing ability was analyzed at the same 

time each week for consistency. For each genotype, the climbing ability of five cohorts 

was analyzed. For each cohort of 10 flies, ten trials were then carried out, which resulted 

in a total of 500 trials per genotype per week. To score the climbing ability of the flies a 

30 cm glass tube with a 1.5 cm diameter was used which was marked with five 2 cm 

sections starting from the bottom with the remainder of the glass tube left as a buffer zone 

(Todd & Staveley, 2004). The flies were scored based on the height that was reached on 

the tube after a ten second time period. A climbing index was then calculated as Climbing 

index = Σ nm/N, where n represents the number of flies at a given level, m is the score of 

the level (between 1 and 5) and N is the total number of flies climbed in that trial. The 

data was analyzed using the Graphpad Prism 8 software (Graphpad Software Inc.) Using 

this software, a nonlinear regression curve was produced with a 95% confidence interval, 

with the slope of each curve representing the rate of decline in climbing ability and the Y-

intercept representing the initial climbing ability. The curves were considered to be 

significantly different if P < 0.05. 
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2.4 Scanning Electron Microscopy of the Drosophila eye 
 

The GMR-Gal4 transgenic line was used, which allowed expression of the 

paternally contributed transgenes in the eye of the fly. Critical class male progeny from 

each cross was collected, aged for 3 to 5 days post eclosion, and frozen at -80 °C, in order 

to sacrifice and preserve the flies before being placed on SEM studs. Studs were placed in 

a desiccator for at least 48 hours to dry. Using either the Mineral Liberation Analyzer FEI 

650F or the FEI Quanta 400 Scanning Electron Microscope, ten different eye images for 

each genotype were taken to visualise the left eye of the fly. The ten images were selected 

based on the quality and clarity of the image. Images were then examined using the 

National Institutes of Health (NIH) ImageJ software for the extent of eye development, 

counting both the number of ommatidia and bristles, this data was then analyzed using 

Graphpad Prism 8 (Graphpad Software Inc.) 

 

 

 

 

 

 

 

 

 

 



 18 

Chapter 3 – Modelling Amyotrophic Lateral Sclerosis in Drosophila melanogaster 

Through Alteration of TBPH 

3.1 Introduction  

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease 

characterized by the loss of upper and lower motor neurons within the spinal cord, brain 

stem and motor cortex. Eventually, this gradual deterioration of motor neurons results in 

muscle weakness and atrophy (Scotter, Chen, & Shaw, 2015). Although the progression 

of ALS remains poorly understood; there are a number of candidate genes of great 

interest that can contribute to the development of the disease. One of the major ALS-

assoicated genes, TARDBP, encodes the multifunctional DNA/RNA binding protein 

TDP-43, known as TBPH in Drosophila. The TDP-43 protein is located primarily in the 

nucleus of neurons, glial cells, and muscle cells but can shuttle to the cytoplasm up to a 

level of 30% (Mackenzie & Rademakers, 2008; Neumann et al., 2007). In the nucleus, 

TDP-43 regulates RNA splicing and modulates microRNA biogenesis (Scotter et al., 

2015). While in the cytoplasm of neurons, TDP-43 is a critical component of dendritic 

and somatodendritic RNA transport granules, and exhibits a key role in neuronal 

plasticity through the regulation of local protein synthesis in dendrites (Scotter et al., 

2015; Xu, 2012). Events that can cause the TDP-43 protein to move into the cytoplasm 

are highly stress-related and include oxidative stress, endoplasmic reticulum stress, and 

heat stress (Buratti & Baralle, 2008). Once in the cytoplasm, TDP-43 can incorporate into 

stress granules that possibly then lead to its pathological transformation. These abnormal 

TDP-43 cytoplasmic aggregates have multiple modifications, including 
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hyperphosphorylation, ubiquitination and cleaving, preventing TDP-43 from crossing the 

nuclear membrane (Gasset-rosa et al., 2019; Buratti & Baralle, 2008). This TDP-43 

shuttling event has been suggested to be a critical component in disease pathogenesis (Lu 

et al., 2016), as abnormal cytoplasmic aggregates have been reported within the neurons 

and glia in over 90% of ALS cases (Ling, Polymenidou, & Cleveland, 2013; Gasset-Rosa 

et al., 2019). However, this shuttling event is not the only factor to consider in TDP-43 

pathology. The interactions and roles which TDP-43 has in the mitochondria are 

important to consider, as mitochondrial damage and impaired mitophagy are known to be 

associated with many neurodegenerative diseases. TDP-43 is known to be associated with 

the mitochondria and mitochondrial defects, with TDP-43 pathology becoming an 

emerging topic (Davis et al., 2018; Gautam, Xie, Kocak, & Ozdinler, 2019). Studies have 

demonstrated mitochondrial impairment by TDP-43 to be an early event, resulting in cell 

death (Wang et al., 2019). There are many unanswered questions involving the specific 

role that TDP-43 plays in ALS pathogenesis; however, it is clear that the loss-of-function 

of TDP-43 in the nucleus is a substantial factor in disease progression (Ling et al., 2013; 

Van Deerlin et al., 2008). A further investigation must occur to understand the cellular 

mechanisms that TDP-43 plays in disease.  

 

The TARDBP gene has been highly conserved throughout evolutionary history. A 

comparison of human TDP-43 and D. melanogaster TBPH proteins reveals the TDP-43 

N-terminal domain as a highly conserved domain, as well as two highly conserved motifs, 

RNA recognition motif 1 (RRM1) and RNA recognition motif 2 (RRM2). The degree of 
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evolutionary conservation suggests a highly conserved function for TDP-43. Thus 

exploration of the effects of altered TARDBP expression in D. melanogaster may provide 

insights into the pathology of ALS in humans. In this study, inhibition of TBPH in D. 

melanogaster are used to mimic human conditions, examining the effects on lifespan and 

locomotor ability. The overexpression of TBPH was also examined to investigate the 

biological impacts on D. melanogaster.  

 

3.2 Materials and Methods  

 
3.2.1 Drosophila melanogaster stocks and culture  
 

All Drosophila stocks were obtained from the Bloomington Drosophila Stock 

Center at Indiana University (IN, USA). See Table 1.1 for list of genotypes used. See 

Chapter 2, section 2.1 for detail of D. melanogaster stocks and culture. 

 

3.2.2 Longevity Assay 

The survival of D. melanogaster was analyzed to examine the median lifespan of 

experimental flies in comparison to control flies. See Chapter 2, section 2.2 for full 

longevity assay methods.   

 

3.2.3 Locomotive Assay 

 The motor function of D. melanogaster was analyzed to examine the locomotor 

function over time of experimental flies in comparison to control flies. See Chapter 2 
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section 2.3 for full locomotive assay methods.   

 

3.2.4 Scanning Electron Microscopy of the Drosophila eye 

Eye analysis of D. melanogaster was used to determine the effects of gene 

manipulation. See Chapter 2 section 2.4 for full methods on eye experiments.   

 

Table 1.1: Genotypes and location of expression patterns used in the analysis of altered 
expression of TBPH.   
Abbreviated 
Genotype 

Location of 
Expression 

Insertion 
Chromosome 

Reference  

Control Lines    
UAS-lacZ --- 2 Brand et al., 1993 
Transgene Lines    
GMR-Gal4 Eye 2 Freeman, 1996 
arm-Gal4 Ubiquitous  2 Sanson et al., 1996 
elav-Gal4 Pan neuronal 1 Lin & Goodman, 

1994 
TH-Gal4 Dopaminergic 

neuron 
3 Inamdar et al., 

2014 
ddc-Gal4HL4.3D Dopaminergic and 

serotonergic neuron 
2 Li et al., 2000 

ddc-Gal4HL4.36 Dopaminergic and 
serotonergic neuron 

3 Li et al., 2000 

D42-Gal4 Motor neuron 3 Parkes et al., 1998 
Responder Lines    
UAS-TBPHEY10530 --- 2 Bellen et al., 2011 
UAS-TBPH-
RNAiHMS05194 

--- 3 Perkins et al., 2015 

UAS-TBPH-
RNAiHMS01932 

--- 2 Perkins et al., 2015 
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3.3 Results 
 
3.3.1 Inhibition of TBPH decreases median lifespan and climbing ability  

An investigation of how the inhibition of TBPH impacts the lifespan and climbing 

ability of D. melanogaster has shown that one of the two inhibition transgenes has a 

significantly more significant impact than the other. Several TBPH inhibition lines were 

selected to investigate the consequences of both to the fly. The TBPH RNAi transgene, 

UAS-TBPH-RNAiHMS01932, has been shown to significantly reduce median lifespan when 

expressed with the ubiquitous transgene arm-Gal4 (Figure 2.1) and the pan-neuronal 

transgene elav-Gal4 (Figure 2.2) when compared to the control (UAS-lacZ). When 

expressed through the elav-Gal4 transgene, inhibition of TBPH via UAS-TBPH-

RNAiHMS01932 resulted in extremely poor viability of critical class males. The inhibition of 

TBPH, via UAS-TBPH-RNAiHMS01932, significantly reduced median lifespan (Figure 2.3a), 

and climbing ability over time (Figure 2.3b) when expressed with the motor neuron-

specific transgene D42-Gal4. When expressed through the dopaminergic neuron-specific 

transgene TH-Gal4, inhibition of TBPH significantly decreased median lifespan (Figure 

2.4a), but not climbing ability (Figure 2.4b). The TBPH inhibition through the neuron-

specific transgene ddc-Gal4HL4.3D greatly reduced median lifespan (Figure 2.5a) and 

climbing ability over time (Figure 2.5b). However, when expressed through the neuron-

specific transgene ddc-Gal4HL4.36, inhibition of TBPH did not provide any statistically 

significant changes in median lifespan (Figure 2.6a), or to climbing ability over time 

(Figure 2.6b) when compared to the control (UAS-lacZ). 
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3.3.2 Inhibition of TBPH decreases ommatidia and bristle count  

 The developmental pattern of the Drosophila compound eye is a highly regulated 

and specific event with each eye being comprised of approximately 800 ommatidia under 

standard development. Once the pattern of ommatidia are laid down, the bristles are 

generated later as a form of protection for the ommatidia. Impairment in this process may 

result in characteristic phenotypes as a consequence, such as changes in the number of 

ommatidia and bristles. To investigate such phenotypic changes in D. melanogaster, the 

eye-specific transgene GMR-Gal4 has been used. The TBPH inhibition, through the 

directed expression of UAS-TBPH-RNAiHMS01932, when expressed in the developing eye of 

D. melanogaster has shown to significantly reduce the quantity of ommatidia (Figure 

2.8a) and interommatidial bristles (Figure 2.8b) when compared to the control (UAS-

lacZ). 

 

3.3.3 Overexpression of TBPH decreases median lifespan and climbing ability 

When TBPH is overexpressed through the action of the pan-neuronal transgene, 

elav-Gal4 median lifespan is significantly reduced (Figure 2.2). When TBPH was 

overexpressed through the dopaminergic neuron-specific transgene TH-Gal4, median 

lifespan (Figure 2.4a) and climbing ability over time (Figure 2.4b) are reduced. As well, 

when TBPH is overexpressed through the motor neuron-specific transgene D42-Gal4, 

median lifespan (Figure 2.3a) and climbing ability over time (Figure 2.3b) are 

significantly reduced when compared to the control (UAS-lacZ). 
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Figure 2.1: Altered expression of TBPH directed through the arm-Gal4 transgene affects 
lifespan. Longevity is depicted by percent survival. Significance is P <0.05 using the log-
rank test with Bonferroni correction. Error bars represent standard error of the mean. 
Genotypes are as follows: arm-Gal4;UAS-lacZ (n=284), arm-Gal4;UAS-TBPHEY10530 
(n=256), arm-Gal4;UAS-TBPH-RNAiHMS01932 (n=208), arm-Gal4;UAS-TBPH-RNAiHMS05194 
(n=221). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: Altered expression of TBPH directed through the elav-Gal4 transgene affects 
lifespan. Longevity is depicted by percent survival. Significance is P <0.05 using the log-
rank test with Bonferroni correction. Error bars represent standard error of the mean. 
Genotypes are as follows: elav-Gal4;UAS-lacZ (n=298), elav-Gal4;UAS-TBPHEY10530 
(n=291), elav-Gal4;UAS-TBPH-RNAiHMS01932 (n=33), elav-Gal4;UAS-TBPH-RNAiHMS05194 
(n=281). 
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Figure 2.3: Altered expression of TBPH directed through the D42-Gal4 transgene affects 
longevity and climbing ability. A: Longevity assay of Drosophila melanogaster males 
displaying altered TBPH expression in the motor neurons. Longevity is depicted by 
percent survival. Significance is P <0.05 using the log-rank test with Bonferroni 
correction. Error bars represent standard error of the mean. Genotypes are as follows: 
D42-Gal4;UAS-lacZ (n=273), D42-Gal4;UAS-TBPHEY10530 (n=274), D42-Gal4;UAS-
TBPH-RNAiHMS01932 (n=290), D42-Gal4;UAS-TBPH-RNAiHMS05194 (n=264). B: Locomotor 
assay of D. melanogaster males displaying altered TBPH expression in the motor 
neurons. Climbing ability was determined by a nonlinear curve fit (CI=95%). Error bars 
indicate standard error of the mean.  

A) 

B)
)) 
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Figure 2.4: Altered expression of TBPH directed through the TH-Gal4 transgene affects 
longevity and climbing ability. A: Longevity assay of Drosophila melanogaster males 
displaying altered TBPH expression in the dopaminergic neurons. Longevity is depicted 
by percent survival. Significance is P <0.05 using the log-rank test with Bonferroni 
correction. Error bars represent standard error of the mean. Genotypes are as follows: TH-
Gal4;UAS-lacZ (n=290), TH-Gal4;UAS-TBPHEY10530 (n=263), TH-Gal4;UAS-TBPH-
RNAiHMS01932 (n=280), TH-Gal4;UAS-TBPH-RNAiHMS05194 (n=283). B: Locomotor assay of 
D. melanogaster males displaying altered TBPH expression in the dopaminergic neurons. 
Climbing ability was determined by a nonlinear curve fit (CI=95%). Error bars indicate 
standard error of the mean.  

A)
)) 

B)
)) 
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Figure 2.5: Altered expression of TBPH directed through the ddc-Gal4HL4.3D transgene 
affects longevity and climbing ability. A: Longevity assay of Drosophila melanogaster 
males displaying altered TBPH expression in the neurons. Longevity is depicted by 
percent survival. Significance is P <0.05 using the log-rank test with Bonferroni 
correction. Error bars represent standard error of the mean. Genotypes are as follows: 
ddc-Gal4HL4.3D;UAS-lacZ (n=293), ddc-Gal4HL4.3D;UAS-TBPHEY10530 (n=271), ddc-
Gal4HL4.3D;UAS-TBPH-RNAiHMS01932 (n=298), ddc-Gal4HL4.3D;UAS-TBPH-RNAiHMS05194 
(n=296). B: Locomotor assay of D. melanogaster males displaying altered TBPH 
expression in the neurons. Climbing ability was determined by a nonlinear curve fit 
(CI=95%). Error bars indicate standard error of the mean 

A) 

B)
)) 



 28 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6: Altered expression of TBPH directed through the ddc-Gal4HL4.36 transgene 
does not affect longevity and climbing ability. A: Longevity assay of Drosophila 
melanogaster males displaying altered TBPH expression in the neurons. Longevity is 
depicted by percent survival. Significance is P <0.05 using the log-rank test with 
Bonferroni correction. Error bars represent standard error of the mean. Genotypes are as 
follows: ddc-Gal4HL4.36;UAS-lacZ (n=284), ddc-Gal4HL4.36;UAS-TBPH-RNAiHMS01932 
(n=263). B: Locomotor assay of D. melanogaster males displaying altered TBPH 
expression in the neurons. Climbing ability was determined by a nonlinear curve fit 
(CI=95%). Error bars indicate standard error of the mean. 
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Figure 2.7: Directed alteration of the TBPH gene expression using eye-specific transgene 
GMR-Gal4 in Drosophila. Scanning electron micrographs of A: GMR-Gal4;UAS-lacZ, B: 
GMR-Gal4;UAS-TBPHEY10530, C: GMR-Gal4;UAS-TBPH-RNAiHMS05194, D: GMR-
Gal4;UAS-TBPH-RNAiHMS01932 
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Figure 2.8: Biometric analysis of Drosophila compound eye under direct eye expression 
of TBPH through the GMR-Gal4 transgene. Inhibition of TBPH through UAS-TBPH-
RNAiHMS01932 caused a significant decrease in both (A) ommatidia number and (B) bristle 
number. Error bars represent standard deviation. 
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3.4 Discussion  
 
 The development and progression of ALS remains unclear and the desire to reach 

a greater understanding of this provides the incentive for an ongoing field of scientific 

research. Of great importance, as the prevalence of the disease continues to increase, the 

search for this understanding may lead to the development of treatments and therapies. 

Altered expression of TBPH produced a significant effect upon the longevity, locomotor 

function and neurodevelopment in D. melanogaster. Critical class flies that inhibited 

function through the expression of UAS-TBPH-RNAiHMS01932 display a reduction in median 

lifespan and of locomotor function over time. This reduction in longevity caused by the 

loss-of-function of TBPH suggests that the function of this gene product may play a 

substantial role in cell survival and death. Specifically, when inhibition of TBPH is 

accomplished through the activity of the pan-neuronal transgene elav-Gal4, viability is 

significantly reduced, and survival to adulthood is extremely poor. Certainly, the reduced 

rate of eclosion may be due to the toxic effects produced by of the loss of TBPH function 

in Drosophila. The most significant reduction in median lifespan and motor function is 

seen when TBPH function is inhibited in the motor neuron, through the D42-Gal4 

transgene. This significant reduction in median lifespan and motor ability when TBPH 

expression is altered corresponds with the characteristic loss of motor neurons associated 

with ALS, making the inhibition of TBPH in the motor neuron a promising model of 

neurodegenerative disease. Studies have observed the impacts that TDP-43 has in the 

motor neuron, demonstrating the severe impact that loss-of-function has to aspects such 

as microglia morphology (Spiller et al., 2018), axon degeneration, and TDP-43 median 
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splicing repression (Donde et al., 2019). In regards to Drosophila, loss-of-function of 

TBPH in the motor neurons has been shown to affect the neuromuscular junctions, 

displaying anatomical defects such as a reduction in axonal branches and synaptic 

boutons located within the muscles (Feiguin et al., 2009). The role that TDP-43 has in the 

motor neuron appears to be essential in at least certain forms of ALS pathology, with the 

TDP-43 shuttling event and functions in the mitochondria being a critical factor in ALS 

development and progression.  

 

The development of the compound eye of Drosophila is a highly regulated and 

specifically controlled process. Critical class flies that expressed the loss-of-function of 

UAS-TBPH-RNAiHMS01932 displayed a significant reduction in the quantity of both the 

ommatidia and interommatidial bristles. Often, these characteristic phenotypes are due to 

an impairment during the development of the Drosophila eye and may reveal a specific 

defect during neurodevelopment. Regarding the expression of TDP-43 in the Drosophila 

eye, one study has shown through whole-genome microarrays, highly upregulated and 

downregulated genes from a family of G-protein coupled receptors (GPCRs), the 

methuselah family, known to be involved in regulating adult lifespan. Other genes 

identified in this study played a role in regulating the mitochondria as well as oxidative 

cellular processes (Zhan, Hanson, Kim, Tare, & Tibbetts, 2013). As TBPH inhibition 

compromised the phenotype of the Drosophila eye insights from the neurodegenerative 

process may be made. The inhibition of TBPH appears to mimic the suggested pathology 

of ALS and thus making this a promising model of neurodegenerative disease.  
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The overexpression of TBPH influenced critical class flies only when expressed 

through a subset of the specific Gal4 transgenes. When overexpressed through the pan-

neuronal directing transgene elav-Gal4, flies displayed a reduction in median lifespan. 

Overexpression of TBPH through the dopaminergic neuron-specific transgene TH-Gal4 

and the neuron-specific transgene ddc-Gal4HL4.3D displayed a significant reduction in 

median lifespan. Locomotor ability was not altered by TBPH overexpression when 

expressed through either TH-Gal4 or ddc-Gal4HL4.3D transgenes. However, locomotor 

function was significantly reduced when TBPH was overexpressed through the activity of 

the motor neuron-specific transgene D42-Gal4, but median lifespan was minimally 

impacted. Previous studies have shown that the overexpression of TDP-43 has the ability 

to induce neurotoxicity as well as early death in the fly (Li et al., 2010; Voigt et al., 2010; 

Zhan et al., 2013). However, some have suggested that the degeneration caused by the 

overexpression of TDP-43 is not through the “classical” programmed cell death pathways 

(Hanson, Kim, Wassarman, & Tibbetts, 2010; Zhan et al., 2013). A further investigation 

into the consequences of the overexpression of TDP-43 is required to fully understands its 

role(s) in neurodegenerative disease and healthy aging. 
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Chapter 4 – Modelling Amyotrophic Lateral Sclerosis in Drosophila melanogaster 

Through Alteration of IK2 

 
4.1 Introduction  
 

The TANK-binding kinase 1 (TBK1) is one of the most recently identified genes 

that contributes to inherited forms of ALS. TBK1, also known as NAK or T2K, encodes a 

multifunctional serine/threonine kinase that belongs to the IkappaB kinase-like 2 (IK2) 

family of kinases. This group of related proteins has been demonstrated to act as essential 

regulators in the responses regulating inflammation, immunity, apoptosis and autophagy 

(Heo, Ordureau, Paulo, Rinehart, & Harper, 2015; Larabi et al., 2013; Lazarou et al., 

2015). In the cell, the location of TBK1 is in the cytoplasm, cytosol, nucleoplasm and the 

endosome membrane, where it has significant roles in both the immune system and 

autophagy (Ahmad, Zhang, Casanova, & Sancho-Shimizu, 2016; Oakes, Davies, & 

Collins, 2017). With regards to the role that TBK1 has in the process of autophagy, TBK1 

is activated through the phosphorylation of the receptor proteins that control autophagy. 

These autophagic receptors include sequestosome 1, also known as p62/SQSTM1, and 

optineurin (OPTN) (Nguyen, Thombre, & Wang, 2018; Richter et al., 2016). These 

autophagy-related receptors play a role related to their association with autophagy-related 

proteins, which can recognize both specific and non-specific cargo, that are then to be 

degraded then recycled via the activity of the lysosomes (Ahmad et al., 2016; Oakes et 

al., 2017). The ability of autophagy-related proteins to recognize specific cargo is through 

the activity of p62/SQSTM1 and OPTN and the ability of proteins to bind to ubiquitin 

residues on the cargo to be targeted. Once bound, this enables the process by which the 
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ubiquitinated protein product to be sent for degradation (Ahmad et al., 2016; Oakes et al., 

2017). As proteins such as p62/SQSTM1 and OPTN have critical roles in autophagy 

processes, it is vital to explore their role of these in the development of neurodegenerative 

disease.  

 

Studies have shown that mutations in TBK1 result in the impairment of autophagy, 

which in turn contributes to the formation of protein aggregates and thus disease 

pathology. At least a partial loss of TBK1 has been reported to result in the progression of 

ALS and frontotemporal dementia (FTD) (Oakes et al., 2017). Recent studies have shown 

that loss of TBK1 results in both embryonic death and neurodegeneration, as a result of 

activated Receptor-interacting serine/threonine-protein kinase 1(RIPK1), an enzyme that 

is a crucial regulator in cell survival and death. Specifically, RIPK1 binds to the TBK1 

substrate OPTN and functions in various cellular pathways involved in cell survival and 

death (Ito et al., 2016; Xu et al., 2018; Yu & Cleveland, 2018). This activated RIPK1 is 

caused by a mutation in TBK1, with the inhibition of RIPK1 shown to prevent TBK1 

knockdown, embryonic lethality and neurodegeneration (Xu et al., 2018; Yu & 

Cleveland, 2018). Therefore, for both healthy development and to reduce the risk of 

neurodegeneration, RIPK1 kinase activity must be inhibited (Xu et al., 2018; Yu & 

Cleveland, 2018). As TBK1 is a newly identified gene, and much remains unknown about 

the role of it in neurogenerative disease, thus making it an excellent candidate gene to 

research. However, not only mutations in TBK1 result in impaired autophagy but loss of 

function mutations in p62/SQSTM1 and OPTN, two autophagy receptors for TBK1 have 

been reported to cause abnormal autophagy (Ahmad et al., 2016; Oakes et al., 2017). 
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Therefore, it is essential to investigate the functions of TBK1 and its autophagy receptors, 

and to manipulate their expression in a selected set of neurons. 

 

The TBK1 gene and the IK2 family of genes have been highly conserved 

throughout evolutionary history. A comparison of human TBK1 and D. melanogaster IK2 

proteins reveals three highly conserved domains: 1) the P kinase domain; 2) a ubiquitin-

like domain; and 3) the coiled-coil domain 1 (CCD1). The degree of evolutionary 

conservation suggests a highly conserved function for TBK1/IK2. Thus exploration of the 

effects of altered IK2 expression in D. melanogaster should be expected to provide 

insights into the pathology of ALS in humans. In this study, both the overexpression and 

inhibition of IK2 in D. melanogaster is used to mimic human conditions, examining the 

effects on lifespan and locomotor ability. 

 

4.2 Materials and Methods  

 
4.2.1 Drosophila melanogaster stocks and culture  
 

All Drosophila stocks were obtained from the Bloomington Drosophila Stock 

Center at Indiana University (IN, USA). See Table 2.1 for list of genotypes used. See 

Chapter 2, section 2.1 for detail of D. melanogaster stocks and culture. 
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3.2.2 Longevity Assay 

The survival of D. melanogaster was analyzed to examine the median lifespan of 

experimental flies in comparison to control flies. See Chapter 2, section 2.2 for full 

longevity assay methods.   

 

2.2.3 Locomotive Assay 

 The motor function of D. melanogaster was analyzed to examine the locomotor 

function over time of experimental flies in comparison to control flies. See Chapter 2, 

section 2.3 for full locomotive assay methods.   

 

2.2.4 Scanning Electron Microscopy of the Drosophila eye 

Eye analysis of D. melanogaster was used to determine the effects of gene 

manipulation. See Chapter 2, section 2.4 for full methods on eye experiments.   
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Table 2.1: Genotypes and location of expression patterns used in the analysis of altered 
expression of IK2.   
Abbreviated Genotype Location of 

Expression 
Insertion 
Chromosome 

Reference  

Control Lines    
UAS-lacZ --- 2 Brand et al., 1993 
Driver Lines    
GMR-Gal4 Eye 2 Freeman, 1996 
arm-Gal4 Ubiquitous  2 Sanson et al., 

1996 
elav-Gal4 Pan neuronal 1 Lin & Goodman, 

1994 
TH-Gal4 Dopaminergic neuron 3 Inamdar et al., 

2014 
ddc-Gal4HL4.3D Dopaminergic and 

serotonergic neuron 
2 Li et al., 2000 

ddc-Gal4HL4.36 Dopaminergic and 
serotonergic neuron 

3 Li et al., 2000 

D42-Gal4 Motor neuron 3 Parkes et al., 1998 
Responder Lines    
UAS-IK2EY09774 --- 2 Bellen et al., 2004 
UAS-IK2-RNAiHMS01188 --- 3 Perkins et al., 

2015 
UAS-IK2-RNAiGL00160 --- 3 Perkins et al., 

2015 
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4.3 Results 

4.3.1 Overexpression of IK2 decreases median lifespan and climbing ability over 

time  

When IK2 is overexpressed D. melanogaster median lifespan, and climbing ability 

over time is greatly influenced. Overexpression of IK2 significantly reduces median 

lifespan when expressed through the ubiquitous transgene arm-Gal4 (Figure 3.1) and the 

pan-neuronal transgene elav-Gal4 (Figure 3.2). IK2 overexpression through the motor 

neuron-specific transgene D42-Gal4 significantly reduced median lifespan (Figure 3.3a) 

and climbing ability over time (Figure 3.3b) compared to the control (UAS-lacZ). 

IK2 overexpression through the dopaminergic neuron-specific transgene TH-

Gal4 significantly reduced median lifespan (Figure 3.4a). However, the climbing ability 

of D. melanogaster was not influenced (Figure 3.4b). Notably, it is worth mentioning 

that IK2 overexpression through TH-Gal4 provided very poor viability of critical class 

males. When IK2 is overexpressed through the neuron-specific transgenes ddc-

Gal4HL4.3D and ddc-Gal4HL4.36 no critical class male progeny survived to adulthood.  

 

4.3.2 Inhibition of IK2 increases median lifespan and decreases climbing ability in 

the motor neuron over time 

 An investigation of the consequences of inhibition of IK2 upon the median 

lifespan and climbing function of D. melanogaster was carried out using 

two IK2 inhibition transgenes, UAS-IK2-RNAiHMS01188 and UAS-IK2-RNAiGL00160. Two 

IK2 inhibition lines were selected to investigate the consequences of both on the fly. 

Both IK2 RNAi transgenes increased median lifespan when expressed through the 
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ubiquitous transgene arm-Gal4 (Figure 3.1) and the motor neuron-specific 

transgene D42-Gal4 (Figure 3.3a), while decreasing median lifespan when expressed 

through the pan-neuronal transgene elav-Gal4 (Figure 3.2) when compared to the control 

(UAS-lacZ). When expressed through the dopaminergic neuron-specific transgene TH-

Gal4 (Figure 3.4a), as well as the neuron-specific transgene ddc-Gal4HL4.3D (Figure 3.5a), 

the IK2 RNAi transgene UAS-IK2-RNAiGL00160 resulted in an increased median lifespan, 

while the IK2 RNAi transgene UAS-IK2-RNAiHMS01188 lead to a reduction in median 

lifespan. Both IK2 inhibition transgenes impacted climbing ability over time when 

expressed through the motor neuron-specific transgene D42-Gal4 (Figure 3.3b), leading 

to a significant reduction in motor function. Inhibition of IK2 through the dopaminergic 

neuron-specific transgene TH-Gal4 did not significantly alter climbing ability over time 

(Figure 3.4b) when compared to the control (UAS-lacZ). Expression of the IK2 inhibition 

line UAS-IK2-RNAiHMS01188 through the neuron-specific transgene ddc-Gal4HL4.3D did not 

significantly influence climbing ability over time (Figure 3.5b); however, the inhibition 

line UAS-IK2-RNAiGL00160 lead to a significant reduction in climbing ability over time 

(Figure 3.5b) when compared to the control (UAS-lacZ). 

  

4.3.3 Inhibition of IK2 decreases ommatidia and bristle count 

 The developmental pattern of the Drosophila compound eye is a highly regulated 

and specific event. Once the ommatidia are laid down, the bristles come next as a form of 

protection for the ommatidia. Impairment in this process may result in characteristic 

phenotypes as a consequence, such as changes in the number of ommatidia and bristles. 

The eye-specific transgene GMR-Gal4 is used to investigate such phenotypic changes in 
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the compound eye of D. melanogaster. Expression of the IK2 inhibition transgene UAS-

IK2-RNAiHMS01188 in the developing eye of D. melanogaster has shown to significantly 

reduce the number of ommatidia (Figure 3.7a) and interommatidial bristles (Figure 3.7b) 

when compared to the control (UAS-lacZ). 
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Figure 3.1: Altered expression of IK2 directed through the arm-Gal4 transgene affects 
lifespan. Longevity is depicted by percent survival. Significance is P <0.05 using the log-
rank test with Bonferroni correction. Error bars represent standard error of the mean. 
Genotypes are as follows: arm-Gal4;UAS-lacZ (n=284), arm-Gal4;UAS-IK2EY09774 
(n=261), arm-Gal4;UAS-IK2-RNAiHMS01188 (n=276), arm-Gal4;UAS-IK2 
RNAiGL00160(n=148). 

 

 

 

 

 

 

Figure 3.2: Altered expression of IK2 directed through the elav-Gal4 transgene affects 
lifespan. Longevity is depicted by percent survival. Significance is P <0.05 using the log-
rank test with Bonferroni correction. Error bars represent standard error of the mean. 
Genotypes are as follows: elav-Gal4;UAS-lacZ (n=298), elav-Gal4;UAS-IK2EY09774 
(n=221), elav-Gal4;UAS-IK2-RNAiHMS01188 (n=299), elav-Gal4;UAS-IK2 
RNAiGL00160(n=305). 
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Figure 3.3: Altered expression of IK2 directed through the D42-Gal4 transgene affects 
longevity and climbing ability. A: Longevity assay of Drosophila melanogaster males 
displaying altered IK2 expression in the motor neurons. Longevity is depicted by percent 
survival. Significance is P <0.05 using the log-rank test with Bonferroni correction. Error 
bars represent standard error of the mean. Genotypes are as follows: D42-Gal4;UAS-lacZ 
(n=273), D42-Gal4;UAS-IK2EY09774 (n=267), D42-Gal4;UAS-IK2-RNAiHMS01188 (n=330), 
D42-Gal4;UAS-IK2 RNAiGL00160(n=321). B: Locomotor assay of D. melanogaster males 
displaying altered IK2 expression in the motor neurons. Climbing ability was determined 
by a nonlinear curve fit (CI=95%). Error bars indicate standard error of the mean. 

A) 

B) 
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Figure 3.4: Altered expression of IK2 directed through the TH-Gal4 transgene affects 
longevity and climbing ability. A: Longevity assay of Drosophila melanogaster males 
displaying altered IK2 expression in the dopaminergic neurons. Longevity is depicted by 
percent survival. Significance is P <0.05 using the log-rank test with Bonferroni 
correction. Error bars represent standard error of the mean. Genotypes are as follows: TH-
Gal4;UAS-lacZ (n=290), TH-Gal4;UAS-IK2EY09774 (n=103), TH-Gal4;UAS-IK2-
RNAiHMS01188 (n=280), TH-Gal4;UAS-IK2 RNAiGL00160(n=324). B: Locomotor assay of D. 
melanogaster males displaying altered IK2 expression in the dopaminergic neurons. 
Climbing ability was determined by a nonlinear curve fit (CI=95%). Error bars indicate 
standard error of the mean. 

A) 

B) 
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Figure 3.5: Altered expression of IK2 directed through the ddc-Gal4HL4.3D transgene 
affects longevity and climbing ability. A: Longevity assay of Drosophila melanogaster 
males displaying altered IK2 expression in the neurons. Longevity is depicted by percent 
survival. Significance is P <0.05 using the log-rank test with Bonferroni correction. Error 
bars represent standard error of the mean. Genotypes are as follows: ddc-Gal4HL4.3D;UAS-
lacZ (n=293), ddc-Gal4HL4.3D;UAS-IK2-RNAiHMS01188 (n=300), ddc-Gal4HL4.3D;UAS-IK2 
RNAiGL00160(n=314). B: Locomotor assay of D. melanogaster males displaying altered IK2 
expression in the neurons. Climbing ability was determined by a nonlinear curve fit 
(CI=95%). Error bars indicate standard error of the mean. 
 
 
 
 
 
 

A) 

B) 
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Figure 3.6: Directed IK2 gene expression using eye-specific transgene GMR-Gal4 in 
Drosophila. Scanning electron micrographs of A: GMR-Gal4;UAS-lacZ, B: GMR-
Gal4;IK2EY09774, C: GMR-Gal4;IK2-RNAiHMS01188, D: GMR-Gal4;UAS-IK2-RNAiGL00160 

 
 

 

 

 

 

 

 

  
Figure 3.7: Biometric analysis of Drosophila compound eye under direct eye expression 
of IK2 though the GMR-Gal4 transgene. Inhibition of IK2 causes significant decrease in 
(B) bristle number. Error bars represent standard deviation.  
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4.4 Discussion 
 
 Understanding the development and the progression of neurodegenerative diseases 

such as ALS and PD is a critical goal of modern research. As a recently discovered ALS 

gene, TBK1, there is much left unknown with regards to its functions and roles in 

neurodegeneration, making it an excellent candidate gene to investigate in model 

organisms. Human TBK1 is a serine/threonine-protein kinase from the IkappaB kinases 

(IKKs) family (Heo et al., 2015). A member of the IKK family and the Drosophila 

homologue of TBK1, IK2 has been shown to influence longevity of the organism, 

locomotor function and neuronal development when manipulated. Critical class flies 

overexpressing IK2 displayed reduced median lifespan when directed by selected Gal4 

transgenes, with a considerable reduction seen when IK2 was overexpressed through the 

motor neuron-specific transgene D42-Gal4 and the dopaminergic neuron-specific 

transgene TH-Gal4. Interestingly, when IK2 was overexpressed through the activity of 

TH-Gal4, the viability of critical class males was poor. This lethality seen by the gain-of-

function of IK2 suggests that normal function is essential to provide viability. Attempts 

were made to examine the effects of the overexpression of IK2 through the neuron-

specific transgenes ddc-Gal4HL4.3D and ddc-Gal4HL4.36; however critical class males did 

not survive to adulthood. The reduction in lifespan, as well as the multiple cases of 

impaired viability, suggest that IK2 plays a substantial role in cellular pathways that 

govern cell survival and death. The overexpression of IK2 greatly influenced motor 

ability throughout life. Overexpression of IK2 directed through the motor neuron-specific 

transgene D42-Gal4, and the dopaminergic neuron-specific transgene TH-Gal4 leads to a 

phenotype that displayed a minimal reduction in climbing ability overtime, at the least. 
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The overexpression of IK2 appears to mimic aspects of the pathology of ALS. As ALS is 

a motor neuron disease, the reduction in median lifespan and a minimal decline in motor 

function observed when IK2 is overexpressed through the activity of the motor neuron-

specific transgene D42-Gal4 produces an imperfect model of neurodegenerative disease.  

 

Much is still left unclear with regards to the mechanisms by which alteration to 

the activity of TBK1 contributes to the progression of neurodegenerative disease. 

However, studies have shown the importance of IK2 in Drosophila with regards to the 

process of dendrite pruning, a highly controlled procedure required for the development 

of neurons (Lee, Jan, & Jan, 2009). During neurodevelopment, specific Drosophila 

sensory neurons undergo a “pruning” of the dendrite metamorphosis before the time that 

adult dendrites generate. Throughout this process, the individual Drosophila undergo 

extensive neuronal remodeling where the IK2 gene, among others, play vital roles (Lee et 

al., 2009; Lin et al., 2015). The reduced viability observed when IK2 has been 

overexpressed through the activity of certain transgenes may be partially explained, at the 

least, by impaired neuronal development. Furthermore, the protein product of IK2 is a 

component in the organization of the cytoskeleton for mRNA localization during 

oogenesis (Lee et al., 2009; Shapiro & Andreson, 2006), where the IK2 protein along 

with Spindle-F proteins form a complex to play a substantial role during oogenesis in the 

regulation of cytoskeleton dynamics (Dubin-bar et al., 2008). Further investigations into 

the altered expression of TBK1 is required to more fully understand the role of this key 

gene in neurodegeneration. 
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The effects of the inhibition of IK2 seem to produce varied results. Both IK2  

inhibition experimental transgenes significantly increased lifespan when directed by the 

ubiquitous transgene arm-Gal4, while the same inhibition lines decreased lifespan when 

expressed through the pan-neuronal transgene elav-Gal4. Interestingly, when inhibited 

through the motor neuron-specific transgene D42-Gal4 both RNAi transgenes increased 

median lifespan, while reducing locomotor function over time. When the two IK2 

inhibition transgenes are expressed under control of the dopaminergic neuron-specific 

transgene TH-Gal4 and the neuron-specific transgene ddc-Gal4HL4.3D is when distinct 

differences are observed. When expressed through TH-Gal4 and ddc-Gal4HL4.3D, the IK2  

RNAi transgene, UAS-IK2-RNAiHMS01188 results in a much more reduced median lifespan, 

while when expressed through these same transgenes, the other IK2 inhibition transgene, 

UAS-IK2-RNAiGL00160, leads to a significant increase in median lifespan. Climbing ability 

was reduced for both forms of IK2 inhibition when expressed through all transgenes. The 

varied results of these experiments may suggest that one of the two IK2 inhibition 

transgenes used may have another, off-target hit to result in the median lifespan and 

locomotor function of the fly altered, while the other IK2 inhibition transgene may be 

functioning, as usual, causing actual inhibition of IK2. However, not only does IK2 

inhibition impact median lifespan and climbing ability, but also the development of the 

Drosophila compound eye. Critical class flies that expressed inhibition of IK2 through 

UAS-IK2-RNAiHMS01188 displayed a significant reduction in the quantity of both the 

ommatidia and bristle counts. These characteristic phenotypes are often due to an 

impairment in the development of the Drosophila eye, and thus may suggest an impact on 
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neurodevelopment. As human TBK1 is a relatively new ALS gene, more experiments 

should be done to better understand the role of the IK2 family members in 

neurodegeneration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 56 

4.5 References  
 
Ahmad, L., Zhang, S. Y., Casanova, J. L., & Sancho-Shimizu, V. (2016). Human TBK1: 

A Gatekeeper of Neuroinflammation. Trends in Molecular Medicine, 22(6), 511–

527. https://doi.org/10.1016/j.molmed.2016.04.006 

Bellen, H. J., Levis, R. W., Liao, G., He, Y., Carlson, J. W., Tsang, G., Spradling, A. C. 

(2004). The BDGP Gene Disruption Project. Genetics, 167(2), 761-781. 

https://doi.org/10.1534/genetics.104.026427 

Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering 

cell fates and generating dominant phenotypes. Development, 118(2), 401-415. 

Retrieved from http://dev.biologists.org/content/118/2/401.abstract 

Diaper, D. C., Adachi, Y., Lazarou, L., Greenstein, M., Simoes, F. A., Di Domenico, A., 

Hirth, F. (2013). Drosophila TDP-43 dysfunction in glia and muscle cells cause 

cytological and behavioural phenotypes that characterize ALS and FTLD. Human 

Molecular Genetics, 22(19), 3883–3893. https://doi.org/10.1093/hmg/ddt243 

Dubin-bar, D., Bitan, A., Bakhrat, A., Kaiden-hasson, R., Etzion, S., Shaanan, B., & 

Abdu, U. (2008). The Drosophila IKK-related kinase (Ik2) and Spindle-F proteins 

are part of a complex that regulates cytoskeleton organization during oogenesis. 

BMC Cell Biology, 14, 1–14. https://doi.org/10.1186/1471-2121-9-51 

Freeman, M. (1996). Reiterative Use of the EGF Receptor Triggers Differentiation of All 

Cell Types in the Drosophila Eye. Cell, 87(4), 651–660. 

https://doi.org/10.1016/S0092-8674(00)81385-9 

Heo, J. M., Ordureau, A., Paulo, J. A., Rinehart, J., & Harper, J. W. (2015). The PINK1-



 57 

PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 

Recruitment and TBK1 Activation to Promote Mitophagy. Molecular Cell, 60(1), 7–

20. https://doi.org/10.1016/j.molcel.2015.08.016 

Inamdar, A. A., Masurekar, P., Hossain, M., Richardson, J. R., & Bennett, J. W. (2014). 

Signaling Pathways Involved in 1-Octen-3-ol-Mediated Neurotoxicity in Drosophila 

melanogaster: Implication in Parkinson’s Disease. Neurotoxicity Research, 25(2), 

183–191. https://doi.org/10.1007/s12640-013-9418-z 

Ito, Y., Ofengeim, D., Najafov, A., Das, S., Saberi, S., Li, Y., Park DeWitt, J. (2016). 

RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in 

ALS. Science, 353(6299), 603-608. https://doi.org/10.1126/science.aaf6803 

Larabi, A., Devos, J. M., Ng, S., Nanao, M. H., Round, A., Maniatis, T., & Panne, D. 

(2013). Article Crystal Structure and Mechanism of Activation of TANK-Binding 

Kinase 1. Cell Reports, 3(3), 734–746. https://doi.org/10.1016/j.celrep.2013.01.034 

Lazarou, M., Sliter, D. A., Kane, L. A., Sarraf, S. A., Wang, C., Burman, J. L., Youle, R. 

J. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce 

mitophagy. Nature, 524(7565), 309-314. https://doi.org/10.1038/nature14893 

Lee, H., Jan, L. Y., & Jan, Y. (2009). p60-like 1 regulate dendrite pruning of sensory 

neuron during metamorphosis. Proc Natl Acad Sci USA, 106(15), 6363-6368. 

https:doi.org/10.1073/pnas.0902051106 

Li, H., Chaney, S., Forte, M., & Hirsh, J. (2000). Ectopic G-protein expression in 

dopamine and serotonin neurons blocks cocaine sensitization in Drosophila 

melanogaster. Current Biology, 10(4), 211–214. https://doi.org/10.1016/S0960-



 58 

9822(00)00340-7 

Lin, D. M., & Goodman, C. S. (1994). Ectopic and increased expression of fasciclin II 

alters motoneuron growth cone guidance. Neuron, 13(3), 507–523. 

https://doi.org/10.1016/0896-6273(94)90022-1 

Lin, T., Pan, P., Lai, Y., Chiang, K., Hsieh, H., & Wu, Y. (2015). Spindle-F Is the Central 

Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory 

Neurons. PLoS Genetics, 11(11):e1005642. 

https://doi.org/10.1371/journal.pgen.1005642 

Nguyen, D. K. H., Thombre, R., & Wang, J. (2018). Autophagy as a common pathway in 

amyotrophic lateral sclerosis. Neuroscience Letters, 697, 34-48. 

https://doi.org/10.1016/j.neulet.2018.04.006 

Oakes, J. A., Davies, M. C., & Collins, M. O. (2017). TBK1: a new player in ALS linking 

autophagy and neuroinflammation. Molecular Brain, 10(1), 1–10. 

https://doi.org/10.1186/s13041-017-0287-x 

Richter, B., Sliter, D. A., Herhaus, L., Stolz, A., Wang, C., & Beli, P. (2016). 

Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes 

selective autophagy of damaged mitochondria. Proc Natl Acad Sci USA, 113(15), 

4039–4044. https://doi.org/10.1073/pnas.1523926113 

Parkes, T. L., Elia, A. J., Dickinson, D., Hilliker, A. J., Phillips, J. P., & Boulianne, G. L. 

(1998). Extension of Drosophila lifespan by overexpression of human SOD1 in 

motorneurons. Nature Genetics, 19(2), 171–174. https://doi.org/10.1038/534 

Perkins, L. A., Holderbaum, L., Tao, R., Hu, Y., Sopko, R., McCall, K., Perrimon, N. 



 59 

(2015). The Transgenic RNAi Project at Harvard Medical School: Resources and 

Validation. Genetics, 201(3), 843-852. https://doi.org/10.1534/genetics.115.180208 

Sanson, B., White, P., & Vincent, J.-P. (1996). Uncoupling cadherin-based adhesion from 

wingless signalling in Drosophila. Nature, 383(6601), 627–630. 

https://doi.org/10.1038/383627a0 

Shapiro, R. S., & Anderson, K. V. (2006). Drosophila Ik2, a member of the I kappa B 

kinase family, is required for mRNA localization during oogenesis. Development, 

133(8), 1467–1475. https://doi.org/10.1242/dev.02318 

Todd, A.M., Staveley, B.E. (2004). Novel Assay and Analysis for Measuring Climbing 

Ability in Drosophila. Drosophila Information Service, 87, 101-108. 

Xu, D., Jin, T., Zhu, H., Levin, J. Z., Yankner, B. A., Xu, D., Pan, L. (2018). 

Inflammation during Development and in Aging Article TBK1 Suppresses RIPK1-

Driven Apoptosis and Inflammation during Development and in Aging. Cell, 174(6), 

1477-1491.e19. https://doi.org/10.1016/j.cell.2018.07.041 

Yu, H., & Cleveland, D. W. (2018). Previews Tuning Apoptosis and Neuroinflammation : 

TBK1 Restrains RIPK1. Cell, 174(6), 1339–1341. 

https://doi.org/10.1016/j.cell.2018.08.035 

 

 

 

 



 60 

Chapter 5 - Modelling Human Neurodegenerative Disease Through Alteration of 

p62/Ref(2)P in Drosophila melanogaster 

 
5.1 Introduction 

 The elucidation of the cellular mechanisms that are altered during the progression 

of neurodegenerative diseases, such as ALS and Parkinson Disease, is an ongoing subject 

of current research. The protein, sequestosome1, which is also known as p62 

(p62/SQSTM1), has been suggested to be a potential contributor to in the pathogenesis of 

a number of neurodegenerative diseases (Ma, Attarwala, & Xie, 2019). The p62/SQSTM1 

protein is a multifunctional scaffold/adaptor protein encoded by the p62/SQSTM1 gene 

(Bartolome, Esteras, Martin-requero, & Boutoleau, 2017). Alternatively designated as 

“Refractory to Sigma P” (Ref(2)P) in Drosophila, p62/SQSTM1 is involved in various 

aspects of selective autophagy - such as mitophagy, the ubiquitin-proteasome system 

(UPS) and in some signal transduction pathways (Bitto et al., 2014). The p62/SQSTM1 

protein is localized throughout the cell in the cytoplasm, in the cytosol, and the 

endoplasmic reticulum, among other places such as autophagosomes, aggresomes, and 

autolysosomes, as this protein functions during the process of autophagy (Liu et al., 2016; 

Matsumoto, Shimogori, Hattori, & Nukina, 2015). The role which p62/SQSTM1 has in 

autophagy is critical as it seems to regulates the removal of protein aggregates and 

damaged organelles through the activities of several of its many functional domains (Bitto 

et al., 2014). Structurally the p62/SQSTM1 protein has many functional domains, several 

of which are essential to autophagic activities. These domains include 1) the Phox and 

Bem1 (PB1) domain; 2) the LC3 interacting region (LIR) domain; and 3) the UBA 
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domain at the C-terminus (Liang & Guan, 2017). During autophagy, the LIR domain and 

the UBA domains of p62/SQSTM1 have vital roles in the pathway (Hou et al., 2019; 

Johansen & Lamark, 2011; Ma, Attarwala, & Xie, 2019), as p62/SQSTM1 promotes 

autophagic degradation by binding to LC3 via its LIR region (Pankiv et al., 2007). The 

PB1 and the UBA domains function together to form protein aggregates (Bartlett et al., 

2011), and are known to be critical for mitochondrial clustering (Pimenta De Castro et al., 

2013). The UBA domain recognizes ubiquitinated protein aggregates, while the PB1 

domain sequesters these into inclusion bodies (Lee, Weihl, Lee, & Weihl, 2017). Other 

p62/SQSTM1 domains include the ZZ-type zinc finger domain, a domain capable of 

binding with the p38 mitogen-activated protein kinase, the TB domain, PEST sequences 

made up of the amino acids proline, glutamate, serine and threonine, and the KIR domain 

(Liang & Guan, 2017). As p62/SQSTM1 has multiple functional domains with various 

roles, investigating the p62/SQSTM1 gene in neurodegenerative disease may be of great 

advantage.  

 

In humans, p62/SQSTM1 can act as an indicator of autophagic flux as the protein 

accumulates when autophagy is inhibited. Similarly, it has been demonstrated that 

Ref(2)P behaves in the same manner, with accumulation of Ref(2)P levels in Drosophila 

when autophagy is genetically inhibited (Devorkin & Gorski, 2014). However, not only 

does p62/SQSTM1 function in quality control, but it is known to have roles in age-related 

diseases. Studies with a mouse model have shown that p62/SQSTM1 expression decreases 

as age increases, with protein knockdown reducing the lifespan and displaying premature 

signs of aging (Bitto et al., 2014). Mutations in p62/SQSTM1 are known to be associated 
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with ALS and frontotemporal dementia (FTD) (Bartolome et al., 2017). However, 

p62/SQSTM1 is not only associated with ALS and FTD, but it is known to be associated 

with some forms of Parkinson Disease through a defined role in mitophagy (Narendra, 

Kane, Hauser, Fearnley, & Youle, 2010; Yamada et al., 2019). Where during PINK1-

parkin-mediated mitophagy, p62/SQSTM1 among other adaptor proteins are recruited to 

damaged mitochondria (Xiao et al., 2017). Studies in Drosophila have demonstrated that 

loss-of-function of Ref(2)P results in poor locomotor function related to mitochondrial 

dysfunction and accumulation of mitochondrial DNA (Pimenta De Castro et al., 2013; 

Pimenta De Castro et al., 2012). Whereas in humans, knockdown of p62/SQSTM1 has 

shown to increase in both oxidative stress and mitochondrial damage and dysfunction 

(Bartolome et al., 2017; Bitto et al., 2014). Recent work has shown that p62/SQSTM1 

interacts with LRRK2, a PD-associated protein kinase as an autophagic receptor (Park, 

Han, Choi, Kim, & Park, 2016). Through the investigation of p62/SQSTM1 as a  

candidate gene we may gain further insight into our understanding of p62/SQSTM1 

function in both aging and neurodegenerative disease.  

 

The p62/SQSTM1 gene has been highly conserved throughout evolutionary 

history and a comparison of human and D. melanogaster p62/SQSTM1 proteins reveals 

three highly conserved domains, 1) the Phox and Bem1p (PB1) domain; 2) a zinc finger, 

ZZ type domain, as well as, 3) a ubiquitin associated domain (UBA). The degree of 

evolutionary conservation suggests a highly conserved function for p62/SQSTM1. Thus 

exploration of the effects of altered p62/SQSTM1 expression in D. melanogaster may 

provide insights into the pathology of ALS in humans. In this study, the inhibition 
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of p62/SQSTM1 in D. melanogaster is used to mimic human conditions, examining the 

effects on lifespan and locomotor ability.  

 
 
5.2 Materials and Methods  

 
5.2.1 Drosophila melanogaster stocks and culture  
 

All Drosophila stocks were obtained from the Bloomington Drosophila Stock 

Center at Indiana University (IN, USA). See Table 3.1 for list of genotypes used. See 

Chapter 2, section 2.1 for detail of D. melanogaster stocks and culture. 

 

5.2.2 Longevity Assay 

The survival of D. melanogaster was analyzed to examine the median lifespan of 

experimental flies in comparison to control flies. See Chapter 2, section 2.2 for full 

longevity assay methods.   

 

5.2.3 Locomotive Assay 

 The motor function of D. melanogaster was analyzed to examine the locomotor 

function over time of experimental flies in comparison to control flies. See Chapter 2, 

section 2.3 for full locomotive assay methods.   

 

5.2.4 Scanning Electron Microscopy of the Drosophila eye 

Eye analysis of D. melanogaster was used to determine the effects of gene 

manipulation. See Chapter 2, section 2.4 for full methods on eye experiments.   
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Table 3.1: Genotypes and location of expression patterns used in the analysis of altered 
expression of Ref(2)P.   
Abbreviated 
Genotype 

Location of 
Expression 

Insertion 
Chromosome 

Reference  

Control Lines    
UAS-lacZ --- 2 Brand et al, 1993 
Driver Lines    
GMR-Gal4 Eye 2 Freeman, 1996 
arm-Gal4 Ubiquitous  2 Sanson et al., 

1996 
elav-Gal4 Pan neuronal 1 Lin & Goodman, 

1994 
TH-Gal4 Dopaminergic 

neuron 
3 Inamdar et al., 

2014 
ddc-Gal4HL4.3D Dopaminergic and 

serotonergic 
neuron 

2 Li et al., 2000 

ddc-Gal4HL4.36 Dopaminergic and 
serotonergic 
neuron 

3 Li et al., 2000 

D42-Gal4 Motor neuron 3 Parkes et al., 1998 
Responder Lines    
UAS-Ref(2)P-
RNAiHMS00551 

--- 3 Perkins et al., 
2015 

UAS-Ref(2)P-
RNAiHMS00938 

--- 3 Perkins et al., 
2015 
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5.3 Results 
 
5.3.1 Inhibition of Ref(2)P increases median lifespan and decreases climbing ability  

 An investigation of the consequences of the inhibition of Ref(2)P upon the 

lifespan and climbing function over time of D. melanogaster was carried out using 

two Ref(2)P inhibition transgenes, UAS-Ref(2)P-RNAi HMS00551 and UAS-Ref(2)P-

RNAiHMS00938. Two Ref(2)P inhibition lines were selected to investigate the consequences 

of both on the fly. By examining Ref(2)P in D. melanogaster it was revealed that loss of 

function increased median lifespan. Expression of both Ref(2)P inhibition transgenes 

provided a significantly longer lifespan when expressed with the ubiquitous transgene 

arm-Gal4 (Figure 4.1) and the pan-neuronal transgene elav-Gal4 (Figure 4.2). Median 

lifespan was significantly increased when Ref(2)P was inhibited through the activity of 

the motor neuron-specific transgene D42-Gal4 (Figure 4.3a), and the dopaminergic 

neuron-specific transgene TH-Gal4 (Figure 4.4a) when compared to the control (UAS-

lacZ). When expressed through the neuron-specific transgenes ddc-GAL4HL4.3D (Figure 

4.5a) and ddc-GAL4HL4.36 (Figure 4.6a) inhibition of Ref(2)P resulted in a significant 

increase in median lifespan. Despite the significant influence upon longevity, inhibition 

of Ref(2)P decreases climbing ability over time in D. melanogaster. When expressed in 

the motor neuron-specific transgene D42-Gal4 (Figure 4.3b), the dopaminergic neuron-

specific transgene TH-Gal4 (Figure 4.4b), the inhibition of Ref(2)P through UAS-Ref(2)P-

RNAiHMS00938 significantly reduce climbing ability when compared to the control (UAS-

lacZ). When expressed through the neuron-specific transgene ddc-Gal4HLD.3D both 
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Ref(2)P inhibition transgenes led to a significant decrease in climbing ability (Figure 

4.5b). Expression of Ref(2)P inhibition via UAS-Ref(2)P-RNAiHMS00938 through the 

neuronal-specific transgene ddc-GAL4HL4.36 (Figure 4.6b) significantly reduced climbing 

ability when compared to the control (UAS-lacZ). 

 

5.3.2 Inhibition of Ref(2)P decreases ommatidia and bristle number  

 The developmental pattern of the Drosophila compound eye is a highly regulated 

and specific event. Once the ommatidia are laid down, the bristles come next as a form of 

protection for the ommatidia. Impairment in this process may result in characteristic 

phenotypes as a consequence, such as changes in the number of ommatidia and bristles. 

The eye-specific transgene GMR-Gal4 is used to investigate such phenotypic changes in 

the compound eye of D. melanogaster. Inhibition of Ref(2)P in the developing Drosophila 

eye results in a reduction in ommatidia number (Figure 4.7a) and interommatidial bristle 

number (Figure 4.7b) when compared to the control (UAS-lacZ).  
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Figure 4.1: Altered expression of Ref(2)P directed through the arm-Gal4 transgene 
affects lifespan. Longevity is depicted by percent survival. Significance is P <0.05 using 
the log-rank test with Bonferroni correction. Error bars represent standard error of the 
mean. Genotypes are as follows: arm-Gal4;UAS-lacZ (n=284), arm-Gal4;UAS-Ref(2)P-
RNAiHMS00551 (n=240), arm-Gal4;UAS-Ref(2)P-RNAiHMS00938 (n=286). 
 
 

Figure 4.2: Altered expression of Ref(2)P directed through the elav-Gal4 transgene 
affects lifespan. Longevity is depicted by percent survival. Significance is P <0.05 using 
the log-rank test with Bonferroni correction. Error bars represent standard error of the 
mean. Genotypes are as follows: elav-Gal4;UAS-lacZ (n=298), elav-Gal4;UAS-Ref(2)P-
RNAiHMS00551 (n=224), elav-Gal4;UAS-Ref(2)P-RNAiHMS00938 (n=251). 
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Figure 4.3: Altered expression of Ref(2)P directed through the D42-Gal4 transgene 
affects longevity and climbing ability. A: Longevity assay of Drosophila melanogaster 
males displaying altered Ref(2)P expression in the motor neurons. Longevity is depicted 
by percent survival. Significance is P <0.05 using the log-rank test with Bonferroni 
correction. Error bars represent standard error of the mean. Genotypes are as follows: 
D42-Gal4;UAS-lacZ (n=273), D42-Gal4;UAS-Ref(2)P-RNAiHMS00551 (n=252), D42-
Gal4;UAS-Ref(2)P-RNAiHMS00938 (n=303). B: Locomotor assay of D. melanogaster males 
displaying altered Ref(2)P expression in the motor neurons. Climbing ability was 
determined by a nonlinear curve fit (CI=95%). Error bars indicate standard error of the 
mean. 

A) 

B) 
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Figure 4.4: Altered expression of Ref(2)P through the TH-Gal4 transgene affects 
longevity and climbing ability. A: Longevity assay of Drosophila melanogaster males 
displaying altered Ref(2)P expression in the dopaminergic neurons. Longevity is depicted 
by percent survival. Significance is P <0.05 using the log-rank test with Bonferroni 
correction. Error bars represent standard error of the mean. Genotypes are as follows: TH-
Gal4;UAS-lacZ (n=291), TH-Gal4;UAS-Ref(2)P-RNAiHMS00551 (n=263), TH-Gal4;UAS-
Ref(2)P-RNAiHMS00938 (n=278). B: Locomotor assay of D. melanogaster males displaying 
altered Ref(2)P expression in the dopaminergic neurons. Climbing ability was determined 
by a nonlinear curve fit (CI=95%). Error bars indicate standard error of the mean. 

A) 

B) 
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Figure 4.5: Altered expression of Ref(2)P directed through the ddc-Gal4HL4.3D transgene 
affects longevity and climbing ability. A: Longevity assay of Drosophila melanogaster 
males displaying altered Ref(2)P expression in the motor neurons. Longevity is depicted 
by percent survival. Significance is P <0.05 using the log-rank test with Bonferroni 
correction. Error bars represent standard error of the mean. Genotypes are as follows: 
ddc-Gal4HL4.3D;UAS-lacZ (n=293), ddc-Gal4HL4.3D;UAS-Ref(2)P-RNAiHMS00551 (n=241), 
ddc-Gal4HL4.3D;UAS-Ref(2)P-RNAiHMS00938 (n=249). B: Locomotor assay of D. 
melanogaster males displaying altered Ref(2)P expression in the motor neurons. 
Climbing ability was determined by a nonlinear curve fit (CI=95%). Error bars indicate 
standard error of the mean. 

A) 

B) 



 71 

Figure 4.6: Altered expression of Ref(2)P directed through the ddc-Gal4HL4.36 transgene 
affects longevity and climbing ability. A: Longevity assay of Drosophila melanogaster 
males displaying altered Ref(2)P expression in the motor neurons. Longevity is depicted 
by percent survival. Significance is P <0.05 using the log-rank test with Bonferroni 
correction. Error bars represent standard error of the mean. Genotypes are as follows: 
ddc-Gal4HL4.36;UAS-lacZ (n=284), ddc-Gal4HL4.36;UAS-Ref(2)P-RNAiHMS00938 (n=263). B: 
Locomotor assay of D. melanogaster males displaying altered Ref(2)P expression in the 
motor neurons. Climbing ability was determined by a nonlinear curve fit (CI=95%). Error 
bars indicate standard error of the mean. 

A) 

B) 
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Figure 4.7: Directed Ref(2)P gene expression using eye-specific transgene GMR-Gal4 in 
Drosophila. Scanning electron micrographs of A: GMR-Gal4;UAS-lacZ, B: GMR-
Gal4;UAS-Ref(2)P-RNAiHMS00551, C: GMR-Gal4;UAS-Ref(2)P-RNAiHMS00938 

 

 

 

 

B) 

C) 
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Figure 4.8: Biometric analysis of Drosophila compound eye under direct eye expression 
of Ref(2)P though the GMR-Gal4 transgene. Inhibition of Ref(2)P causes significant 
decrease in (A) ommatidia number and (B) bristle number. Error bars represent standard 
deviation. 
 

 

 

 

 

 

 

 

 

 

A) B) 
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5.4 Discussion 
 
 At the very least, the progression and pathogenesis of many neurodegenerative 

diseases are influenced by an impairment of cellular quality control, through conserved 

processes such as autophagy and the ubiquitin-proteasome system (UPS). As human 

p62/SQSTM1 encoded product is intimately involved in the autophagy process, with 

mutations known to be linked to neurodegenerative diseases (Bartolome et al., 2017; 

Narendra et al., 2010; Yamanda et al., 2019), investigation of this candidate gene may be 

quite informative. Altered expression of the Drosophila homologue, Ref(2)P has shown to 

affect median lifespan of the organism, locomotor function and neuronal development. 

Critical class flies, that express an inhibitory Ref(2)P transgene, exhibit a significant 

increase in aspects of longevity while displaying a significant reduction in motor function 

over time. Critical class males that cause inhibition of Ref(2)P in the developing 

compound eye displayed a significant reduction in ommatidia and bristle numbers. Such 

characteristic phenotypes are often due to an impairment in the development of the 

largely neuronally comprised Drosophila eye, and thus may suggest an impact on 

neurodevelopment. Unfortunately, a line that could readily lead to the overexpression 

of Ref(2)P was not readily available.  

 

Inhibition of Ref(2)P expression through the motor neuron-specific transgene  

D42-Gal4 has shown a significant increase in median lifespan while greatly reducing 

climbing ability throughout time. The increase in lifespan accompanied by a sharp 

decrease in motor function over time may be interpreted as trade-off, where the slight 

increase in longevity is a type of compensation for a severe decline in motor skills. This 
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significant reduction in motor ability and increase in lifespan when Ref(2)P expression is 

altered corresponds with the characteristic loss of motor neurons associated with ALS, 

making the inhibition of Ref(2)P in the motor neuron an imperfect model of 

neurodegenerative disease. Similarly, expression of Ref(2)P inhibition though the 

direction of the dopaminergic neuron-specific transgene TH-Gal4 has shown a 

significant, but minimal increase in median lifespan with a severe decline in climbing 

ability. Similar to the inhibition of Ref(2)P in the motor neurons, this increase in lifespan 

accompanied by a sharp decrease in motor function over time seen when Ref(2)P is 

inhibited in the dopaminergic neurons may also be interpreted as a type of compensation 

for a severe decline in motor skills. This significant reduction in motor ability and 

minimal increase in lifespan seen when Ref(2)P expression is altered, corresponds with 

the characteristic loss of dopaminergic neurons associated with Parkinson Disease, 

making the inhibition of  Ref(2)P in the motor neuron an promising model of 

neurodegenerative disease. 

 

The inhibition of Ref(2)P expression through the activities of the neuron-specific 

transgene ddc-Gal4HL4.3D significantly increased median lifespan, while displaying a 

severe decrease in climbing ability. Expressing Ref(2)P inhibition via UAS-Ref(2)P-

RNAiHMS00938 through the neuron-specific transgene ddc-Gal4HL4.36 has shown a 

significant increase in longevity, while significantly reducing climbing ability. This 

significant reduction in motor ability and increase in lifespan seen when Ref(2)P  

expression is altered may explained as compensational relationship, and seen as an 

imperfect model of neurodegenerative disease. Furthermore, the significant increase in 
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lifespan across all transgenes when Ref(2)P is inhibited suggests that it plays a substantial 

role in cell survival and death. As human p62/SQSTM1 has critical functions throughout 

the cell, specifically in autophagy and mitophagy, impairment and dysfunction of 

p62/SQSTM1 can be detrimental, with the loss-of-function of p62/SQSTM1 leading to an 

increase in oxidative stress and mitochondria damage (Bitto et al., 2014). The importance 

of functional p62/SQSTM1 in mitochondrial dynamics is evident in Drosophila as 

impairment of Ref(2)P reveals mitochondrial dysfunction, resulting in a decline in motor 

function (Pimenta De Castro et al., 2013). As the p62/SQSTM1 gene is a crucial player in 

the development and progression of many neurodegenerative diseases, including ALS, 

FTD and PD, along with having multiple functions within various cell pathways, a further 

investigation of the p62/SQSTM1 gene is desired. 
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Chapter 6 - Modelling Human Neurodegenerative Disease Through Alteration of 

VCP/TER94 in Drosophila melanogaster 

 

6.1 Introduction 

As neurodegenerative diseases are prevalent in society and influence the lives of 

many individuals, the molecular pathways and cellular processes that are involved in 

disease pathogenesis must be more fully understood. Many neurodegenerative diseases, 

such as ALS and PD, have a number of genes linked to their development and 

progression of these diseases. Aside from the well-characterized disease-causing genes, 

there are several genes linked to disease pathology. Valosin-containing protein (VCP), 

known as TER94 in Drosophila, is an ALS-related gene which encodes the enzyme 

Valosin-Containing Protein, an essential AAA+ ATPase. In the cell, VCP is ubiquitously 

expressed in the endoplasmic reticulum, mitochondria and nucleus, with diverse functions 

in processes such as mitophagy, autophagy, UPS (Guo et al., 2016; Ludtmann et al., 

2017; Nguyen, Thombre, & Wang, 2018), as well as in ER-associated protein degradation 

and DNA repair (Guo et al., 2016; Nguyen et al., 2018). During mitophagy, VCP is 

required for mitochondrial outer membrane protein turnover (Tanaka et al., 2010), and is 

a direct component in the PINK1/parkin-mediated process of mitophagy (Kim et al., 

2013; Tanaka et al., 2010). In autophagy, VCP is heavily involved in the initiation phase 

and in the maturation of autophagosomes (Ju et al., 2009). An absence of VCP has been 

known to disturb both the aggregation of misfolded proteins, referred to as an 

aggreosome, along with the degradation of proteins (Ju et al., 2009). The human 
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VCP gene has interactions with two biochemical markers of autophagy, LC3 and 

p62/SQSTM1 (Y. Wang et al., 2011; Yeo & Yu, 2016), where mouse models expressing 

mutant VCP demonstrated an accumulation of both LC3 and p62/SQSTM1 (Yeo & Yu, 

2016). The various functions and cellular processes which VCP is involved suggest that 

this may be an excellent candidate gene to study neurodegenerative disease. 

 

Not only is the VCP gene associated with ALS, it is associated with many other 

diseases. VCP is known to be connected to early on-set Paget disease, FTD (Ludtmann et 

al., 2017; Mori et al., 2013), and more recently in PD (Mori et al., 2013). Through whole-

exome sequencing, mutations in the VCP gene have been linked to patients with familial 

ALS (Johnson et al., 2011), with mutations in VCP accounting for approximately 1 to 2% 

of familial ALS cases, demonstrating that VCP mutations can result in impaired 

autophagy (Nguyen et al., 2018). Dominant pathogenic mutations of VCP, result in 

changes within the N-domain or within the ATPase domains, that severely reduce 

mitochondrial function. (T. Wang et al., 2016). Similar to human VCP, the protein 

product of TER94 has associations with various select proteins in Drosophila, such 

as Cabeza (Cas), the Drosophila orthologue of the significant ALS gene FUS, where it 

functions as a modulator of motor neuron degeneration (Azuma et al., 2014). Consistent 

with VCP in humans, Drosophila TER94 regulates the Notch signalling pathway, which is 

critical in tissue development and homeostasis. Impairment of Notch signaling has been 

known to lead to various diseases, particularly neurodegenerative diseases (Li, Liu, & 

Zhang, 2019). Furthermore, TER94 interacts with Drosophila clueless (clu) through 

PINK1/Parkin-dependent mitophagy, where clu functions with VCP and parkin to 
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degrade and promote the clearance of dysfunctional mitochondria (T. Wang et al., 2016). 

As VCP has strong roles in the autophagy processes, particularly in the initiation stages, 

impairment in this gene along with its protein products, can have detrimental impacts on 

such pathways. Although previous work has been conducted on the role of VCP in 

degeneration, much is still unclear. The mechanisms by which mutations in VCP 

contribute to disease progression is an area of research that must be further investigated.   

 

The VCP gene has been highly conserved throughout evolutionary history. A 

comparison of human and D. melanogaster VCP proteins reveals six highly conserved 

domains: 1) the CDC48 N-terminal sub-domain; 2) the CDC48 domain 2; 3) the AAA+ 

ATPase domain; 4) the ATPase AAA type core domain; 5) the AAA ATPase AAA+ lid 

domain; and 6) the Vps4 oligomerization C-terminal domain. The degree of evolutionary 

conservation suggests a highly conserved function for the product of the VCP gene. Thus 

exploration of the effects of altered VCP expression in D. melanogaster promises to 

provide insights into the pathology of ALS in humans. In this study, overexpression and 

inhibition of VCP in D. melanogaster are used to mimic human conditions, examining the 

effects on lifespan and locomotor ability. 
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6.2 Materials and Methods  

 
6.2.1 Drosophila melanogaster stocks and culture  
 

All Drosophila stocks were obtained from the Bloomington Drosophila Stock 

Center at Indiana University (IN, USA). See Table 4.1 for list of genotypes used. See 

Chapter 2, section 2.1 for detail of D. melanogaster stocks and culture. 

 

6.2.2 Longevity Assay 

The survival of D. melanogaster was analyzed to examine the median lifespan of 

experimental flies in comparison to control flies. See Chapter 2, section 2.2 for full 

longevity assay methods.   

 

6.2.3 Locomotive Assay 

 The motor function of D. melanogaster was analyzed to examine the locomotor 

function over time of experimental flies in comparison to control flies. See Chapter 2, 

section 2.3 for full locomotive assay methods.   

 

6.2.4 Scanning Electron Microscopy of the Drosophila eye 

Eye analysis of D. melanogaster was used to determine the effects of gene 

manipulation. See Chapter 2, section 2.4 for full methods on eye experiments.   
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Table 4.1: Genotypes and location of expression patterns used in the analysis of altered 
expression of TER94.   
Abbreviated Genotype Location of 

Expression 
Insertion 
Chromosome 

Reference  

Control Lines    
UAS-lacZ --- 2 Brand et al, 1993 
Driver Lines    
GMR-Gal4 Eye 2 Freeman, 1996 
arm-Gal4 Ubiquitous  2 Sanson et al., 

1996 
elav-Gal4 Pan neuronal 1 Lin & Goodman, 

1994 
TH-Gal4 Dopaminergic 

neuron 
3 Inamdar et al., 

2014 
ddc-Gal4HL4.3D Dopaminergic and 

serotonergic neuron 
2 Li et al., 2000 

ddc-Gal4HL4.36 Dopaminergic and 
serotonergic neuron 

3 Li et al., 2000 

D42-Gal4 Motor neuron 3 Parkes et al., 1998 
Responder Lines    
UAS-TER94EY03486 --- 2 Bellen et al., 2004 
UAS-TER94-RNAiGS00593 --- 2 Perkins et al., 

2015 
UAS-TER94-RNAi GL00448 --- 3 Perkins et al., 

2015 
UAS-TER94-RNAi JF03402 --- 3 Perkins et al., 

2015 
UAS-TER94-RNAiHMS00656 --- 3 Perkins et al., 

2015 
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6.3 Results  

6.3.1 Overexpression of TER94 influences median lifespan and climbing ability 

dependent on the expression pattern of the transgene  

 An investigation of the extent that the overexpression of TER94 influences the 

lifespan and climbing ability of D. melanogaster have shown that overexpression alters 

median lifespan and climbing depending on the expression of the transgene. When 

expressed through both the ubiquitous transgene arm-Gal4 (Figure 5.1) and the pan-

neuronal transgene elav-Gal4 (Figure 5.2) overexpression of TER94 significantly 

increases median lifespan when compared to the control (UAS-lacZ). When TER94 is 

overexpressed through the motor neuron-specific transgene, D42-Gal4, median lifespan 

significantly increased (Figure 5.3a), while climbing ability was reduced over time 

(Figure 5.3b) when compared to the control (UAS-lacZ). When TER94 is overexpressed 

through the dopaminergic neuron-specific transgene TH-Gal4, median lifespan was 

significantly reduced (Figure 5.4a), while climbing ability over time was not greatly 

changed (Figure 5.4b) when compared to the control (UAS-lacZ). When TER94 is 

overexpressed through the neuron-specific transgene, ddc-Gal4HL4.3D, median lifespan 

(Figure 5.5a) and climbing ability over time (Figure 5.5b) were significantly reduced 

when compared to the control (UAS-lacZ). 

 

6.3.2 Inhibition of TER94 decreases climbing ability but median lifespan is 

influenced dependent on the expression of the transgene 

An investigation of the inhibition of TER94 found that the lifespan and climbing 

ability of D. melanogaster was shown to be differentially altered. Four TER94 inhibition 
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lines were selected to investigate the consequences of each on the fly. When expressed 

through the activity of arm-Gal4 (Figure 5.1) and elav-Gal4 (Figure 5.2), TER94 

inhibition via UAS-TER94-RNAiGS00593 significantly increased median lifespan when 

compared to the control (UAS-lacZ). When expressed through arm-Gal4 and elav-Gal4, 

TER94 inhibition through both, UAS-TER94-RNAiHMS00656 and UAS-TER94-RNAiGL00448, 

significantly decreased median lifespan. Inhibition of TER94 through UAS-TER94-

RNAiJF03402 resulted in no critical class male progeny. When TER94 was inhibited via 

UAS-TER94-RNAiGS00593 through the motor neuron-specific transgene D42-Gal4, median 

lifespan was not significantly altered (Figure 5.3a), however climbing ability over time 

was reduced (Figure 5.3b) when compared to the control (UAS-lacZ). When TER94 was 

inhibited via both UAS-TER94-RNAiHMS00656 and UAS-TER94-RNAiJF03402 through D42-

Gal4 median lifespan was significantly increased, while TER94 inhibition through UAS-

TER94-RNAiGL00448 significantly reduced lifespan. Climbing ability was significantly 

reduced in these TER94 inhibition lines (Figure 5.3b) when compared to the control 

(UAS-lacZ). When TER94 was inhibited via UAS-TER94-RNAiGS00593 through the 

dopaminergic neuron-specific transgene TH-Gal4, median lifespan was not altered, while 

significantly reducing climbing ability. Inhibition of TER94 via UAS-TER94-

RNAiHMS00656 and UAS-TER94-RNAiGL00448 through TH-Gal4 significantly reduced 

median lifespan (Figure 5.4a) and climbing ability over time (Figure 5.4b) when 

compared to the control (UAS-lacZ). Inhibition of TER94 through UAS-TER94-

RNAiJF03402 did not provide critical class male progeny when expressed through TH-Gal4. 

When TER94 was inhibited via UAS-TER94-RNAiGS00593 and UAS-TER94-RNAiHMS00656 

through the neuron-specific transgene ddc-Gal4HL4.3D, median lifespan was significantly 
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increased (Figure 5.5a) while climbing ability was significantly reduced over time (Figure 

5.5b) when compared to the control (UAS-lacZ). When TER94 was inhibited via UAS-

TER94-RNAiGL00448 through ddc-Gal4HL4.3D lifespan was not influenced (Figure 5.5a), 

however climbing ability was reduced (Figure 5.5b). The inhibition of TER94 through 

UAS-TER94-RNAiJF03402 did not provide any critical class male progeny when expressed 

through ddc-Gal4HL4.3D. Lastly, TER94 inhibition via UAS-TER94-RNAiHMS00656 and UAS-

TER94-RNAiGL00448 through the neuron-specific transgene ddc-Gal4HL4.36, significantly 

increased median lifespan (Figure 5.6a) while climbing ability was significantly reduced 

over time (Figure 5.6b). Interestingly, when TER94 was inhibited via UAS-TER94-

RNAiJF03402 through ddc-Gal4HL4.36, critical class male progeny were viable. However, 

median lifespan (Figure 5.6a) and climbing ability over time (Figure 5.6b) were 

significantly reduced when compared to the control (UAS-lacZ). 

 

6.3.3 Overexpression and inhibition of TER94 decrease ommatidia and bristle 

number 

The developmental pattern of the Drosophila compound eye is a highly regulated 

and specific event with each eye being comprised of approximately 800 ommatidia under 

healthy development. Impairment in this process may result in characteristic phenotypes 

as a consequence, such as changes in the number of ommatidia and bristles. To 

investigate such phenotypic changes in D. melanogaster, the eye-specific transgene 

GMR-Gal4 was used. Altered TER94 expression underwent experimentation to 

investigate potential neurodevelopmental defects. Overexpression of TER94 shown a 

significant decrease in ommatidia number (Figure 5.8a) and interommatidial bristle 
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number (Figure 5.8b). While all TER94 inhibitory transgenes resulted in a significant 

decrease in bristle number when compared to the control (UAS-lacZ). Except for the 

TER94 inhibition transgene UAS-TER94-RNAiGL00448, all other loss-of-function genotypes 

result in a significant decrease in ommatidia number when compared to the control UAS-

lacZ (Figure 5.8a).  
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Figure 5.1: Altered expression of TER94 directed through the arm-Gal4 transgene affects 
lifespan. Longevity is depicted by percent survival. Significance is P <0.05 using the log-
rank test with Bonferroni correction. Error bars represent standard error of the mean. 
Genotypes are as follows: arm-Gal4;UAS-lacZ (n=284), arm-Gal4;UAS-TER94-
RNAiGL00448 (n=328), arm-Gal4;UAS-TER94-RNAiHMS00656 (n=92), arm-Gal4;UAS-TER94-
RNAiGS00593 (n=304), arm-Gal4;UAS-TER94EY03486 (n=212). 

Figure 5.2: Altered expression of TER94 directed through the elav-Gal4 transgene affects 
lifespan. Longevity is depicted by percent survival. Significance is P <0.05 using the log-
rank test with Bonferroni correction. Error bars represent standard error of the mean. 
Genotypes are as follows: elav-Gal4;UAS-lacZ (n=298), elav-Gal4;UAS-TER94-
RNAiGL00448 (n=305), elav-Gal4;UAS-TER94-RNAiHMS00656 (n=384), elav-Gal4;UAS-
TER94-RNAiGS00593 (n=303), elav-Gal4;UAS-TER94EY03486 (n=215). 
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Figure 5.3: Altered expression of TER94 directed through the D42-Gal4 transgene 
affects longevity and climbing ability. A: Longevity assay of Drosophila melanogaster 
males displaying altered TER94 expression in the motor neurons. Longevity is depicted 
by percent survival. Significance is P <0.05 using the log-rank test with Bonferroni 
correction. Error bars represent standard error of the mean. Genotypes are as follows: 
D42-Gal4;UAS-lacZ (n=273), D42-Gal4;UAS-TER94-RNAiGL00448 (n=281), D42-
Gal4;UAS-TER94-RNAiHMS00656 (n=272), D42-Gal4;UAS-TER94-RNAiJF03402 (n=200), 
D42-Gal4;UAS-TER94-RNAiGS00593 (n=219), D42-Gal4;UAS-TER94EY03486 (n=220). B: 
Locomotor assay of D. melanogaster males displaying altered TER94 expression in the 
motor neurons. Climbing ability was determined by a nonlinear curve fit (CI=95%). Error 
bars indicate standard error of the mean 

A) 

B) 
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Figure 5.4: Altered expression of TER94 directed through the TH-Gal4 transgene affects 
longevity and climbing ability. A: Longevity assay of Drosophila melanogaster males 
displaying altered TER94 expression in the dopaminergic neurons. Longevity is depicted 
by percent survival. Significance is P <0.05 using the log-rank test with Bonferroni 
correction. Error bars represent standard error of the mean. Genotypes are as follows: TH-
Gal4;UAS-lacZ (n=291), TH-Gal4;UAS-TER94-RNAiGL00448 (n=285), TH-Gal4;UAS-
TER94-RNAiHMS00656 (n=268), TH-Gal4;UAS-TER94-RNAiGS00593 (n=166), TH-Gal4;UAS-
TER94EY03486 (n=193). B: Locomotor assay of D. melanogaster males displaying altered 
TER94 expression in the dopaminergic neurons. Climbing ability was determined by a 
nonlinear curve fit (CI=95%). Error bars indicate standard error of the mean. 

A) 

B) 
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Figure 5.5: Altered expression of TER94 directed through the ddc-Gal4HL4.3D transgene 
affects longevity and climbing ability. A: Longevity assay of Drosophila melanogaster 
males displaying altered TER94 expression in the neurons. Longevity is depicted by 
percent survival. Significance is P <0.05 using the log-rank test with Bonferroni 
correction. Error bars represent standard error of the mean. Genotypes are as follows: 
ddc-Gal4HL4.3D;UAS-lacZ (n=293), ddc-Gal4HL4.3D;UAS-TER94-RNAiGL00448 (n=213), ddc-
Gal4HL4.3D;UAS-TER94-RNAiHMS00656 (n=246), ddc-Gal4HL4.3D;UAS-TER94-RNAiGS00593 
(n=211), ddc-Gal4HL4.3D;UAS-TER94EY03486 (n=171). B: Locomotor assay of D. 
melanogaster males displaying altered TER94 expression in the neurons. Climbing ability 
was determined by a nonlinear curve fit (CI=95%). Error bars indicate standard error of 
the mean. 

A) 

B) 
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Figure 5.6: Altered expression of TER94 directed through the ddc-Gal4HL4.36 transgene 
affects longevity and climbing ability. A: Longevity assay of Drosophila melanogaster 
males displaying altered TER94 expression in the neurons. Longevity is depicted by 
percent survival. Significance is P <0.05 using the log-rank test with Bonferroni 
correction. Error bars represent standard error of the mean. Genotypes are as follows: 
ddc-Gal4HL4.36;UAS-lacZ (n=284), ddc-Gal4HL4.36;UAS-TER94-RNAiJF03042 (n=229), ddc-
Gal4HL4.36;UAS-TER94-RNAiHMS00656 (n=246), ddc-Gal4HL4.36;UAS-TER94-RNAiGL00448 
(n=213). B: Locomotor assay of D. melanogaster males displaying altered TER94 
expression in the neurons. Climbing ability was determined by a nonlinear curve fit 
(CI=95%). Error bars indicate standard error of the mean. 
 
 
 
 
 

A) 

B) 
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Figure 5.7: Directed TER94 gene expression using the eye-specific transgene GMR-Gal4 
in Drosophila. Scanning electron micrographs of A: GMR-Gal4;UAS-lacZ, B: GMR-
Gal4;UAS-TER94EY03486, C: GMR-Gal4;UAS-TER94-RNAiJF03402, D: GMR-Gal4;UAS-
TER94-RNAiHMS00656, E: GMR-Gal4;UAS-TER94-RNAiGL00448, F: GMR-Gal4;UAS-TER94-
RNAiGS00593 

A) B) 

C) D) 

E) F) 
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Figure 5.8: Biometric analysis of Drosophila compound eye under direct eye expression 
of TER94 though the GMR-Gal4 transgene. Overexpression of TER94 causes significant 
decrease in (A) ommatidia number. Both overexpression and inhibition of TER94 cause a 
significant decrease in (B) bristle number. Error bars represent standard deviation.  
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6.4 Discussion 
 

In order to gain a fuller knowledge on the pathogenies of many neurodegenerative 

diseases, it is essential to examine not only the effects of major disease-causing genes, but 

the effects of less prominent disease-causing genes. Altered expression of TER94 

influenced Drosophila longevity, locomotor function and neuronal development, 

dependent upon the investigated pattern of expression. When TER94 was overexpressed 

through the ubiquitous transgene arm-Gal4, and the pan-neuronal transgene elav-Gal4, 

critical class males displayed a significant increase in median lifespan. Overexpression 

of TER94 though the motor neuron-specific transgene D42-Gal4 resulted in a slight 

increase in median lifespan. Whereas the overexpression of TER94 through the 

dopaminergic neuron-specific transgene TH-Gal4 and through the neuron-specific 

transgene ddc-Gal4HL4.3D decreased median lifespan. Overexpression of TER94 reduced 

climbing ability when expressed through D42-Gal4 and ddc-Gal4HL4.3D. The slight 

increase in median lifespan accompanied by the decline in motor skills over time when 

TER94 is overexpressed through the motor neuron-specific transgene D42-Gal4 seems to 

generate an imperfect model of neurodegenerative disease. As ALS is a motor neuron 

disease characterized by the loss of motor neurons, a decline in both longevity and motor 

function would appear to mimic the suggested pathology of ALS. However, the minimal 

increase in lifespan seen when TER94 is overexpressed in the motor neuron may suggest 

a delicate balance between longevity and motor function, where the slight increase in 

longevity is a reaction to the severe decline in motor skills. Critical class males 

overexpressing TER94 in the developing compound eye displayed a significant reduction 
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in ommatidia and bristle numbers. Such characteristic phenotypes are often due to an 

impairment in the development of the Drosophila eye, and thus may suggest a substantial 

role in neurodevelopment. 

 

Critical class males expressing transgenes that lead to the inhibition of TER94  

provided many inconclusive results. Expression of TER94 inhibition through UAS-

TER94-RNAiGS00593 displayed a significant increase in lifespan through the ubiquitous 

transgene arm-Gal4 and the neuron-specific transgene ddc-Gal4HL4.3D. While when 

expressed through the pan-neuronal transgene elav-Gal4, the motor neuron-specific 

transgene D42-Gal4, and the dopaminergic neuron-specific transgene TH-Gal4, lifespan 

was not changed. Inhibition of TER94 through expression of UAS-TER94-RNAiHMS00656 

and UAS-TER94-RNAiGL00448 produced varied results. When expressed through the 

transgenes arm-Gal4, elav-Gal4, and TH-Gal4, both TER94 inhibitory transgenes reduced 

median lifespan. While when expressed through ddc-Gal4HL4.36, both TER94 inhibitory 

transgenes increased median lifespan. Inhibition of TER94 via UAS-TER94-RNAiGL00448 

through D42-Gal4 and ddc-Gal4HL4.3D displayed a reduction in median lifespan, while 

TER94 inhibition through UAS-TER94-RNAiHMS00656 displayed a significant increase in 

median lifespan through these transgenes. Climbing ability was significantly reduced in 

all cases of TER94 inhibition across all transgenes investigated. From the varied results of 

this experiment several successful models of human neurodegeneration can be found. The 

reduction in lifespan and motor ability seen when TER94 is inhibited through TH-Gal4 

corresponds with the characteristic loss of dopaminergic neurons associated with PD—

making the inhibition of TER94 in the dopaminergic neurons a promising model of 
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neurodegenerative disease. While the reduction in median lifespan and motor function 

seen when TER94 is inhibited through D42-Gal4 corresponds with the characteristic loss 

of motor neurons associated with ALS – making the inhibition of TER94 in the motor 

neurons a promising model of neurodegenerative disease. 

 

Interestingly, TER94 inhibition through UAS-TER94-RNAiJF03402 provided critical 

class males when expressed through the transgenes D42-Gal4 and ddc-Gal4HL4.36 but not 

when expressed through other transgenes investigated. When expressed through D42-

Gal4, this TER94 inhibitory transgene produced an increase in median lifespan, while the 

climbing ability over time was reduced in a significant way. When expressed through 

 ddc-Gal4HL4.36, both median lifespan and climbing ability over the reduced life of the 

critical class flies were significantly reduced. As this particular TER94-RNAi transgene 

was not viable when expressed under the control of other Gal4 transgenes, and therefore, 

in other subsets of tissues, this may suggest that TER94 has a significant role in governing 

cell survival and viability in some tissues. As the human VCP protein is known to 

function in many cellular processes including autophagy, mitophagy and UPS (Guo et al., 

2016; Ludtmann et al., 2017; Nguyen, Thombre, & Wang, 2018), it is difficult to interpret 

the results of this study. Furthermore, as the VCP gene is a crucial component in various 

diseases, such as ALS and PD (Mori et al., 2013), a further investigation into the exact 

mechanisms of TER94 is required to understand its role fully. However, it can be said 

that TER94 is a strong participant in the development of some neurodegenerative 

diseases, such as ALS and PD.  
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Chapter 7 – Investigation of The Consequences of Combined Altered ALS And PD 

Gene Expression Activities in Drosophila melanogaster 

 
7.1 Introduction 

The neurodegenerative diseases Amyotrophic Lateral Sclerosis and Parkinson 

Disease are two movement disorders with substantial defects in proteostasis (Bosco, 

LaVoie, Petsko, & Ringe, 2011). Similarities between ALS and PD include the 

histopathological hallmarks of each disease, which typically are Lewy bodies in PD and 

Bunina bodies in ALS (Bosco et al., 2011; Yang & Choi, 2013), along with that current 

estimation that approximately 10% of cases have a known familial basis, with the 

majority thought to be sporadic in origin (Bosco et al., 2011). Other commonalities shared 

between ALS and PD are found within the cellular processes and pathways which govern 

disease progression, such as mitophagy. Specifically, it is the PINK1-parkin mitophagy 

pathway that is known to interact to at least some extent with major and minor ALS-

related genes. The major PD protein alpha-synuclein is known to have connections to 

multiple ALS-associated genes. Through further investigation of these potential 

connections, it may reveal links and gain a better understanding of the two diseases based 

on the cellular processes and pathways that contribute to disease progression.   

 

With regards to the major ALS gene TARDBP, its protein product, TDP-43 is 

reported to target long intron-containing pre-mRNA of parkin in humans (Sun et al., 

2018). Spinal cord samples taken from the autopsies of patients diagnosed with the 

sporadic form of ALS have shown that neurons containing TDP-43 protein inclusions 
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display reduced levels of the parkin protein (Sun et al., 2018). Studies have demonstrated 

impaired regulation of both PINK1 and parkin by the loss-of-function of TDP-43, to 

suggest that this mis-regulation may result in TDP-43-dependent proteinopathy (Lagier-

Tourenne et al., 2012; Sun et al., 2018). Specifically, the overexpression of TDP-43 in 

Drosophila has been shown to result in a decrease of parkin levels, which alters the 

turnover of PINK1 to cause an increase of the fraction of PINK1 protein that has had the 

amino terminal mitochondrial-localization peptide cleaved away in the cytosol (Sun et al., 

2018). The TDP-43 protein interacts with the alpha-synuclein protein, as they are known 

to coexist within Lewy bodies. The overexpression of TDP-43 in mice results in a 

moderate loss of cortical neurons (Tian et al., 2011), however, the combination of TDP-

43 overexpression and the presence of mutant forms of alpha-synuclein can lead to 

dopaminergic neurodegeneration. The loss of dopaminergic neurons from this 

combination is more severe than the consequences of increased expression of TDP-43, to 

suggest that these two proteins can play a cooperative role in neurodegeneration (Tian et 

al., 2011). The connections and roles that abnormal TDP-43, PINK1, parkin and alpha-

synuclein have on the cell may be indicators of a causal link between aspects of ALS and 

of PD.               

    

The ALS gene TBK1 is known to interact with PINK1-parkin pathway as this 

mechanism promotes TBK1 activation (Heo, Ordureau, Paulo, Rinehart, & Harper, 2015). 

Once TBK1 is activated, it then promotes the phosphorylation of its autophagy adaptors, 

p62/SQSTM1, OPTN and NDP52, which associate with autophagy ATG8 proteins 

through an LC3 interacting region motif (Heo et al., 2015). Among other proteins, 
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p62/SQSTM1 is recruited to the mitochondria by parkin and participates in the 

aggregation of damaged mitochondria. However, it has been suggested that p62/SQSTM1 

may only have a role in the progression of aggregation and not in the process of 

mitophagy directly (Bitto et al., 2014; Narendra, Kane, Hauser, Fearnley, & Youle, 2010). 

Although this may be the case, p62/SQSTM1 is an excellent candidate gene to study due 

to an involvement in cellular homeostasis.  

 

Not only does the TBK1 gene interact with the PINK1-parkin pathway, its protein 

product interacts with the alpha-synuclein protein, where it has been demonstrated 

that alpha-synuclein fibrils in microglial cells have roles in the induction of autophagy by 

recruiting both TBK1 and OPTN to damaged sites in the microglial cell (Bussi et al., 

2018). The genetic interaction that TBK1 and OPTN have is of great interest to study, as 

to date, there is no obvious Drosophila homologue of the OPTN gene, and such 

experiments have to be delayed until, and if, a gene with similar duties is identified in 

Drosophila. Despite this, there are functional homologues of another major autophagy 

adaptor, p62/SQSTM1 which can be explored. Regarding known connections between 

p62/SQSTM1 and alpha-synuclein, it is known that alpha-synuclein protein inclusions 

can act as ideal targets for p62-dependent autophagy and that a p62/SQSTM1-deficiency 

enhances alpha-synuclein pathology (Tanji et al., 2015; Watanabe et al., 2012). As both 

TBK1 and p62/SQSTM1 appear to be highly influenced by PD gene activities, it would 

be beneficial to explore the extents of these connections.  
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The interactions that the VCP gene product has with the PINK1-parkin pathway 

may provide a great deal of insight, as this cooperation seems to function to directly 

identify damaged mitochondria for degradation (Ashrafi, Schlehe, LaVoie, & Schwarz, 

2014; Kim et al., 2013; Tanaka et al., 2010). Studies have been conducted on wild-

type VCP and its interactions with this pathway, and with VCP mutants, which 

demonstrated that loss of VCP functions impair the PINK1-Parkin pathway (Kim et al., 

2013). The Drosophila homologue of VCP, TER94 interacts with the clueless (clu) 

through PINK1/Parkin-dependent mitophagy, whereas clu functions with VCP and 

parkin to degrade and promote the clearance of dysfunctional mitochondria (T. Wang et 

al., 2016). As VCP has an active involvement with the process of PINK1-parkin 

mitophagy, and is a known ALS-related gene, it would be beneficial to study this ALS-

associated gene in terms of a potential relationship to PD. 

 

 

7.2 Materials and Methods  

 
7.2.1 Drosophila melanogaster stocks and culture  
 

All Drosophila stocks were obtained from the Bloomington Drosophila Stock 

Center at Indiana University (IN, USA), with the exception of the Gal4 lines w;ddc-

Gal4HL4.3D/CyO;UAS-parkin-RNAi/TM3 (ddc-Gal4HL4.3D;UAS-parkin-RNAi) and w;ddc-

Gal4HL4.36/Tm3 iso1;UAS-alpha-synuclein/CyO (ddc-Gal4HL4.36;UAS-alpha-synucelin) 

which were created in the Staveley Laboratory, Memorial University of Newfoundland 
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(St. John’s, Canada). See Table 5.1 for list of genotypes used. See, Chapter 2, section 2.1 

for detail of D. melanogaster stocks and culture. 

 

7.2.2 Longevity Assay 

The survival of D. melanogaster was analyzed to examine the median lifespan of 

experimental flies in comparison to control flies. See Chapter 2, section 2.2 for full 

longevity assay methods.   

 

7.2.3 Locomotive Assay 

 The motor function of D. melanogaster was analyzed to examine the locomotor 

function over time of experimental flies in comparison to control flies. See Chapter 2, 

section 2.3 for full locomotive assay methods.   
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Table 5.1: Genotypes and location of expression patterns used in the analysis of altered 
expression of ALS and PD gene activity.    
Abbreviated Genotype Location of 

Expression 
Insertion 
Chromosome 

Reference  

Control Lines    
UAS-lacZ --- 2 Brand et al, 1993 
Recombinant Driver Lines    
ddc-Gal4HL4.3D;UAS-parkin-
RNAi 

Neuron 2 Staveley, 
Unpublished 

ddc-Gal4HL4.36;UAS-alpha-
synuclein  

Neuron 3 Staveley, 
Unpublished 

Responder Lines    
UAS-TBPH-RNAiHMS01932 --- 2 Perkins et al., 

2015 
UAS-IK2EY09774 --- 2 Bellen et al., 2004 
UAS-Ref(2)P-RNAi HMS00938 --- 2 Perkins et al., 

2015 
UAS-TER94-RNAi GL00448 --- 3 Perkins et al., 

2015 
UAS-TER94-RNAi JF03402 --- 3 Perkins et al., 

2015 
UAS-TER94-RNAi HMS00656 --- 3 Perkins et al., 

2015 
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7.3 Results  
 
7.3.3 Inhibition of TBPH and the expression of alpha-synuclein significantly 

increases median lifespan but does not alter climbing ability 

 When expressed through the neuron-specific transgene ddc-Gal4HL4.36, located on 

insertion chromosome 3, TBPH inhibition through UAS-TBPH-RNAiHMS01932 did not show 

significant changes in median lifespan or climbing ability over time when compared to 

the control UAS-lacZ [see Chapter 3, section 3.3.1] and seen in [Figure 2.6]. However, the 

expression of alpha-synuclein, in addition to this, significantly reduced median lifespan 

(Figure 6.1a), while leaving climbing ability not significantly challenged (Figure 6.1b) 

 

7.3.4 Inhibition of TBPH and parkin significantly increases lifespan but does not 

alter lifetime climbing ability 

 When expressed through the neuron-specific transgene ddc-Gal4HL4.3D, located on 

insertion chromosome 2, TBPH inhibition via UAS-TBPH-RNAiHMS01932 showed a 

significant reduction in lifespan and climbing ability when compared to the control UAS-

lacZ [see Chapter 3, section 3.3.1; Figure 2.5]. The inhibition of parkin, in addition to the 

above, results in a significant reduction in median lifespan (Figure 6.2a) and climbing 

ability over time (Figure 6.2b). However, this reduction seems to be far greater than 

without the inhibition of parkin. 
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7.3.4 Inhibition of Ref(2)P and the expression of alpha-synuclein increases lifespan 

and reduces climbing ability 

When expressed through the neuron-specific transgene ddc-Gal4HL4. 36, located on 

insertion chromosome 3, Ref(2)P inhibition through UAS-Ref(2)P-RNAiHMS00938 

significantly increased lifespan, while significantly decreasing climbing ability when 

compared to the control UAS-lacZ [see Chapter 5, section 5.3.1; Figure 4.6]. The 

expression of alpha-synuclein, in addition to this, lead to a significant increase in median 

lifespan (Figure 6.3a), and decrease in climbing ability (Figure 6.3b).  

 

7.3.5 Inhibition of Ref(2)P and parkin increases lifespan and reduces climbing ability 

When expressed through the neuron-specific transgene ddc-Gal4HL4.3D, located on 

insertion chromosome 2, Ref(2)P inhibition via UAS-Ref(2)P-RNAiHMS00938 showed a 

significant increase in lifespan and decreased climbing ability when compared to the 

control UAS-lacZ [see Chapter 5, section 5.3.1; Figure 4.5]. The inhibition of parkin, in 

addition to this, also results in a significantly increased lifespan (Figure 6.2a), and 

reduced climbing ability (Figure 6.2b), however, this increase in lifespan is not as 

significant than without the inhibition of parkin. 

 

7.3.6 Inhibition of TER94 influences both lifespan and climbing ability when 

expressed with alpha-synuclein or parkin  

When expressed through the neuron-specific transgene ddc-Gal4HL4.36, located on 

insertion chromosome 3, TER94 inhibition via UAS-TER94-RNAiHMS00656 and UAS-
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TER94-RNAiGL00448 significantly increased median lifespan. In contrast, TER94 inhibition 

though UAS-TER94-RNAiJF03402 significantly decreased lifespan when compared to the 

control UAS-lacZ [see Chapter 6, section 6.3.2; Figure 5.6]. All inhibition lines 

significantly reduce climbing ability. The expression of alpha-synuclein, in addition to 

this, results in a significant decrease in median lifespan when TER94 inhibition was 

through UAS-TER94-RNAiJF03402 and UAS-TER94-RNAiGL00448. A significant increase in 

lifespan is seen with TER94 inhibition through UAS-TER94-RNAiHMS00656 (by ~28%) 

(Figure 6.5a). All inhibition lines result in a significant decrease in climbing ability 

(Figure 6.5b). 

 

7.3.7 Inhibition of TER94 influences both lifespan and climbing ability when 

expressed with alpha-synuclein or parkin  

When expressed through the neuron-specific transgene ddc-Gal4HL4.3D, located on 

insertion chromosome 2, TER94 inhibition via UAS-TER94-RNAiGL00448 did not 

significantly impact lifespan but significantly decreased climbing ability compared to the 

control UAS-lacZ  [see Chapter 6, section 6.3.2; Figure 5.5]. When parkin is inhibited, in 

addition to this, median lifespan was significantly reduced by (~30%) (Figure 6.6a), while 

also significantly reducing climbing ability (Figure 6.6b).  
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Figure 6.1: Altered expression of TBPH and the expression of alpha-synuclein directed 
through the ddc-Gal4HL4.36 transgene does not affects longevity and climbing ability. A: 
Longevity assay of Drosophila melanogaster males displaying the expression of alpha-
synuclein and the altered TBPH expression in the neurons. Longevity is depicted by 
percent survival. Significance is P <0.05 using the log-rank test with Bonferroni 
correction. Error bars represent standard error of the mean. Genotypes are as follows: 
ddc-Gal4HL4.36;UAS-alpha-synuclein;UAS-lacZ (n=228), ddc-Gal4HL4.36;UAS-alpha-
synuclein;UAS-TBPH-RNAiHMS01932 (n=261). B: Locomotor assay of D. melanogaster 
males displaying the expression of alpha-synuclein and the altered TBPH expression in 
the neurons. Climbing ability was determined by a nonlinear curve fit (CI=95%). Error 
bars indicate standard error of the mean. 

A) 

B) 
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Figure 6.2 : Altered expression of TBPH and parkin directed through the ddc-Gal4HL4.3D 
transgene does not affects longevity and climbing ability. A: Longevity assay of 
Drosophila melanogaster males displaying altered TBPH and parkin expression in the 
neurons. Longevity is depicted by percent survival. Significance is P <0.05 using the log-
rank test with Bonferroni correction. Error bars represent standard error of the mean. 
Genotypes are as follows: ddc-Gal4HL4.3D;UAS-parkin-RNAi;UAS-lacZ (n=253), ddc-
Gal4HL4.3D;UAS-alpha-synuclein;UAS-TBPH-RNAiHMS01932 (n=253). B: Locomotor assay of 
D. melanogaster males altered TBPH and parkin expression in the neurons. Climbing 
ability was determined by a nonlinear curve fit (CI=95%). Error bars indicate standard 
error of the mean. 
 

A) 

B) 
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Figure 6.3 : Altered expression of Ref(2)P and the expression of alpha-synuclein directed 
through the ddc-Gal4HL4.36 transgene affects longevity and climbing ability. A: Longevity 
assay of Drosophila melanogaster males displaying the expression of alpha-synuclein 
and the altered Ref(2)P expression in the neurons. Longevity is depicted by percent 
survival. Significance is P <0.05 using the log-rank test with Bonferroni correction. Error 
bars represent standard error of the mean. Genotypes are as follows: ddc-Gal4HL4.36;UAS-
alpha-synuclein;UAS-lacZ (n=228), ddc-Gal4HL4.36;UAS-alpha-synuclein;UAS-Ref(2)P-
RNAiHMS00938 (n=281). B: Locomotor assay of D. melanogaster males displaying the 
expression of alpha-synuclein and the altered Ref(2)P expression in the neurons. 
Climbing ability was determined by a nonlinear curve fit (CI=95%). Error bars indicate 
standard error of the mean. 
 

A) 

B) 
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Figure 6.4: Altered expression of Ref(2)P and parkin directed through the ddc-Gal4HL4.3D 
transgene affects longevity and climbing ability. A: Longevity assay of Drosophila 
melanogaster males displaying altered Ref(2)P and parkin expression in the neurons. 
Longevity is depicted by percent survival. Significance is P <0.05 using the log-rank test 
with Bonferroni correction. Error bars represent standard error of the mean. Genotypes 
are as follows: ddc-Gal4HL4.3D;UAS-parkin-RNAi;UAS-lacZ (n=253), ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-Ref(2)P-RNAiHMS00938 (n=267). B: Locomotor assay of D. melanogaster 
males altered Ref(2)P and parkin expression in the neurons. Climbing ability was 
determined by a nonlinear curve fit (CI=95%). Error bars indicate standard error of the 
mean. 

A) 

B) 
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Figure 6.5: Altered expression of TER94 and the expression of alpha-synuclein directed 
through the ddc-Gal4HL4.36 transgene affects longevity and climbing ability. A: Longevity 
assay of Drosophila melanogaster males displaying the expression of alpha-synuclein 
and the altered TER94 expression in the neurons. Longevity is depicted by percent 
survival. Significance is P <0.05 using the log-rank test with Bonferroni correction. Error 
bars represent standard error of the mean. Genotypes are as follows: ddc-Gal4HL4.36;UAS-
alpha-synuclein;UAS-lacZ (n=228), ddc-Gal4HL4.36;UAS-alpha-synuclein;UAS-TER94-
RNAiJF03402 (n=275), ddc-Gal4HL4.36;UAS-alpha-synuclein;UAS-TER94-RNAiHMS00656 
(n=286), ddc-Gal4HL4.36;UAS-alpha-synuclein;UAS-TER94-RNAiGL00448 (n=242). B: 
Locomotor assay of D. melanogaster males displaying the expression of alpha-synuclein 
and the altered TER94 expression in the neurons. Climbing ability was determined by a 
nonlinear curve fit (CI=95%). Error bars indicate standard error of the mean. 
 

A) 

B) 



 119 

Figure 6.6: Altered expression of TER94 and parkin directed through the ddc-Gal4HL4.3D 
transgene affects longevity and climbing ability. A: Longevity assay of Drosophila 
melanogaster males displaying altered TER94 and parkin expression in the neurons. 
Longevity is depicted by percent survival. Significance is P <0.05 using the log-rank test 
with Bonferroni correction. Error bars represent standard error of the mean. Genotypes 
are as follows: ddc-Gal4HL4.3D;UAS-parkin-RNAi;UAS-lacZ (n=253), ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-TER94-RNAiGL00448 (n=280). B: Locomotor assay of D. melanogaster 
males altered TER94 and parkin expression in the neurons. Climbing ability was 
determined by a nonlinear curve fit (CI=95%). Error bars indicate standard error of the 
mean. 
 
 
 
 
 

A) 

B) 
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7.4 Discussion 
 
 D. melanogaster was used as a model to examine the consequences of the altered 

combined of ALS-related and PD-related gene expression. To explore this interaction 

several longevity and locomotor function throughout lifespan experiments were 

conducted. When directed through the neuron-specific transgene ddc-Gal4HL4.36, 

inhibition of TBPH via the UAS-TBPH-RNAiHMS01932 transgene did not influence median 

lifespan or climbing ability [see Chapter 3, section 3.3.1]. However, when alpha-

synuclein is expressed in addition to the inhibition of TBPH, the median lifespan was 

significantly increased with no great changes in climbing ability. The large increase in 

lifespan that is obtained when alpha-synuclein is expressed in the ddc-Gal4-expressing 

neural tissues suggests that the interaction between TBPH and alpha-synuclein is 

important.  

 

Furthermore, the TDP-43 protein is known to interact with the parkin protein of 

the PINK1/parkin pathway. When expressed through the neuron-specific transgene ddc-

Gal4HL4.3D the inhibition of the Drosophila homologue, TBPH through UAS-TBPH-

RNAiHMS01932 reduced both lifespan and climbing ability [see Chapter 3, section 3.3.1]. 

When parkin was inhibited in addition to this, lifespan and climbing ability were also 

reduced. However, the reduction in lifespan, as well as climbing ability, displayed when 

both TBPH and parkin were inhibited was more severe than the inhibition of TBPH 

without altering parkin, to suggest that the interaction the two proteins share is essential 

to cell survival. As human TDP-43 is known to reduce parkin levels in the neuron and 

impair the regulation of both parkin and PINK1 (Sun et al., 2018), the results of this 
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experiment seem to support this finding, with the influence upon Drosophila being a 

reduction in lifespan and locomotor functions. The inhibition of TBPH and parkin in the 

neuron appears to mimic the suggested pathology of ALS and PD, making it a promising 

model of neurodegenerative disease. 

 

Human TBK1 and p62/SQSTM1 are two ALS-related genes that have their 

activation dependent upon the PINK1/parkin pathway. Gene interaction experiments were 

attempted between the overexpression of Drosophila IK2, the fly equivalent of TBK1, and 

the addition of alpha-synuclein through the neuron-specific transgene ddc-Gal4HL4.36. 

Experiments were attempted between the overexpression of IK2 and inhibition of parkin 

through the neuron-specific transgene ddc-Gal4HL4.3D; however critical class males were 

not obtained for either experiment, once again suggesting that IK2 has essential roles in 

viability. Gene interactions experiments between Drosophila Ref(2)P, the fly equivalent 

of p62/SQSTM1, with both alpha-synuclein and parkin were conducted to examine the 

impacts to the fly. When expressed through the neuron-specific transgene ddc-Gal4HL4.36, 

the inhibition of Ref(2)P through UAS-Ref(2)P-RNAiHMS00938 increased median lifespan, 

while decreased climbing ability [see Chapter 5, section 5.3.1]. When alpha-synuclein 

 was expressed in addition to this, median lifespan was increased, however climbing 

ability was not impacted. Despite this increase in lifespan displayed when alpha 

synuclein is expressed concurrently with the inhibition of Ref(2)P, this increase in very 

minimal. As a reduction in human p62/SQSTM1 is known to enhance the pathology 

of alpha-synuclein, this may support the small reduction in lifespan seen when alpha-

synuclein was expressed with a loss-of-function of Ref(2)P. 
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During PINK1-parkin-mediated mitophagy, the human protein p62/SQSTM1 is 

recruited by parkin to the mitochondria, where it acts to function in the aggregation of 

damaged mitochondria (Bitto et al., 2014; Narendra et al., 2010). Genetic interaction 

experiments were conducted to observe the consequences of the impairment of 

p62/SQSTM1 and parkin have upon the median lifespan and the locomotor function. 

When expressed through the neuron-specific transgene ddc-Gal4HL4.3D, inhibition of 

Drosophila Ref(2)P via UAS-Ref(2)P-RNAiHMS00938 increased lifespan but decreased 

climbing ability over the life of the flies [see Chapter 5, section 5.3.1]. The inhibition 

of parkin in combination with the loss of function of Ref(2)P, increased median lifespan, 

while climbing ability was reduced in a manner similar to the simple loss of Ref(2)P 

function. The results of gene interaction experiments between Ref(2)P and parkin genes 

suggest a strong connection; however, a further investigation must be done to understand 

their roles thoroughly.  

            

As the VCP protein directly functions to mark mitochondria for destruction and 

aid in the clearance, it appears to be a key component in the PINK1-parkin mitophagy 

pathway (Ashrafi, Schlehe, LaVoie, & Schwarz, 2014; Kim et al., 2013). Gene interaction 

experiments between Drosophila TER94, the fly equivalent of VCP, and altered PD gene 

activities has revealed complex results when TER94 is expressed through the neuron-

specific transgene ddc-Gal4HL4.36. Inhibition of TER94 through UAS-TER94-RNAiJF03402 

provided a significant decrease in both lifespan and climbing ability, while the inhibition 

of TER94 through the directed expression of UAS-TER94-RNAiHMS00656 and UAS-TER94-

RNAiGL00448 gave an increase in lifespan coupled with a significant lifetime reduction in 
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climbing ability [see Chapter 6, section 6.3.2]. When alpha-synuclein was expressed in 

addition to the loss of TER94 function, TER94 inhibition through UAS-TER94-

RNAiJF03402 continued to display a similar reduction in lifespan and climbing ability. In 

contrast, TER94 inhibition through UAS-TER94-RNAiGL0044 resulted in a significant 

decrease in lifespan. Interestingly, TER94 inhibition through UAS-TER94-RNAiHMS00656 

gave a significant increase in lifespan when alpha-synuclein was co-expressed. 

As TER94 inhibition through UAS-TER94-RNAiGL00448 alone resulted in an increased 

lifespan, but the addition of alpha-synuclein lead to a reduction in lifespan, this suggests 

that alpha-synuclein interacts with the TER94 protein to some extent. The inhibition of 

TER94 through UAS-TER94-RNAiHMS00656 increased lifespan; however, the addition 

of alpha-synuclein lead to an even greater increase in lifespan by approximately 28%. 

This major increase in longevity seen by the inhibition of TER94 and expression of alpha-

synuclein to suggest a strong connection between the two gene activities and a clear 

synergistic effect where the combined effects of TER94 inhibition and the expression 

of alpha-synuclein are greater than either alteration in isolation. 

 

Human VCP has been suggested to play critical roles in mitophagy as it has been 

demonstrated to be a component of the PINK1/parkin pathway. As both mutant and wild-

type VCP are known to have great influence upon aspects of the PINK1/parkin pathway 

(Kim et al., 2013), which may result in impairment of this pathways, genetic interactions 

between the Drosophila TER94 and parkin genes were conducted. When expressed 

through the neuron-specific transgene ddc-Gal4HL4.3D, the inhibition of TER94 through 

the directed expression of UAS-TER94-RNAiGL00448 did not alter median lifespan but did 
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reduce climbing ability over time [see Chapter 6, section 6.3.2]. The combined inhibition 

of both parkin and TER94 resulted in a major reduction in median lifespan by 

approximately 30% along with the reduction of climbing ability. The considerable 

reduction in longevity observed when parkin has been inhibited further suggests a 

significant functional connection between TER94 and parkin. This substantial decrease in 

lifespan and decline in motor function appears to mimic aspects of the pathology of ALS 

and PD, thus reinforcing the promise of this combination of altered gene expression as a 

model of neurodegenerative disease. However, further investigation into TER94 and 

parkin is desired to better understand the potential roles of these genes. 
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Chapter 8 – Summary 

8.1 Summary  

 The use of model organisms such as D. melanogaster provides a simple but 

powerful way to investigate the biological consequences of altered gene expression. As 

altered TBPH is a hallmark of degenerating neurons, specifically the motor neurons, the 

reduction in median lifespan and locomotor function observed in D. melanogaster when 

levels of TBPH activity were inhibited in the motor neurons is an attempt to mimic the 

related pathologies observed in ALS patients (Feiguin et al., 2009; Zhan, Hanson, Kim, 

Tare, & Tibbetts, 2013). Critical class flies that expressed the loss-of-function of TBPH in 

the motor neurons presented with a reduction in median lifespan and motor ability over 

time, to provide a model of the neurodegenerative disease [see Chapter 3, Figure 2.3].  

The investigation of interactions between TBPH and alpha-synuclein and with parkin 

 provided unremarkable results as the additional expression of alpha-synuclein nor the 

inhibition of parkin in combination with TBPH inhibition did not strongly influence D. 

melanogaster [see Chapter 7, Figure 6.1-6.2]. A more in-depth exploration into the 

cellular mechanisms by which TBPH expression is altered in a diseased state, eventually 

may lead to novel treatment options for ALS patients.   

 

           Investigating the consequences of altered IK2 expression gave either a lethal 

phenotype or lack of viability when IK2 was overexpressed, while IK2 inhibition was 

produced variable outcomes. Previously, it was known that IK2 plays a vital role in 

developing neurons, with functions in dendrite pruning and neuronal re-modelling (Lee, 
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Jan, & Jan, 2009; Lin et al., 2015). The reduction in lifespan and locomotor function 

produced in D. melanogaster when IK2 levels were increased in the motor neuron in an 

attempt to mimic the effects seen in ALS patients. The overexpression of IK2 in the motor 

neuron can provide an imperfect model of neurodegenerative disease [see Chapter 4, 

Figure 3.3]; however, the process by which IK2 expression is altered must be further 

investigated.  

 

The high level of conservation and similarity between human p62/SQSTM1 and 

Drosophila Ref(2)P allows investigation of the effects of altered Ref(2)P expression in 

Drosophila neurons is of particular interest (Devorkin & Gorski, 2014).The increase in 

median lifespan and reduction in motor ability displayed in D. melanogaster when 

Ref(2)P levels are inhibited in the neurons, motor neurons as well as dopaminergic 

neurons, can provide a range of models of neurodegenerative disease. However, the loss 

of Ref(2)P function led to an increase in median lifespan accompanied by a severe 

reduction in motor skills may be functioning as a type of compensation, where the slight 

increase in longevity is the consequence for a severe decline in motor skills [see Chapter 

5, Figures 4.3 to 4.5]. The role that Ref(2)P plays in autophagy is substantial, with protein 

levels as well as protein aggregates accumulate when autophagy is impaired (Bartlett et 

al., 2011; Devorkin & Gorski, 2014). The accretion of protein aggregates when the 

processes of autophagy are non-functional well may be thought of as a signature 

characteristic of a number of neurodegenerative diseases. 
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The investigation of potential synergies between Ref(2)P and alpha-synuclein did 

not produce striking results: the directed expression of alpha-synuclein in combination 

with the inhibition of Ref(2)P did not show a strong interactive relationship upon the 

phenotypes of median lifespan or health-span in D. melanogaster [see Chapter 7, Figure 

6.3]. However, the phenotypes observed in D. melanogaster when both Ref(2)P and 

parkin are inhibited through RNAi have shown that the inhibition of this combination of 

genes results in a significant increase in median lifespan with a notable reduction in 

lifetime motor function [see Chapter 7, Figure 6.4]. However, the increase in median 

lifespan obtained with the inhibition of Ref(2)P without alteration in parkin is more 

substantial than the inhibition of parkin without concurrent changes to Ref(2)P 

expression. Further investigation into the cellular mechanisms dependent upon 

Ref(2)P and parkin is required to better understand this biological connection. 

 

           Investigation of the consequences of altered TER94 expression provided a number 

of divergent results which were dependent upon both the Gal4 transgene used and the 

TER94 and TER94-RNAi transgenes selected. As TER94 has been demonstrated to 

process multiple roles in the cell, interact with various proteins and functioning in several 

cellular pathways, it is difficult to understand the extent of its influence through these 

experiments. The small increase in median lifespan and the sharp decline in locomotor 

function was observed in D. melanogaster when TER94 levels were increased in the D42-

Gal4-expressing motor neurons is an attempt to mimic the effects seen in ALS patients. 

Despite TER94 overexpression providing a slight increase in lifespan, this may be 

functioning as an indirect consequence, where the slight increase in longevity may be a 
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compensation mechanism for a severe decline in motor skills. The minimal increase in 

lifespan and a sharp decline in motor ability observed in D. melanogaster when  

TER94 was overexpressed in the motor neuron provides an imperfect model of 

neurodegenerative disease [see Chapter 6, Figure 5.3]. Moreover, the reduction in median 

lifespan and motor ability generated when TER94 expression is inhibited in the 

dopaminergic neurons corresponds with the characteristic loss of dopaminergic neurons 

associated with PD, to suggest strongly that the inhibition of TER94 in the dopaminergic 

neuron a promising model of neurodegenerative disease [see Chapter 6, Figure 5.4].  

 

The investigation of interactions between TER94 and alpha-synuclein resulted in a 

great increase in lifespan (~28%) and reduction in motor ability in D. melanogaster 

when TER94 levels were inhibited, and alpha-synuclein was co-expressed, to suggests the 

potential of a synergistic interaction between the two [see Chapter 7, Figure 6.5]. On the 

other hand, the major reduction in median lifespan (~30%) and motor ability observed 

when both TER94 and parkin levels were reduced is a promising model of 

neurodegenerative disease [see Chapter 7, Figure 6.6], as TER94 is thought to be a 

component of the PINK1/parkin mitophagy mechanisms, with an important function in 

the destruction and clearance of damaged mitochondria (Ashrafi et al., 2014; Kim et al., 

2013). A more in-depth understanding of TER94 functions in the cell is required to 

broaden our knowledge of ALS and PD pathogenesis.  

 

Neurodegenerative diseases have become very prevalent in the aging population 

of today, with a significant impact upon the lives of many individuals. Such diseases 
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greatly influence the lifespan, health and overall quality of life of those affected. By 

understanding the molecular pathways and cellular processes that are involved in disease 

pathogenesis, it may then be possible to create more advanced treatments, therapeutics to 

improve the longevity and health of these patients, and, eventually, a series of treatments 

to contribute to an eventual cure. The implication of the disease-related genes in this 

study may be of clinical significance, as altered gene expression affects longevity and 

motor function in Drosophila melanogaster. 

 
8.2 Future Directions 
 
 The work of this study lays down a solid foundation of the biological consequences 

that altered autophagic gene activity has on Drosophila melanogaster survival and motor 

function. However, despite this there is continued work that is still to come from this study. 

Future research should investigate other ALS-related genes, such as FUS, which is known 

to act in conjunction with TDP-43, as well as genes from the Atg protein family, such as 

LC3/Atg8. Other experiments could look into the role of diet in disease, as diet is known 

to have a huge influence in our health. Studies have suggested the role of a high glucose 

diet as a form of treatment for ALS as it has been observed to protect nerve cells from 

pathological protein aggregates, such as TDP-43 aggregates, that result in neuronal death 

(Manzo et al., 2019). Furthermore, experiments investigating the interactions of TER94 

with other genes involved in the mitophagy process such as Ref(2)P, clueless and parkin 

would be of great interest.  
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Appendix A – Supplemental Data for Chapter 1  
 
A1. Protein sequence alignment of Drosophila melanogaster TBPH and Homo sapiens 
TDP-43. Alignment performed in Clustral Omega.  
 
Drosophila      -MDFVQVSEEEGDEPIELPAEEDGTLLLSTLQAQFPGSCGLKYRNLDTKAVRGVRSNEGR 59 
Homo            MSEYIRVTEDENDEPIEIPSEDDGTVLLSTVTAQFPGACGLRYRNPVSQCMRGVRLVEGI 60 
Mus             MSEYIRVTEDENDEPIEIPSEDDGTVLLSTVTAQFPGACGLRYRNPVSQCMRGVRLVEGI 60 
                  ::::*:*:*.*****:*:*:***:****: *****:***:***  ::.:****  **  
 
Drosophila      LFPPSVESGWGEYAYFCVFPKENKRKSDDNLENSTAKTKRIETRLRCTDLIVLGLPWKTT 119 
Homo            LHAP--DAGWGNLVYVVNYPKDNKRKMDETDASSAVKVKRA--VQKTSDLIVLGLPWKTT 116 
Mus             LHAP--DAGWGNLVYVVNYPKDNKRKMDETDASSAVKVKRA--VQKTSDLIVLGLPWKTT 116 
                *. *  ::***: .*.  :**:**** *:.  .*:.*.**     : :************ 
 
Drosophila      EESLREYFETYGEVLMAQIKKDTKSGQSKGFGFVRFGSYDAQMRVLTNRHLIDGRWCEVK 179 
Homo            EQDLKEYFSTFGEVLMVQVKKDLKTGHSKGFGFVRFTEYETQVKVMSQRHMIDGRWCDCK 176 
Mus             EQDLKDYFSTFGEVLMVQVKKDLKTGHSKGFGFVRFTEYETQVKVMSQRHMIDGRWCDCK 176 
                *:.*::**.*:*****.*:*** *:*:********* .*::*::*:::**:******: * 
 
Drosophila      VPNSKGMGHQ--VPCKVFVGRCTEDINSDDLREYFSKFGEVTDVFIPRPFRAFSFVTFLD 237 
Homo            LPNSKQSQDEPLRSRKVFVGRCTEDMTEDELREFFSQYGDVMDVFIPKPFRAFAFVTFAD 236 
Mus             LPNSKQSPDEPLRSRKVFVGRCTEDMTAEELQQFFCQYGEVVDVFIPKPFRAFAFVTFAD 236 
                :****   .:     **********:. ::*:::*.::*:* *****:*****:**** * 
 
Drosophila      PDVAQSLCGEDHIIKGVSVHVSNAAPKAEQNRNQQVQSYNYNSANSFGMHSY-------- 289 
Homo            DQIAQSLCGEDLIIKGISVHISNAEPKHNSNRQLERSGRFGGNPGGFGNQGGFGNSRGGG 296 
Mus             DKVAQSLCGEDLIIKGISVHISNAEPKHNSNRQLERSGRFGGNPGGFGNQGGFGNSRGGG 296 
                 .:******** ****:***:*** ** :.**: : ..   .. ..** :.          
 
Drosophila      ----HPQGNHMNPGRNGHHRGRQFSILDGSERGPQQC-QQLWWTEGAE------------ 332 
Homo            AGLGNNQGSNMGGG----MNFGAFSINPAMMAAAQAALQSSWGMMGMLASQQNQSGPSGN 352 
Mus             AGLGNNQGGNMGGG----MNFGAFSINPAMMAAAQAALQSSWGMMGMLASQQNQSGPSGN 352 
                    : **.:*. *     .   ***  .   . * . *. *   *               
 
Drosophila      ------------------------------------------------------------ 332 
Homo            NQNQGNMQREPNQAFGSGNNSYSGSNSGAAIGWGSASNAGSGSGFNGGFGSSMDSKSSGW 412 
Mus             NQSQGSMQREPNQAFGSGNNSYSGSNSGAPLGWGSASNAGSGSGFNGGFGSSMDSKSSGW 412 
                                                                             
 
Drosophila      -- 332 
Homo            GM 414 
Mus             GM 414 

 
Highlighted are the TAR DNA binding protein 43, N-terminal domain (red), RNA 
recognition motif 1 (dark blue), RNA recognition motif 2 (orange text), Nuclear 
localization sequence (magenta) and Nuclear export signal (turquoise). “*” indicates 
amino acids that are identical in all sequences within the alignment, “:” indicates 
conserved substitutions, and “.” indicates semiconserved substitutions. Protein sequences 
for Homo sapiens (accession number NP_031401.1), Drosophila melanogaster (accession 
number NM_058051), and Mus musculus (accession number sp | Q921F2.1) were 
retrieved from NCBI. 
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A2. Protein sequence alignment of Drosophila melanogaster IK2 and Homo sapiens 
TBK1. Alignment performed in Clustral Omega 
 
Drosophila      MSFLRGSVSYVWCTTSVLGKGATGSVFQGVNKITGESVAVKTFNPYSHMRPADVQMREFE 60 
Homo            ---MQSTSNHLWLLSDILGQGATANVFRGRHKKTGDLFAIKVFNNISFLRPVDVQMREFE 57 
Mus             ---MQSTSNHLWLLSDILGQGATANVFRGRHKKTGDLYAVKVFNNISFLRPVDVQMREFE 57 
                   ::.: .::*  :.:**:***..**:* :* **:  *:*.**  *.:**.******** 
 
Drosophila      ALKKVNHENIVKLLAIEEDQEGRGKVIVMELCTGGSLFNILDDPENSYGLPEHEFLLVLE 120 
Homo            VLKKLNHKNIVKLFAIEEETTTRHKVLIMEFCPCGSLYTVLEEPSNAYGLPESEFLIVLR 117 
Mus             VLKKLNHKNIVKLFAIEEETTTRHKVLIMEFCPCGSLYTVLEEPSNAYGLPESEFLIVLR 117 
                .***:**:*****:****:   * **::**:*  ***:.:*::*.*:***** ***:**. 
 
Drosophila      HLCAGMKHLRDNKLVHRDLKPGNIMKFISEDGQTIYKLTDFGAARELEDNQPFASLYGTE 180 
Homo            DVVGGMNHLRENGIVHRDIKPGNIMRVIGEDGQSVYKLTDFGAARELEDDEQFVSLYGTE 177 
Mus             DVVGGMNHLRENGIVHRDIKPGNIMRVIGEDGQSVYKLTDFGAARELEDDEQFVSLYGTE 177 
                .: .**:***:* :****:******:.*.****::**************:: *.****** 
 
Drosophila      EYLHPDLYERAVLRKSIQRSFTANVDLWSIGVTLYHVATGNLPFRPFGGR-KNRETMHQI 239 
Homo            EYLHPDMYERAVLRKDHQKKYGATVDLWSIGVTFYHAATGSLPFRPFEGPRRNKEVMYKI 237 
Mus             EYLHPDMYERAVLRKDHQKKYGATVDLWSVGVTFYHAATGSLPFRPFEGPRRNKEVMYKI 237 
                ******:********. *:.: *.*****:***:**.***.****** *  :*:*.*::* 
 
Drosophila      TTKKASGVISGTQLSENGPIEWSTTLPPHAHLSQGLKTLVTPLLAGLLEENREKTWSFDR 299 
Homo            ITGKPSGAISGVQKAENGPIDWSGDMPVSCSLSRGLQVLLTPVLANILEADQEKCWGFDQ 297 
Mus             ITGKPSGAISGVQKAENGPIDWSGDMPLSCSLSQGLQALLTPVLANILEADQEKCWGFDQ 297 
                 * * **.***.* :*****:**  :*  . **:**:.*:**:**.:** ::** *.**: 
 
Drosophila      FFHEVTLILRKRVIHVFFTNRTSSVEVFLEPDEQIDNFRERIFLQTEVPLEKQILLFNNE 359 
Homo            FFAETSDILHRMVIHVFSLQQMTAHKIYIHSYNTATIFHELVYKQTKIISSNQELIYEGR 357 
Mus             FFAETSDVLHRMVIHVFSLQHMTAHKIYIHSYNTAAVFHELVYKQTKIVSSNQELIYEGR 357 
                ** *.: :*:: *****  :: :: ::::.  :    *:* :: **::  .:* *:::.. 
 
Drosophila      HLEKKVTPRTIAKAFPATTTDQPIFLYSNDDNNVQLPQQLDLPKFPVFPPNVSVENDASL 419 
Homo            RL--VLEPGRLAQHFPKTTEENPIFVVSREPLNTI-GLIYEKISLPKVHPRYDLDGDASM 414 
Mus             RL--VLELGRLAQHFPKTTEENPIFVTSREQLNTV-GLRYEKISLPKIHPRYDLDGDASM 414 
                :*   :    :*: ** ** ::***: *.:  *.      :  .:* . *. .::.***: 
 
Drosophila      AKSACSVGHECKRRVDIFTSMDILIKKGVEHFIEMLVTTITLLLKKTES--------FDN 471 
Homo            AKAITGVVCYACRIASTLLLYQELMRKGIRWLIELIKDDYNETVHKKTEVVITLDFCIRN 474 
Mus             AKAVTGVVCYACRTASTLLLYQELMRKGVRWLVELVKDDYNETVHKKTEVVITLDFCIRN 474 
                **:  .*   . * .. :   : *::**:. ::*::    .  ::*. .        : * 
 
Drosophila      LLSTVIDYADVVHSMARVTKGDQEIKTLLTALENVKSDFDGAADVISQMHKHFVIDDELN 531 
Homo            IEKTVKVYEKLMKINLE-AAELGEISDIHTKLLRLSSSQGTIETSLQDIDSRLSPGGSLA 533 
Mus             IEKTVKVYEKLMKVNLE-AAELGEISDIHTKLLRLSSSQGTIESSLQDISSRLSPGGLLA 533 
                : .**  * .:::   . :    **. : * * .:.*. .     :.:: .::  .. *  
 
Drosophila      DQWTSSMHGKKCPCKTRASAQAKYLVERLRDSWQHLLRDRATRTLTYNDEQFHALEKIKV 591 
Homo            DAWAHQEGT---HPKDRNVEKLQVLLNCMTEIYYQFKKDKAERRLAYNEEQIHKFDKQKL 590 
Mus             DTWAHQEGT---HPRDRNVEKLQVLLNCITEIYYQFKKDKAERRLAYNEEQIHKFDKQKL 590 
                * *: .        : *   : : *:: : : : :: :*:* * *:**:**:* ::* *: 
 
Drosophila      DHNGKRIKALLLDNVNPTVAQIAECLADWYKLAQTVYLKTQILE--KDVRDCERKLN--- 646 
Homo            YYHATKAMTHFTDECVKKYEAFLNKSEEWIRKMLH--LRKQLLSLTNQCFDIEEEVSKYQ 648 
Mus             YYHATKAMSHFSEECVRKYEAFKDKSEEWMRKMLH--LRKQLLSLTNQCFDIEEEVSKYQ 648 
                 ::..:  : : ::   .   : :   :* :      *:.*:*.  ::  * *.::.    
 
Drosophila      ----GI----RDELYHVKSELKLDVDTKTINNNNQLAKIEERNRLRVMQQQQQEVMAVMR 698 
Homo            EYTNELQETLPQKMFTASSGIKHTMTPI-YPSSNTLVEM--TLGMKKLKEEMEGVVKELA 705 
Mus             DYTNELQETLPQKMLAASGGVKHAMAPI-YPSSNTLVEM--TLGMKKLKEEMEGVVKELA 705 
                     :     :::  ... :*  :      ..* *.::     :: :::: : *:  :  
 
Drosophila      TNSDIISLLSKLGITNGSLESS-- 720 
Homo            ENNHILERFGSLTMDGGLRNVDCL 729 
Mus             ENNHILERFGSLTMDGGLRNVDCL 729 
                 *..*:. :..* : .*  : .   

 

Highlighted are the Pkinase domain (red text), Ubiquitin-like domain (turquoise), Coiled 
coil domain 1 (dark blue), Nuclear localization signal (grey) and Nuclear export signal 
(orange text). “*” indicates amino acids that are identical in all sequences within the 
alignment, “:” indicates conserved substitutions, and “.” indicates semiconserved 
substitutions. Protein sequences for Homo sapiens (accession number AAF05989.1), 
Drosophila melanogaster (accession number AAF53911.2), and Mus musculus (accession 
number AAF05990.1) were retrieved from NCBI. 
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A3. Protein sequence alignment of Drosophila melanogaster Ref(2)P and Homo sapiens 
p62. Alignment performed in Clustral Omega 
 
Drosophila      MPEKLL----------------------------KITYQGAGPQKKINAYLRMPSQNYTI 32 
Homo            MASLTVKAYLLGKEDAAREIRRFSFCCSPEPEAEAEAAAGPGPCERL------------- 47 
Mus             MASFTVKAYLLGKEEATREIRRFSFCFSPEPEAEAQAAAGPGPCERL------------- 47 
                * .  :                              :  * ** :::              
 
Drosophila      LRREIELYLFQERQLPKCDVRTFWIDADKDEIEI------------VNQNDYEIFLAKCE 80 
Homo            LSRVAALFP----ALRPGGFQAHYRDEDGDLVAFSSDEELTMAMSYVKDDIFRIYIKE-- 101 
Mus             LSRVAVLFP----TLRPGGFQAHYRDEDGDLVAFSSDEELTMAMSYVKDDIFRIYIKE-- 101 
                * *   *:      *   ..::.: * * * : :            *::: :.*:: :   
 
Drosophila      SNMHVQVAPLAPVEEPKATKQEGSSANAEAPSVDDPSNFTIHDAVECDGCGLAPLIGFRY 140 
Homo            ---------------KK-----ECRRDHRPPCAQEAPRNMVHPNVICDGCN-GPVVGTRY 140 
Mus             ---------------KK-----ECRREHRPPCAQEAPRNMVHPNVICDGCN-GPVVGTRY 140 
                                *      .  : . *..::  .  :*  * ****. .*::* ** 
 
Drosophila      KCVQCSNYDLCQKCELAHKHPEHLMLRMPTNNGPGM----VDAWFTGPGLGRRSGRRSRG 196 
Homo            KCSVCPDYDLCSVCEGKGLHRGHTKLAFPSPFGHLSEGFSHSRWLRK---------VKHG 191 
Mus             KCSVCPDYDLCSVCEGKGLHREHSKLIFPNPFGHLSDSFSHSRWLRK---------LKHG 191 
                **  * :****. **    *  *  * :*.  *        . *:            .:* 
 
Drosophila      HCPFQETNQADPAGEPARDSRRERRQARRHAGVLTQFVEMMTNLPLNTTTATAPAEPQKP 256 
Homo            HFGWPGWEMGPPGN----------------------------------------WSPRPP 211 
Mus             HFGWPGWEMGPPGN----------------------------------------WSPRPP 211 
                *  :   : . *..                                         .*: * 
 
Drosophila      KAAEQTESPPQAEPTVTAEKAAESEAKPTEPKKVNTDQSVPRTEDPVTTPRSTQPTTPVI 316 
Homo            RAGEAR-------PGPTAE----SASGPSEDPSV-------------------------N 235 
Mus             RAGDGR-------PCPTAE----SASAPPEDPNV-------------------------N 235 
                :*.:         *  ***    * : * *  .*                           
 
Drosophila      NLDNISQIVPPEYMSAGIEILNNFSEMFSKIIDTTEGGDSGIFAPSTTPSAENKKPEEQG 376 
Homo            FLKNVGESVAAALSPLGIEV----------DIDVEHGGKRSRLTPVSPESSS---TEEKS 282 
Mus             FLKNVGESVAAALSPLGIEV----------DIDVEHGGKRSRLTPTTPESSSTG-TEDKS 284 
                 *.*:.: *       ***:           **. .**. . ::* :  *:.    *::. 
 
Drosophila      QSSGQSGASSANQSAVPSAAPSANQSNVPSANQSATPSISGSIPDAQLETEPLNPKPSET 436 
Homo            --SSQPSSC--------CSDPSKPGGNVEG----ATQSLAEQMRKIALESE--------G 320 
Mus             --NTQPSSC--------SSEVSKPDGAGEG----PAQSLTEQMKKIALESV--------G 322 
                  . * .:.        .:  *   .   .     : *:: .: .  **:           
 
Drosophila      TTETEQERRRSDSLDPEWQLIDNAYSANNSNLINLDTTNPTAAPQEPVRDFGQLGELLRQ 496 
Homo            RPEEQMESDNCSGGDDDWTHLSSKEVD------------P---------S---TGELQSL 356 
Mus             QPEEQMESGNCSGGDDDWTHLSSKEVD------------P---------S---TGELQSL 358 
                  * : *  .... * :*  :..                *         .    ***    
 
Drosophila      HMNEEARVEQASANTQTAQVDTVSTSTSTTSVTTNSVGTSPAAPDDKRTVPV-----YHT 551 
Homo            QMPESE---------------------GP-----SSLDPSQEGPTGLKEAALYPHLPPEA 390 
Mus             QMPESE---------------------GP-----SSLDPSQEGPTGLKEAALYPHLPPEA 392 
                :* *.                      .      .*:. *  .* . : . :      .: 
 
Drosophila      DESINKSIHAMMAMGFSNEGAWLTQLLESVQGNISAALDVMNVSQNRN-- 599 
Homo            DPRLIESLSQMLSMGFSDEGGWLTRLLQTKNYDIGAALDTIQYSKHPPPL 440 
Mus             DPRLIESLSQMLSMGFSDEGGWLTRLLQTKNYDIGAALDTIQYSKHPPPL 442 
                *  : :*:  *::****:**.***:**:: : :*.****.:: *::   

 
Highlighted are the PB1 domain (red text), Zinc finger, ZZ type domain (yellow), 
Ubiquitin associated domain (red) and Nuclear localization signal (dark blue). “*” 
indicates amino acids that are identical in all sequences within the alignment, “:” indicates 
conserved substitutions, and “.” indicates semiconserved substitutions. Protein sequences 
for Homo sapiens (accession number AAH17222.1), Drosophila melanogaster (accession 
number sp | P14199.2), and Mus musculus (accession number sp | Q64337.1) were 
retrieved from NCBI. 
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A4. Protein sequence alignment of Drosophila melanogaster TER94 and Homo sapiens 
VCP. Alignment performed in Clustral Omega 
 
Drosophila      ---MADSKGEDLATAILKRKDRPNRLIVEEAQNDDNSVVSLSQAKMDELQLFRGDTVILK 57 
Homo            MASGADSKGDDLSTAILKQKNRPNRLIVDEAINEDNSVVSLSQPKMDELQLFRGDTVLLK 60 
Mus             MASGADSKGDDLSTAILKQKNRPNRLIVDEAINEDNSVVSLSQPKMDELQLFRGDTVLLK 60 
                    *****:**:*****:*:*******:** *:********* *************:** 
 
Drosophila      GKRRKETVCIVLSDDTCPDEKIRMNRVVRNNLCVHLSDVVSVQSCPDVKYGKRVRILPID 117 
Homo            GKKRREAVCIVLSDDTCSDEKIRMNRVVRNNLRVRLGDVISIQPCPDVKYGKRIHVLPID 120 
Mus             GKKRREAVCIVLSDDTCSDEKIRMNRVVRNNLRVRLGDVISIQPCPDVKYGKRIHVLPID 120 
                **:*:*:********** ************** *:*.**:*:* *********:::**** 
 
Drosophila      ESTEGVTGNLFEIYLKPYFLEAYRPIHMGDNFIVRAAMRPIEFKVVLTDPEPYCIVAPET 177 
Homo            DTVEGITGNLFEVYLKPYFLEAYRPIRKGDIFLVRGGMRAVEFKVVETHPSPYCIVAPDT 180 
Mus             DTVEGITGNLFEVYLKPYFLEAYRPIRKGDIFLVRGGMRAVEFKVVETDPSPYCIVAPDT 180 
                ::.**:******:*************: ** *:**..** :***** *.*.*******:* 
 
Drosophila      VIFCDGDPIKREEEEESLNAVGYDDIGGCRKQLAQIKEMVELPLRHPSLFKAIGVKPPRG 237 
Homo            VIHCEGEPIKREDEEESLNEVGYDDIGGCRKQLAQIKEMVELPLRHPALFKAIGVKPPRG 240 
Mus             VIHCEGEPIKREDEEESLNEVGYDDIGGCRKQLAQIKEMVELPLRHPALFKAIGVKPPRG 240 
                **.*:*:*****:****** ***************************:************ 
 
Drosophila      ILMYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEAEKNSPAI 297 
Homo            ILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEAEKNAPAI 300 
Mus             ILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEAEKNAPAI 300 
                **:*****************************************************:*** 
 
Drosophila      IFIDEIDAIAPKRDKTHGEVERRIVSQLLTLMDGMKKSSHLIVMAATNRPNSIDPALRRF 357 
Homo            IFIDELDAIAPKREKTHGEVERRIVSQLLTLMDGLKQRAHVIVMAATNRPNSIDPALRRF 360 
Mus             IFIDELDAIAPKREKTHGEVERRIVSQLLTLMDGLKQRAHVIVMAATNRPNSIDPALRRF 360 
                *****:*******:********************:*: :*:******************* 
 
Drosophila      GRFDREIDIGIPDATGRLEVLRIHTKNMKLHDDVDLEQIAAESHGHVGADLASLCSEAAL 417 
Homo            GRFDREVDIGIPDATGRLEILQIHTKNMKLADDVDLEQVANETHGHVGADLAALCSEAAL 420 
Mus             GRFDREVDIGIPDATGRLEILQIHTKNMKLADDVDLEQVANETHGHVGADLAALCSEAAL 420 
                ******:************:*:******** *******:* *:*********:******* 
 
Drosophila      QQIREKMDLIDLEDDKIDAEVLASLAVTMENFRYAMTKSSPSALRETVVEVPNTTWTDIG 477 
Homo            QAIRKKMDLIDLEDETIDAEVMNSLAVTMDDFRWALSQSNPSALRETVVEVPQVTWEDIG 480 
Mus             QAIRKKMDLIDLEDETIDAEVMNSLAVTMDDFRWALSQSNPSALRETVVEVPQVTWEDIG 480 
                * **:*********:.*****: ******::**:*:::*.************:.** *** 
 
Drosophila      GLESVKKELQELVQYPVEHPDKFLKFGMQPSRGVLFYGPPGCGKTLLAKAIANECQANFI 537 
Homo            GLEDVKRELQELVQYPVEHPDKFLKFGMTPSKGVLFYGPPGCGKTLLAKAIANECQANFI 540 
Mus             GLEDVKRELQELVQYPVEHPDKFLKFGMTPSKGVLFYGPPGCGKTLLAKAIANECQANFI 540 
                ***.**:********************* **:**************************** 
 
Drosophila      SVKGPELLTMWFGESEANVRDIFDKARSAAPCVLFFDELDSIAKARGGNVGDAGGAADRV 597 
Homo            SIKGPELLTMWFGESEANVREIFDKARQAAPCVLFFDELDSIAKARGGNIGDGGGAADRV 600 
Mus             SIKGPELLTMWFGESEANVREIFDKARQAAPCVLFFDELDSIAKARGGNIGDGGGAADRV 600 
                *:******************:******.*********************:**.******* 
 
Drosophila      INQILTEMDGMGAKKNVFIIGATNRPDIIDPAILRPGRLDQLIYIPLPDDKSREAILKAN 657 
Homo            INQILTEMDGMSTKKNVFIIGATNRPDIIDPAILRPGRLDQLIYIPLPDEKSRVAILKAN 660 
Mus             INQILTEMDGMSTKKNVFIIGATNRPDIIDPAILRPGRLDQLIYIPLPDEKSRVAILKAN 660 
                ***********.:************************************:*** ****** 
 
Drosophila      LRKSPLAKEVDLTYIAKVTQGFSGADLTEICQRACKLAIRQAIEAEIRREKERAENQNSA 717 
Homo            LRKSPVAKDVDLEFLAKMTNGFSGADLTEICQRACKLAIRESIESEIRRERERQTN-PSA 719 
Mus             LRKSPVAKDVDLEFLAKMTNGFSGADLTEICQRACKLAIRESIESEIRRERERQTN-PSA 719 
                *****:**:*** ::**:*:********************::**:*****:**  *  ** 
 
Drosophila      MDMDEDDPVPEITSAHFEEAMKFARRSVSDNDIRKYEMFAQTLQQSRGFGQNFRFPGQTG 777 
Homo            MEVEEDDPVPEIRRDHFEEAMRFARRSVSDNDIRKYEMFAQTLQQSRGFGS-FRFPSGNQ 778 
Mus             MEVEEDDPVPEIRRDHFEEAMRFARRSVSDNDIRKYEMFAQTLQQSRGFGS-FRFPSGNQ 778 
                *:::********   ******:****************************. ****. .  
 
Drosophila      ----NTSGSGNNLPVNSPGDNGDDDLYS 801 
Homo            GGAGPSQGSGGGTGGSVYTEDNDDDLYG 806 
Mus             GGAGPSQGSGGGTGGSVYTEDNDDDLYG 806 
                     :.***..   .   ::.*****. 

 
Highlighted are the CDC48 N-terminal subdomain (pink text), CDC48 domain 2 (dark 
blue), AAA+ ATPase domain (dark purple), ATPase AAA type core domain (blue text), 
AAA ATPase AAAA+ lid domain (turquoise), Vps4 oligomerization C-terminal domain 
(red), Nuclear localization signal (yellow) and Nuclear export signal (orange text).  “*” 
indicates amino acids that are identical in all sequences within the alignment, “:” indicates 
conserved substitutions, and “.” indicates semiconserved substitutions. Protein sequences 
for Homo sapiens (accession number AAI21795.1), Drosophila melanogaster (accession 
number AAF58863.1), and Mus musculus (accession number AAH43053.1) were 
retrieved from NCBI. 
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Appendix B – Supplemental Data for Chapter 3  
 
Table B1. Completed list of genotypes used in the analysis of altered 
expression of TBPH. 
Genotype Abbreviation Reference  
Control Lines   
w; P{UAS-lacZ.B}meltBg4-1-2 UAS-lacZ Brand et al, 1993 
Driver Lines    
w; GMR-Gal412 GMR-Gal4 Freeman, 1996 
w[*]; P{w[+mW.hs]=GAL4-arm.S}11 arm-Gal4 Sanson et al., 1996 
P{w[+mW.hs]=GawB}elav[C155] elav-Gal4 Lin & Goodman, 1994 
w[*]; P{w[+mC]=ple-GAL4.F}3 TH-Gal4 Inamdar et al., 2014 
w[1118]; P{w[=mC]=Ddc-Gal4.L}4.3D ddc-Gal4HL4.3D Li et al., 2000 
w;[1118]; P{w[+mC]=Ddc-
GAL4.L}Lmpt[4.36] 

ddc-Gal4HL4.36 Li et al., 2000 

w[*];P{w[+mW.hs]=GawB}D42 D42-Gal4 Parkes et al.,1998 
Responder Lines   
y[1] w[67c23]; P{w[=mC] 
y[+mDint2]=EPgy2}TBPH [EY10530] 

UAS-
TBPHEY10530 

Bellen et al., 2011 

y[1] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMS05194}attP2 

UAS-TBPH-
RNAiHMS05194 

Perkins et al., 2015 

y[1] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMS01932}attP40 

UAS-TBPH-
RNAiHMS01932 

Perkins et al, 2015 

 
Table B2. Log-rank statistical analysis of fly longevity with altered ubiquitous 
expression of TBPH through the arm-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

arm-Gal4;UAS-lacZ 284 60 N/A N/A N/A 
arm-Gal4;UAS-TBPH-
RNAiHMS05194 

221 62 0.0001 13.20 Yes (↑) 
 

arm-Gal4;UAS-TBPH-
RNAiHMS01932 

208 34 <0.0001 122.9 Yes (↓) 
 

arm-Gal4;UAS-
TBPHEY10530 

256 60 0.1215 0.8218 No 
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Table B3. Log-rank statistical analysis of fly longevity with altered expression of 
TBPH through the elav-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

elav-Gal4;UAS-lacZ 298 78 N/A N/A N/A 
elav-Gal4;UAS-TBPH-
RNAiHMS05194 

281 80 0.2278 0.1654 No 

elav-Gal4;UAS-TBPH-
RNAiHMS01932 

33 48 <0.0001 294.5 Yes (↓) 

elav-Gal4;UAS-
TBPHEY10530 

291 68 <0.0001 106.8 Yes (↓) 

 
Table B4. Log-rank statistical analysis of fly longevity with altered expression of 
TBPH through the D42-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

D42-Gal4;UAS-lacZ 273 70 N/A N/A N/A 
D42-Gal4;UAS-TBPH-
RNAiHMS05194 

264 76 <0.0001 46.24 Yes (↑) 
 

D42-Gal4;UAS-TBPH-
RNAiHMS01932 

290 34 <0.0001 529.2 Yes (↓) 

D42-Gal4;UAS-
TBPHEY10530 

274 66 0.0279 2.989 Yes (↓) 

 
Table B5. Statistical analysis of locomotor ability with altered expression of TBPH 
through the D42-Gal4 transgene. 
Genotype Slope (k) Standard 

Error 
95% 
Confidence 
Interval  

P-value Significant  

D42-Gal4;UAS-lacZ 0.03222 0.005270 0.02153 – 
0.04509 

N/A N/A 
 

D42-Gal4;UAS-TBPH-
RNAiHMS05194 

0.02898 0.005633 0.01846 – 
0.04088 

0.0172 Yes (↓) 

D42-Gal4;UAS-TBPH-
RNAiHMS01932 

0.02456 0.006742 
 

0.0098555-
0.03938 

<0.0001 Yes (↓) 

D42-Gal4;UAS-
TBPHEY10530 

0.05049 0.009656 0.03294 – 
0.07035 

<0.0001 Yes (↓) 
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Table B6. Log-rank statistical analysis of fly longevity with altered expression of 
TBPH through the ddc-Gal4HL4.3D transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

ddc-Gal4HL4.3D;UAS-lacZ 293 70 N/A N/A N/A 
ddc-Gal4HL4.3D;UAS-
TBPH-RNAiHMS05194 

296 78 <0.0001 43.32 Yes (↑) 
 

ddc-Gal4HL4.3D;UAS-
TBPH-RNAiHMS01932 

298 66 <0.0001 34.26 Yes (↓) 

ddc-Gal4HL4.3D;UAS-
TBPHEY10530 

271 64 <0.0001 43.93 No 

 
Table B7. Statistical analysis of locomotor ability altered expression of TBPH 
through the ddc-Gal4HL4.3D transgene. 
Genotype Slope (k) Standard 

Error 
95% 
Confidence 
Interval  

P-value Significant  

ddc-Gal4HL4.3D;UAS-
lacZ 

0.01459 0.004440 0.006237 – 
0.02363 

N/A N/A 
 

ddc-Gal4HL4.3D;UAS-
TBPH-RNAiHMS05194 

0.02686 0.003317 0.02088 – 
0.03345 

0.0165 Yes (↑) 

ddc-Gal4HL4.3D;UAS-
TBPH-RNAiHMS01932 

0.008222 0.004739 -0.001686 – 
0.01875 

0.5289 No 

ddc-Gal4HL4.3D;UAS-
TBPHEY10530 

0.01680 0.004170 0.008046 – 
0.02633 

0.2774 No 

 
Table B8. Log-rank statistical analysis of fly longevity with altered expression of 
TBPH through the TH-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

TH-Gal4;UAS-lacZ 290 82 N/A N/A N/A 
TH-Gal4;UAS-TBPH-
RNAiHMS05194 

283 84 0.0003 10.60 Yes (↑) 
 

TH-Gal4;UAS-TBPH-
RNAiHMS01932 

280 74 <0.0001 58.51 Yes (↓) 

TH-Gal4;UAS-TBPHEY10530 263 66 <0.0001 108.1 Yes (↓) 
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Table B9. Statistical analysis of locomotor ability with altered expression of TBPH 
through the TH-Gal4 transgene. 
Genotype Slope 

(k) 
Standard 
Error 

95% 
Confidence 
Interval  

P-value Significant  

TH-Gal4;UAS-lacZ 0.02694 0.005922 0.01597 – 
0.03987 

N/A N/A 
 

TH-Gal4;UAS-TBPH-
RNAiHMS05194 

0.01991 0.004162 0.01226 – 
0.02832 

0.4692 No 

TH-Gal4;UAS-TBPH-
RNAiHMS01932 

0.02053 0.004042 0.01279 – 
0.02905 

0.6299 No 

TH-Gal4;UAS-
TBPHEY10530 

0.02341 0.004877 0.01407 – 
0.03375 

0.2223 No 

 
Table B10. Log-rank statistical analysis of fly longevity with altered neuronal 
expression of TBPH through the ddc-Gal4HL4.36 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

P-value Chi-
Square 
value 

Significant 

ddc-Gal4HL4.36;UAS-lacZ 284 79 N/A N/A N/A 
ddc-Gal4HL4.36;UAS-TBPH-
RNAiHMS01932 

263 82 0.1986 0.2797 No 

 
Table B11. Statistical analysis of locomotor ability with directed neuronal expression 
with TBPH through the ddc-Gal4HL4.36 transgene. 
Genotype Slope (k) Standard 

Error 
95% 
Confidence 
Interval  

P-value Significant  

ddc-Gal4HL4.36;UAS-
lacZ 

0.03476 0.007093 0.02126 – 
0.04966 

N/A N/A 
 

ddc-Gal4HL4.36;UAS-
TBPH-RNAiHMS01932 

0.03709 0.007215 0.02357 – 
0.05204 

0.6115 No 

 
Table B12. Summary of ommatidia number when TBPH expression in manipulated 
in the compound eye through the GMR-Gal4 transgene. 
Genotype Sample 

Size (n) 
Mean  P-value  Significant  

GMR-Gal4;UAS-lacZ 10 710.3 N/A N/A 
GMR-Gal4;UAS-TBPHEY10530 10 674.5 0.0027 Yes (↓)  
GMR-Gal4;UAS-TBPH-RNAi HMS05194 10 676.1 0.0071 Yes (↓) 
GMR-Gal4;UAS-TBPH-RNAiHMS01932 10 630.4 <0.0001 Yes (↓) 
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Table B13. Summary of bristle number when TBPH expression in manipulated in 
the compound eye through the GMR-Gal4 transgene. 
Genotype Sample 

Size (n) 
Mean  P-value  Significant  

GMR-Gal4;UAS-lacZ 10 560.1 N/A N/A 
GMR-Gal4;UAS-TBPHEY10530 10 520.2 0.0196 Yes (↓)  
GMR-Gal4;UAS-TBPH-RNAi HMS05194 10 478.6 0.0001 Yes (↓)  
GMR-Gal4;UAS-TBPH-RNAiHMS01932 10 418.5 <0.0001 Yes (↓) 
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Appendix C – Supplemental Data for Chapter 4 
 
Table C1. Completed list of genotypes used in the analysis of altered 
expression of IK2. 
Genotype Abbreviation Reference  
Control Lines   
w; P{UAS-lacZ.B}meltBg4-1-2 UAS-lacZ Brand et al, 1993 
Driver Lines    
w; GMR-Gal412 GMR-Gal4 Freeman, 1996 
w[*]; P{w[+mW.hs]=GAL4-arm.S}11 arm-Gal4 Sanson et al., 1996 
P{w[+mW.hs]=GawB}elav[C155] elav-Gal4 Lin & Goodman, 1994 
w[*]; P{w[+mC]=ple-GAL4.F}3 TH-Gal4 Inamdar et al., 2014 
w[1118]; P{w[=mC]=Ddc-Gal4.L}4.3D ddc-Gal4HL4.3D Li et al., 2000 
w;[1118]; P{w[+mC]=Ddc-
GAL4.L}Lmpt[4.36] 

ddc-Gal4HL4.36 Li et al., 2000 

w[*];P{w[+mW.hs]=GawB}D42 D42-Gal4 Parkes et al.,1998 
Responder Lines   
y[1] w[67c23]; P{w[=mC] 
y[+mDint2]=EPgy2}CG31678[EY09774] 

UAS-IK2EY09774 Bellen et al., 2004 

y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8] = 
TRiP.HMS01188}attP2 

UAS-IK2-
RNAiHMS01188 

Perkins et al., 2015 

y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8] = 
TRiP.GL00160}attP2 

UAS-IK2-
RNAiGL00160 

Perkins et al, 2015 

 
Table C2. Log-rank statistical analysis of fly longevity with altered ubiquitous 
expression with IK2 through the arm-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

arm-Gal4;UAS-lacZ 284 60 N/A N/A N/A 
arm-Gal4;UAS-IK2-
RNAiGL00160 

148 66 <0.0001 18.61 Yes (↑) 
 

arm-Gal4;UAS-IK2-
RNAiHMS01188 

276 70 <0.0001 50.00 Yes (↑) 
 

arm-Gal4;UAS-IK2EY09774 261 54 <0.0001 23.98 Yes (↓) 
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Table C3. Log-rank statistical analysis of fly longevity with altered expression of  
IK2 through the elav-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

P-value Chi-
Square 
value 

Significant 

elav-Gal4;UAS-lacZ 298 78 N/A N/A N/A 
elav-Gal4;UAS-IK2-
RNAiGL00160 

305 74 <0.0001 41.05 Yes (↓) 

elav-Gal4;UAS-IK2-
RNAiHMS01188 

299 76 0.0005 9.930 Yes (↓) 

elav-Gal4;UAS-IK2EY09774 221 54 <0.0001 435.7 Yes (↓) 
 
Table C4. Log-rank statistical analysis of fly longevity with altered expression of IK2 
through the D42-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

D42-Gal4;UAS-lacZ 273 70 N/A N/A N/A 
D42-Gal4;UAS-IK2-
RNAiGL00160 

321 78 <0.0001 75.58 Yes (↑) 
 

D42-Gal4;UAS-IK2-
RNAiHMS01188 

330 76 <0.0001 59.05 Yes (↑) 
 

D42-Gal4;UAS-IK2EY09774 267 60 <0.0001 162.0 Yes (↓) 
 
 
Table C5. Statistical analysis of locomotor ability with altered expression of IK2 
through the D42-Gal4 transgene. 
Genotype Slope (k) Standard 

Error 
95% 
Confidence 
Interval  

P-value Significant  

D42-Gal4;UAS-lacZ 0.03222 0.005270 0.02153 – 
0.04509 

N/A N/A 
 

D42-Gal4;UAS-IK2-
RNAiGL00160 

0.04611 0.004191 0.03809 – 
0.05493 

<0.0001 Yes (↓) 

D42-Gal4;UAS-IK2-
RNAiHMS01188 

0.03143 0.004853 0.02259 – 
0.04146 

0.0001 Yes (↓) 

D42-Gal4;UAS-
IK2EY09774 

0.01844 0.006784 0.006088 – 
0.0317 

0.0417 Yes (↓) 
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Table C6. Log-rank statistical analysis of fly longevity with altered expression of IK2 
through the ddc-Gal4HL4.3D transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

ddc-Gal4HL4.3D;UAS-lacZ 293 70 N/A N/A N/A 
ddc-Gal4HL4.3D;UAS-IK2-
RNAiGL00160 

314 78 <0.0001 17.17 Yes (↑) 
 

ddc-Gal4HL4.3D;UAS-IK2-
RNAiHMS01188 

300 64 <0.0001 17.70 Yes (↓) 

 
Table C7. Statistical analysis of locomotor ability with altered expression of IK2 
through the ddc-Gal4HL4.3D transgene. 
Genotype Slope 

(k) 
Standard 
Error 

95% 
Confidence 
Interval  

P-value Significant  

ddc-Gal4HL4.3D;UAS-lacZ 0.01459 0.004440 0.006237 – 
0.02363 

N/A N/A 
 

ddc-Gal4HL4.3D;UAS-IK2-
RNAiGL00160 

0.06960 0.01194 0.04872 – 
0.09401 

<0.0001 Yes (↓) 

ddc-Gal4HL4.3D;UAS-IK2-
RNAiHMS01188 

0.01919 0.004019 0.01164 – 
0.02746 

0.4194 No 

 
Table C8. Log-rank statistical analysis of fly longevity with altered dopaminergic 
neuron expression with IK2 through the TH-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

TH-Gal4;UAS-lacZ 290 82 N/A N/A N/A 
TH-Gal4;UAS-IK2-
RNAiGL00160 

324 84 <0.0001 48.53 Yes (↑) 
 

TH-Gal4;UAS-IK2-RNAi 
HMS01188 

280 72 <0.0001 34.01 Yes (↓) 

TH-Gal4;UAS-IK2EY09774 103 54 <0.0001 231.7 Yes (↓) 
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Table C9. Statistical analysis of locomotor ability with altered dopaminergic neuron 
expression with IK2 through the TH-Gal4 transgene. 
Genotype Slope (k) Standard 

Error 
95% 
Confidence 
Interval  

P-value Significant  

TH-Gal4;UAS-lacZ 0.02694 0.005922 0.01597 – 
0.03987 

N/A N/A 
 

TH-Gal4;UAS-IK2-
RNAiGL00160 

0.02329 0.004447 0.01500 – 
0.03234 

0.1592 No 

TH-Gal4;UAS-IK2-
RNAiHMS01188 

0.01837 0.003970 0.01072 – 
0.02651 

0.1536 No 

TH-Gal4;UAS-
IK2EY09774 

0.01248 0.007808 -0.003747 – 
0.03021 

0.2191 No 

 
Table C10. Summary of ommatidia number when IK2 expression in manipulated in 
the compound eye though the GMR-Gal4 transgene. 
Genotype Sample 

Size (n) 
Mean  P-value  Significant  

GMR-Gal4;UAS-lacZ 10 710.3 N/A N/A 
GMR-Gal4;UAS-IK2EY09774 10 689.5 0.0618 No  
GMR-Gal4;UAS-IK2-RNAiHMS01188 10 654.3 <0.0001 Yes (↓)  
GMR-Gal4;UAS-IK2-RNAiGL00160 10 661.6 0.0001 Yes (↓) 

 
Table C11. Summary of bristle number when IK2 expression in manipulated in the 
compound eye though the GMR-Gal4 transgene. 
Genotype Sample 

Size (n) 
Mean  P-value  Significant  

GMR-Gal4;UAS-lacZ 10 560.1 N/A N/A 
GMR-Gal4;UAS-IK2EY09774 10 516.8 0.0355 Yes (↓)  
GMR-Gal4;UAS-IK2-RNAiHMS01188 10 455.5 <0.0001 Yes (↓) 
GMR-Gal4;UAS-IK2-RNAiGL00160 10 480.2 <0.0001 Yes (↓) 
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Appendix D – Supplemental Data for Chapter 5  
 
Table D1. Completed list of genotypes used in the analysis of altered 
expression of Ref(2)P. 
Genotype Abbreviation Reference  
Control Lines   
w; P{UAS-lacZ.B}meltBg4-1-2 UAS-lacZ Brand et al, 1993 
Driver Lines    
w; GMR-Gal412 GMR-Gal4 Freeman, 1996 
w[*]; P{w[+mW.hs]=GAL4-arm.S}11 arm-Gal4 Sanson et al., 1996 
P{w[+mW.hs]=GawB}elav[C155] elav-Gal4 Lin & Goodman, 1994 
w[*]; P{w[+mC]=ple-GAL4.F}3 TH-Gal4 Inamdar et al., 2014 
w[1118]; P{w[=mC]=Ddc-Gal4.L}4.3D ddc-Gal4HL4.3D Li et al., 2000 
w;[1118]; P{w[+mC]=Ddc-
GAL4.L}Lmpt[4.36] 

ddc-Gal4HL4.36 Li et al., 2000 

w[*];P{w[+mW.hs]=GawB}D42 D42-Gal4 Parkes et al., 1998 
Responder Lines   
y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMS00551}attP2 

UAS-Ref(2)P-
RNAiHMS00551 

Perkins et al., 2015 

y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMS00938}attP2 

UAS-Ref(2)P- 
RNAiHMS00938 

Perkins et al., 2015 

 
Table D2. Log-rank statistical analysis of fly longevity with altered expression of 
Ref(2)P through the arm-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

arm-Gal4;UAS-lacZ 284 60 N/A N/A N/A 
arm-Gal4;UAS-Ref(2)P-
RNAiHMS00938 

286 88 <0.0001 384.1 Yes (↑) 
 

arm-Gal4;UAS-Ref(2)P-
RNAiHMS00551 

240 80 <0.0001 173.0 Yes (↑) 
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Table D3. Log-rank statistical analysis of fly longevity with altered expression of 
Ref(2)P through the elav-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

elav-Gal4;UAS-lacZ 298 78 N/A N/A N/A 
elav-Gal4;UAS-Ref(2)P-
RNAiHMS00938 

251 86 <0.0001 77.91 Yes (↑) 
 

elav-Gal4;UAS-Ref(2)P-
RNAiHMS00551 

224 82 0.0009 9.758 Yes (↑) 
 

 
Table D4. Log-rank statistical analysis of fly longevity with altered expression of 
Ref(2)P though the D42-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

D42-Gal4;UAS-lacZ 273 
 

70 N/A N/A N/A 

D42-Gal4;UAS-Ref(2)P-
RNAiHMS00938 

303 82 <0.0001 146.8 Yes (↑) 
 

D42-Gal4;UAS-Ref(2)P-
RNAiHMS00551 

252 86 <0.0001 210.4 Yes (↑) 
 

 
Table D5. Statistical analysis of locomotor ability with altered expression of Ref(2)P 
though the D42-Gal4 transgene. 
Genotype Slope (k) Standard 

Error 
95% 
Confidence 
Interval  

P-value Significant  

D42-Gal4;UAS-lacZ 0.03222 0.005270 0.02153 – 
0.04509 

N/A N/A 
 

D42-Gal4;UAS-
Ref(2)P-RNAiHMS00938 

0.05212 0.005511 0.04145 – 
0.06364 

0.0421 Yes (↓) 

D42-Gal4;UAS-
Ref(2)P-RNAiHMS00551 

0.03964 0.004145 0.03179 – 
0.04801 

0.3181 No 
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Table D6. Log-rank statistical analysis of fly longevity with altered expression of 
Ref(2)P though the TH-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

TH-Gal4;UAS-lacZ 290 82 N/A N/A N/A 
TH-Gal4;UAS-Ref(2)P-
RNAiHMS00938 

278 86 <0.0001 48.56 Yes (↑) 
 

TH-Gal4;UAS-Ref(2)P-
RNAiHMS00551 

263 88 <0.0001 88.21 Yes (↑) 
 

 
Table D7. Statistical analysis of locomotor ability with altered expression of Ref(2)P 
though the TH-Gal4 transgene. 
Genotype Slope (k) Standard 

Error 
95% 
Confidence 
Interval  

P-value Significant  

TH-Gal4;UAS-lacZ 0.02694 0.005922 0.01597 – 
0.03987 

N/A N/A 
 

TH-Gal4;UAS-Ref(2)P-
RNAiHMS00938 

0.05106 0.007466 0.03756 – 
0.06621 

0.0261 Yes (↓) 

TH-Gal4;UAS-Ref(2)P-
RNAiHMS00551 

0.03898 0.005173 0.02927 – 
0.04949 

0.1740 No 

 
Table D8. Log-rank statistical analysis of fly longevity with altered expression of 
Ref(2)P through the ddc-Gal4HL4.3D transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

ddc-Gal4HL4.3D;UAS-lacZ 293 70 N/A N/A N/A 
ddc-Gal4HL4.3D;UAS-
Ref(2)P-RNAiHMS00938 

249 94 <0.0001 220.0 Yes (↑) 
 

ddc-Gal4HL4.3D;UAS-
Ref(2)P-RNAiHMS00551 

241 74 <0.0001 22.92 Yes (↑) 
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Table D9. Statistical analysis of locomotor ability with directed neuronal expression 
of Ref(2)P through the ddc-Gal4HL4.3D transgene. 
Genotype Slope (k) Standard 

Error 
95% 
Confidence 
Interval  

P-value Significant  

ddc-Gal4HL4.3D;UAS-
lacZ 

0.01459 0.004440 0.006237 – 
0.02363 

N/A N/A 
 

ddc-Gal4HL4.3D;UAS-
Ref(2)P-RNAiHMS00938 

0.05879 0.008876 0.04246 – 
0.07724 

0.0002 Yes (↓) 

ddc-Gal4HL4.3D;UAS-
Ref(2)P-RNAiHMS00551 

0.06091 0.008299 0.04544 – 
0.07834 

<0.0001 Yes (↓) 

 
Table D10. Log-rank statistical analysis of fly longevity with altered expression of 
Ref(2)P though the ddc-Gal4HL4.36 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

ddc-Gal4HL4.36;UAS-lacZ 284 79 N/A N/A N/A 
ddc-Gal4HL4.36;UAS-
Ref(2)P-RNAiHMS00938 

263 88 <0.0001 27.49 Yes (↑) 
 

 
Table D11. Statistical analysis of locomotor ability with altered expression of Ref(2)P 
though the ddc-Gal4HL4.36 transgene 
Genotype Slope (k) Standard 

Error 
95% 
Confidence 
Interval  

P-value Significant  

ddc-Gal4HL4.36;UAS-
lacZ 

0.03476 0.007093 0.02126- 
0.04966 

N/A N/A 
 

ddc-Gal4HL4.36;UAS-
Ref(2)P-RNAiHMS00938 

0.01270 0.003820 0.004738 – 
0.02086 

<0.0001 Yes (↓) 

 
Table D12. Summary of ommatidia number when Ref(2)P expression in 
manipulated in the compound eye though the GMR-Gal4 transgene. 
Genotype Sample 

Size (n) 
Mean  P-value  Significant  

GMR-Gal4;UAS-lacZ 10 710.3 N/A N/A 
GMR-Gal4;UAS-Ref(2)P-RNAiHMS00938 10 662.4 0.0002 Yes (↓)  
GMR-Gal4;UAS-Ref(2)P-RNAiHMS00551 10 624.8 <0.0001 Yes (↓)  
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Table D13. Summary of ommatidia number when Ref(2)P expression in 
manipulated in the compound eye though the GMR-Gal4 transgene. 
Genotype Sample 

Size (n) 
Mean  P-value  Significant  

GMR-Gal4;UAS-lacZ 10 560.1 N/A N/A 
GMR-Gal4;UAS-Ref(2)P-RNAiHMS00938 10 424.0 <0.0001 Yes (↓)  
GMR-Gal4;UAS-Ref(2)P-RNAiHMS00551 10 459.9 <0.0001 Yes (↓)  
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Appendix E – Supplemental Data for Chapter 6 
 
Table E1. Completed list of genotypes used in the analysis of altered 
expression of TER94. 
Genotype Abbreviation Reference  
Control Lines   
w; P{UAS-lacZ.B}meltBg4-1-2 UAS-lacZ Brand et al, 1993 
Driver Lines    
w; GMR-Gal412 GMR-Gal4 Freeman, 1996 
w[*]; P{w[+mW.hs]=GAL4-arm.S}11 arm-Gal4 Sanson et al., 1996 
P{w[+mW.hs]=GawB}elav[C155] elav-Gal4 Lin & Goodman, 1994 
w[*]; P{w[+mC]=ple-GAL4.F}3 TH-Gal4 Inamdar et al., 2014 
w[1118]; P{w[=mC]=Ddc-Gal4.L}4.3D ddc-Gal4HL4.3D Li et al., 2000 
w;[1118]; P{w[+mC]=Ddc-
GAL4.L}Lmpt[4.36] 

ddc-Gal4HL4.36 Li et al., 2000 

w[*];P{w[+mW.hs]=GawB}D42 D42-Gal4 Parkes et al., 1998 
Responder Lines   
y1w67c23; 
P{EPgy2}TER94EY03486/CyO 

UAS-
TER94EY03486 

Bellen et al., 2004 

y1sc*v1; P{TKO.GS00593}attP40 UAS-TER94-
RNAiGS00593 

Perkins et al., 2015 

y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.GL00448}attP2 

UAS-TER94-
RNAiGL00448 

Perkins et al., 2015 

y1 v1; P{TRiP.JF03402}attP2 UAS-TER94-
RNAiJF03402 

Perkins et al., 2015 

y1 v1; P{TRiP.HMS00656}attP2 UAS-TER94-
RNAiHMS00656 

Perkins et al., 2015 
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Table E2. Log-rank statistical analysis of fly longevity with altered expression of 
TER94 through the arm-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

arm-Gal4;UAS-lacZ 284 60 N/A N/A N/A 
arm-Gal4;UAS-
TER94EY03486 

212 80 <0.0001 211.7 Yes (↑) 
 

arm-Gal4;UAS-TER94-
RNAiHMS00656 

92 28 <0.0001 185.2 Yes (↓) 

arm-Gal4;UAS-TER94-
RNAiGL00448 

328 52 <0.0001 114.6 Yes (↓) 

arm-Gal4;UAS-TER94-
RNAiGS00593 

271 76 <0.0001 124.2 Yes (↑) 
 

 
Table E3. Log-rank statistical analysis of fly longevity with altered expression of 
TER94 through the elav-Gal4 transgene. 
Genotype Number of 

flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

elav-Gal4;UAS-lacZ 298 78 N/A N/A N/A 
elav-Gal4;UAS-
TER94EY03486 

215 80 <0.0001 19.83 Yes (↑) 
 

elav-Gal4;UAS-
TER94-RNAiHMS00656 

384 42 <0.0001 656.0 Yes (↓) 

elav-Gal4;UAS-
TER94-RNAiGL00448 

305 28 <0.0001 638.9 Yes (↓) 

elav-Gal4;UAS-
TER94-RNAiGS00593 

303 78 0.04277 1.873 No 
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Table E4. Log-rank statistical analysis of fly longevity with altered expression of 
TER94 through the D42-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

D42-Gal4;UAS-lacZ 238 70 N/A N/A N/A 
D42-Gal4;UAS-
TER94EY03486 

220 72 <0.0001 14.24 Yes (↑) 
 

D42-Gal4;UAS-TER94-
RNAiHMS00656 

272 80 <0.0001 131.1 Yes (↑) 
 

D42-Gal4;UAS-TER94-
RNAiGL00448 

281 68 0.0003 10.42 Yes (↓) 

D42-Gal4;UAS-TER94-
RNAiGS00593 

219 68 0.1819 0.1210 No 

D42-Gal4;UAS-TER94-
RNAiJF03402 

200 78 <0.0001 65.03 Yes (↑) 
 

 
Table E5. Statistical analysis of locomotor ability with altered expression of TER94 
through the D42-Gal4 transgene. 
Genotype Slope (k) Standard 

Error 
95% 
Confidence 
Interval  

P-value Significant  

D42-Gal4;UAS-lacZ 
 

0.03222 0.005270 0.02153 – 
0.04509 

N/A N/A 
 

D42-Gal4;UAS-
TER94EY03486 

0.04146 0.006718 0.02868 – 
0.05498 

<0.0001 Yes (↓) 

D42-Gal4;UAS-TER94-
RNAiHMS00656 

0.05289 0.013999 0.02644 -
0.08283 

<0.0001 Yes (↓) 

D42-Gal4;UAS-TER94-
RNAiGL00448 

0.03467 0.004751 0.02542 -
0.04453 

<0.0001 Yes (↓) 

D42-Gal4;UAS-TER94-
RNAiGS00593 

0.05414 0.007627 0.03976 – 
0.07059 

<0.0001 Yes (↓) 

D42-Gal4;UAS-TER94-
RNAiJF03402 

0.02989 0.006989 0.01538 – 
0.04502 

<0.0001 Yes (↓) 
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Table E6. Log-rank statistical analysis of fly longevity with altered expression of 
TER94 though the TH-Gal4 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

TH-Gal4;UAS-lacZ 291 82 N/A N/A N/A 
TH-Gal4;UAS-
TER94EY03486 

193 76 <0.0001 22.44 Yes (↓) 

TH-Gal4;UAS-TER94-
RNAiHMS00656 

268 46 <0.0001 493.2 Yes (↓) 

TH-Gal4;UAS-TER94-
RNAiGL00448 

285 54 <0.0001 438.8 Yes (↓) 

TH-Gal4;UAS-TER94-
RNAiGS00593 

166 82 0.2330 0.0072 No 

 
Table E7. Statistical analysis of locomotor ability with altered expression of TER94 
though the TH-Gal4 transgene. 
Genotype Slope (k) Standard 

Error 
95% 
Confidence 
Interval  

P-value Significant  

TH-Gal4;UAS-lacZ 
 

0.02694 0.005922 0.01597 – 
0.03987 

N/A N/A 
 

TH-Gal4;UAS-
TER94EY03486 

0.03874 0.01053 0.01750 – 
0.06594 

0.1025 No 

TH-Gal4;UAS-TER94-
RNAiHMS00656 

0.07050 0.008695 0.05546 – 
0.08791 

<0.0001 Yes (↓) 

TH-Gal4;UAS-TER94-
RNAiGL00448 

0.04828 0.005441 0.03830 – 
0.05920 

<0.0001 Yes (↓) 

TH-Gal4;UAS-TER94-
RNAiGS00593 

0.05430 0.004538 0.04532 – 
0.06439 

0.0005 Yes (↓) 
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Table E8. Log-rank statistical analysis of fly longevity with altered expression of 
TER94 though the ddc-Gal4HL4.3D transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

ddc-Gal4HL4.3D;UAS-lacZ 293 70 N/A N/A N/A 
ddc-Gal4HL4.3D;UAS-
TER94EY03486 

171 66 <0.0001 32.06 Yes (↓) 

ddc-Gal4HL4.3D;UAS-
TER94-RNAiHMS00656 

246 74 <0.0001 29.60 Yes (↑) 
 

ddc-Gal4HL4.3D;UAS-
TER94-RNAiGL00448 

213 68 0.0807 0.9766 No 

ddc-Gal4HL4.3D;UAS-
TER94-RNAiGS00593 

211 76 0.0002 10.94 Yes (↑) 
 

 
Table E9. Statistical analysis of locomotor ability with altered expression of TER94 
though the ddc-Gal4HL4.3D transgene. 
Genotype Slope (k) Standard 

Error 
95% 
Confidence 
Interval  

P-value Significant  

ddc-Gal4HL4.3D;UAS-
lacZ 

0.01459 0.004440 0.006237-
0.02363 

N/A N/A 
 

ddc-Gal4HL4.3D;UAS-
TER94EY03486 

0.02019 0.004323 0.01191-
0.02901 

0.0267 Yes (↓) 

ddc-Gal4HL4.3D;UAS-
TER94-RNAiHMS00656 

0.03701 0.009203 0.02029- 
0.05545 

0.0010 Yes (↓) 

ddc-Gal4HL4.3D;UAS-
TER94-RNAiGL00448 

0.04776 0.01334 0.02228 – 
0.07618 

<0.0001 Yes (↓) 

ddc-Gal4HL4.3D;UAS-
TER94-RNAiGS00593 

0.05297 0.007462 0.03939 – 
0.06944 

0.0007 Yes (↓) 
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Table E10. Log-rank statistical analysis of fly longevity with altered expression of 
TER94 though the ddc-Gal4HL4.36 transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

ddc-Gal4HL4.36;UAS-lacZ 
 

284 79 N/A N/A N/A 

ddc-Gal4HL4.36;UAS-
TER94-RNAiHMS00656 

267 90 <0.0001 93.27 Yes (↑) 
 

ddc-Gal4HL4.36;UAS-
TER94-RNAiGL00448 

246 88 <0.0001 26.41 Yes (↑) 
 

ddc-Gal4HL4.36;UAS-
TER94-RNAiJF03402 

229 44 <0.0001 521.1 Yes (↓) 

 
Table E11. Statistical analysis of locomotor ability with altered expression of TER94 
though the ddc-Gal4HL4.36 transgene. 
Genotype Slope (k) Standard 

Error 
95% 
Confidence 
Interval  

P-value Significant  

ddc-Gal4HL4.36;UAS-
lacZ 

0.03476 0.007093 0.02126 – 
0.04966 

N/A N/A 
 

ddc-Gal4HL4.36;UAS-
TER94-RNAiHMS00656 

0.02436 0.004306 0.01561 – 
0.03355 

0.0026 Yes (↓) 

ddc-Gal4HL4.36;UAS-
TER94-RNAiGL00448 

0.01999 0.004225 0.01155 – 
0.02876 

0.0045 Yes (↓) 

ddc-Gal4HL4.36;UAS-
TER94-RNAiJF03402 

0.02542 0.004192 0.01674- 
0.03456 

0.0008 Yes (↓) 

 
Table E12. Summary of ommatidia number when TER94 expression in manipulated 
in the compound eye though the GMR-Gal4 transgene. 
Genotype Sample 

Size (n) 
Mean  P-value  Significant  

GMR-Gal4;UAS-lacZ 10 710.3 N/A N/A 
GMR-Gal4;UAS-TER94EY03486 10 651.7 <0.0001 Yes (↓) 
GMR-Gal4;UAS-TER94-RNAiJF03402 10 678.9 0.0016 Yes (↓) 
GMR-Gal4;UAS-TER94-RNAiHMS00656 10 677.1 0.0069 Yes (↓) 
GMR-Gal4;UAS-TER94-RNAiGL00448 10 701.4 0.3422 No 
GMR-Gal4;UAS-TER94-RNAiGS00593 10 675.1 0.0008 Yes (↓) 
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Table E13. Summary of bristle number when TER94 expression in manipulated in 
the compound eye though the GMR-Gal4 transgene. 
Genotype Sample 

Size (n) 
Mean  P-value  Significant  

GMR-Gal4;UAS-lacZ 10 560.1 N/A N/A 
GMR-Gal4;UAS-TER94EY03486 10 450.6 <0.0001 Yes (↓) 
GMR-Gal4;UAS-TER94-RNAiJF03402 10 453.8 <0.0001 Yes (↓)  
GMR-Gal4;UAS-TER94-RNAiHMS00656 10 438.8 <0.0001 Yes (↓) 
GMR-Gal4;UAS-TER94-RNAiGL00448 10 470.8 <0.0001 Yes (↓) 
GMR-Gal4;UAS-TER94-RNAiGS00593 10 523.2 0.0003 Yes (↓) 
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Appendix F – Supplemental Data for Chapter 7 
 
Table F1. Completed list of genotypes used in the analysis of altered 
expression ALS-related genes with altered PD gene activity. 
Genotype Abbreviation Reference  
Control Lines   
w; P{UAS-lacZ.B}meltBg4-1-2 UAS-lacZ Brand et al, 1993 
Driver Lines    
w; ddc-Gal4/CyO; UAS-parkin-
RNAi/TM3 

ddc-Gal4HL4.3D;UAS-
parkin-RNAi 

Staveley, 
Unpublished 

w;ddc-Gal4HL4.36/Tm3 iso1; UAS-
alpha-synuclein/CyO 

ddc-Gal4HL4.36;UAS-
alpha-synucelin  

Staveley, 
Unpublished 

Responder Lines   
y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.GL00448}attP2 

UAS-TER94-RNAiGL00448 Perkins et al., 2015 

y1 v1; P{TRiP.JF03402}attP2 UAS-TER94-RNAiJF03402 Perkins et al., 2015 
y1 v1; P{TRiP.HMS00656}attP2 UAS-TER94-RNAiHMS00656 Perkins et al.,2015 
y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMS00938}attP2 

UAS-Ref(2)P-
RNAiHMS00938  

Perkins et al., 2015 

y[1] w[67c23]; P{w[=mC] 
y[+mDint2]=EPgy2}CG31678[E
Y09774] 

UAS-IK2EY09774 Bellen et al., 2004 

y[1] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMS01932}attP4
0 

UAS-TBPH-RNAiHMS01932 Perkins et al, 2015 

 
Table F2. Log-rank statistical analysis of fly longevity with altered expression of 
TBPH through the ddc-Gal4HL4.36;UAS-alpha-synuclein transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

ddc-Gal4HL4.36;UAS-
alpha-synuclein;UAS-
lacZ 

228 86 N/A N/A N/A 

ddc-Gal4HL4.36;UAS-
alpha-synuclein;UAS-
TBPH-RNAiHMS01932 

261 78 <0.0001 57.88 Yes (↓) 
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Table F3. Statistical analysis of locomotor ability with altered expression of TBPH 
through the ddc-Gal4HL4.36;UAS-alpha-synuclein transgene. 
Genotype Slope 

(k) 
Standard 
Error 

95% 
Confidence 
Interval  

P-
value 

Significant  

ddc-Gal4HL4.36;UAS-alpha-
synuclein;UAS-lacZ 

0.03241 0.005495 0.02162 – 
0.04402 

N/A N/A 
 

ddc-Gal4HL4.36;UAS-alpha-
synuclein;UAS-TBPH-
RNAiHMS01932 

0.02840 0.005691 0.01725 – 
0.04035 

0.8661 No 

 
Table F4. Log-rank statistical analysis of fly longevity with altered expression of 
TBPH through the ddc-Gal4HL4.3D;UAS-parkin-RNAi transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-lacZ 

253 84 N/A N/A N/A 

ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-TBPH-
RNAiHMS01932 

253 76 <0.0001 73.86 Yes (↓) 

 
Table F5. Statistical analysis of locomotor ability with altered expression of TBPH 
through the ddc-Gal4HL4.3D;UAS-parkin-RNAi transgene. 
Genotype Slope 

(k) 
Standard 
Error 

95% 
Confidence 
Interval  

P-
value 

Significant  

ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-lacZ 
 

0.01900 0.004663 0.009792 – 
0.02875 

N/A N/A 
 

ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-
TBPH-RNAiHMS01932 

0.01433 0.006658 0.0001933 – 
0.02912 

0.1922 No 
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Table F6. Log-rank statistical analysis of fly longevity with altered neuronal 
expression of Ref(2)P though the ddc-Gal4HL4.36;UAS-alpha-synuclein transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

ddc-Gal4HL4.36;UAS-
alpha-synuclein;UAS-
lacZ 

228 86 N/A N/A N/A 

ddc-Gal4HL4.36;UAS-
alpha-synucelin;UAS-
Ref(2)P-RNAiHMS00938 

281 92 <0.0001 67.27 Yes (↑) 
 

 
Table F7. Statistical analysis of locomotor ability with altered neuronal expression of 
Ref(2)P though the ddc-Gal4HL4.36;UAS-alpha-synuclein transgene. 
Genotype Slope 

(k) 
Standard 
Error 

95% 
Confidence 
Interval  

P-
value 

Significant  

ddc-Gal4HL4.36;UAS-alpha-
synuclein;UAS-lacZ 

0.03241 0.005495 0.02162 – 
0.04402 

N/A N/A 
 

ddc-Gal4HL4.36;UAS-alpha-
synuclein;UAS-Ref(2)P-
RNAiHMS00938 

0.01951 0.003581 0.01222 – 
0.02703 

0.0761 No 

 
Table F8. Log-rank statistical analysis of fly longevity with altered neuronal 
expression of Ref(2)P though the ddc-Gal4HL4.3D; UAS-parkin-RNAi transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-lacZ 

253 84 N/A N/A N/A 

ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-
Ref(2)P-RNAiHMS00938 

267 96 <0.0001 77.54 Yes (↑) 
 

 
Table F9. Statistical analysis of locomotor ability with altered expression of Ref(2)P 
though the ddc-Gal4HL4.3D; UAS-parkin-RNAi transgene.  
Genotype Slope 

(k) 
Standard 
Error 

95% 
Confidence 
Interval  

P-
value 

Significant  

ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-lacZ 

0.01900 0.004663 0.009792 – 
0.02875 

N/A N/A 
 

ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-
Ref(2)P-RNAiHMS00938 

0.01541 0.006710 0.002026 – 
0.02922 

0.0064 Yes (↓) 
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Table F10. Log-rank statistical analysis of fly longevity with altered expression of 
TER94 though the ddc-Gal4HL4.36;UAS-alpha-synuclein transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

ddc-Gal4HL4.36;UAS-alpha-
synuclein;UAS-lacZ 

228 86 N/A N/A N/A 

ddc-Gal4HL4.36;UAS-alpha-
synuclein;UAS-TER94-
RNAiJF03402 

275 48 <0.0001 442.6 Yes (↓) 

ddc-Gal4HL4.36;UAS-alpha-
synuclein;UAS-TER94-
RNAiHMS00656 

286 110 <0.0001 260.2 Yes (↑) 
 

ddc-Gal4HL4.36;UAS-alpha-
synuclein;UAS-TER94-
RNAiGL00448 

242 80 <0.0001 21.55 Yes (↓) 

 
Table F11. Statistical analysis of locomotor ability with altered expression of TER94 
though the ddc-Gal4HL4.36;UAS-alpha-synuclein transgene. 
Genotype Slope 

(k) 
Standard 
Error 

95% 
Confidence 
Interval  

P-
value 

Significant  

ddc-Gal4HL4.36;UAS-alpha-
synuclein;UAS-lacZ 

0.03241 0.005495 0.02162 – 
0.04402 

N/A N/A 
 

ddc-Gal4HL4.36;UAS-alpha-
synuclein;UAS-TER94-
RNAiJF03402 

0.03813 0.01171 0.01498 – 
0.06325 

0.4190 No 

ddc-Gal4HL4.36;UAS-alpha-
synuclein;UAS-TER94-
RNAiHMS00656 

0.03076 0.006437 0.01830 – 
0.04395 

0.0064 Yes (↓) 

ddc-Gal4HL4.36;UAS-alpha-
synuclein;UAS-TER94-
RNAiGL00448 

0.01619 0.008684 -0.001745 – 
0.03464 

0.0001 Yes (↓) 

 
Table F12. Log-rank statistical analysis of fly longevity with altered expression of 
TER94 through the ddc-Gal4HL4.3D; UAS-parkin-RNAi transgene. 
Genotype Number 

of flies 
Median 
survival 
(days) 

Bonferroni 
corrected 
P-value 

Chi-
Square 
value 

Significant 

ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-lacZ 

253 84 N/A N/A N/A 

ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-
TER94-RNAiGL00448 

280 58 <0.0001 230.60 Yes (↓) 
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Table F13. Statistical analysis of locomotor ability with altered expression of TER94 
through the ddc-Gal4HL4.3D; UAS-parkin-RNAi transgene. 
Genotype Slope 

(k) 
Standard 
Error 

95% 
Confidence 
Interval  

P-value Significant  

ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-lacZ 

0.01900 0.004663 0.009792 – 
0.02875 

N/A N/A 
 

ddc-Gal4HL4.3D;UAS-
parkin-RNAi;UAS-
TER94-RNAiGL00448 

0.01865 0.004787 0.009020 – 
0.02854 

<0.0001 Yes (↓) 

 


