
35th Midwest Symposium on Circuits and Systems; Washington DC, 9-12 August 1992, pp.1576-1580.
Copyright c© 1992 IEEE (DOI 10.1109/MWSCAS.1992.271058).

Throughput Analysis in Timed Petri Nets

W.M. Zuberek

Department of Computer Science
Memorial University of Newfoundland

St. John’s, Canada A1C-5S7

A b s t r a c t

It is shown that the steady–state behaviour of a class of timed
Petri nets can be analysed using the concept of throughput and
simple rules of operational analysis. Since such analysis is based
on the average values of firing times rather than firing time distri-
bution functions, the same approach can be applied to a variety of
net models. Throughput analysis uses structural properties of nets
only, so it avoids the potential problems of reachability analysis,
it can be applied to unbounded nets, however, it does not provide
as much information as can be obtained from analysis of the state
space. Simple examples of of D–times and M–timed nets are used
as an illustration of the proposed approach.

1. INTRODUCTION

For several years Petri nets have been successfully used in mod-
elling [Di82,MF76], validation [BT82] and analysis [Di82,Raz85]
of systems of events in which it is possible for some events to
occur concurrently, but there are constraints on the occurrence,
precedence, or frequency of these occurrences. Multiprocessor and
distributed systems, communication networks and data flow archi-
tectures are just a few examples of systems for which traditional
approaches, developed for analysis of systems with sequential be-
havior, are simply inconvenient and inadequate. In order to study
performance aspects of Petri net models, the duration of activities
must also be taken into account and included into model specifi-
cations. Timed Petri nets have been introduced by Ramchandani
[Ram74] by assigning firing times to the transitions of Petri nets
(t–timed nets), and by Sifakis [Si77] by assigning time to places of
a net (p–timed nets). It should be noted that the basic difference
between these two approaches in not in association of time but in
the mechanism of transition firings. In t–timed nets, transition
firings are not instantaneous events; a firing occurs in “real-time”,
i.e., the tokens are removed from input places at the beginning of
the firing period, and they are deposited to the output places at
the end of this period (sometimes this is called a “three–phase”
firing mechanism). In p–timed nets, the “firing time” determines
the period of time that tokens must “wait” before firing which is
an instantaneous event, as in ordinary nets (so the “firing times”
are – in fact – “enabling times”). A simple consequence of this
difference is that the “firing” process in a p–timed net can easily
be discontinued (using a simple configuration of conflicting transi-
tions), while in a t–timed there in no “access” to tokens once the
firing started, so a special type of inhibitor arcs has been proposed
to provide this capability. On the other hand, in p–timed nets,
the conflict resolution policies cannot be defined independently of
timing specifications [C3S89], while in t–timed nets conflict reso-
lution and timing specification are independent aspects. The class
of p–timed nets also includes the model proposed by Merlin and
Farber [MF76], in which a time threshold and maximum delay
were assigned to each transition of a net to allow the incorpora-
tion of timeouts into protocol models. Razouk [Raz85] discussed
a class of timed Petri nets with enabling as well as firing times (p

& t–timed nets), and derived performance expressions for simple
communication protocols. Stochastic Petri nets [Mo82,Na80] and
generalized stochastic nets [ACB84] are also p–timed nets. And
there is a myriad of improved, generalized, augmented, extended
and enhanced models [CMT89,Du85,HV85] which belong to one of
these basic categories of timed nets.

This paper describes timed Petri nets with inhibitor arcs and
“interrupt” arcs which can discontinue initialized firings of tran-
sitions, as required in strict modelling of timeouts and preemp-
tions. Similarly as in [Ram74,Zu86,Ho86,Zu88], (deterministic
or stochastic) firing times are associated with transitions of a
Petri net, and then the “state space” of a net is a discrete–space,
discrete–time or continuous–time (depending upon the character
of firing times of transitions) homogeneous semi–Markov process.
If this process is ergodic, the stationary probabilities of the states
can be determined [Ki90], and many performance measures, such
as utilization of systems components, average waiting times and
turnaround times or average throughput rates, characterizing the
steady–state behaviour of the model, can be derived from station-
ary probabilities of states.

Analysis of net models based on the derivation of the state space
is known as the reachability analysis. Although reachability analy-
sis is quite general (e.g., it can easily handle state–dependent rout-
ing probabilities as well as state–dependent timing properties), it
becomes very inefficient when the state space is large (for some
models, the number of states grows exponentially with model pa-
rameters, e.g., the token count of the initial marking function,
which is known as the “state explosion problem”). Also, reach-
ability analysis is usually restricted to bounded nets. Therefore,
other approaches are recently gaining popularity, that are based
on structural properties of models, and that avoid the derivation
of the state space. Such structural methods of analysis cannot pro-
vide as much information as the reachability approach does, quite
often, however, all the detailed results of reachability analysis are
not really needed, and more synthetic performance measures, that
can also be provided by structural approach, are quite satisfactory.
Structural approaches can be used to obtain exact or approximate
performance measures, e.g., lower and upper performance bounds
[BG85,C3S89,CCS89,Mo85].

Structural approach to analysis of net models is similar to
operational methods developed for analysis of queueing systems
[Bu76,DB78]. It uses only the first moment (the average values) of
random variables, and general relationships and laws which do not
depend upon probability distribution functions. One of the basic
variables of operational analysis is throughput. Many other mea-
sures can be obtained from throughputs, for example, the through-
put and the maximum service rate of a component determine its
utilization factor, which – in turn – is an indicator of systems sat-
uration. The throughput is one of the elements used in the Little
formula, etc.

The paper is organized in 3 main sections. Section 2 recalls ba-
sic concepts for (extended) free–choice timed Petri nets. Section
3 introduces the concept of throughput and discusses some of its
properties. Section 4 shows simple examples of throughput analy-

Throughput analysis in timed Petri nets 1577

sis applied to timed nets with deterministic firing times (D–times
nets) and exponentially distributed firing times (M–timed nets).

2. TIMED PETRI NETS

This section recalls and formalizes many concepts used in sub-
sequent parts of this paper. It is rather brief since more detailed
discussion is provided elsewhere [Zu86,Zu88].

An inhibitor Petri net N is a quadruple N=(P, T,A,B) where:

P is a finite, nonempty set of places,

T is a finite, nonempty set of transitions,

A is a set of directed arcs, A ⊆ P × T ∪ T ×P such that for each
transition there is at least one place connected with it,

B is a (possibly empty) set of inhibitor arcs, B ⊂ P × T ; A and
B are disjoint sets.

For each place p and each transition t, the input and output sets
are defined as follows:

Inp(p) = {t ∈ T |(t, p) ∈ A}, Out(p) = {t ∈ T |(p, t) ∈ A},
Inp(t) = {p ∈ T |(p, t) ∈ A}, Out(t) = {p ∈ P |(t, p) ∈ A}.

and this notation is extended on sets of places and transitions.
Moreover, Inh(t) = {p ∈ P |(p, t) ∈ B} denotes the inhibitor set of
t.

A marked Petri net M is a pair M = (N ,m0) where:

N is an inhibitor Petri net, N = (P, T,A,B),

m0 is an initial marking function, m0 : P → {0, 1, ...}.

Let any function m : P → {0, 1, ...} be called a marking in a net
N = (P, T,A,B).

A transition t is enabled by a marking m iff every input place
of this transition contains at least one token and every inhibitor
place of t contains zero tokens.

A place p is shared iff it is an input place for more than one
transition. In inhibitor nets, a shared place p is guarded iff for each
two different transitions ti and tj sharing p there exists another
place pk such that pk is in the input set of one and in the inhibitor
set of the other of these two transitions, i.e., no two transitions
from the output set of p can be enabled by the same marking.

A shared place p is free–choice (or extended free–choice) iff the
input sets and inhibitor sets of all transitions sharing p are iden-
tical. An inhibitor net is free–choice iff all its shared places are
either free–choice or guarded. Only free–choice nets are consid-
ered in this paper since in most cases free–choice nets are sufficient
for modelling random events, e.g., random faults in communication
networks or any random events described by discrete distributions.

Since the relation of sharing a free–choice place is an equivalence
relation in T , it determines a partition of T into a set of free–choice
equivalence classes denoted by Free(T) = {T1, T2, ..., Tk}.

Every transition enabled by a marking m can fire. When a
transition fires, a token is removed from each of its input places
(but not inhibitor places) and a token is added to each of its output
places. This determines a new marking in a net, a new set of
enabled transitions, and so on.

In timed Petri nets each transition takes a “real time” to fire,
i.e., there is a “firing time“ associated with each transition of a
net. The firing times can be defined in several ways. In D–timed
Petri nets [Zu88] they are deterministic (or constant), i.e., there is
a nonnegative number assigned to each transition of a net which
determines the duration of transition’s firings. In M–timed Petri

nets [Zu86] (or stochastic Petri nets [Na80,Mo82,ACB84]), the fir-
ing times are exponentially distributed random variables, and the
corresponding firing rates are assigned to transitions of a net. In
this paper, the firing times associated with transitions of the net
are the average values of firing times, so for nets in which firing
times are random variables, the distribution function is ignored and
only the average (or expected) values of firing times are included
into net specifications.

Timed nets discussed in this paper use two types of inhibitor
arcs, “proper” inhibitor arcs and “interrupt” arcs [Zu86,Zu88].
“Proper” inhibitor arcs affect the transitions only at the begin-
ning of their firings, as in ordinary nets. Interrupt arcs affect a
transition also during its firing; they can “interrupt” firing tran-
sitions and preempt the “resources” acquired at the beginning of
firing. Interrupt arcs are needed to model preempting schedul-
ing disciplines, to represent properly timeout mechanisms, and to
model unreliable processors which can “fail” during processing of
user jobs. In some cases such interrupts and preemptions can be
represented by inhibitor nets [Zu88], but usually such models (and
their behaviour) are unnecessarily complicated. The set of inter-
rupting places of a transition t is denoted Int(t).

A free–choice timed Petri net T is a triple T = (M, c, f) where:

M is an extended free–choice marked Petri net, M = (N ,m0),
N = (P, T,A,B,C), and C is a set of interrupt arcs, C ⊆ B,

c is a choice function which assigns a “free–choice” probability
to each transition t of the net in such a way that for each
free–choice equivalence class Ti ∈ Free(T) the sum of these
probabilities is equal to 1,

f is a firing time function which assigns the nonnegative (average)
firing time f(t) to each transition t of the net, f : T → R⊕,
and R⊕ denotes the set of nonnegative real numbers.

In ordinary nets (i.e., nets without time), interrupt arcs are
equivalent to inhibitor arcs. In extended timed Petri nets, the
firing of a transition may be “discontinued” by any one of interrupt
arcs associated with this transition. If, during a firing period of
a transition t, one of places connected with t by interrupt arcs
becomes nonempty (i.e., it receives at least one token), the firing
of t ceases and the tokens removed from t’s input places at the
beginning of firing are “returned” to their original places.

The behavior of an extended timed Petri net can be represented
by a sequence of “states” where each “state” describes the distri-
bution of tokens in places and firing transitions of the net; detailed
definitions of states and state transitions for D–timed and M–timed
nets are given in [Zu88] and [Zu86], respectively. The states and
state transitions can be combined into a graph of reachable states;
this graph is a semi–Markov process defined by the timed net T .

A timed net is ergodic iff the semi–Markov process defined by it
is ergodic. Only ergodic timed nets are considered in this paper.

Many concepts of structural analysis apply to timed nets as
well as their subnets; moreover, there are important relationships
between properties of nets and their subnets.

A timed net Ti = (((Pi, Ti, Ai, Bi, Ci),mi), ci, fi) is a Pi–implied
subnet of a net T = (((P, T,A,B,C),m0), c, f) iff

Pi ⊆ P,
Ti = {t ∈ T | ∃(p ∈ Pi) (t, p) ∈ A ∨ (p, t) ∈ A},
Ai = A ∩ (Pi × Ti ∪ Ti × Pi),
Bi ⊆ B ∩ (Pi × Ti),
Ci ⊆ C ∩ (Pi × Ti),
mi = m0 | Pi,
ci = c | Ti,
fi = f | Ti.

Throughput analysis in timed Petri nets 1578

Pi–implied subnet contains all arcs which are incident with
places in Pi in the original net and transitions which are incident
with these arcs.

The set of all subnets of the net T is denoted Sub(T).

3. THROUGHPUT

Intuitively, throughput of a place p in a timed net T , θT (p), is
equal to the average number of tokens entering p in a unit time, or
leaving p (or t) in a unit time; in the steady–state of the net, the
average numbers of tokens entering and leaving p must be equal
since no “accumulation” of tokens can occur. Similarly, through-
put of a transition t in a net T , θT (p), is equal to the average
number of transition’s firings in a unit time. It should be noted
that the throughput of a transition does not depend upon the num-
ber of incoming or outgoing arcs; in the steady–state, the (average)
numbers of tokens removed from each of transitions input places
and deposited to each of its output places in a unit time are the
same.

More formally, the throughput of a timed net T is defined as a
function θ : P ∪ T → R⊕ which assigns a nonegative number to
each place and each transition of the net in such a way that:

∀(x ∈ P ∪ T) θ(x) = lim
i→∞

i

τi(x)

where τi(x) denotes the time instant at which the i-th consecutive
token enters (or leaves) the place x or at which the transition x
initiates (or terminates) its i-th firing.

Property 1: It follows immediately from the definition of thro-
ughput that:

• the throughput of a place p is equal to the sum of throughputs
of its input transitions as well as the sum of throughputs of
its output transitions:

∀(p ∈ P) θ(p) =
∑

ti∈Inp(p)
θ(ti) =

∑

tj∈Out(p)
θ(tj),

• for each non–shared place p, the throughput of p’s output
transition is equal to the throughput of p:

∀(p ∈ P) Out(p) = {t} ⇒ θ(t) = θ(p),

• for each free–choice place p, throughputs of p’s output tran-
sitions are determined by the choice function c:

∀(Ti ∈ Free(T)) ∀(p ∈ Inp(Ti)) ∀(t ∈ Ti) θ(t) = c(t)θ(p),

• for each place p that is shared by two transitions ti and tj ,
and which is guarded by a place pk:

pk ∈ Inp(ti) ⇒ θ(ti) = θ(pk),

pk ∈ Int(tj) ⇒ θ(tj) = θ(p)− θ(pk).

An elementary net is a net in which there is exactly one input
place and exactly one output place for each transition of the net,
and one input transition and one output transition for each place
of the net. In other words, the (directed) graph of an elementary
net is a (simple) cycle.

It follows immediately from the property 1 that in elementary
nets the throughputs of all transitions and all places are the same.

Property 2: For an elementary net T :

∀(x ∈ P ∪ T) θ(x) =

∑

p∈P
m0(p)

∑

t∈T
f(t)

It should be observed, that in an elementary net, all tokens will
traverse the net without any “delays”, i.e., any termination of a
firing immediately starts a firing of another transition. Conse-
quently, the average time of a complete traversal of the net by a

single token is equal to ∆, the sum of the average firing times of
all transitions, ∆ =

∑

t∈T
f(t). For k =

∑

p∈P
m0(p) tokens inde-

pendently traversing the net and for large values of i, E(τi(t)) can
be approximated by i∆/k, so:

θ(t) = lim
i→∞

i

τi
=

k

∆
=

∑

p∈P
m0(p)

∑

t∈T
f(t)

Property 3: If a transition t (or a place p) belongs to a sub-
net Ti = (((Pi, Ti, Ai),mi), ci, fi) of the net T , the throughput
θTi

(t) (or θTi
(p)) in the subnet Ti is greater than or equal to the

throughput θT (t) (or θT (p)) in the net T

∀(Ti ∈ Sub(T)) ∀(x ∈ Ti ∪ Pi) θTi
(x) ≥ θT (x)

The property immediately follows from the observation that a
transition in the net T can fire only if all its input places received
their tokens, so T may introduce some “delays” which do not exist
in the subnet Ti.

4. EXAMPLES

Example 1: The D–timed net shown in Fig.1 is a model of a very
simple protocol in which messages are exchanged between a sender
(place p1) and a receiver (place p3), and each received message is
confirmed by an acknowledgement sent back to the sender (in the
loop p1, t1, p2, t2, p3, t4, p1). The subnet (p7, t7) models a “source”
that generates messages, and p6 is simply a buffer of messages
waiting for transmission.

p1

p2

p3

p4

p5
p6

t1

t2

t3

t4

t5 t6t7

p
p7

Fig.1. Petri net model of a simple protocol.

There is a nonzero probability that the system can lose (or dis-
tort) a message or an acknowledgement; the place p3 is a free–
choice place, and the transition t3 models a message/acknowledge-
ment “sink”; the probability associated with t3, c(t3), represents
thus the probability of losing a message or an acknowledgement
(or shortly a “token”) in the system. A “timeout” is used to re-
cover from lost “tokens”. It works in the following way. An event
of “sending a message” is modelled by the transition t1. When it
fires, single tokens are deposited in p2 (a “message”) and in p5 (a
“timeout”). A token in p5 immediately starts a firing of the “time-
out” transition t5 (since p5 is empty). The firing time associated
with t5 is large enough to allow the transfer of a message and an
acknowledgement. If there is no loss of tokens, i.e., if t4 is selected
for firing (according to its probability), the transition t4 will finish
its firing before t5, and then a token in the place p4 interrupts and

Throughput analysis in timed Petri nets 1579

cancels the timeout (i.e., the firing of t5), the “timeout” token is
returned to p5, and then t6 fires and removes the tokens from p4
and p5 (t6 is another token “sink”). If, however, a message or ac-
knowledgement has been lost (i.e., if t3 has been selected for firing
instead of t4), the timeout t5 terminates its firing without inter-
ruption, and regenerates the “lost” token in p1 and the “message”
in p6, so the message can be retransmitted to the receiver.

It should be observed that the place p6 is potentially unbounded;
it is unbounded in the ordinary net, so boundedness of p6 in the
timed net depends upon the functions m0, c and f .

For the steady–state, the throughputs can be determined by
simple structural relations based on property 1:

θ(t1) = θ(p1) = θ(p6) θ(p1) = θ(t4) + θ(t5)
θ(t2) = θ(p2) θ(p2) = θ(t1)
θ(t3) = q θ(p3) θ(p3) = θ(t2)
θ(t4) = (1− q) θ(p3) θ(p4) = θ(t4)
θ(t5) = θ(p5)− θ(t6) θ(p5) = θ(t1)
θ(t6) = θ(p4) θ(p6) = θ(t7) + θ(t5)
θ(t7) = θ(p7) θ(p7) = θ(t7)

It can be observed that there is a simple cycle described by the
relations:

θ(t7) = θ(p7)
θ(p7) = θ(t7)

so p7 implies a simple subnet that includes p7 and t7 only, and
θ(p7) = θ(t7) = m0(p7)/f(t7) (property 2), and then the (sym-
bolic) solution is:

θ(t1) = θ(t2) =
m0(p7)

(1−q)f(t7)

θ(t3) = θ(t5) =
qm0(p7)

(1−q)f(t7)

θ(t4) = θ(t6) = θ(t7) =
m0(p7)
f(t7)

θ(p1) = θ(p2) = θ(p3) = θ(p5) = θ(p6) =
m0(p7)

(1−q)f(t7)

θ(p4) = θ(p7) =
m0(p7)
f(t7)

It should be noted (again) that this solution is meaningless when
the net is not in the steady–state, i.e., is unbounded. Validity of
the solution can be checked by comparing throughputs with the
maximum throughputs that correspond to the “boundary” of the
boundedness region; these “boundary” values can be obtained by
analysing the net with the source subnet (p6, p7, t7 and all incident
arcs) removed.

Example 2: The M–timed net shown in Fig.2 is a typical model of
a memory–constrained multiprogramming system [La84]. p1 and
t1 model the source of jobs which arrive with the average rate of
1/f(t1) jobs per time unit. p2 is the memory queue for jobs that
must wait for entering the execution stage; the system limits the
number of jobs that receive allocation of memory and can execute
concurrently (this limit is also called the level of multiprogram-
ming), so only certain number of jobs can enter into the central
server.

The memory constraint is represented by the place p6 with its
initial marking m0(p6); each job entering the central system re-
duces the number of tokens in p6, and each job leaving the system
(transition t6) increases the number of tokens in p6. p3 and t3 rep-
resent the central server with its waiting queue p8, while p4 and
t4 model a disk server with its queue p5; the number of (identical)
processors in the central server is determined by the initial mark-
ing of the place p3, and the number of (identical) disk drives by
the initial marking of the place p4. The place p7 is a free–choice
place with two choices, termination of job execution (transition t6
with probability q) or continuation of execution (transition t5 with
probability (1 − q)). The probability q can be determined on the

basis of the average number of disks requests per job execution; if
each job requests K disk operations on average, q = 1/(1 +K).

t1 t2 t3

t4 t5

t6

p1

p2

p3

p4

p5

p6

p7p8

Fig.2. Petri net model of a multiprogramming system.

It should be observed that the place p2 is unbounded because, for
stochastic firing times, there is no limit on the number of firings of
t1 before termination of any other firing in the net. Consequently,
the net is unbounded.

For the steady–state of this net, the throughput relations are as
follows:

θ(t1) = θ(p1) θ(p1) = θ(t1)
θ(t2) = θ(p2) = θ(p6) θ(p2) = θ(t1)
θ(t3) = θ(p3) = θ(p8) θ(p3) = θ(t3)
θ(t4) = θ(p4) = θ(p5) θ(p4) = θ(t4)
θ(t5) = (1− q) θ(p7) θ(p5) = θ(t5)
θ(t6) = q θ(p7) θ(p6) = θ(t6)

θ(p7) = θ(t3)
θ(p8) = θ(t2) + θ(t4)

Because of the relations:

θ(t1) = θ(p1)
θ(p1) = θ(t1)

p1 implies a simple subnet that includes p1 and t1 only, so θ(p1) =
θ(t1) = m0(p1)/f(t1), and then the solution is:

θ(t1) = θ(t2) = θ(t6) =
m0(p1)
f(t1)

θ(t3) =
m0(p1)
q f(t1)

θ(t4) = θ(t5) =
(1−q) m0(p1)

q f(t1)

θ(p1) = θ(p2) = θ(p6) =
m0(p1)
f(t1)

θ(p3) = θ(p7) = θ(p8) =
m0(p1)
q f(t1)

θ(p4) = θ(p5) =
m0(p7)
f(t7)

As before, this solution is valid only for the steady–state of the
net, which can be verified by checking the utilization factors of
transitions. The utilization factor u(t) is equal to the ratio of
throughput of t to the maximum firing rate, and the maximum
firing rate can be determined from the loops on transitions t1, t3
and t4 (property 3), so

u(t1) = θ(t1)
f(t1)

m0(p1)
= 1

u(t3) =
m0(p1)
q f(t1)

f(t3)
m0(p3)

u(t4) =
(1−q) m0(p1)

q f(t1)
f(t4)

m0(p4)

and the remaining transitions have unlimited maximum firing
rates.

The values of utilization factors beyond the interval [0,1] indicate
that the requirement of steady–state behaviour is not satisfied, so
the solution is not valid. For example, for m0(p1) = m0(p3) = 1,

Throughput analysis in timed Petri nets 1580

f(t1) = 1, f(t3) = 0.1 and q = 0.01, u(t3) = 10 which clearly
indicates that the net is not ergodic; actually, it indicates that the
processor represented by t3 should be 10 times faster to handle the
service demand. The ergodicity condition for this example is

max(u(t3), u(t4)) ≤ 1

so the maximum arrival rate, or the source throughput θmax(t1),
that this central server can handle is:

max

(

θmax(t1)
1

q

f(t3)

m0(p3)
, θmax(t1)

1− q

q

f(t4)

m0(p4)

)

= 1

or equivalently:

θmax(t1) = min

(

m0(p3)

q f(t3)
,

q m0(p4)

(1− q)f(t4)

)

Many other results can be obtained in a similar way.

5. CONCLUDING REMARKS

It has been shown that, for a class of timed Petri nets, steady–
state throughput analysis can be performed on the basis of struc-
tural properties of the net (and – of course – the m0, c and f
functions). For stochastic firing times, throughput analysis uses
the average values of firing times only, so the exact firing time
distribution function may not even be known, actually. Further-
more, the approach can be used to nets with different distribution
functions associated with different transitions of the same nets;
for example, some transitions may have deterministic firing times
while other transitions may use stochastic firing times.

Timed nets used in the examples correspond to open networks
of the queueing theory [Ki90]. It is believed that the proposed
approach can be extended to closed network models as well; for
example, marked graphs [Mu89] need only a rather straightforward
extension of some concepts, but other classes of nets may be more
difficult to deal with.

The proposed approach can be used for analysis of unbounded
nets, but the ergodicity condition is strictly required. As shown in
the examples, quite often the solution can be “verified” by checking
additional requirements (e.g., utilization factors or performance
bounds).

An attractive aspect of throughput analysis is the possibility of
obtaining the solution in a symbolic form rather than as a numer-
ical value. Different combinations of parameter values, sensitivity
of the results with respect to different parameters or functional
dependencies can be investigated very conveniently when symbolic
solutions are available.

The proposed throughput analysis can be automated quite eas-
ily and, in fact, can be incorporated into more general tools for
analysis Petri net models as one of alternative analysis methods.

Acknowledgement

The Natural Sciences and Engineering Research Council of Canada
partially supported this research through Operating Grant A8222.

R e f e r e n c e s

[ACB84] M. Ajmone Marsan, G. Conte, G. Balbo, “A class of
generalized stochastic Petri nets for the performance evalua-
tion of multiprocessor systems”; ACM Trans. on Computer
Systems, vol.2, no.2, pp.93–122, 1984.

[BT82] G. Berthelot, R. Terrat, “Petri net theory for the correct-
ness of protocols”; IEEE Trans. on Communications, vol.30,
no.12, pp.2497–2505, 1982.

[BG85] S.C. Bruell, S. Ghanta, “Throughput bounds for gener-
alized stochastic Petri net models”; Proc. Int. Workshop on
Timed Petri Nets, Torino, Italy, pp.250–261, 1985.

[Bu76] J.P. Buzen, “Fundamental operational laws of computer
system performance”; Acta Informatica, vol.7, no.2, pp.167–
182, 1976.

[C3S89] J. Campos, G. Chiola, J.M. Colom, M. Silva, “Tight
polynomial bounds for steady–state performance of marked
graphs”; Proc. Int. Workshop on Petri Nets and Performance
Models, Kyoto, Japan, pp.200–209, 1989.

[CCS89] J. Campos, G. Chiola, M. Silva, “Properties and steady–
state performance bounds for Petri nets with unique repetitive
firing count vector”; Proc. Int. Workshop on Petri Nets and
Performance Models, Kyoto, Japan, pp.210–220, 1989.

[CMT89] G. Ciardo, J. Muppala, K. Trivedi, “SPNP - stochastic
Petri net package”; Proc. Int. Workshop on Petri Nets and
Performance Models, Kyoto, Japan, pp.142–151, 1989;

[DB78] P.J. Denning, J.P. Buzen, “The operational analysis of
queueing network models”; ACM Computing Surveys, vol.10,
no.3, pp.225-261, 1978.

[Di82] M. Diaz, “Modeling and analysis of communication and co-
operation protocols using Petri net based models”; Computer
Networks, vol.6, no.6, pp.419–441, 1982.

[Du85] J.B. Dugan, A. Bobbio, G. Ciardo, K. Trivedi, “The design
of a unified package for the solution of stochastic Petri net
models”; Proc. Int. Workshop on Timed Petri Nets, Torino,
Italy, pp.6–13, 1985.

[Ho86] M.A. Holliday, “Deterministic time and analytical models
of parallel architectures”; Ph.D. Thesis, Computer Science
Department, University of Wisconsin - Madison, Technical
Report #652, 1986.

[HV85] M.A. Holliday, M.K. Vernon, “A generalized timed Petri
net model for performance evaluation”; Proc. Int. Workshop
on Timed Petri Nets, Torino, Italy, pp.181–190, 1985.

[Ki90] P.J.B. King, “Computer and communication systems per-
formance modelling”; Prentice–Hall 1990.

[La84] E.D. Lazowska, J. Zahorjan, G.S. Graham, K.C. Sevcik,
“Quantitative system performance”; Prentice-Hall 1984.

[MF76] P.M. Merlin, D.J. Farber, “Recoverability of communi-
cation protocols – implications of a theoretical study”; IEEE
Trans. on Communications, vol.24, no.9, pp.1036–1049, 1976.

[Mo82] M.K. Molloy, “Performance analysis using stochastic Petri
nets”; IEEE Trans. on Computers, vol.31, no.9, pp.913–917,
1982.

[Mo85] K. Molloy, “Fast bounds for stochastic Petri nets”; Proc.
Int. Workshop on Timed Petri Nets, Torino, Italy, pp.244–
249, 1985.

[Mu89] T. Murata, “Petri nets: properties, analysis and applica-
tions”; Proceedings of IEEE, vol.77, no.4, pp.541–580, 1989.

[Na80] S. Natkin, “Les réseaux de Petri stochastique”; Thèse de
Docteur Ingenieur, CNAM, Paris, France, 1980.

[Ram74] C. Ramchandani, “Analysis of asynchronous concurrent
systems by timed Petri nets”; Project MAC Technical Re-
port MAC–TR–120, Massachusetts Institute of Technology,
Cambridge MA, 1974.

[Raz85] R.R. Razouk, “The derivation of performance expres-
sions for communication protocols from timed Petri nets”;
Computer Communication Review, vol.14, no.2, pp.210–217,
1984.

[Si77] J. Sifakis, “Use of Petri nets for performance evaluation”;
in: “Measuring, modelling and evaluating computer systems”,
pp.75–93, North–Holland 1977.

[Zu86] W.M. Zuberek, “M–timed Petri nets, priorities, preemp-
tions, and performance evaluation of systems”; in: “Advances
in Petri Nets 1985” (Lecture Notes in Computer Science 222),
G. Rozenberg (ed.), pp.478–498, Springer Verlag 1986.

[Zu88] W.M. Zuberek, “D–timed Petri nets and modelling of
timeouts and protocols”; Transactions of the Society for Com-
puter Simulation, vol.4, no.4, pp.331–357, 1988.

