
1993 IEEE Int. Symposium on Circuits and Systems (ISCAS’93), Chicago, IL, vol,4, pp.2721-2724.

Copyright c© 1993 IEEE (DOI 10.1109/ISCAS.1993.394329).

Throughput Analysis in Timed Colored Petri Nets

W.M. Zuberek

Department of Computer Science
Memorial University of Newfoundland

St. John’s, Canada A1C–5S7

A b s t r a c t

It is shown that the steady–state behavior of a class of
timed colored Petri nets can be analyzed using the concept
of throughput and simple rules of operational analysis. Since
such analysis is based on the average values of firing times
rather than firing time distribution functions, the same ap-
proach ca be applied to a variety of net models. Throughput
analysis is based on structural properties of nets only, so it
avoids the potential complexity of reachability analysis, and
it can be used for analysis of unbounded nets.

1. INTRODUCTION

Modeling and analysis of systems of events in which it is
possible for some events to occur concurrently, but there are
constraints on the precedence or frequency of these occur-
rences are typical applications of Petri nets [P81, A84, R85,
M89]. Examples of such systems include multiprocessor and
distributed systems, communication networks and data flow
architectures. Traditional methods, developed for analysis of
systems with sequential behavior, are insufficient or inade-
quate for accurate descri of concurrent systems.
In order to study performance aspects of Petri net mod-

els, the duration of activities must also be taken into account
and included into model specifications. Several types of Petri
nets ‘with time’ have been proposed [A84,S77,Z81] by assign-
ing firing times to the transitions of Petri nets or to places
of a net. It should be noted, however, that the basic differ-
ence between these two approaches in not in association of
time but in the mechanism of transition firings. In t–timed
nets [Z91], transition firings are not instantaneous events; a
firing occurs in ‘real-time’, i.e., the tokens are removed from
input places at the beginning of the firing period, and they
are deposited to the output places at the end of this period
(sometimes this is called a ‘three–phase’ firing mechanism).
In p–timed nets [A84], the ‘firing time’ determines the period
of time that tokens must ‘wait’ before firing may occur, while
the firing is an instantaneous event, as in ordinary nets (so
the ‘firing times’ are – in fact – ‘enabling times’). A simple
consequence of this difference is that in p–timed nets, the
conflict resolution policies cannot be defined independently
of timing specifications, while in t–timed nets conflict resolu-
tion and timing specification are independent aspects. Only
t–timed nets are discussed in this paper.
In colored Petri nets [J87], information can be associated

with individual tokens. This associated information is called
a ‘color’ of a token. Token colors can be quite complex, for
example, they can describe the contents of a message package
or the contents of a database, but typically they are rather
simple, representing a class of jobs or a type of a message
in a communication systems, etc. Token colors can be mod-
ified by (firing) transitions and also the conditions enabling
transitions can be different for different colors.
Attributes associated with tokens result in net models that

contain much fewer places and transitions than would be re-
quired in ‘ordinary’ Petri nets. The basic idea behind colored
nets is to ‘fold’ (similar) sections of an ordinary Petri net;
the original set of places is partitioned into a set of disjoint
classes, and each class is replaced by a single colored place

with colors indicating which of the original places the tokens
belong to. Similarly, the original set of transitions is parti-
tioned into a set of disjoint classes, and each class is replaced
by a single colored transition with the occurrence colors indi-
cating which of the original transitions the occurrences belong
to. In this sense, ‘ordinary’ Petri nets correspond to colored
nets in which there is just one color (and then the color can
be simply ignored).
Analysis of net models can be performed on the basis of the

‘behavior’ of the net, or on the basis of its structure. The be-
havior of a net is usually represented by the space of reachable
states; analysis of this state space is known as the reachability
analysis. Although reachability analysis is quite general (e.g.,
it can easily handle state–dependent routing probabilities as
well as state–dependent timing properties), it becomes very
inefficient when the state space is large (for some models, the
number of states grows exponentially with model parameters,
which is known as the “state explosion problem”). Moreover,
reachability analysis is usually restricted to bounded nets.
Therefore, other approaches are recently gaining popularity,
and approaches based on structural properties of models are
especially attractive because they avoid the derivation of the
state space. Such structural methods of analysis cannot pro-
vide as much information as the reachability approach does,
however, quite often all the detailed results of reachability
analysis are not really needed, and more synthetic perfor-
mance measures, which can also be provided by structural
approach, are quite satisfactory.
Structural approach to analysis of net models is similar

to operational methods developed for analysis of queueing
systems [B76, D78]. It applies to the steady–state of the
system; it uses only the first moment (the average values) of
random variables, and general relationships and laws which
do not depend upon probability distribution functions. One
of the basic variables of operational analysis is throughput.
Many other measures can be obtained from throughputs, for
example, the throughput and the maximum service rate of a
component determine its utilization factor, which – in turn –
is an indicator of systems saturation. The throughput is one
of the elements used in the Little formula, etc.
The paper first introduces the concept of throughput in

timed colored Petri net models and some of its properties,
and then applies throughput analysis to performance evalu-
ation of a simple model of a computer systems. The paper is
organized in 3 main sections. Section 2 overviews timed col-
ored Petri nets as an extension of marked nets. The concept
of throughput is introduced in section 3 and section 4 presents
an example of performance analysis based on throughput. A
discussion of a few possible extensions concludes the paper.

2. TIMED COLORED PETRI NETS

Colored Petri nets can be defined as an extension of marked
Petri nets, as in [Z90]. However, the arc functions are re-
stricted to ‘simple’ rather than ‘multiple’ arcs, so sets rather
than multisets [J87] are used in the following definition. Also,
inhibitor arcs are introduced explicitly.
A simple colored Petri net is a 7–tuple N =

(P, T,A,C,w, h,m0) where:

P is a finite (nonempty) set of places,



Throughput analysis in timed colored Petri nets 2

T is a finite (nonempty) set of transitions,

A is a (nonempty) set of directed arcs which connect places
with transitions and transitions with places, A ⊆ P ×
T ∪ T × P , such that there are no isolated places or
transitions,

C is a finite (nonempty) set of colors which are associated
with places (place or token colors) and transitions (oc-
currence colors),

w is an arc function which assigns to each directed arc from
the set A a mapping from the set of occurrence colors C
into the powerset of place colors 2C , w : A → C → 2C ,

h is an inhibitor function which assigns to each directed arc
from the set A a mapping from the set of occurrence
colors C into the powerset of (place) colors 2C , h : A →
C → 2C , such that:
∀((p, t) ∈ A) ∀(o ∈ C) w(p, t)(o) ∩ h(p, t)(o) = ∅.

m0 is the initial marking function which assigns multisets
of colors to places of a net, m0 : P → C → N .

It can be observed that marked nets correspond to such
colored nets in which the set of colors C contains just one
color.
For all occurrence colors o ∈ C of all transitions t ∈ T , the

sets of input Inp, inhibitor Inh and output Out place colors
are defined as:

Inp(t, o) = {(p, c) ∈ P × C | (p, t) ∈ A ∧ c ∈ w(p, t)(o)}
Inh(t, o) = {(p, c) ∈ P × C | (p, t) ∈ A ∧ c ∈ h(p, t)(o)}
Out(t, o) = {(p, c) ∈ P × C | (t, p) ∈ A ∧ c ∈ w(t, p)(o)}

where w(p, t)(o) and h(p, t)(o) denote applications of the oc-
currence color o to the arc functions w and h of the arc (p, t).
Similarly, for all place colors (p, c) ∈ P × C:

Inp(p, c) = {(t, o) ∈ T × C | (t, p) ∈ A ∧ c ∈ w(t, p)(o)}
Out(p, c) = {(t, o) ∈ T × C | (p, t) ∈ A ∧ c ∈ w(p, t)(o)}

Let any function m which maps P into multisets of (place)
colors, m : P → C → N , be called a marking in a net N.
An occurrence color o ∈ C of a transition t ∈ T is enabled

at the marking m if and only if

∀((p, c) ∈ Inp(t, o))m(p, c) > 0 ∧
∀((p, c) ∈ Inh(t, o)) m(p, c) = 0.

If an occurrence o of the transition t is enabled at the
marking mi, it can fire. The firing of the occurrence (t, o)
transforms mi into another marking mj such that for each
(p, c) ∈ P × C:

mj(p, c) =







mi(p, c)− 1, if (p, c) ∈ Inp(t, o)−Out(t, o),
mi(p, c) + 1, if (p, c) ∈ Out(t, o)− Inp(t, o),
mi(p, c), otherwise;

A place color (p, c) of a net N is shared iff there are exist
occurrences (ti, ok) and (tj , oℓ) such that:

(p, c) ∈ Inp(ti, ok) ∩ Inp(tj , oℓ).

A shared place color (p, c) is guarded if for all pairs of
occurrences (ti, ok) and (tj , oℓ) sharing (p, c) there exists an-
other place ph such that:

(ph, c) ∈ Int(ti, ok) ∧ (ph, c) ∈ Inh(tj , oℓ) ∨
(ph, c) ∈ Inh(ti, ok) ∧ (ph, c) ∈ Inp(tj , oℓ).

A shared place color (p, c) is free–choice if all occurrences
sharing it have the same input and inhibitor sets, i.e., iff:

∀((ti, ok), (tj , oℓ) ∈ Out(p, c))
Inp(ti, ok) = Inp(tj , oℓ) ∧ Inh(tj , ok) = Inh(tj , oℓ).

A net N is free–choice iff all its shared place colors are
either guarded or free-choice. Only free–choice nets are con-
sidered in this paper because almost all practical net models
are either free-choice or can easily be converted into equiva-
lent free-choice nets.
The relation of sharing a free–choice place is an equivalence

relation in the set T × C, so it implies a partition of this set
into a number of free–choice equivalence classes. It can be
observed that at any markingm, either all occurrences within
any free–choice class are simultaneously enabled or they are
simultaneously disabled. It is assumed that selections of fir-
ing occurrences within free–choice classes of occurrences are
random processes which can be described by probabilities as-
sociated with occurrences.

In timed colored nets, transition occurrences fire in ‘real–
time’, which means that there is a ‘firing time’ associated
with each occurrence of each transition. This firing time may
be deterministic, as in D–timed nets [Z91], or it can be a ran-
dom variable with some distribution function, for example,
negative exponential distribution, as in M–timed nets [Z91].
In the second case, the average value of the firing time is used
to characterize the timed behavior.
Any enabled occurrence starts its firing in the same time

instant in which it becomes enabled. Each firing can be con-
sidered as a three–phase event; first, the (colored) tokens are
removed from the input places as indicated by the arc func-
tions of the firing occurrence, the second phase is the firing
time period, and when it is finished, (colored) tokens are de-
posited to output places as indicated by the arc functions of
the firing occurrence. If a transition occurrence becomes en-
abled while it is firing, a new independent firing cycle begins.

A timed colored net is a triple, T = (N, u, f) where

N is a colored net, N = (P, T,A,C,w, h,m0),

u is a choice function which, for each marking m of N,
assigns the ‘choice’ probability to each occurrence color
of each transition, u : T ×C → R[0,1], such that for each
free–choice class of occurrences the sum of probabilities
is equal to 1,

f is a firing–time function which assigns the average firing
time to each occurrence color of each transition of the
net, f : T × C → R+, where R+ denotes the set of
nonnegative real numbers.

The concept of states and derivations of state space for
timed colored nets is given in Z90].

3. THROUGHPUT IN TIMED COLORED NETS

Intuitively, throughput of a place color (p, c) in a timed net
T is equal to the average number of (colored) tokens entering
(or leaving) the place p in a unit time; in the steady–state of
the net, the average numbers of (colored)tokens entering and
leaving each place must be equal since no “accumulation”
of tokens can occur. Similarly, throughput of an occurrence
color (t, o) is equal to the average number of occurrence’s fir-
ings in a unit time. It should be noted that the throughput
of an occurrence does not depend upon the number of in-
coming or outgoing arcs; in the steady–state, the (average)
numbers of tokens removed from each of the input places and
deposited to each of the output places in a unit time are the
same.
More formally, the throughput of a timed net T is defined

as a function θ : (P ∪ T ) → C → R⊕ which assigns a noneg-
ative number to each place color and each occurrence color
of the net:

∀(a ∈ P ∪ T ) ∀(c ∈ C) θ(a, c) = lim
n→∞

n

τn(a, c)



Throughput analysis in timed colored Petri nets 3

where τn(a, c) denotes the time instant at which the n-th
consecutive token of color c enters (or leaves) the place a or
at which the occurrence color (a, c) initiates (or terminates)
its n-th firing.

The “non-accumulation” property of the steady–state im-
plies the following properties of throughput:

Property 1: For each place color (p, c), its throughput is
equal to the sum of throughputs of its input occurrence colors
as well as the sum of throughputs of its output occurrence
colors:

∀((p, c) ∈ P × C) θ(p, c) =
∑

(t,o)∈Inp(p,c) θ(t, o) =
∑

(t,o)∈Out(p,c) θ(t, o).

Property 2: For each non–shared place color (p, c), the
throughput of (p, c)’s output transition is equal to the
throughput of (p, c):

∀((p, c) ∈ P × C) Out(p, c) = {(t, o)} ⇒ θ(t, o) = θ(p, c).

Property 3: For each free–choice place color (p, c), through-
puts of (p, c)’s output transitions are determined by the
choice function u:

∀((t, o) ∈ Out(p, c)) θ(t, o) = u(t, o)θ(p, c).

Property 4: For each place color (p, c) that is shared by
two occurrences (ti, ok) and (tj , oℓ), and which is guarded by
a place ph:

ph ∈ Inp(ti, ok) ⇒ θ(ti, ok) = θ(ph),
ph ∈ Inh(tj , oℓ) ⇒ θ(tj , oℓ) = θ(p, c)− θ(pk, c).

An elementary colored net is a net in which there is exactly
one input place color and exactly one output place color for
each occurrence color of the net, and one input occurrence
color and one output occurrence color for each place color of
the net. In other words, the (directed) graph of an elementary
net is a (simple) cycle, and there is no interaction between
different colors.
It follows immediately from the property 2 that in elemen-

tary nets the throughputs of all transitions and all places are
the same for each color.

Property 5: For an elementary net T:

∀(c ∈ C) ∀(a ∈ P ∪ T ) θ(a, c) =

∑

p∈P m0(p, c)
∑

t∈T f(t, c)

4. EXAMPLE

In Petri net models of service systems (in general sense),
places usually represent system queues, transitions servers,
directed arcs model the flow of activities in the model as well
as synchronization constraints for concurrent activities, col-
ors are used to represent different classes of activities, and arc
functions describe priorities of simultaneous events, queueing
disciplines, etc.
The timed net shown in Fig.1 is a typical model of

a memory–constrained multiprogramming system [L84] in
which colors are used to represent different classes of jobs
(or customers) with different priorities of acquiring resources
of the system. Only two classes of jobs are considered in
this example but any generalization is quite straightforward;
these two classes of jobs be denoted by colors ‘H’ and ‘L’, for
‘high–priority’ and ‘low–priority’ jobs, respectively. More-
over, another color, ‘A’ is used for representing the numbers
of available resource units.

t1 t2 t3

t4 t5

t6

p1

p2

p3

p4

p5

p6

p7p8

Fig.1. Petri net model of a multiprogramming system.

In Fig.1, p1 and t1 model the source of jobs which arrive
with the average interarrival times equal to the firing time
functions of occurrences ‘H’ and ‘L’ of t1; the initial marking
function typically assigns one ‘H’ and one ‘L’ token to p1. p2
is the memory queue for jobs that must wait for entering the
execution stage; the system limits the number of jobs that
receive allocation of memory and can execute concurrently
(this limit is also called the level of multiprogramming), so
only certain number of jobs can enter into the central server.
The memory constraint is represented by the place p6 (with
its initial marking m0(p6, A)); each job entering the central
system reduces the number of tokens in p6 by one, and each
job leaving the system (transition t6) increases the number
of tokens in p6. p3 and t3 represent the central server with
its waiting queue p8, while p4 and t4 model a disk server
with its queue p5; the number of (identical) processors in the
central server is determined by the initial marking of the place
p3, and the number of (identical) disk drives by the initial
marking of the place p4. The place p7 is a free–choice place
with two choices, termination of job execution (transition t6
with probability q) or continuation of execution (transition t5
with probability (1−q)). The probability q can be determined
on the basis of the average number of disk requests per job
execution; if each job requests K disk operations on average,
q = 1/(1 +K).
In the colored net from Fig.1, the color ‘A’ is effectively

used for p3, p4 and p6 only; all other places and transitions
use only colors ‘H’ and ‘L’. All color distributions are are
determined by the arc functions w, so w(p1, t1)(H) = {H},
w(p1, t1)(L) = {L}, w(t1, p1)(H) = {H}, w(t1, p1)(L) =
{L}, w(p6, t2)(H) = w(p6, t2)(L) = {A}, etc. The priorities
of the ‘H’–class jobs are introduced by the inhibitor func-
tions h which are non–empty only for arcs (p2, t2), (p8, t3)
and (p5, t4), and for all these arcs h(pi, tj)(H) = Φ, while
h(pi, tj)(L) = {H}.
It should be observed that the place p2 is potentially un-

bounded; it becomes unbounded if there is no limit on the
number of t1’s firings with respect to firings of other transi-
tions.
For c ∈ {H,L}, the steady–state throughput relations are

as follows:

θ(t1, c) = θ(p1, c) θ(p1, c) = θ(t1, c)
θ(t2, c) = θ(p2, c) θ(p2, c) = θ(t1, c)
θ(t3, c) = θ(p8, c) θ(p3, A) = θ(t3, H) + θ(t3, L)
θ(t4, c) = θ(p5, c) θ(p4, A) = θ(t4, H) + θ(t4, L)
θ(t5, c) = (1− qc) θ(p7, c) θ(p5, c) = θ(t5, c)
θ(t6, c) = qc θ(p7, c) θ(p6, A) = θ(t6, H) + θ(t6, L)

θ(p7, c) = θ(t3, c)
θ(p8, c) = θ(t2, c) + θ(t4, c)

Because of the relations:

θ(t1, c) = θ(p1, c)
θ(p1, c) = θ(t1, c)



Throughput analysis in timed colored Petri nets 4

p1 and t1 determine a simple subnet, so (property 5):

θ(t1, H) = θ(p1, H) = m0(p1, H)/f(t1, H),
θ(t1, L) = θ(p1, L) = m0(p1, L)/f(t1, L),

and then the remaining (symbolic) throughputs are:

θ(t2, H) = θ(t6, H) = θ(p2, H) = m0(p1, H)/f(t1, H),
θ(t2, L) = θ(t6, L) = θ(p2, L) = m0(p1, L)/f(t1, L),

θ(t3, H) = θ(p7, H) = θ(p8, H) = m0(p1,H)
qH f(t1,H)

θ(t3, L) = θ(p7, L) = θ(p8, L) =
m0(p1,L)
qL f(t1,L)

θ(t4, H) = θ(t5, H) = θ(p5, H) = (1−qH) m0(p1,H)
qH f(t1,H)

θ(t4, L) = θ(t5, L) = θ(p5, L) =
(1−qL) m0(p1,L)

qL f(t1,L)

θ(p3, A) =
m0(p1,H)
qH f(t1,H) +

m0(p1,L)
qL f(t1,L)

θ(p4, A) =
(1−qH) m0(p7,H)

qH f(t7,H) + (1−qL) m0(p7,L)
qL f(t7,L)

θ(p6, A) =
m0(p7,H)
f(t7,H) + m0(p7,L)

f(t7,L)

This solution is valid only for the steady–state of the net.
The validity of this solution can be verified by checking the
utilization factors of occurrence colors. Generally, for each
(t, o) ∈ T ×C, the utilization factor u(t, o) is equal to the ra-
tio of the throughput θ(t, o) to the maximum firing rate, and
the maximum firing rates, if they are limited, can be deter-
mined from the finite resources of the modeled system. For
transitions t3 and t4 these maximum firing rates correspond
to the maximal utilization of processors, so:

u(t2) = θ(t2, H) f(t2,H)
m0(p6,A) + θ(t2, L)

f(t2,L)
m0(p6,A)

u(t3) = θ(t3, H) f(t3,H)
m0(p3,A) + θ(t3, L)

f(t3,L)
m0(p3,A)

u(t4) = θ(t4, H) f(t4,H)
m0(p4,A) + θ(t4, L)

f(t4,L)
m0(p4,A)

u(t6) = θ(t6, H) f(t6,H)
m0(p6,A) + θ(t6, L)

f(t6,L)
m0(p6,A)

while the remaining transitions have unlimited maximum fir-
ing rate.
The values of utilization factors beyond the interval [0,1]

indicate that the requirement of steady–state behavior is
not satisfied, so the solution is not valid. For example,
for m0(p1, H) = m0(p1, L) = m0(p3) = 1, f(t1, H) = 2,
f(t1, L) = 1, f(t3, H) = f(t3, L) = 0.1, and qH = qL = 0.01,
u(t3) = 15 which clearly indicates that the net is not er-
godic; actually, it indicates that the processor represented by
t3 should be at least) 15 times faster to handle the service
demand.
Many other results can be derived in a similar way.

5. CONCLUDING REMARKS

It has been shown that, for a class of timed color Petri
nets, steady–state throughput analysis can be performed on
the basis of structural properties of the net rather than the
state space. Moreover, since throughput analysis uses the
average values of firing times only, the exact firing time dis-
tribution function are not important and they may even be
unknown. Also, the approach can be applied to nets which
have different distribution functions associated with different
transitions of the same nets; for example, some transitions
may have deterministic firing times while other transitions
may fire in a stochastic manner.
The timed net used in the example corresponds to an open

network of the queueing theory [K90]. It is believed that the
proposed approach can be extended to (at least) some classes
of closed network models.

The proposed approach can be used for analysis of un-
bounded nets, then however the verification of the ergodic-
ity condition must be performed. As shown in the example,
quite often the solution can be ‘verified’ by checking some ad-
ditional requirements (e.g., utilization factors or other known
performance bounds).
An attractive aspect of throughput analysis is the possibil-

ity of obtaining the solutions in symbolic form rather than a
numerical value. Different combinations of parameter values,
sensitivity of the results with respect to different parameters
or functional dependencies can be investigated very conve-
niently when symbolic solutions are available.
Finaly, it should be noticed that the proposed throughput

analysis can be automated quite easily and can be integrated
with more general tools for analysis Petri net models as one
of alternative analysis methods.

Acknowledgement

The Natural Sciences and Engineering Research Council of
Canada partially supported this research through Operating
Grant A8222.

R e f e r e n c e s

[A84] M. Ajmone Marsan, G. Conte, G. Balbo, “A class
of generalized stochastic Petri nets for the performance
evaluation of multiprocessor systems”; ACM Trans. on
Computer Systems, vol.2, no.2, pp.93–122, 1984.

[B76] J.P. Buzen, “Fundamental operational laws of com-
puter system performance”; Acta Informatica, vol.7,
no.2, pp.167–182, 1976.

[D78] P.J. Denning, J.P. Buzen, “The operational analysis
of queueing network models”; ACM Computing Surveys,
vol.10, no.3, pp.225-261, 1978.

[J87] K. Jensen, “Coloured Petri nets”; in: “Advanced
Course on Petri Nets 1986” (Lecture Notes in Computer
Science 254), G. Rozenberg (ed.), pp.248–299, Springer
Verlag 1987.

[K90] P.J.B. King, “Computer and communication systems
performance modelling”; Prentice–Hall 1990.

[L84] E.D. Lazowska, J. Zahorjan, G.S. Graham, K.C. Sev-
cik, “Quantitative system performance”; Prentice-Hall
1984.

[M89] T. Murata, “Petri nets: properties, analysis and ap-
plications”; Proceedings of IEEE, vol.77, no.4, pp.541–
580, 1989.

[P81] J.L. Peterson, “Petri net theory and the modeling of
systems”, Prentice–Hall 1981.

[R85] W. Reisig, “Petri nets – an introduction”; Springer
Verlag 1985.

[S77] J. Sifakis, “Use of Petri nets for performance evalu-
ation”; in: “Measuring, modelling and evaluating com-
puter systems”, pp.75–93, North–Holland 1977.

[Z81] W.M. Zuberek, “Timed Petri nets and preliminary
performance evaluation”; Proc. 7-th Annual Symp. on
Computer Architecture, pp.89-96, 1981.

[Z90] W.M. Zuberek, “Performance evaluation using timed
colored Petri nets”; protocols”; Proc. Midwest Symp.
on Circuits and Systems, pp.779-782, 1990.

[Z91] W.M. Zuberek, “Timed Petri nets – definitions, prop-
erties and applications”; Microelectronics and Reliability
(Special Issue on Petri Nets and Related Graph Models),
vol.31, no.4, pp.627-644, 1991.


