
22-nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Oct. 31 - Nov. 2, 1988, pp.412–416.

Copyright c© 1988 IEEE (DOI 10.1109/ACSSC.1988.754028).

Dynamic Control of Time–Domain Analysis

in the SPICE-PAC Simulation Package

W.M. Zuberek

Computer Science Department, Memorial University of Newfoundland
St. John’s, Nfld, Canada A1C-5S7

Abstract

SPICE-PAC is a circuit simulation package which is
upward compatible with the popular SPICE-2G6 simu-
lation program. Although SPICE-PAC constitutes the
“core” of several interactive simulators, the best use of
its flexibility is in “integrated” software tools in which
circuit simulation is combined with other software tools
for circuit optimization, device parameter fitting, multi-
level simulations, etc. Recently the package has been
subjected to a series of modifications required by “en-
hanced circuit simulation”, i.e., computer-aided circuit
analysis that allows users to extend, modify and replace
some of the “standard” simulation capabilities. This
paper describes modifications which provide “external”
run-time control of time-domain (transient) analysis,
and shows simple applications of this mechanism.

1. INTRODUCTION

Computer-aided design (CAD) usually refers to ap-
plications of computers in the design process. This can
include the design of physical systems, architectural en-
vironments, manufacture processes and many other ar-
eas. Circuit simulation, or computer-aided circuit anal-
ysis, is one of those CAD applications that have be-
come well established and widely accepted tools in the
design of electronic circuits. Using circuit simulators,
the designers can easily determine the functionality and
performance of designs before the expensive and time-
consuming fabrication takes place.
SPICE-PAC [13] is a package of simulation routines

that is upward compatible with the popular SPICE sim-
ulation program, developed in 1970’s at the University
of California, Berkeley [3,11]. That means that SPICE-
PAC accepts the same circuit description and performs
all the analyses which are available in the SPICE pro-
grams, but also provides mechanisms that do not ex-
ist in SPICE, for example accessing internal values of
circuit elements, dynamic definitions of parameters and
outputs, hierarchical naming scheme for subcircuits, pa-
rameterized subcircuit expansion, and an interface to li-
braries of standard modules. Typical applications of the
package include interactive circuit simulation, circuit op-
timization, device parameter fitting, and other applica-
tions in which circuit simulation is combined with other

CAD tools and techniques [4,5,7,12,13]. Recently the
package has been extended by a number of interfaces
required by “enhanced circuit simulation” i.e., such an
organization of computer-aided circuit analysis in which
users can extend, modify and replace some of the “stan-
dard” simulation capabilities by their own algorithms
in order to increase efficiency, accuracy or applicabil-
ity of existing simulators. Table-driven nonlinear ele-
ments and semiconductor devices or device characteris-
tics specified by symbolic formulas are just a few exam-
ples of such enhancements.

One of the of the most useful, but computationally
most complex, tasks of circuit simulation is the time do-
main transient analysis of dynamical circuits, i.e., cir-
cuits containing capacitors and inductors [2,6,8,10]. It
requires a (numerical) solution of a set of (nonlinear) or-
dinary differential equations describing the circuit. The
detailed algorithm depends upon the integration method
used, but generally the simulation interval is divided
into (usually variable) timesteps (sometimes called inter-
nal timesteps), and at each timepoint, the information
from previous timepoints is used to derive the solution
at the new timepoint. The stability and accuracy of the
integration method has a significant effect on the stabil-
ity, accuracy, and efficiency of the resulting simulation.

There are two basic classes of integration techniques,
explicit and implicit methods [6,10]. Explicit methods
find the values of the functions at new timepoints us-
ing only the information from the “past” They are quite
simple to implement, however, they usually are rather
slow because timestep values are seriously restricted by
rather small stability regions (which - in general case
- are very difficult to determine accurately). Implicit
methods use the values of the functions at new time-
points as part of the system of equations to be solved;
consequently, the solution must be iterative, but stabil-
ity regions are much “better” than for explicit methods,
and this allows the timestep to be chosen as a function
of the accuracy desired at the solution. The two most
popular integration methods used in circuit simulation
are the trapezoidal rule and variable order backward
differentiation (or Gear’s) method, the second designed
specifically to deal with stiff differential equations [10].

This paper briefly outlines the implementation of
time-domain analysis in SPICE-like simulators, and

Dynamic control of time–domain analysis in the SPICE-PAC simulation package 413

then describes the extensions that has been added to
the SPICE-PAC package in order to provide an “exter-
nal” “run-time” control of the time-domain (transient)
analysis. This allows users (or user routines) not only to
monitor, supervise and modify the “standard” execution
of this analysis, but also implement elements of mixed-
mode simulation [4,5]. A number of simple examples
illustrates this new capability.

2. IMPLEMENTATION OF TRANSIENT
ANALYSIS

Time-domain transient analysis is performed in two
consecutive steps, the so called “Initial Transient” anal-
ysis and the proper “Transient” analysis. Initial tran-
sient analysis finds the “initial” solution (i.e., the solu-
tion of circuit equations for the zero time instant) with
or without initial conditions, which can be specified as
device initial conditions (“IC=...” options in capacitors,
inductors, controlled sources, etc.) or node initial condi-
tions (the “.IC” line in circuit description). The proper
transient analysis integrates the differential equations
describing the circuit from one timepoint to another,
using either the trapezoidal rule (default) or backward
differentiation (or Gear) method [3,11].

The proper transient analysis is controlled by two
mechanisms, (1) the variable timestep which is deter-
mined by user specified parameters as well as truncation
errors estimated during integration steps, and (2) the so
called “breakpoint table” which contains all character-
istic time instances of time-dependent source functions
(transmission lines are also taken into account in creat-
ing the breakpoint table).

The variable timestep is controlled by iteration count
and an estimeted truncation error [3]. The iteration
count uses the number of Newton-Raphson iterations
steps required to converge at a given timepoint (subrou-
tine SPPITR); if this number is less than the parameter
(or “OPTION” ITL3, the timestep is doubled provided
it does not exceed the value of DELMAX (subroutine
SPPTCT). DELMAX (TMAX in [11]) is either speci-
fied by users, or (by default) is equal to the (internal)
Time step:

Time step :=

min((Time stop - Time start)/50,Time incr)

where “Time incr”, “Time stop” and “Time start”
are parameters of transient analysis defined by users
(TSTEP, TSTOP and TSTART in [11]). Moreover, if
the number of iterations is greater than the limit ITL4,
the Newton-Raphson iteration is terminated as noncon-
vergent, the timestep is divided by 8, and the iterative
solution begins for a new timepoint, provided the re-
duced timestep is greater than the “minimum” timestep

equal to 10−9
∗DELMAX (otherwise the notorious mes-

sage “internal timestep too small” is reported and the
analysis terminates [1]).
The estimation of (local) truncation errors (performed

by the subroutine SPPTER) uses the derivatives ap-
proximated by finite differences. The estimation proce-
dure determines the minimum timestep for which the
truncation errors are “acceptable”. When the trunca-
tion errors (for the assumed timestep) are “unaccept-
able”, the integration “backtracks” in time, and the new,
“acceptable” timestep is used provided it is greater than
the minimum timestep.
The breakpoint table is created (subroutines SPPBPT

which performs a number of additional checks and
adjustments and SPPBRT which actually creates the
table) by analyzing independent voltage and current
sources (and also transmission lines which are neglected
here):

initialize;

append(zero);

append(Time_stop);

for each independent voltage & current source do {

case (time_dependent function) of

"PULSE" : { time:=0;

while (time < Time_stop) do {

append(start_of_rise timepoint);

append(end_of_rise timepoint);

append(start_of_fall timepoint);

append(end_of_fall timepoint);

time:=time+pulse_period } };

"SINE" : append(delay_time);

"EXP" : { append(start_of_rise timepoint);

append(start_of_fall timepoint) };

"PWL" : for each point do

if (time_value < Time_stop) then

append(time_value)

endcase };

call SPPSHS to sort the breakpoint table;

TOL:=0.01*DELMAX;

compress all values which differ less than TOL;

delete all values greater than Time_stop;

The initial transient analysis (subroutine SPPDCA
with parameters MODE=1, MODEDC=2) finds the so-
lution of the set of (nonlinear) circuit equations with
given (or default) initial conditions:

initialize;

TIME:=0;

call SPPSOR to set sources to time_zero values;

INITF:=2;

call SPPITR to solve the system of circuit eqns;

and the subroutine SPPITR performs the Newton-
Raphson iteration:

Dynamic control of time–domain analysis in the SPICE-PAC simulation package 414

ITERNO:=NONCON:=0;

DONE:=false;

while (not DONE) do {

call SPPLDM to load the circuit matrix;

if ((initial conditions are specified) and

(analysis=Initial_Transient)) then exit;

ITERNO:=ITERNO+1;

case (INITF) of

"1" : if (NONCON=0) then exit;

"2" : INITF:=3;

"3" : if (NONCON=0) then INITF:=1;

"4","5","6" : INITF:=1

endcase;

if (ITERNO > iteration_limit) then

exit("nonconvergent iteration");

call SPPDCD to perform LU decomposition;

call SPPDCS for forward/backward substitutions;

NONCON:=0;

for I:=1 to number_of_equations do {

TOL:=RELTOL*abs(solution[I])+VNTOL;

if (abs(correction[I]) > TOL) then

NONCON:=NONCON+1 };

if (NONCON=0) then DONE:=true };

The proper transient analysis (with extensions) is pre-
sented in the next section.

3. MODIFIED TRANSIENT ANALYSIS

In order to allow a more flexible control of time-
domain (transient) analysis, an in particular, to allow
“dynamic” control of this analysis , i.e., control at run-
time, the original implementation has been extended by
three invocations of an auxiliary routine SPPRTR (SP-
PRTR is an interfacing subroutine which reorganizes
some internal data and then invokes a user-supplied sub-
routine SPURTR that actually “controls” the analysis;
SPURTR is described in the next section). The first
invocation of SPPRTR is within the initialization part
of analysis, the second is within the iterative integra-
tion scheme (DELOLD used in the “reject” section is
stored within the “acceptance” sequence), and the third
invocation corresponds to “nonconvergent” cases.

initialize;

TIME:=0;

DELTA:=Time_step;

if (run_time_control) then

call SPPRTR with initial parameters;

DELBKP:=DELTA;

DELMIN:=10E-9*DELMAX

INITF:=5;

IBRTAB:=1;

NTIMEP:=0;

ITERTR:=0;

BREAKP:=true;

saveoutputs:

store outputs in an internal table;

if (run_time_control) then {

call SPPRTR with actual parameters;

if (terminate) then {

interpolate output results;

return from analysis } else

if (reject) then {

delete last results;

DELTA:=DELOLD;

TIME:=TIME-DELTA;

DELTA:=DELTA/4;

BREAKP:=false } else

if (reset) then run_time_control:=false };

if (TIME > Time_stop) then {

interpolate output results;

return from analysis };

if (BREAKP) then {

IBRTAB:=IBRTAB+1;

DELBPT:=breakpoint_table[IBRTAB]-TIME;

DELTA:=min(DELTA,0.1*min(DELBKP,DELBPT));

if (NTIMEP=0) then DELTA:=0.1*DELTA;

BREAKP:=false }

else

if (TIME+DELTA > breakpoint_table[IBRTAB])

then {

DELBKP:=DELTA;

DELTA:=breakpoint_table[IBRTAB]-TIME;

BREAKP:=true };

NCHECK:=3;

newtime:

TIME:=TIME+DELTA;

if (execution_time > time_limit) then

stop_analysis("execution time limit reached");

if (ITL5 > 0 and ITERTR > ITL5) then

stop_analysis("iteration steps limit reached");

call SPPSOR to update time_dependent sources;

if (INITF <> 5) then INITF:=6;

call SPPITR to solve the system of circuit eqns;

ITERTR:=ITERTR+ITERNO

NTIMEP:=NTIMEP+1;

if (converged) then {

DELNEW:=DELTA;

call SPPTCT to adjust the timestep DELNEW;

if (integration error is acceptable) then {

DELOLD:=DELTA;

DELTA:=DELNEW;

go to saveoutputs };

TIME:=TIME-DELTA;

DELTA:=DELNEW }

else {

TIME:=TIME-DELTA;

DELTA:=DELTA/8 };

check:

if (DELTA >= DELMIN) then go to newtime;

Dynamic control of time–domain analysis in the SPICE-PAC simulation package 415

if (run_time_control) then {

call SPPRTR with termination parameters;

if (continue) then {

TIME:=TIME-DELTA;

DELTA:=DELTA*8;

NCHECK:=NCHECK-1;

if (NCHECK > 0) then go to check } };

stop_analysis ("timestep too small");

4. USER INTERFACE (SPURTR)

In SPICE-PAC, the communication between subrou-
tines and functions follows that of the original SPICE
program, i.e., it uses mainly COMMON areas to pass
numerical parameters, indicators and conditions, as well
as to return results. Such a solution is quite efficient for
internal communication, but is extremely unreliable and
almost unacceptable for user interfaces. Therefore rou-
tines that can be modified and enhanced by users, use
an additional level of interfacing procedures in which
user-accessible parameters are reorganized into vectors,
and passed as vector arguments. This also provides for
the possibility of an elementary consistency check after
user-defined modifications.
The subroutine SPPRTR is an intermediate routine

that provides an interface to a user-defined “external”
run-time control that (if used) must be supplied as a sub-
routine SPURTR with the following (Fortran) header:

SUBROUTINE SPURTR (VOUT,NOUT,TDEL,IRET)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION VOUT(NOUT)

where the parameters are as follows:

VOUT - a DOUBLE PRECISION array of length
NOUT which contains the values of outputs ob-
tained for the present timepoint (NOUT is the num-
ber of output variables increased by 1); it should be
noted that VOUT(1) is the actual value of TIME,
VOUT(2) is the value of the first output variable,
etc.;

NOUT - an INTEGER argument that is set to the
length of VOUT;

TDEL - a DOUBLE PRECISION argument which is
set to the value of timestep;

IRET - an INTEGER variable that is used as an en-
try/return flag; on entry, IRET=-1 indicates the
initial call, IRET=0 indicates an accepted time-
point solution, and IRET=+1 indicates nonconver-
gence; on exit, IRET=0 indicates continuation of
analysis, IRET=+1 terminates transient analysis

at the current timepoint, IRET=-2 turns off exter-
nal control (i.e., SPPRTR and SPURTR subrou-
tines will not be called but the analysis continues),
and IRET=-3 rejects the timepoint, after which
the stored results are deleted from an iternal ta-
ble, the TIME “returns” to the previous timepoint,
timestep is divided by 4, and the analysis resumes.

5. EXAMPLES

Example 1: The following simple example shows a “dy-
namic” termination of transient analysis when the sec-
ond output (i.e., VOUT(3) in SPURTR) “saturates”,
i.e., when the value of the second output variable in-
significantly changes at a number of consecutive time-
points (5 in this example, determined by the LIMSIM
parameter); it should be observed that no initial delay
is allowed for this solution, however, only a minor mod-
ification of the termination conditions is needed to deal
with such a situation:

SUBROUTINE SPURTR (VOUT,NOUT,TDEL,IRET)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION VOUT(NOUT)

DATA LIMSIM / 5 /

IF (IRET.LT.0) THEN

MARK=0

NUMT=0

ELSE IF (IRET.EQ.0) THEN

WRITE(*,1) NUMT,MARK,(VOUT(I),I=1,NOUT),TDEL

1 FORMAT(2X,I3,’ : ’,I1,1P7D9.2)

NUMT=NUMT+1

IF (MARK.GT.0) THEN

TOL=1D-3*(DABS(VOUT(3))+1D-3)

IF (DABS(AOUT-VOUT(3)).LT.TOL) THEN

IF (MARK.GE.LIMSIM) IRET=1

ELSE

MARK=0

ENDIF

ENDIF

AOUT=VOUT(3)

MARK=MARK+1

ENDIF

RETURN

END

The final part of a trace of consecutive timepoints
printed by this routine and the results of transient anal-
ysis for a very simple circuit are as follows:

** simple external control

VV 1 0 DC(1) PULSE(0 1 0 2NS 2NS 25NS)

R2 1 2 100

C2 2 0 10P

.TR 1NS 20NS

Dynamic control of time–domain analysis in the SPICE-PAC simulation package 416

.PRINT TR V(1) V(2)

.END

..

22 : 1 5.00d-09 1.00d+00 9.79d-01 4.00d-10

23 : 1 5.40d-09 1.00d+00 9.86d-01 4.00d-10

24 : 1 5.80d-09 1.00d+00 9.91d-01 4.00d-10

25 : 1 6.20d-09 1.00d+00 9.94d-01 4.00d-10

26 : 1 6.60d-09 1.00d+00 9.96d-01 4.00d-10

27 : 1 7.00d-09 1.00d+00 9.97d-01 4.00d-10

28 : 1 7.40d-09 1.00d+00 9.98d-01 4.00d-10

29 : 2 7.80d-09 1.00d+00 9.99d-01 4.00d-10

30 : 3 8.20d-09 1.00d+00 9.99d-01 4.00d-10

31 : 4 8.60d-09 1.00d+00 9.99d-01 4.00d-10

32 : 5 9.00d-09 1.00d+00 1.00d+00 4.00d-10

***** TRANSIENT ANALYSIS : TEMP = 27.0 DEG C

TIME V(1) V(2)

0.00d+00 0.00d+00 0.00d+00

1.00d-09 5.00d-01 1.85d-01

2.00d-09 1.00d+00 5.66d-01

3.00d-09 1.00d+00 8.42d-01

4.00d-09 1.00d+00 9.41d-01

5.00d-09 1.00d+00 9.79d-01

6.00d-09 1.00d+00 9.92d-01

7.00d-09 1.00d+00 9.97d-01

8.00d-09 1.00d+00 9.99d-01

9.00d-09 1.00d+00 1.00d+00

while the “standard” results of transient analysis for the
same circuit would continue until the “Time stop” with-
out any furhter significant change.

Example 2: The SPURTR routine is used to find the
“exact” time instances at which the output signal of
a simple MOSFET inverter reaches the 10% and 90%
levels.

** double inverter - transient analysis

VDD 5 0 DC=5

VIN 1 0 PULSE(0 5 1NS 2NS 2NS 3NS 10NS)

M1 5 1 2 5 PMOD L=3U W=6U AS=36P AD=36P

M2 2 1 0 0 NMOD L=3U W=3U AS=18P AD=18P

M3 5 2 3 5 PMOD L=3U W=6U AS=36P AD=36P

M4 3 2 0 0 NMOD L=3U W=3U AS=18P AD=18P

*... NMOS transistor model

.MODEL NMOD NMOS LEVEL=2

*... PMOS transistor model

.TR 0 20NS

.MODEL PMOD PMOS LEVEL=2

.PRINT TRAN V(1) V(3) V(2)

.END

... time : 2.0866d-09 output rising at 10%

... time : 2.7116d-09 output rising at 90%

... time : 6.9168d-09 output falling at 90%

... time : 7.3557d-09 output falling at 10%

... time : 1.2087d-08 output rising at 10%

... time : 1.2712d-08 output rising at 90%

... time : 1.6917d-08 output falling at 90%

... time : 1.7356d-08 output falling at 10%

It can be observed that the time increment param-
eter in the “.TR” line is equal to zero; this is one of
(minor) SPICE-PAC modifications which indicates that
the results are required at the original internal time-
points rather than at the interpolated equidistant points
at which the detailed information about changes and
slopes of the waveforms may be significantly distorted
or lost.
The SPURTR routine (which uses linear interpolation

to determine the intercept points) can be as follows:

SUBROUTINE SPURTR (VOUT,NOUT,TDEL,IRET)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION VOUT(NOUT)

CHARACTER*21 TXT

IF (IRET.LT.0) THEN

Ta=VOUT(1)

Va=VOUT(3)

ELSE IF (IRET.EQ.0) THEN

Tb=VOUT(1)

Vb=VOUT(3)

TXT=’ ’

IF (Va.LT.0.5 .AND. Vb.GE.0.5) THEN

TEMP=Ta+(0.5-Va)*(Tb-Ta)/(Vb-Va)

TXT=’output rising at 10%’

ELSE IF (Va.LT.4.5 .AND. Vb.GE.4.5) THEN

TEMP=Ta+(4.5-Va)*(Tb-Ta)/(Vb-Va)

TXT=’output rising at 90%’

ELSE IF (Va.GE.4.5 .AND. Vb.LT.4.5) THEN

TEMP=Ta+(4.5-Va)*(Tb-Ta)/(Vb-Va)

TXT=’output falling at 90%’

ELSE IF (Va.GE.0.5 .AND. Vb.LT.0.5) THEN

TEMP=Ta+(0.5-Va)*(Tb-Ta)/(Vb-Va)

TXT=’output falling at 10%’

ENDIF

IF (TXT.NE.’ ’) WRITE(*,100) TEMP,TXT

100 FORMAT(’ ... time :’,1PD12.4,1X,A)

Va=Vb

Ta=Tb

ENDIF

RETURN

END

6. CONCLUDING REMARKS

One of known “problems” of transient analysis in
SPICE-like simulators is due to its variable timestep
method, which often leads to an “internal timestep too

Dynamic control of time–domain analysis in the SPICE-PAC simulation package 417

small” termination [1]. It should be observed, that
the run-time control can “trace” the values of internal
timesteps (TDEL parameter of SPURTR), and (auto-
matically) adjust the tolerance parameters (using the
SPICEX routine [13]) during transient analysis. More-
over, a more elaborate SPURTR routine could “switch”
to an interactive mode in cases of “nonconvergent” anal-
yses, and then users might interactively “help” the anal-
ysis to converge by appropriate changes of simulation
parameters.
Also, the external control mechanism can be used for

implementation of simple mixed-mode simulations, how-
ever, for more complicated circuits, such “manually”
controlled interactions can easily become irregular and
unreliable. Therefore, for realistic mixed-mode simula-
tions, a more systematic approach is needed in which
the “control” of analog simulation is derived “automati-
cally” from (formalized) specifications of the digital part
of the circuit. In fact, an independent module could be
developed to generate software routines from logic de-
scriptions of digital parts, and this software (compiled
or interpreted) could be used for combined simulation
with analog parts.

The extensions described in this paper are imple-
mented in the SPICE-PAC versions 2G6c and beyond.

Acknowledgement

The Natural Sciences and Engineering Research
Council of Canada partially supported this research
through Operating Grant A8222, and Northern Tele-
com Canada through Memorial University Interaction
Program.

References

[1] P. Antognetti, G. Massobrio, “Semiconductor de-
vice modeling with SPICE”; McGraw-Hill 1988.

[2] R.E. Bank, W.M. Coughran Jr, W. Fichtner, E.H.
Grosse, D.J. Rose, R.K. Smith, “Transient simu-
lation of silicon devices and circuits”; IEEE Trans.
on Computer Aided Design, vol.4, no.4, pp.436-451,
1985, and also IEEE Trans. on Electron Devices,
vol.32, no.10, pp.1992-2007, 1985.

[3] E. Cohen, “Program reference for SPICE 2”; Mem-
orandum UCB/ERL M592, University of Califor-
nia, Berkeley CA 94720, 1976.

[4] J.T.J. van Eijndhoven, J.A.G. Jess, “Mixed-mode
mixed-level analysis with PWL systems”; Proc.
IEEE Int. Symp. on Circuits and Systems, Mon-
treal, Canada, pp.1377-1380, 1984.

[5] H. de Man, G. Arnout, P. Reynaert, “Mixed-mode
simulation techniques and their implementation in
DIANA”; in: “Computer Design Aids for VLSI Cir-
cuits”, (eds) P. Antognetti, D.O. Pederson, H. de
Man, Sijthoff and Noordhoff 1981.

[6] D.O. Pederson, “Computer aids in integrated cir-
cuit design”; in: “Computer Design Aids for VLSI
Circuits”, (eds) P. Antognetti, D.O. Pederson, H.
de Man, Sijthoff and Noordhoff 1981.

[7] Ch. Poivey, “Methodes d’optimisation globale pour
la CAO de circuits integres; interface avec le simu-
lateur SPICE-PAC” (Global optimization methods
for CAD of integrated circuits; an interface to the
SPICE-PAC simulation package); These de Doc-
teur Ingenieur, l’Universite Blaise Pascal, serie D.I.,
no.203, Clermont-Ferrant, France, 1987.

[8] R.A. Rohrer, H. Nosrati, K.W. Heizer, “Quasi-
static control of explicit algorithms for transient
analysis”; IEEE Trans. on Computer-Aided De-
sign, vol.3, no.3, pp.226-233, 1984.

[9] K.A. Sakallah, S.W. Director, “SAMSON : a
mixed circuit-logic level simulator”; in: “Advances
in Computer-Aided Engineering Design - vol.1”,
(ed.) A. Sangiovanni-Vincentelli, pp.149-223, JAI
Press 1985.

[10] J. Vlach, K. Singhal, “Computer methods for cir-
cuit analysis and design”; Van Nostrand Reinhold
1983.

[11] A. Vladimirescu, K. Zhang, A.R. Newton, D.O.
Pederson, A.L. Sangiovanni-Vincentelli, “SPICE
Version 2G - User’s Guide (10 Aug. 1981)”; Depart-
ment of Electrical Engineering and Computer Sci-
ences, University of California, Berkeley CA 94720,
1981.

[12] K. Walsh, B. Wolfe, “Mixed-domain analysis for
circuit simulation”; VLSI Systems Design, vol.8,
no.8, pp.44-49, 1987.

[13] W.M. Zuberek, “SPICE-PAC 2G6a.84.05 - User’s
Guide”; Technical Report 8404, Department of
Computer Science, Memorial University of New-
foundland, St. John’s, Newfoundland, Canada A1C
5S7, 1984.

