
IEEE Int. Conf. on Systems, Man and Cybernetics (SMC’06), Beijing, China, 14-17 October 1996, pp.2990-2995.

Copyright c© 1996 IEEE (DOI 10.1109/ICSMC.1996.561440).

Composite Schedules of Manufacturing Cells

and Their Timed Petri Net Models

W.M. Zuberek

Department of Computer Science

Memorial University of Newfoundland

St. John’s, Canada A1C–5S7

A b s t r a c t

In composite schedules, several (identical or dif-
ferent) parts enter and leave a manufacturing cell in
each cycle. A systematic method of generating all
composite schedules is proposed, and it is shown that
the generated schedules can easily be transformed
into timed Petri net models. Invariant analysis of
these timed net models provides performance charac-
teristics of the cell. The characteristics are obtained
in analytical (or symbolic) form, so they are appli-
cable to a wide spectrum of specific cases. Simple
examples illustrate an application of the proposed
approach to a robotic cell with three machines.

1. INTRODUCTION

In flexible manufacturing systems, machines are
often grouped into manufacturing cells (or robotic
cells), in which a robot performs cyclic sequences
of pickup, move, load, unload and drop operations,
transporting the manufactured parts from one ma-
chine of the cell to another [4, 5, 2]. This cyclic se-
quence of robot activities is called a schedule. The
schedule determines the throughput of the cell, be-
cause it determines the sequence of robot’s actions
as well as the sequence in which the parts enter the
cell [1]. Any approach to maximizing the throughput
of a robotic cell must thus deal efficiently with two
issues: how to generate alternative schedules for a
given cell, and how to evaluate these schedules.
Two types of schedules can be identified for man-

ufacturing cells, the so called simple schedules, in
which exactly one part enters the cell and one leaves
the cell in each cycle (although the leaving part may
not be the same as the entering one), and composite
schedules, which deal with several (new) parts in each
cycle. The case of simple schedules was previously
discussed in detail [7]. Models of composite schedules
can be regarded as a composition of simple schedules,
and each such simple schedule corresponds to one
part entering the cell within each cycle. A system-
atic generation of composite schedules is proposed in

this paper; the schedules are generated by system-
atically tracing all possible moves of parts through
the cell. Moreover, it is shown how each compos-
ite schedule can be converter into a timed Petri net
model and then evaluated.

In timed Petri net models, the duration of modeled
activities is also taken into account and included into
model specifications. Several types of Petri nets ‘with
time’ have been proposed by assigning ‘firing times’
to the transitions or places of a net. In timed nets,
transition firings are ‘real–time’ events, i.e., tokens
are removed from input places at the beginning of
the firing period, and they are deposited to the out-
put places at the end of this period (sometimes this is
also called a “three–phase” firing mechanism). The
firing times may be either deterministic or stochastic,
i.e., described by some probability distribution func-
tion. In both cases the concepts of state and state
transitions have been formally defined and used in
derivation of different performance characteristics of
the model [6].

In modeling manufacturing cells, the structure of
the net models represents the “flow” of parts through
the cell and the sequence of robot’s operations, while
the times associated with transitions describe the
(average) operation times of machines of the cell as
well as the robot. Consequently, there is a close cor-
respondence between the elements of the model and
the modeled system.

Analysis of net models can be based on their be-
havior (i.e., the space of reachable states) or on the
structure of the net; the former is called reachability
analysis while the latter structural analysis. Invari-
ant analysis seems to be the most popular example
of the structural approach. Structural methods elim-
inate the derivation of the state space, so they avoid
the ‘state explosion’ problem of reachability analysis,
but they cannot provide as much information as the
reachability approach does. Quite often, however, all
the detailed results of reachability analysis are not
really needed, and more synthetic performance mea-
sures, that can be provided by structural methods,



Composite schedules of manufacturing cells and their timed Petri net models 2991

are quite satisfactory [2]. In particular, the through-
put (or the cycle time) of a timed net model can
easily be determined from the structure of a net [7].
This paper presents a systematic method of gener-

ating all composite schedules for a given cell. Each of
such composite schedules is modeled by a timed Petri
net, and its performance is determined by invariant
analysis of the derived net model. Simple examples
of manufacturing cells are used as an illustration of
the proposed approach.

2. SIMPLE SCHEDULES

Simple schedules of robotic cells are schedules in
which exactly one part enters and one leaves the cell
in each cycle (although the part which leaves the cell
may not be the same as the one which enters the
cell). It is known [4] that for a cell with m machines,
there are m! different simple schedules. For m = 3
(a sketch of a 3–machine cell is shown in Fig.1) there
are six simple schedules, which are denoted here as
A, B, C, D, E and F.

M3

M1

M2

M3

In Out

Robot

Fig.1. Layout of a three–machine cell.

Assuming, for simplicity, that each part follows the
same path from the input (In) to machine–1 (M1), to
machine–2 (M2), to machine–3 (M3), and finally to
the output of the cell (Out), the simple schedules can
be described by the following sequences of cell config-
urations, where each configuration corresponds to a
distribution of parts among the machines of the cell
(when the robot does not carry a part); more specif-
ically, for an m–machine cell, each configuration is
described by an m–tuple of machine descriptions:

(k1, k2, ..., km)

where each machine description ki is “1” if the ma-
chine Mi is loaded with a part in this configuration,
and otherwise is “0” (in the case of multiple machines
performing exactly the same operations, the values
describing each multi–machine station would assume
the values from “0” to “n” where n is the number of
identical machines). The six simple schedules for a
3–machine cell are:

A: (0, 0, 0)→ (1, 0, 0)→ (0, 1, 0)→ (0, 0, 1)→ (0, 0, 0)
B: (0, 0, 1)→ (1, 0, 1)→ (0, 1, 1)→ (0, 1, 0)→ (0, 0, 1)
C: (0, 0, 1)→ (1, 0, 1)→ (1, 0, 0)→ (0, 1, 0)→ (0, 0, 1)
D: (0, 1, 0)→ (1, 1, 0)→ (1, 0, 1)→ (1, 0, 0)→ (0, 1, 0)
E: (0, 1, 0)→ (1, 1, 0)→ (1, 0, 1)→ (1, 0, 0)→ (0, 1, 0)
F: (0, 1, 1)→ (1, 1, 1)→ (1, 1, 0)→ (1, 0, 1)→ (0, 1, 1)

Each change of configurations corresponds to a
part moving from one machine to another, from the
input to the first machine, or from the last machine
to the output; all schedules uniformly begin by mov-
ing a (new) part from the input to the first machine.
The simple schedules can be generated system-

atically by tracing all possible “passages” of parts
through the cell [8]. These passages are correspond
to the following changes of cell configurations:

• a configuration (k1, ..., ki, ki+1, ..., km) derives a
configuration (k1, ..., ki−1, ki+1+1, ...km) if and
only if the value of ki is “1” and the value of ki+1

is “0”, i = 1, ...,m− 1;

• a configuration (k1, k2, ..., 1) always derives a
configuration (k1, k2, ..., 0) (this derivation cor-
responds to moving a part from the last machine
Mm to the output of the cell),

• it is assumed that each schedule begins by mov-
ing a (new) part from the input to the ma-
chine M1, so the first derivation is always from
(0, k2, ...km) to (1, k2, ..., km),

• for a cell with m machines, the length of all sim-
ple schedules is equal to m + 1 (it corresponds
to a passage of a part, although not necessarily
the same, from the input, through all machines
of the cell, to the output).

Since parts are transported from one machine (or
input) to another (or output) by the robot, the se-
quences of robot’s actions can easily be derived from
the sequences of configurations by “implementing”
the moves of parts corresponding to changes of con-
secutive configurations. For example, schedule A be-
gins be transporting a part from the input to M1

and loading it; when the first operation is finished,
the robot unloads M1, moves the part to M2 and
loads it there, and so on. The sequences of robot
actions are as follows (the robot moves from X to Y
are denoted by X ⇒ Y if the robot carries a part
and by X → Y otherwise):

A: In⇒M1 ⇒M2 ⇒M3 ⇒ Out→ In

B: In⇒M1 ⇒M2 →M3 ⇒ Out→M2 ⇒M3 → In

C: In⇒M1 →M3 ⇒ Out→M1 ⇒M2 ⇒M3 → In

D: In⇒M1 →M2 ⇒M3 →M1 ⇒M2 →M3 ⇒ Out

→ In

E: In⇒M1 →M2 ⇒M3 ⇒ Out→M1 ⇒M2 → In

F: In⇒M1 →M3 ⇒ Out→M2 ⇒M3 →M1 ⇒M2

→ In



Composite schedules of manufacturing cells and their timed Petri net models 2992

3. COMPOSITE SCHEDULES

For composite schedules, several parts enter and
leave the cell in each cycle. Models of composite
schedules can be regarded as interleaved composi-
tions of simple schedules, corresponding to processing
of consecutive parts which enter the cell within one
cycle, and which move from one machine to another
in consecutive steps of the schedule. A systematic
generation of composite schedules can be obtained by
a simple extension of the procedure used for genera-
tion of simple schedules. Composite schedules which
process n parts withing a single cycle are called sim-
ply n–schedules. For composite schedules, the config-
urations are extended by a hypothetical “input con-
tainer”, which initially contains exactly n parts for
each n–schedule, and which must be emptied dur-
ing the schedule. This container is represented by
an additional element of configurations, for exam-
ple, the initial element, separated from the remain-
ing machine descriptions by a colon (rather than of
a comma). A typical configuration for description of
composite schedules of an m–machine cell is thus:

(k0 : k1, k2, ..., km)

The (revised) rules describing changes of configura-
tions are:

• a configuration (k0 : k1, ..., ki, ki+1, ..., km) de-
rives a configuration (k0 : k1, ..., ki − 1, ki+1 +
1, ...km) if and only if the value of ki is “1” and
the value of ki+1 is “0”, k = 1, ...,m− 1;

• a configuration (k0 : k1, k2, ..., 1) always derives
a configuration (k0 : k1, k2, ..., 0) (this derivation
corresponds to moving a part from the last ma-
chine Mm to the output of a cell),

• a configuration (k0 : 0, k2, ..., km) derives a con-
figuration (k0 − 1 : 1, k2, ..., km) if and only if
the value of k0 is greater than 0 (this derivation
corresponds to moving a part from the input to
the first machine M1),

• it is assumed that each schedule begins by mov-
ing a (new) part from the input to the ma-
chine M1, so the first derivation is always (k0 :
0, k2, ...km) to (k0 − 1 : 1, k2, ..., km),

• for a cell with m machines, the length of all n–
schedules is equal to n ∗ (m+ 1).

For a 3–machine cell, there are 34 different 2–
schedules, including 6 schedules which are just sim-
ple schedules repeated twice. All 34 2–schedules can
be systematically derived by repeatedly applying the
rules to the four initial configurations of the cell.
For the initial configuration (0,0,0), there are five 2–
schedules:

(5)(0:0,0,0)?(0:0,0,1)?(0:0,1,0)?(0:1,0,0)?(1:0,0,0)
(4)(0:0,0,0)?(0:0,0,1)?(0:0,1,0)?(0:0,1,1)

(3)(0:0,0,0)?(0:0,0,1)?(0:0,1,0)?(0:1,0,0)(0:1,0,1)���� HHHj(1:0,0,1)���� XXXXXz
(2)(0:0,0,0)?(0:0,0,1)?(0:0,1,0)?(0:0,1,1)

(1)(0:0,0,0)?(0:0,0,1)?(0:0,1,0)?(0:1,0,0)(0:1,0,1)���� HHHj(0:1,1,0)? (1:0,1,0)������9 PPPPq(1:1,0,0)?(2:0,0,0)?

Each of these schedules can be decomposed into
a pair of interleaved simple schedules, for example,
schedule (1) is composed of simple schedules A and
E:

schedule A schedule E

(0,0,0)
(1,0,0)
(0,1,0) → (0,1,0)

(1,1,0)
(1,0,1)
(1,0,0)

(0,1,0) ← (0,1,0)
(0,0,1)
(0,0,0)

schedule (4) is a composition of A and B:

schedule A schedule B

(0,0,0)
(1,0,0)
(0,1,0)
(0,0,1) → (0,0,1)

(1,0,1)
(0,1,1)
(0,1,0)

(0,0,1) ← (0,0,1)
(0,0,0)

and schedule (5) is simply a composition of A with
itself.

All these schedules can easily be translated into
sequences of robot actions (the robot moves from X
to Y are denoted by X ⇒ Y if the robot carries a
part and by X → Y otherwise):



Composite schedules of manufacturing cells and their timed Petri net models 2993

t1 t2 t3p12

p21

p23
p32

p34

t12 t23 t34t01

p10

p33p02

t12’t01’ t23’ t34’

t40’ p40’p04’

p11’ p33’

p14

p41t41t21

p11 p22

t20’ p20’

p23’

Fig.2. Petri net model of schedule (1)=(A+E).

(1): In ⇒ M1 ⇒ M2 → In ⇒ M1 → M2 ⇒ M3 ⇒

Out → M1 ⇒ M2 ⇒ M3 ⇒ Out → In

(2): In ⇒ M1 ⇒ M2 → In ⇒ M1 → M2 ⇒ M3 →

M1 ⇒ M2 → M3 ⇒ Out → M2 ⇒ M3 ⇒ Out

→ In

(3): In ⇒ M1 ⇒ M2 ⇒ M3 → In ⇒ M1 → M3 ⇒

Out → M1 ⇒ M2 ⇒ M3 ⇒ Out → In

(4): In ⇒ M1 ⇒ M2 ⇒ M3 → In ⇒ M1 ⇒ M2 →

M3 ⇒ Out → M2 ⇒ M3 ⇒ Out → In

(5): In ⇒ M1 ⇒ M2 ⇒ M3 ⇒ Out → In ⇒ M1 ⇒

M2 ⇒ M3 ⇒ Out → In

Timed Petri net models can easily be derived from
the sequences of robot’s action. In timed models,
net transitions represent (machine and robot) oper-
ations while net places represent ‘conditions’ (in the
most general sense). For example, the net model
for schedule (1), i.e., A+E, is shown in Fig.2. The
three machines of Fig.1 (or rather machine opera-
tions) are represented by t1, t2 and t3, and each of
these transitions has an input and output place (for
‘part loaded’ and ‘machine operation finished’ condi-
tions). The ‘firing times’ associated with these tran-
sitions, f(t1) = o1, f(t2) = o2 and f(t3) = o3, repre-
sent the (average) times of performing the operations
on machines M1, M2 and M3, respectively. The re-
maining part of the net represents the sequence of
robot operations, which follows the sequence of ac-
tions indicated above. It is assumed that there is
always an available part in In and that Out removes
manufactured parts sufficiently quickly, so In and
Out are not actually shown (although they can eas-
ily be added to the model).

The transitions correspond to the following actions
for the A and E parts of the schedule:

robot operations exec time

t′01 pick from In, move to M1, load u+ w + y

t′12 unload M1, move to M2, load v + w + y

t′20 move from M2 to In 2y
t′23 unload M2, move to M3, load v + w + y

t′34 unload M3, move to Out, drop v + x+ y

t′40 move from Out to In y

t01 pick from In, move to M1, load u+ w + y

t12 unload M1, move to M2, load v + w + y

t21 move from M1 to M2 y

t23 unload M2, move to M3, load v + w + y

t34 unload M3, move to Out, drop v + x+ y

t41 move from Out to M1 2y

where the execution times (or firing times of transi-
tions) are given assuming that:

u denotes the (average) pickup time,
v – the (average) unload time,
w – the (average) load time,
x – the (average) drop time,
y – the average ‘travel’ time between two adja-
cent machines (assuming, for simplicity, that
this time is the same for all adjacent machines,
and also the same for M3 to Out, Out to In and
In to M1 moves).

For the initial cell configuration (0,0,1), there are
12 different 2–schedules:



Composite schedules of manufacturing cells and their timed Petri net models 2994(2:0,0,1)?(1:1,0,1)?�����9(1:0,1,1)?(0:1,1,1)?(0:1,1,0)?(0:1,0,1)?(0:1,0,0)?(0:0,1,0)?(0:0,0,1)(6,7,8)
�����9 (0:0,1,1)?(0:0,1,0)?(0:0,0,1)(9,10,11)

XXXXXz(1:1,0,0)?(1:0,1,0)�����9 ?(1:0,0,1)?(1:0,0,0)?(0:1,0,0)?(0:0,1,0)?(0:0,0,1)(12,13)
XXXXXz(0:1,0,1)?(0:1,0,0)?(0:0,1,0)?(0:0,0,1)(14,15)

XXXXXz(0:0,1,1)?(0:0,1,0)?(0:0,0,1)(16,17)
and their corresponding robot’s sequences of actions
are:

(6): In⇒M1 ⇒M2 → In⇒M1 →M3 ⇒ Out→

M2 ⇒M3 ⇒ Out→M1 ⇒M2 ⇒M3 → In

(7): In⇒M1 ⇒M2 →M3 ⇒ Out→ In⇒M1 →

M2 ⇒M3 ⇒ Out→M1 ⇒M2 ⇒M3 → In

(8): In⇒M1 →M3 ⇒ Out→M1 ⇒M2 → In⇒

M1 →M2 ⇒M3 ⇒ Out→M1 ⇒M2 ⇒M3 →

In

(9): In⇒M1 ⇒M2 → In⇒M1 →M3 ⇒ Out→

M2 ⇒M3 →M1 ⇒M2 →M3 ⇒ Out→M2 ⇒

M3 → In

(10): In⇒M1 ⇒M2 →M3 ⇒ Out→ In⇒M1 →

M2 ⇒M3 →M1 ⇒M2 →M3 ⇒ Out→M2 ⇒

M3 → In

(11): In⇒M1 →M3 ⇒ Out→M1 ⇒M2 → In⇒

M1 →M2 ⇒M3 →M1 ⇒M2 →M3 ⇒ Out→

M2 ⇒M3 → In

(12): In⇒M1 ⇒M2 →M3 ⇒ Out→M2 ⇒M3 ⇒

Out→ In⇒M1 ⇒M2 ⇒M3 → In

(13): In⇒M1 →M3 ⇒ Out→M1 ⇒M2 ⇒M3 ⇒

Out→ In⇒M1 ⇒M2 ⇒M3 → In

(14): In⇒M1 ⇒M2 →M3 ⇒ Out→M2 ⇒M3 →

In⇒M1 →M3 ⇒ Out→M1 ⇒M2 ⇒M3 →

In

(15): In⇒M1 →M3 ⇒ Out→M1 ⇒M2 ⇒M3 →

In⇒M1 →M3 ⇒ Out→M1 ⇒M2 ⇒M3 →

In

(16): In⇒M1 ⇒M2 →M3 ⇒ Out→M2 ⇒M3 →

In⇒M1 ⇒M2 →M3 ⇒ Out→M2 ⇒M3 →

In

(17): In⇒M1 →M3 ⇒ Out→M1 ⇒M2 ⇒M3 →

In⇒M1 ⇒M2 →M3 ⇒ Out→M2 →M3 ⇒

Out→M2 ⇒M3 → In

There are 12 schedules for the initial configuration

(0,1,0): (2:0,1,0)?(1:1,1,0)?(1:1,0,1)?�����9 (1:1,0,0)?(1:0,1,0)?�����9 (1:0,0,1)?XXXXXz(1:0,0,0)?(0:1,0,0)?(0:0,1,0)(24,25)

(1:0,1,1)?XXXXXz(0:1,1,1)?(0:1,1,0)?(0:1,0,1)??(0:1,0,0)?(0:0,1,0)(21,22,23)
�����9(0:0,1,1)?(0:0,1,0)(18,19,20)

(0:1,0,1)XXXXXz(0:0,1,1)?(0:0,1,0)(28,29)?(0:1,0,0)?(0:0,1,0)(26,27)
and another 5 schedules for the initial configuration
(0,1,1): (2:0,1,1)?(1:1,1,1)?(1:1,1,0)?(1:1,0,1)�����9 XXXXXz(1:1,0,0)?(1:0,1,0)?�����9 (0:1,1,0)?(0:1,0,1)?(0:0,1,1)(31)

(1:0,0,1)?(0:1,0,1)?(0:0,1,1)(30)
(1:0,1,1)?XXXXXz(1:0,1,0)?(1:0,0,1)?(0:1,0,1)?(0:0,1,1)(33)
�����9(0:1,1,0)?(0:1,0,1)?(0:0,1,1)(32)

(0:1,1,1)?(0:1,1,0)?(0:1,0,1)?(0:0,1,1)(34)
4. EVALUATION OF SCHEDULES

The cycle times of schedules can be determined
using net invariants. For a Petri net N = (P, T,A)
with a connectivity matrix Ckℓ where k is the num-
ber of places and ℓ is the number of transitions, a
place–invariant (or simply P–invariant) I is any non–
negative, k–element vector which satisfies the matrix
equation [3]:



Composite schedules of manufacturing cells and their timed Petri net models 2995

Ct × I = 0

where Ct denotes the transpose of matrix C.
It can be observed that any linear combination of

P–invariants is also a P–invariant. A basic invariant
is any invariant which does not contain any other
invariants. The cycle times of basic invariants deter-
mine the cycle time of the model.
The net shown in Fig.2 has five basic P–invariants

which imply the following subsets of transitions [8]
(all entries equal to 2 correspond to Pi–implied sub-
nets in which the corresponding transitions are im-
plied twice):

P–invariant: 1 2 3 4 5
t1 2 0 0 0 0
t2 0 2 2 0 0
t3 0 2 0 2 0
t′01 1 1 1 1 1
t′12 1 1 1 1 1
t′20 1 0 0 1 1
t′23 1 1 1 1 1
t′34 1 1 1 1 1
t′40 1 1 1 1 1
t01 1 0 0 1 1
t12 1 1 1 1 1
t21 0 0 0 1 1
t23 0 1 1 1 1
t34 0 1 1 1 1
t40 0 1 1 1 1

The cycle time is determined by the basic invari-
ant with the maximum cycle time. Since the set of
transitions of the P–invariant (3) is a subset of that
of (2), and the set of transitions of (5) is a subset of
that of (4), the cycle time for this schedule is:

τ0 = max(τ1, τ2, τ4)
where:

τ1 = 2o1 + 2u+ 4v + 5w + 9y,
τ2 = 2o2 + 2o3 + u+ 6v + 5w + 2x+ 10y,
τ4 = 2(o3 + u+ 3v + 3w + x+ 7y)

All other schedules can be evaluated similarly us-
ing net invariants. The schedule with the minimal
cycle time is the optimal 2–schedule.

5. CONCLUDING REMARKS

A systematic approach to modeling and analysis of
composite schedules for a large class of manufactur-
ing cells is proposed. The derived net models are
composed of a relatively small number of subnets
which can easily be determined by invariant anal-
ysis. Performance characteristics (the throughput or
the average cycle time) in symbolic form which means
that specific values of performances can easily be ob-
tained by evaluating the symbolic results for specific

values of parameters (i.e., symbols), and then the
best schedule (i.e., the one with the smallest cycle
time) can be selected to maximize the cell’s perfor-
mance.
Several simplifying assumptions were made during

the derivation of Petri net models, e.g., the all parts
are identical, that the robot travel times between
adjacent machines are the same, etc. It should be
noted, however, that all these assumptions can easily
be removed by simple modifications of the presented
approach. For example, composite schedules can be
used to describe scheduling problems when parts of
different types enter and leave the cell in one cycle.
Parameters associated with such parts can easily be
introduced in the model because the corresponding
operations are represented by different transitions.

Acknowledgement

The Natural Sciences and Engineering Research
Council of Canada partially supported this research
through Research Grant A8222.

R e f e r e n c e s

[1] Dixon, C., Hill, S.D.: “Work–cell cycle–time analy-
sis in a flexible manufacturing system”; Proc. Pacific
Conf. on Manufacturing, Sydney–Melbourne, Aus-
tralia, vol.1, pp.182–189, 1990.

[2] Hillion, H.P.: “Timed Petri nets and application to
multi-stage production system”; in: Advances in
Petri Nets 1989 (Lecture Notes in Computer Science
424); pp. 281–305, Springer Verlag 1989.

[3] Reisig, W.: “Petri nets - an introduction” (EATCS
Monographs on Theoretical Computer Science 4);
Springer Verlag 1985.

[4] Sethi, S.P., Sriskandarajah, C., Sorger, G.,
Blazewicz, J., Kubiak, W.: “Sequencing of parts and
robot moves in a robotic cell”; Int. Journal of Flexi-
ble Manufacturing Systems, vol.4, pp.331–358, 1992.

[5] Silva, M., Valette, R.: “Petri nets and flexible man-
ufacturing”; in: “Advances in Petri nets 1989” (Lec-
ture Notes in Computer Science 424), pp. 374–417,
Springer Verlag 1989.

[6] Zuberek, W.M.: “Timed Petri nets – definitions,
properties and applications”; Microelectronics and
Reliability (Special Issue on Petri Nets and Related
Graph Models), vol.31, no.4, pp.627–644, 1991.

[7] Zuberek, W.M., Kubiak, W., “Timed Petri net mod-
els of flexible manufacturing cells”; Proc. 36-th Mid-
west Symp. on Circuits and Systems, Detroit, MI,
pp.922–925, 1993.

[8] Zuberek, W.M.: “Application of timed Petri nets
to modeling and analysis of flexible manufactur-
ing cells”; Technical Report #9503, Department
of Computer Science, Memorial University of New-
foundland, St.John’s, Canada A1C 3X5 (avail-
able through anonymous ftp at ftp.cs.mun.ca in
pub/techreports as tr_9503.ps.Z).


