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A b s t r a c t

It is shown that a class of flexible manufacturing cells can be con-
veniently modeled and evaluated by timed Petri nets. For simple
schedules, the modeling nets are covered by conflict–free invariant
subnets, so the performance of the model is determined by the
performance of its subnets. For composite schedules, the invariant
subnets are free-choice, so a more elaborate approach to evaluating
the performance of the model must be used.

1. INTRODUCTION

Flexible manufacturing systems are discrete–event systems
which are composed of (i) a set of versatile machines, (ii) an auto-
matic transportation system, and (iii) a decision–making system
which determines what has to be done, when and where [SV89].
Machines are often grouped into manufacturing cells (or robotic
cells), in which a robot performs sequences of pickup, move, load,
unload and drop operations, transporting the manufactured parts
from one machine of the cell to another [SSSBK92,Cl83]. The
throughput of the cell depends on the sequence of robot activities
as well as on the sequence in which different parts enter the cell
[DH90]. The problem of maximizing the throughput of a robotic
cell can thus be considered as a scheduling problem.

The behavior of flexible manufacturing systems is represented
by ‘events’ and ‘activities’; an event corresponds to a change of
system’s state while an activity corresponds to an operation per-
formed by a machine. Different sets of activities determine the
states of the system. In each state, several activities can occur
concurrently, for example, several machines can perform their op-
erations simultaneously and the robot can also transport a part.
Petri nets [Re85,Mu89] provide a simple and convenient formalism
for modeling systems of events which can occur concurrently, but
there are constraints on precedence and frequency of such occur-
rences. In fact, one of the very first applications of Petri net models
was to analyze production schemata [Ha72]. However, the com-
plexity of real–life systems as well as rather difficult and not well–
understood nature of concurrency seem to have caused a rather
limited popularity of these models [Su85].

In order to study performance aspects of Petri net models, the
duration of activities must also be taken into account and included
into model specifications. Several types of Petri nets ‘with time’
have been proposed by assigning ‘firing times’ to the transitions
or places of a net. In timed nets [Zu91], transition firings are
‘real–time’ events, i.e., tokens are removed from input places at
the beginning of the firing period, and they are deposited to the
output places at the end of this period (sometimes this is also
called a ‘three–phase’ firing mechanism). The firing times may be

either deterministic or stochastic, i.e., described by some probabil-
ity distribution function. In both cases the concepts of state and
state transitions has been formally defined and used in derivation
of different performance characteristics of the model.

This paper investigates timed Petri net models of flexible manu-
facturing cells. Two types of schedules are considered. For simple
schedules, in which exactly one part enters and one leaves the cell
in each cycle, the net model is composed of elementary conflict–
free invariant subnets. The performance (i.e., the cycle time or the
throughput [Ki90]) of the whole model is thus determined by the
subnet with the maximum cycle time. For composite schedules,
several parts enter and leave the cell in each cycle. Models of such
schedules can be obtained by combining simple schedules in such a
way that the liveness of the model is preserved. Invariant subnets
of composite net models are free–choice nets, so their cycle times
depend upon relative frequencies of transition firings. These rela-
tive frequencies of firings can be obtained from the T-invariants of
the model.

The paper is composed of 3 main sections. Section 2 describes
timed Petri net models of manufacturing cells with simple sched-
ules. Models of composite schedules are introduced in Section 3,
and Section 4 presents invariant analysis applied to net models of
manufacturing cells.

2. MODELS OF MANUFACTURING CELLS

A simple manufacturing cell composed of three machines and a
robot is sketched in Fig.1; the machines are denoted by M1, M2

and M3, In represents a conveyor bringing the parts in while Out

a conveyor for outgoing parts.
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Fig.1. Layout of a three–machine cell.
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Let (for simplicity) all the parts move from In to M1, then from
M1 to M2, from M2 to M3, and finally from M3 to Out. The parts
are moved between machines by the robot which follows a cyclical
pattern of actions called its schedule. For ‘simple schedules’, ex-
actly one (new) part enters and one leaves the cell in each cycle
(and the leaving part may not be the same as the entering one). It
has been shown [SSSBK92] that an m–machine cell has m! differ-
ent simple schedules. The six simple schedules for a three–machine
cell are shown in Fig.2(a) to 2(f).
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Fig.2. Six simple schedules for a three–machine cell.

The schedules in Fig.2 are shown in the moments of time in
which a part is picked from the input conveyor; the placement
of parts in the cell is indicated by black circles; for example, for
schedule D, whenever a part is picked from input, another part is
being processed by machine M2.

Denoting the robot moves from X to Y by X ⇒ Y if the robot
carries a part and by X → Y otherwise, the schedules from Fig.2
are as follows:

A: In ⇒ M1 ⇒ M2 ⇒ M3 ⇒ Out → In

B: In ⇒ M1 ⇒ M2 → M3 ⇒ Out → M2 ⇒ M3 → In

C: In ⇒ M1 → M3 ⇒ Out → M1 ⇒ M2 ⇒ M3 → In

D: In ⇒ M1 → M2 ⇒ M3 → M1 ⇒ M2 → M3 ⇒ Out → In

E: In ⇒ M1 → M2 ⇒ M3 ⇒ Out → M1 ⇒ M2 → In

F: In ⇒ M1 → M3 ⇒ Out → M2 ⇒ M3 → M1 ⇒ M2 → In

A timed Petri net model of the cell from Fig.1 with the schedule
of Fig.2(a) is shown in Fig.3. In timed models, transitions represent
operations and places ‘conditions’ (in the most general sense); the
three machines (or rather machine operations) are represented by
t1, t2 and t3, each transition with its input and output place (for
‘part loaded’ and ‘machine operation finished’ conditions). The

‘firing times’ associated with these transitions f(t1) = o1, f(t2) =
o2 and f(t3) = o3 represent the (average) times of performing the
operations on machines M1, M2 and M3, respectively.

t1 t2 t3p01 p12 p21 p23 p32 p34

p40p04 t40

t12 t23 t34t01

p11 p22 p33

Fig.3. Petri net model of schedule A (Fig.2(a)).

The robot actions are represented by a path t01, t12, t23, t34,
t40, with the following interpretation; the ‘execution’ times are
given in parentheses assuming that ‘a’ denotes the (average) pickup
time, ‘b’ the (average) unload time, ‘c’ the (average) load time, ‘d’
the (average) drop time and ‘e’ the average ‘travel’ time between
adjacent machines (assuming, for simplicity, that it is the same for
all adjacent machines, and also the same for M3 to Out, Out to
In and In to M1 moves):

t01 – pick a part from In, move to M1 and load (a+ c+ e)
t12 – unload M1, move to M2 and load (b+ c+ e)
t23 – unload M2, move to M3 and load (b+ c+ e)
t34 – unload M3, move to Out and drop (b+ d+ e)
t40 – move from Out to In (e)

Furthermore, it is assumed that there is always an available part
in In and that Out removes manufactured parts very quickly, so
In and Out are not shown although they can easily be added to
the model.

It can be observed that the net in Fig.3 is conflict–free because
all places have exactly one incoming and one outgoing arc. All
invariant subnets of such a conflict–free net are also conflict–free
nets.

A model for the robot’s strategy of Fig.2(b) is shown in Fig.4,
where t1, t2 and t3 represent the machine operations, as in Fig.3,
and the remaining transitions correspond to robot actions:

t01 – pick a part from In, move to M1 and load (a+ c+ e)
t12 – unload M1, move to M2 and load (b+ c+ e)
t23 – unload M2, move to M3 and load (b+ c+ e)
t30 – move from M3 to In (2e)
t32 – move from M2 to M3 (e)
t34 – unload M3, move to Out and drop (b+ d+ e)
t42 – move from Out to M2 (2e)

t1 t2 t3p12 p21 p23 p32 p34

t01 t12 t23
t34

t42t30p03

p11

p42

p24 p30

t32p22 p33

p10

Fig.4. Petri net model of schedule B (Fig.2(b)).

Again, the net shown in Fig.4 is conflict–free.
Similar models can easily be derived for the other robot’s strate-

gies.
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3. COMPOSITE SCHEDULES

Schedules in which several parts enter/leave the cell are called
‘composite schedules’. Composite schedules are obtained by merg-
ing simple schedules in a “consistent way”, i.e., in a way which
preserves the liveness property of the model.

Fig.5 shows a timed Petri net model of a composite schedule
obtained by merging schedules A and B from Fig.2; the central
part represents the operations of machines M1, M2 and M3, the
lower part models the schedule B from Fig.2(b) (and Fig.4), and
the upper part represents the schedule A from Fig.2(a). The “tran-
sitions” from schedule A to B and B to A can be performed only in
those “states” of the schedules for which the distribution of parts
in all machines is identical (for Fig.5, this distribution is: one part
in M2 and one part in M3).
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Fig.5. Petri net model of a composite schedule A+B.

It can be observed that the net from Fig.5 contains several
shared places (p12, p23 and p34) which are created by combining
simple schedules.

The numbers of different possible compositions for all pairs of
simple schedules are as follows:

A B C D E F

A * 2 3 1 2 0
B 2 * 3 3 2 2
C 3 3 * 2 2 1
D 1 3 2 * 3 3
E 2 2 2 3 * 2
F 0 2 1 3 2 *

so, the simple schedule A can be combined with B in two different
ways, but it cannot be combined with the schedule F.

It should be observed that more complex composite schedules,
for example B+C+F or B+C+B+E, etc., can be derived in the
same way, by consistent merging of simple schedules.

4. MODEL EVALUATION

Analysis of net models can be based on their behavior (i.e., the
space of reachable states) or on the structure of the net; the first
case is called reachability analysis and the second, structural anal-
ysis. Invariant analysis seems to be the most popular example of
the structural approach. Structural methods eliminate the deriva-
tion of the state space, so they avoid the ‘state explosion’ problem
of reachability analysis, but they cannot provide as much informa-
tion as the reachability approach does. Quite often, however, all
the detailed results of reachability analysis are not really needed,

and more synthetic performance measures, that can be provided
by structural methods, are quite satisfactory [Hi89].

Invariant analysis [Re85,MS82,KJ87] decomposes the net model
into a number of simpler subnets and derives the properties of the
model from properties of its components. It appears that timed
Petri net models of manufacturing cells can easily be decomposed
into simple nets which determine the performance of the whole
model.

For example, the net shown in Fig.3 has eight basic invariant
subnets, corresponding to the following subsets of transitions:

t1 t2 t3 t01 t12 t23 t34 t40

1 0 0 0 1 1 1 1 1
2 0 0 1 1 1 1 1 1
3 0 1 0 1 1 1 1 1
4 0 1 1 1 1 1 1 1
5 1 0 0 1 1 1 1 1
6 1 0 1 1 1 1 1 1
7 1 1 0 1 1 1 1 1
8 1 1 1 1 1 1 1 1

Since all invariant subnets are elementary nets (all transitions
and all places have a single incoming and outgoing arc), the cy-
cle time of the net is equal to the largest cycle time of invariant
subnets. Since one of the subnets includes all transitions (subnet
8), its cycle time determines the cycle time of the net, so the cycle
time is equal to the sum of times assigned to the transitions:

T
A
c = o1 + o2 + o3 + a+ 3b+ 3c+ d+ 5e

The net in Fig.4 has five basic invariants, but none of the in-
variants contains all transitions:

P–inv t1 t2 t3 t01 t12 t23 t30 t32 t34 t42

1 0 0 0 1 1 1 1 1 1 1
2 0 0 1 0 0 1 0 0 1 1
3 0 1 0 1 1 1 1 0 0 0
4 1 0 0 1 1 1 1 1 1 1
5 1 1 0 1 1 1 1 0 0 0

It can be observed that the invariant (1) is a subset of (4), and
(3) is a subset of (5). Consequently, the cycle time in this case is
equal to:

T
B
c = max(T2, T4, T5),

where Ti is the cycle time of the invariant subnet i:

T2 = o3 + 2b+ c+ d+ 4e
T4 = o1 + a+ 3b+ 3c+ d+ 9e
T5 = o1 + o2 + a+ 2b+ 3c+ 5e

For composite schedules the cycle times of schedules can be de-
termined in a similar way. The net shown in Fig.5 has five invari-
ants:
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Four of these invariant subnets are free–choice nets, as, for ex-
ample, the one shown in Fig.6 (it corresponds to the invariant 5).

To find the cycle time of the net, the relative frequencies of non-
deterministic “free-choices” must be determined form the (deter-
ministic) behavior of the model. These relative frequencies of tran-
sition firings can be obtained from the net’s T–invariant [Re85];
since the net is deterministic, there is only one T–invariant. For
the net shown in Fig.5, this T–invariant assigns the multiplicity
2 to t1, t2 and t3, and multiplicity 1 to all other transitions (this
T–invariant describes the composite cycle in which t1, t2 and t3
are fired twice and all other transitions only once). The relative
frequencies are used as multipliers to determine the cycle times of
invariant subnets and the cycle time of a net.

t1 t2

p10
p12

p21
p23

p04 t40 p40

p03 t30

t01

t01

t12

t12

t23

t23
p33 t34

p30

A A A

A A A
A A

B B B

B

BB

Fig.6. Free–choice invariant subnet of schedule A+B.

Since the invariant (1) is a subset of (4), and (3) a subset of (5),
the cycle time is:

T
A+B
c = max(T2, T4, T5)

where T2, T4 and T5 are determined by the corresponding invari-
ants (the ‘weights’ of transitions t1, t2 and t3, determined by the
T–invariant, are equal to two and for all other transitions they are
equal to 1):

T2 = 2o3 + a+ 4b+ 3c+ 2d+ 8e
T4 = 2o1 + 2a+ 6b+ 2c+ 2d+ 14e
T5 = 2o1 + 2o2 + 2a+ 5b+ 6c+ d+ 10e

Other composite schedules can be modeled and analyzed simi-
larly.

5. CONCLUDING REMARKS

It has been shown that timed Petri nets can conveniently model
(at least a class of) flexible manufacturing cells. For simple sched-
ules, the modeling nets are composed of conflict–free nets, so the
cycle time (or throughput) can easily be determined from cycle
times (or throughputs) of the invariant subnets. In fact, a pa-
rameterized analytical solution can easily be derived, with times
of basic operations (like ”load”, “unload”, “move”) as parameters.
For models of composite schedules, the invariant subnets are free–
choice nets, so relative frequencies of firing conflicting transitions
are needed to find cycle times and throughputs. These relative fre-
quencies can be obtained from T–invariants of the modeling net.

The evaluation of the net models can be used for the determina-
tion of optimal schedules. For example, for the manufacturing cell
of Fig.1, there are six different simple schedules (models of two of

them are shown in Fig.3 and Fig.4); the optimal schedule in this
case is the schedule with minimal cycle time:

Topt = min(TA
c , T

B
c , ..., T

F
c )

The optimization procedure (based on systematic analysis of
feasible schedules) can be automated; the number of composite
schedules can grow very quickly with the number of simple com-
ponents, however, this large number can be significantly reduced
if specific values of parameters are taken into account.

A number of simplifying assumptions were used in the discussion
presented in previous sections, e.g., all parts are identical, robot
‘travel times’ are equal, etc. It should be noted, however, that
all these assumptions were made to simplify the discussion and
they can easily be removed by straightforward modification of the
presented approach.
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