
4-th Int. Conf. on Dependability of Computer Systems, Brunow, Poland, June 30 - July 2, 2009, pp.123-132.
Copyright c© 2009 IEEE (DOI 10.1109/DepCoS-RELCOMEX.2009.35).

Siphon–based verification of component compatibility

W.M. Zuberek

Department of Computer Science and Department of Applied Informatics
Memorial University University of Life Sciences

St.John’s, Canada A1B 3X5 02-787 Warsaw, Poland

Abstract

In component–based systems, two interacting components are compatible if any
sequence of services requested by one component can be provided by the other.
This concept of compatibility can be easily extended to a set of interacting com-
ponents. Checking the compatibility of interacting components is essential for
any dependable software system. Recently, an approach to verification of compo-
nent compatibility has been proposed in which the behavior of individual compo-
nents (at component interfaces) was modeled by labeled Petri nets. Moreover,
the composition of interacting components was designed in such a way that
all component incompatibilities were manisfested by deadlocks in the composed
model. Consequently, the verification of component compatibility is performed
by deadlock analysis of the composed net model. One of techniques for deadlock
analysis is based on net structures called siphons. Siphon–based verification of
component compatibility is the subject of this paper.

1. Introduction

In complex software architectures, the need to assess the compatibility and interoper-
ability of the individual software components is becoming critical during the integration
phase of the software production process. While manual and ad hoc strategies toward com-
ponent integration have met with some success in the past, such techniques do not lend
themselves well to automation, and a more formal approach toward the compatibility and
interoperability assessment is needed. Such a formal approach would permit an assessment
based on automated techniques and would also help promote the reuse of existing software
components.

In component–based systems, two interacting components are compatible if any se-
quence of services requested by one component can be provided by the other. This concept
of compatibility can be easily extended to a set of interacting components. Recently, an ap-
proach to verification of component compatibility has been proposed in which the behavior
of individual components (at component interfaces) was modeled by labeled Petri nets [5].
Moreover, the composition of interacting components was designed in such a way that all
component incompatibilities were manisfested by deadlocks in the composed model. Con-
sequently, the verification of component compatibility is performed by deadlock analysis
of the composed net model.

Petri nets [9, 8] are formal models of systems which exhibit concurrency or synchroniza-
tions of activities. Examples of such systems include multiprocessor systems, distributed
databases, manufacturing and transportation systems, and many others. One important
aspect of such systems is the existence (or absence) of deadlocks, i.e., a possibility of
reaching a state in which no activity can be continued. Absence of deadlocks is critical in

Siphon–based verification of component compatibility 124

systems which are expected to operate in a continuous way, such as life-support systems,
supervisory control systems (e.g., in a nuclear plant), transportation control systems, and
so on. A systematic and efficient method of deadlock detection is of primary importance
for such systems [1].

Known methods of deadlock detection in Petri net models include reachability analysis
which systematically explores all possible states that can be reached from the initial state(s)
looking for deadlock states, and structural analysis which determines deadlock existence
(or absence) analysing the structure of Petri net models. Reachability analysis is quite
straightforward, but can be used only for models with finite and reasonably small state
spaces [8]. Structural analysis uses siphons for deadlock detection [3, 6, 10].

Siphon–based analysis does not depend upon the number of reachable markings and
can be used for deadlock detection in nets with infinite state spaces, but it can easily
become quite inefficient if the number of siphons is large (for some net models, the number
of siphons grows exponentially with the net size). It appears, however, that instead of
analyzing all siphons, only a small set of minimal siphons provides the same information
about the absence (or existence) of deadlocks. Moreover, the large number of siphons can
be significantly reduced by simple reductions of net models which do not affect the existence
(or absence) of deadlocks. This paper formally introduces the concept of equivalent siphons
and proposes two types of net transformations which reduce equivalent siphons making the
siphon-based deadlock detection quite attractive from a practical point of view. Large-scale
applications of the proposed approach can be found in [4].

The objective of this paper is to discuss the siphon-based verification of component
compatibility, including the algorithmic aspects of finding the essential siphons in Petri
nets, and use the essential siphons for effective deadlock analysis of net models.

Section 2 recalls basic concepts of Petri nets. Section 3 introduces siphons and shows
how to find the set of minimal siphons. Basis siphons are briefly discussed in Section 4
and siphon equivalence as well as the reduction of equivalent siphons through simple net
transformations in Section 5. Section 6 outlines a two-level algorithm for siphon-based
deadlock detection, and Section 7 concludes the paper.

2. Basic concepts of Petri nets

A Petri net (also known as net structure) N is a triple N = (P, T,A) where P is a finite
set of places (which represent conditions), T is a finite set of transitions (which represent
events), P ∩ T = ∅, A is a set of directed arcs which connect places with transitions and
transitions with places, A ⊆ P×T ∪T×P , also called the flow relation or causality relation
(and sometimes represented in two parts, a subset of P × T and a subset of T × P).

For each transition t ∈ T , and each place p ∈ P , the input and output sets are defined
as follows:

Inp(t) = {p ∈ P | (p, t) ∈ A}, Inp(p) = {t ∈ T | (t, p) ∈ A},
Out(t) = {p ∈ P | (t, p) ∈ A}, Out(p) = {t ∈ T | (p, t) ∈ A}.

The dynamic behavior of nets is represented by markings, which describe the distribu-
tion of the so called tokens over the places of a net. Under certain conditions these token
distributions can change, transforming one marking into another.

A marked Petri net M is a pair M = (N ,m0), where N is a net structure, N =
(P, T,A), and m0 is the initial marking function, m0 : P → {0, 1, ...}, which assigns a
nonnegative number of tokens to each place of the net. Marked nets are also equivalently
defined as M = (P, T,A,m0).

Let any mapping m : P → {0, 1, ...} be called a marking function in N = (P, T,A).

Siphon–based verification of component compatibility 125

In marked nets, a condition represented by a place p is satisfied at a marking m if
m(p) > 0, and then p is said to be marked by m. If all input places of a transition t are
marked, t is enabled. The set of all transitions enabled by a marking m is denoted E(m).

If all (input) conditions of an event are satisfied (i.e., if the transition representing this
event is enabled), the event can occur. An occurrence of an event removes (simultaneously)
a single token from all input places of the transition representing this event, and (also
simultaneously) adds a single token to all output places of this transition. This creates a
new marking function. An occurrence of an event represented by t (i.e., t’s firing) is thus a
transformation of the (current) marking function m into a new marking function m′ which

is directly reachable from m by firing t, m
t
7→ m′.

A marking mj is generally reachable (or just reachable) from a marking mi in M,

mi
∗
7→ mj , if mj is reachable from mi by a sequence of directly reachable markings (the

general reachability relation is the reflexive transitive closure of the direct reachability
relation).

The set of reachable markings, M(M), of a marked net M is the set of all markings
which are (generally) reachable from the initial marking m0:

M(M) = {m | m0

∗
7→ m}.

The set of reachable markings can be finite or infinite; if it is finite, the net M is
bounded, otherwise the net is unbounded:

M is bounded ⇔ ∃ k > 0 ∀ m ∈ M(M) ∀ p ∈ P : m(p) ≤ k.

Each netN = (P, T,A) can conveniently be represented by a connectivity (or incidence)
matrixC : P×T → {−1, 0,+1} in which places correspond to rows, transitions to columns,
and the entries C[p, t], p ∈ P , t ∈ T , represent the directed arcs:

C[p, t] =











−1, if (p, t) ∈ A ∧ (t, p) 6∈ A,
+1, if (t, p) ∈ A ∧ (p, t) 6∈ A,
0, otherwise.

For example, Fig.1 shows an example net [3] and its connectivity matrix.
t4

t1p1

p5

p4

p2

p3

t3

t2

C t1 t2 t3 t4
p1 −1 +1 +1 −1
p2 −1 0 0 +1
p3 +1 −1 0 0
p4 0 +1 −1 0
p5 0 0 +1 −1

Fig.1. An example Petri net and its connectivity matrix.

One of the most important properties of many concurrent systems is the absence of
deadlocks; intuitively, a deadlock is a configuration in which the system cannot continue
its operation, it becomes dead.

A marking m in net N is dead if no transition is enabled by m, i.e., if E(m) = ∅. A
marked net M contains a deadlock if its set of reachable markings contains a dead marking:

M contains a deadlock ⇔ ∃ m ∈ M(M) : E(m) = ∅.

Siphon–based verification of component compatibility 126

Two basic methods of deadlock detection in Petri nets are reachability analysis and
structural analysis. If the net is bounded, reachability analysis can be used for exhaustive
exploration of the marking space [8, 9]. If a net is unbounded, or if the space of reachable
markings is finite but unreasonably large, the structural approach can be used.

3. Siphons and minimal siphons

The structural approach to deadlock detection is based on siphons [7, 8] (in early
publications siphons were called structural deadlocks). Siphons are defined as such subsets
of places Pi ⊆ P , for which:

Inp(Pi) ⊆ Out(Pi),

where Inp(Pi) and Out(Pi) are the input and output sets of Pi:

Inp(Pi) =
⋃

p∈Pi

Inp(p), Out(Pi) =
⋃

p∈Pi

Out(p).

The characteristic property of siphons is that once a siphon Pi becomes unmarked
under a marking m (i.e., m assigns zero tokens to all places of Pi), Pi remains unmarked
for all markings reachable from m.

Each siphon Pi can be represented by its characteristic n-element vector VPi
(n is the

number of transitions), VPi
: T → {0,−1,+1, ⋆}, where:

∀t ∈ T : VPi
(t) =



















0 if t /∈ Inp(Pi) ∪Out(Pi);
−1 if t ∈ Out(Pi)− Inp(Pi);
+1 if t ∈ Inp(Pi)−Out(Pi);
⋆ if t ∈ Inp(Pi) ∩Out(Pi).

It should be observed that if Pi is a siphon, its characteristic vector does not contain
any “+1” elements.

The characteristic vector of a set of places Pi can be obtained by a “merge” operation,
denoted ⊕, performed on the rows of the connectivity matrix that correspond to places in
Pi; the definition of the binary operation ⊕ is based on the operations on the input and
output sets of places (for simplicity it is assumed that the nets do not contain self-loops
(p,t), (t,p)):

⊕ 0 −1 +1 ⋆

0 0 −1 +1 ⋆
−1 −1 −1 ⋆ ⋆
+1 +1 ⋆ +1 ⋆
⋆ ⋆ ⋆ ⋆ ⋆

Also, if Pi and Pj are two siphons in a net N , then Pi ∪ Pj is also a siphon in N .
A minimal siphon is defined as a siphon which does not contain any other siphon [11]
[12]. Quite often the set of all siphons can be rather large, but the set of minimal siphons
contains just a few siphons.

It can be shown [3] that in a deadlocked net, all unmarked places constitute a siphon.
Therefore the siphon-based approach to deadlock detection systematically checks if the
net contains a proper siphon (a siphon is proper if its input set is a (proper) subset of the
output set) that can become unmarked by some firing sequence, and if such a siphon is

Siphon–based verification of component compatibility 127

identified, the initial marking is modified by the firing sequence, and the check continues
for the remaining (marked, proper) siphons until a deadlock is identified, or until no further
progress can be done. Linear programming can be used to find the firing sequence that
minimizes the number of tokens in each proper siphon of the analyzed net (if such a
sequence exists) [3, 10].

For siphon–based deadlock analysis there is no need to check all the siphons of a net.
Instead, the set of minimal siphons can be used because if any siphon becomes unmarked
during the analysis, than (at least) one of minimal siphons must also become unmarked.

Finding the set of minimal siphons can follow the observation that each siphon in a net
N is such a collection of places that the merge of the rows corresponding to these places
cannot contain any element “+1”. So, starting from a place p with its characteristic vector
C[p, ∗], i.e., the row of the connectivity matrix which corresponds to p, in consecutive steps
each element “+1” is eliminated by including in the siphon a place with “−1” on the same
position (and then the merging operation combines “+1” with “−1” into “⋆”, possibly
introducing one or more new “+1” elements). For the net in Fig.1, the process of finding
siphons which include place p3 is illustrated in Fig.2 in a form of a “decision tree” in which
siphons correspond to paths from the root to terminal nodes.

p1

p4

p2

p1 p5

p3

p4 p4

[+1.−1.0.0]

[*,−1,0,+1]

[*,−1,+1,*]

[*,*,*,*][*,*,*,*]

[*,*,+1,*][*,*,*,−1]

[*,*,+1,−1]

Fig.2. Finding siphons which include p3.

In the first step, p3 is included in the siphon which – at this stage – has the charac-
teristic vector [+1,−1, 0, 0]. The only element “+1” (representing the arc from t1 to p3)
can be eliminated by either adding p1 to the siphon, or by adding p2. In the first case
the characteristic vector becomes [⋆, ⋆,+1,−1] (obtained by merging [+1,−1, 0, 0] with
[−1,+1,+1,−1]), in the second case the characteristic vector becomes [⋆,−1, 0,+1]. For
the set {p1, p3}, the “+1” element in the characteristic vector requires adding p4 to the
siphon, and then the characteristic vector becomes [⋆, ⋆, ⋆,−1], which means that the set
{p1, p3, p4} is a siphon, and a minimal one (it does not contain a simpler siphon). Similarly,
{p1, p2, p3, p4} is another siphon, as is {p2, p3, p4, p5}.

A systematic method of finding all minimal siphons simply repeats the process shown
in Fig.2 for consecutive places. In the following algorithm Siphons is the set of minimal
siphons, S is a siphon, n is the number of places, m is the number of transitions, and C is
the connectivity matrix:

Siphon–based verification of component compatibility 128

Siphons := {};
for i := 1 to n do

search(C[i, ∗], {i})
od;

where a recursive procedure search is as follows (done is a local variable of search, and the
parameter passing mechanism is assumed to be by value):

proc search(V, S);
var done := true;
begin

for j := 1 to m do

if V [j] = +1 then

done := false;
for k := 1 to n do

if C[k, j] = −1 then

search(V ⊕C[k, ∗], S ∪ {k})
fi

od

fi

od;
if done then checksiphons(S) fi

end

Procedure checksiphons adds the new siphon S to Siphons only is there is no simpler
siphon there; it also deletes all siphons which are supersets of S:

proc checksiphons(S);
begin

for each R in Siphons do

if R ⊆ S then return fi;
if S ⊂ R then Siphons := Siphons− {R} fi

od;
Siphons := Siphons ∪ {S}

end

4. Basis siphons

Minimal siphons rarely determine the deadlocks in Petri nets. Therefore another type
of siphon is needed which is known as a basis siphon [2]. Basis siphons are siphons from
which all other siphons can be obtained by the union operation. Minimal siphons are basis
siphons, but usually some basis siphons are not minimal - the number of basis siphons is
typically larger than the number of minimal siphons.

Basis siphons can be determined by a procedure very similar to the one presented in
the previous section; the only difference is that the set of minimal siphons needs to be
determined for each place independently and then combined into a set BSiphons:

BSiphons := {};
for i := 1 to n do

Siphons := {};
search(C[i, ∗], {i});
BSiphons := BSiphons ∪ Siphons

od;

Siphon–based verification of component compatibility 129

5. Equivalent siphons

For siphon–based deadlock analysis, the number of siphons can be further reduced by
eliminating equivalent siphons.

Two siphons Si and Sj are equivalent, Si ∼ Sj , if for each reachable marking either
both siphons are marked or both are unmarked:

Si ∼ Sj ⇔ ∀m ∈ M(M) : (mark(Si,m) = 0 ⇔ mark(Sj ,m) = 0)

where mark(Si,m) = Σp∈Si
m(p).

Since the siphon–based deadlock detection looks for unmarked siphons, each class of
equivalent siphons can be reduced to just a single siphon, simplifying the detection ap-
proach.

Equivalent siphons can be eliminated using some structural properties of nets.
A simple path in a net N is a sequence of transitions and places ti0pi1ti1pi2 ...piktik

which are not connected to other places and transitions:

(∀1 ≤ j ≤ k : Inp(pij) = {tij−1
} ∧Out(pij) = {tij}) ∧

(∀1 ≤ j < k : Inp(tij) = {pij} ∧Out(tij) = {pij+1
}).

A simple path from ti to tj is denoted path(ti, tj).
There are two classes of paths that can be used for siphon reduction, parallel paths

and alternate paths.
Parallel paths are simple paths which connect the same transitions, as shown in Fig.3.

ti tj

. . .

. . .

Fig.3. Parallel paths in a Petri net.

. . .

. . .

. . .

pi pj

ti1

tin

tj1

tjn

Base

Fig.4. Alternate paths in a Petri net.

It can be easily shown that for equally marked parallel paths π1 and π2 (i.e., paths
π1 and π2 which contain the same numbers of token), if the places of π1 constitute a
subset of a siphon Si, then there exists another siphon Sj which includes places of π2, and
Si ∼ S2. So, one of these parallel paths can be removed from the net eliminating one or
more equivalent siphons.

An alternate path is a collection of disjoint simple paths, path(ti1 , tj1),..., path(tin , tjn),
tiℓ 6= tik , tjℓ 6= tjk , for 1 ≤ ℓ < k ≤ n, with an additional simple path (called the base)
path(pi, pj) connected to all transitions tiℓ and tjℓ , (tiℓ , pi) ∈ A, (pj , tjℓ) ∈ A, 1 ≤ ℓ ≤ n,
as shown in Fig.4.

It can be shown [4] that for alternate paths π1, ..., πn with base π0, if places of π1 are
included in a siphon Si, then there exists another siphon Sj which includes places of π0,
and Si ∼ Sj . Consequently, the base π0 can be removed from the net without affecting the
existence (or absence) of deadlocks.

The reduction of equivalent siphons can be performed in such a way that first all parallel
and alternate paths are removed from a net model, and then siphons are determined for
the simplified net. These siphons can then be used for deadlock detection in the original
net or in the simplified net.

Siphon–based verification of component compatibility 130

6. Siphon-based deadlock detection

The deadlock detection process is performed in two stages; first the (hopefully small)
set of minimal siphons is used for checking the deadlock by finding firing sequences which
remove tokens from as many siphons as possible. If this does not result in a deadlock,
and no further progress can be made using minimal siphons, a switch is made to use basis
siphons (since each deadlock corresponds to one or a union of several unmarked basis
siphons).

The deadlock detection procedure [4] is implemented as a recursive boolean procedure
which is invoked as “deadlock(m0,SM ,SB)” where m0 is the initial marking function, SM

is the (reduced) set of minimal siphons of the analyzed net and SB is the (reduced) set of
its basis siphons:

function deadlock(m,X, Y) : boolean;
begin

if enable(m) = {} then return true fi;
if X 6= {} then

for each x in X do

(v, n) := LPminimize(x,m);
if nonzero(v) ∧ n = 0 ∧ feasible(v,m) then

m′ := m+C× v;
X ′ := marked(X,m′);
if deadlock(m′, X ′, Y) then return true fi

fi

do

fi;
if Y 6= {} then return deadlock(m,Y, {}) fi;
return false

end

The function enable(m), as before, returns the set of transition enabled by m. LPmini-
mize is the linear programming procedure which minimizes the number of tokens assigned
to the siphon x by the marking m by firing appropriate transitions; it returns a firing
vector v (indicating, for each transition, the number of times it needs to fire to minimize
the number of tokens assigned to siphon x) and n, the final number of tokens in the siphon
x. If v is a nonzero vector and n = 0 and if the firing vector v is feasible at m (i.e., there
exists a firing sequence that begins at m and corresponds to v), then the current siphon
can become unmarked, and the checking continues for a reduced set of siphons X ′ and a
modified marking m′; C is the connectivity (or incidence) matrix of the analyzed net, and
the function marked(X,m) returns the set of all those siphons in X which are marked by
m. The last section of deadlock performs the switch from minimal siphons to basis siphons
by invoking deadlock with “switched” parameters (and continuing deadlock detection).

If the function deadlock returns true, the analyzed net contains a deadlock (a simple
modification of the function can provide a firing sequence creating this deadlock); if the
function returns false, the net is deadlock–free.

The linear programming procedure returns a firing vector minimizing the number of
tokens in the analyzed siphon. Such a firing vector may have no implementation in the
form of a firing sequence, i.e., it may be infeasible for a given marking m. Therefore the
feasibility of firing vectors is verified by a recursive (boolean) function feasible(v,m) which
systematically checks the existence of firing sequence starting from m that corresponds to
the firing vector v:

Siphon–based verification of component compatibility 131

function feasible (v,m) : boolean;
begin

if zero(v) then return true fi;
for each t in enable(m) do

if v[t] > 0 then

v′ := v;
v′[t] := v′[t]− 1;
m′ := fire(m, t);
if feasible(v′,m′) then return true fi

fi

od;
return false

end

If the function returns true, the firing vector v is feasible for markingm; if the returned
value is false, such a firing sequence does not exist, and v in infeasible for m. A simple
modification of this function returns the firing sequence (if it exists) rather than the value
true.

7. Concluding remarks

The paper proposes an efficient method for deadlock detection which is based on re-
duced sets of minimal and basis siphons. The experience shows that the performance of
this method is quite satisfactory, although many further improvements are possible. For
example, the discussed reductions of parallel and alternate paths do not guarantee that all
equivalent siphons are eliminated, so further reduction can be possible. There are many
possible improvements to the procedure of finding (minimal and basis) siphons, and so on.

It can be shown that the ordering of siphons can affect the performance of the dead-
lock detection algorithm discussed in Section 6. Predicting the most efficient ordering of
analyzed siphons (which may be dynamic, i.e., which may be different at different stages
of the algorithm) can be an interesting research topic.

The paper does not address the details of using linear programming for finding the
firing vectors which minimize the token count in siphons; these details can be found in
[4, 10].

Acknowledgement

The Natural Sciences and Engineering Research Council of Canada partially supported
this research through grant RGPIN-8222.

References

[1] B. Bordbar, K. Okano, “Testing deadlock-freeness in real-time systems: a formal ap-
proach”; Formal Approaches to Software Testing (Lecture Notes in Computer Science
3395) pp.95-109, 2004.

[2] E.T. Boer, T. Murata, “Generating basis siphons and traps of Petri nets using the sign
incidence matrix”; IEEE Trans. on Circuits and Systems, I – Fundamental Theory
and Applications, vol.41, no.4, pp.266-271, 1994.

[3] F. Chu, X. Xie, “Deadlock analysis of Petri nets using siphons and mathematical
programming”; IEEE Trans. on Robotics and Automation, vol.13, no.6, pp.793-804,
1997.

Siphon–based verification of component compatibility 132

[4] D.C. Craig, “Compatibility of software components – modeling and verification”;
Ph.D. Thesis, Department of Computer Science, Memorial University, St.John’s,
Canada A1B 3X5, 2006.

[5] D.C. Craig, W.M. Zuberek, “Compatibility of software components – modeling and
verification”; Proc. Int. Conf. on Dependability of Computer Systems, Szklarska
Poreba, Poland, pp.11-18, 2006.

[6] J. Ezpeleta, J.M. Colombo, J. Martinez, “A Petri net based deadlock prevention policy
for flexible manufacturing systems”; IEEE Trans. on Robotics and Automation, vol.11,
no.2, pp.173-184, 1995.

[7] M. Hack, “Analysis of production schemata by Petri nets”; Project MAC Technical
Report TR–94, 1972.

[8] T. Murata, “Petri nets: properties, analysis, and applications”; Proceedings of the
IEEE, vol.77, no.4, pp.541-580, 1989.

[9] W. Reisig, Petri nets – an introduction (EATCSMonographs on Theoretical Computer
Science 4); Springer-Verlag 1985.

[10] M. Silva, E. Teruel, J. Couvreur, “Linear algebra in and linear programming tech-
niques for the analysis of place/transition net systems”; Lectures on Petri nets – basic
models (Lecture Notes in Computer Science 1491), pp.309-373, Springer-Verlag 1998.

[11] S. Tanimoto, M. Yamaguchi, T. Watanabe, “Finding minimal siphons in general Petri
nets”; IEICE Trans. on Fundamentals in Electronics, Communications, and Computer
Science, vol.E79-A, no.11, pp.1817-1824, 1996.

[12] M. Yamaguchi, T. Watanabe, “Algorithms for extracting minimal siphons containing
specified places in a general Petri net”; IEICE Trans. on Fundamentals in Electronics,
Communications, and Computer Science, vol.E82-A, no.11, pp.2566-2575, 1999.

