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Abstract  

Animals inhabiting the intertidal zone are exposed to abrupt changes in 

environmental conditions associated with the rise and fall of the tide. For convenience, the 

majority of laboratory studies on intertidal organisms have held these organisms in constant 

submerged conditions. However, this is not representative of the daily cycle of emersion 

and immersion that intertidal organisms experience in their natural habitat. In this thesis, I 

explored whether acclimation of the intertidal green crab Carcinus maenas to a continuous 

simulated tidal cycle (from herein referred to as ‘tidal’ crabs) resulted in different 

physiological responses to environmental stressors compared to crabs acclimated to 

permanently submerged (‘non-tidal’) conditions. Chapter 1 reviews the previous literature 

on the physiological tolerance of C. maenas to emersion, hypoxia and thermal stress and 

opens the discussion of the importance of ecological realism in experimental design for 

accurate physiological responses. Chapter 2 and 3 are experimental research manuscripts 

that investigates how tidal acclimation influences the physiology behind oxygen delivery 

and acid base balance during submersion and emersion (Chapter 2), and hypoxia and 

thermal stress (Chapter 3). Chapter 4 serves as an overall general discussion of Chapters 2 

and 3 with suggestions for future research directions. Overall, the findings of my research 

show that acclimation to a tidal regime produces physiological adjustments such as 

elevated haemocyanin levels and lower oxygen consumption during submersion that can 

influence how crabs respond to environmental stressors. Notably, acclimation to a tidal 

regime allows C. maenas to avoid the metabolic acidosis that occurs in non-tidal crabs 

during emersion, likely through the buffering effects of elevated hemocyanin. The results 

of this study suggest that how C. maenas responds to common stressors in the intertidal is 
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complex, and that adaptation to air exposure during low tides may alter their physiological 

responses to other environmental stressors. In order to gain a better understanding of how 

intertidal organisms will respond to predicted environmental changes, laboratory 

experiments should incorporated a tidal regime into their design. 
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Chapter 1. General Introduction 

1.1 The tide 

The rocky intertidal zone hosts a rich diversity of marine fauna and flora, and is 

characterised by the predictable ebb and flow of the tide. The movement of the tide has 

been shown to be an important component for shaping behavioural and physiological 

responses of intertidal organisms (De la Iglesia & Hsu, 2010 and Palmer, 2000), whereby 

intertidal organisms develop a circatidal rhythm in tune with the ~12.4 hour ebb and flow 

of the tides (Wilcockson & Zhang) to control activities such as feeding, locomotion and 

mating (De la Iglesia & Hsu, 2010 and Palmer, 2000). Crustaceans in particular have been 

a central focus for tidal research, and the ubiquitous green shore crab Carcinus maenas has 

played a pivotal role for the existence of circatidal clocks (Naylor, 1995). 

 

1.2 Physiological responses and adaptations to environmental stressors 

The ebb and flow of the tide is also responsible for the dynamic fluctuation in 

environmental conditions, such as respiratory medium (aquatic/aerial), oxygen content and 

temperature, which often presents stressful conditions for intertidal organisms during low 

tide. Consequently, the intertidal has become a model ecosystem for investigating the 

effects of climate change, with many studies using intertidal organisms to understand the 

physiological tolerances to numerous environmental stressors. As common inhabitants of 

the intertidal, crustaceans have frequently been used in environmental stress studies, and 
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due to its ubiquitous nature, C. maenas has become a particularly popular model organism 

for intertidal studies exploring physiological responses to environmental stress. 

 For many intertidal species, air exposure, hypoxia and temperature are key 

environmental drivers that determine the latitudinal distribution and fitness of this species 

within the intertidal. There are excellent reviews which detail the effects of air exposure 

(Truchot, 1990), hypoxia (Grieshaber et al., 1993; McMahon, 2001) and temperature 

(Denny et al., 2011; Hazel & Prosser, 1974) on the general physiology of intertidal animals. 

Below, I briefly describe the responses of crustaceans to these three stressors, but primarily 

focus on adjustments in oxygen transport and acid-base balance in C. maenas.  

Responses to emersion  

Exposure to air is a routine occurrence for many intertidal organisms, and is one of 

the main drivers that determines their spatial distribution in the intertidal zone (Truchot, 

1990). Although oxygen levels are substantially higher in air than in seawater, desiccation 

stress that is associated with air exposure can decrease the efficiency of gas exchange and 

lead to the eventual collapse of gas exchange and aerobic metabolism (Burnett & 

McMahon, 1987; DeFur, 1988; McMahon, 1988; Truchot, 1990). The limited carbon 

dioxide (CO2) solubility in air (as compared to seawater) also makes it difficult for aquatic 

organisms to excrete CO2, and therefore, emersion produces a concurrent rise in internal 

PCO2 which results in a respiratory acidosis (Truchot, 1975).  

The tolerance to emersion exhibited by an intertidal animal is primarily determined 

by two factors: (1) position of the organism on the shore; and (2) the activity / mobility of 

the organism during air exposure. Animals that inhibit the upper intertidal zone can often 
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spend longer periods emersed than immersed, and have adaptations that can facilitate the 

maintenance of aerobic respiration in air. These include specialised structures for air 

breathing (Henry, 1994; Stillman & Somero, 1996) and physiological adjustments that  

enhance oxygen delivery to the tissues (Morris et al., 1996; Stenseng et al., 2005; Stillman, 

2002; Stillman, 2003; Stillman & Somero, 1996; Stillman & Somero, 2000; Tomanek & 

Somero, 1999; Truchot, 1990). Carcinus maenas is considered an effective air breather 

(DeFur, 1988), and utilises a bimodal breathing strategy to facilitate gas exchange in both 

water and air. Similar to terrestrial crabs, the gill structures of C. maenas are strengthened 

by chitin, which provides support, and therefore, prevents these gills from collapsing 

during emersion as seen in other intertidal decapods (DeFur, 1988; DeFur & McMahon, 

1984; Rastrick et al., 2014; Taylor & Butler, 1978). This adaptation allows C. maenas to 

exchange gases when emersed, however, there is substantial variation reported in the 

degree to which C. maenas can maintain aerobic respiration when emersed. For example, 

oxygen consumption values in air vs. in water vary from 75% (Newell et al., 1972) to 120% 

(Taylor & Butler, 1978) in the laboratory, and have been reported to be as low as 50% 

under simulated field conditions (Simonek & Henry, 2014).  

Although oxygen consumption is sustained to some degree during emersion, the 

arterial partial pressure of oxygen (PaO2) often decreases (by 50 - 75%) in comparison to 

that measured in immersed crabs (Depledge, 1984; Taylor & Butler, 1978). These low 

levels of PaO2 during emersion suggest that O2 diffusion across the gills is limited, and that 

compensatory mechanisms must be initiated to sustain O2 delivery and aerobic metabolism. 

For example, in the intertidal crab Hemigrapsus nudus, the proportion of oxygen delivered 
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to the tissues by haemocyanin increases from 50% in submerged conditions to 85% when 

emersed (Morris et al., 1996). 

When aerobic metabolism can no longer exclusively satisfy energy demands, C. 

maenas utilises anaerobic metabolism to provide additional energy. Lactate is commonly 

produced during emersion in decapod crustaceans (DeFur & McMahon, 1984; McGaw et 

al., 2009; Rastrick et al., 2014; Stillman & Somero, 1996; Taylor & Whiteley, 1989), and 

while C. maenas primarily uses aerobic respiration during short-term air exposure (1-3 

hours), it also relies on anaerobic metabolism during prolonged air exposure (4+ hours) 

(Johnson & Uglow, 1985; Santos & Keller, 1993; Simonik & Henry, 2014; Taylor & 

Butler, 1978). The production of lactate has benefits in C. maenas in addition to ATP 

production. Lactate increases the oxygen affinity of haemocyanin (Truchot, 1980), which 

enhances oxygen uptake at the gills, and subsequently, oxygen delivery to the tissues. 

In addition to pH changes associated with the production of anabolic end products, 

C. maenas experiences a rapid increase in PCO2 levels during emersion and this causes a 

further decrease in haemolymph pH (Burnett, 1988; Taylor & Butler, 1978; Truchot, 1975). 

This decrease in haemolymph pH can be buffered by haemocyanin (Whiteley, 2011) and / 

or mobilized carbonate from its calcified exoskeleton to increase (Cameron, 1986). 

Whether caused by an accumulation of CO2, lactate, or both, the decrease in pH 

that occurs during emersion results in a Bohr shift which decreases the affinity of 

haemocyanin for oxygen (Taylor & Butler, 1978). Even with a decreased haemocyanin 

affinity for oxygen, oxygen is still able to be delivered to the tissues relatively efficiently. 

This is primarily due to venous pH being lower than arterial pH, and a further left shift of 
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the haemocyanin O2-binding curve which enhances oxygen delivery to the tissues (DeFur, 

1988; Taylor & Butler, 1978). 

Responses to hypoxia 

Hypoxia occurs frequently in the intertidal zone, especially in isolated tide pools 

where oxygen levels can vary between 2 and 435 mm Hg in a single day (Richards, 2011; 

Truchot & Jouve-Duhamel, 1980). Tide pools become hypoxic during the night due to high 

levels of bacterial and algal respiration. There are two main ways in which animals respond 

to hypoxia. In oxyconformers, oxygen consumption decreases in proportion to 

environmental oxygen levels, whereas oxyregulators can maintain oxygen consumption 

independent of environmental oxygen levels until they reach their critical oxygen tension 

(Pcrit) (McMahon, 1988). At this PO2, increases in ventilation and / or the extraction of 

oxygen from the haemolymph can no longer meet metabolic demands, and oxygen 

consumption falls in direct proportion with environmental oxygen levels. Carcinus maenas 

is an oxyregulator, and is able to maintain its oxygen consumption until PO2 falls to 30-60 

mm Hg (McGaw & Nancollas, 2018; Taylor, 1976).  

Hypoxia represents a similar challenge as emersion, in that animals have difficulty 

in providing enough oxygen to their tissues to meet metabolic demands. Consequently, 

several physiological responses to hypoxia can also be observed during emersion in 

decapods. Carcinus maenas partially emerge to breathe air when aquatic oxygen tensions 

fall below Pcrit, which is partially dependent on water temperature (Taylor et al., 1973; 

Taylor & Wheatly, 1979). By reversing the direction of scaphognathite beating, air can be 

drawn into the branchial chambers where it bubbles through the remaining water (Taylor 
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et al., 1973). This mechanism allows C. maenas to exploit the elevated oxygen levels 

available in air, without the risk of desiccation. Moreover, crabs are able to restore their 

haemolymph PaO2 and O2 content to levels found in normoxic water (Taylor et al., 1973). 

When hypoxia cannot be avoided, C. maenas displays a number of other 

compensatory physiological mechanisms. Initially, ventilatory rates increase (Burnett & 

Johansen, 1981; Taylor, 1976; Taylor et al., 1977) to maintain oxygen supply to the gills 

(McMahon, 1988), which is a typical response to hypoxia in crustaceans (McMahon, 

2001). In addition, aerobic metabolism is initially maintained in the face of decreasing 

PaO2 via adjustments in haemocyanin oxygen affinity (Taylor, 1976). In normoxic 

conditions, as much as 50% of oxygen delivered to the tissues is dissolved in the 

haemolymph. However, as the environmental oxygen levels decreases further, the 

proportion of oxygen bound to haemocyanin increases, with 90% of oxygen delivered by 

haemocyanin at oxygen levels of 30 mm Hg. The increased binding of oxygen to 

haemocyanin allows oxygen delivery per unit of blood flow to be maintained in C. maenas 

during hypoxia (McMahon, 1988).  

Once the Pcrit is reached, a shift to anaerobic metabolism usually occurs, and this 

results in an increase in circulating lactate and urate concentrations in various crustaceans 

(Burke, 1979; Bridges & Brand, 1980; Gäde, 1983: Maciel et al., 2008; McMahon, 2001). 

Large amounts of lactate only accumulate during prolonged exposure (10 hours) to severe 

hypoxia (i.e. 16.8 mm Hg) in C. maenas (Lallier et al., 1987), and therefore, lactate levels 

only have a modest effect on the oxygen affinity of haemocyanin unless hypoxia is severe 

(< 16.8 mm Hg) (Lallier et al., 1987; Lallier & Truchot, 1989). However, the concentration 
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of urate gradually increases when C. maenas is exposed to hypoxic conditions, reaching 

0.185 mmol at 20 mm Hg (Lallier et al., 1987), and thus it modulates haemocyanin oxygen 

binding over a wider range of oxygen levels than lactate (Lallier & Truchot, 1989). 

During emersion, crustaceans have difficulty excreting CO2, and this results in 

hypercapnic acidosis (see above). In contrast, exposure to progressive hypoxia results in 

an increase in ventilation and a decrease in haemolymph PCO2 (Burnett & Johansen, 1981). 

This alkalosis results in a reverse Bohr effect (i.e., a left shift of the haemolymph O2 

binding curve), and consequently an increase in the affinity of haemocyanin for oxygen. 

(Burnett & Johansen, 1981). This allows C. maenas to take up more oxygen at the gills in 

hypoxic water (McMahon, 1988).  

 

Responses to temperature 

Temperature is a key abiotic factor determining population ranges and species’ 

distributions (Firth & Williams, 2009; Gilman et al., 2006; Helmuth et al., 2002; Helmuth 

et al., 2006a; Somero, 2002; Somero, 2005). Within the intertidal zone, organisms can 

experience large scale and abrupt fluctuations in temperature due to the ebb and flow of 

the tide. In aquatic ectotherms, increases in temperature result in an increase in metabolic 

demand and a concomitant decrease in environmental oxygen levels (Mark et al., 2002; 

Melzner et al., 2006; Peck et al., 2004;  Pörtner et al., 1999; Sartoris et al., 2003; Sommer 

et al., 1997; Schröer et al., 2009; Van Dijk et al., 1999). Oxygen consumption tends to 

increase with temperature, eventually reaching a plateau at a critical temperature where an 

organism’s maximum metabolic rate is reached (i.e., where there is no metabolic scope), 
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and thus, cannot increase any further. At this critical temperature, the organism must meet 

additional temperature-related metabolic demands through anaerobic metabolism, but this 

can quickly lead to irreversible damage and eventually death (Pörtner, 2010; Verbeck et 

al., 2016). In the last two decades, many studies have suggested that restrictions in aerobic 

metabolism is the limiting factor behind thermal tolerance, and these have given rise to the 

oxygen capacity limited thermal tolerance (OCLTT) concept (Frederich & Pörtner, 2000; 

Pörtner, 2001; 2010; Pörtner & Knust, 2007; Clark et al., 2013; Ern et al., 2014; Bjelde et 

al., 2015). However, growing evidence has shown that the OCLTT concept is unable to 

explain cold thermal limits, and many arthropod studies have not shown an increase in 

thermal tolerance in hyperoxia situations (Verbeck et al., 2016). As such, this concept is 

by no means universally accepted (e.g. see Clark et al., 2013; Jutfeldt et al., 2018; Verbeck 

et al; 2016). 

 Carcinus maenas has a broad thermal tolerance. It can survive at temperatures 

between 0°C and 35°C+ (Klassen & Locke, 2007; Madeira et al., 2012), and is capable of 

reproducing between 9°C and 26°C (Cohen & Carlton, 1995; Roff et al., 1984). Similar to 

what occurs in hypoxia, C. maenas will leave the water at temperatures > 28°C even if the 

air is of a relatively similar temperature (Taylor & Wheatly, 1979). This transition into air 

allows for evaporative heat loss over the gas exchange areas, which contributes to a 

decrease in body temperature, and subsequently, metabolic rate and oxygen demand (Fusi 

et al., 2016; Taylor & Wheatly, 1979). This ‘emersion response’ (Taylor & Whiteley, 1979) 

has since been shown in other crustaceans, and is thought to be a mechanism to reduce the 

effects of acute temperature (McGaw, 2003). 
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Ventilation and oxygen consumption rates for C. maenas increase when exposed to 

acute warming (i.e., at 1ºC hr-1) (Giomi & Pörtner, 2013; Truchot, 1973), and C. maenas 

generally exhibits a linear relationship between oxygen consumption and temperature, 

rather than the exponential one which is observed in some marine ectotherms (Giomi & 

Pörtner, 2013; Taylor & Butler, 1978; Taylor & Wheatly, 1979). Subsequently, C. maenas 

has a relatively low Q10 of approximately 1.3 between 15°C and 25 ºC (Giomi & Pörtner; 

2013; Taylor & Wheatly, 1979; Wallace, 1972). 

When exposed to an acute increase in temperature from 10ºC to 25ºC at 1ºC hr-1, 

the PaO2 of C. maenas declines proportionately due to an increase in oxygen demand 

(Giomi & Pörtner, 2013). Thus, similar to emersion and hypoxia, C. maenas depends more 

on haemocyanin, rather than dissolved O2, to deliver oxygen as temperature increases. This 

is a result of the decreased partial pressure of venous blood (PvO2), which facilitates 

increased unloading of oxygen from haemocyanin at the tissues (Giomi & Pörtner, 2013; 

Weber et al., 2008). 

 Lactate production has been used as an indicator of the critical temperature of 

marine species (Frederich & Pörtner, 2000). However, there are only a few studies that 

have assessed this concept in decapods (Frederich et al., 2009; Frederich & Pörtner, 2000; 

Jost et al., 2012; Lallier et al., 1987). With respect to C. maenas, Jost et al. (2012) reported 

that only extreme heat stress (34ºC+) resulted in an increase lactate production in C. 

maenas. Similarly, Lallier et al. (1987) failed to see an increase in lactate production when 

C. maenas was exposed to temperatures between 15ºC and 32ºC. 
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1.3 Comparison of experimental procedures and the role of acclimation in the 

physiological responses of intertidal organisms 

The physiological responses of intertidal organisms to environmental stressors have 

been evaluated using a number of different approaches. These can broadly be grouped into 

laboratory, field and natural experiments (Spicer, 2014). Each approach plays an essential 

role in developing our understanding of physiological processes in intertidal organisms, 

and there are advantages and limitations with each approach. These are effectively 

summarised by Spicer (2014) (Fig. 1.1). The control and manipulation possible in a 

laboratory setting allow for careful examination of the organism’s physiological responses 

to a certain set of conditions, but can often lack ecological context. Field studies often 

incorporate laboratory-type manipulations (e.g., caging to maintain position / depth), and 

therefore, provide a certain degree of ecological realism. However, the interaction of 

multiple environmental and biotic stressors makes it difficult / impossible to draw tangible 

conclusions. Natural experiments take advantage of the fact that the environmental 

variable(s) of interest vary naturally (e.g., El Niño events, hypoxic fjords), and that their 

effect(s) on a physiological mechanism or response can be recorded (Spicer, 2014). These 

types of experiments are perhaps the most valuable as they are based on in situ conditions 

and without manipulation, but they are often opportunistic and impossible to standardize. 

Further, in the absence of prior knowledge of the organism / mechanism in question, it can 

be difficult to interpret the data. 

A combination of these experimental approaches is often necessary to develop a 

true understanding of the physiology of intertidal animals. However, most researchers have 
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chosen to control and manipulate the organism’s surroundings to answer these questions, 

and this has resulted in the majority of experiments being conducted in the laboratory. For 

convenience, almost all of these studies acclimate intertidal organisms to constant ambient 

conditions, including keeping them permanently submerged rather than exposing them to 

a naturally occurring cycle of immersion and emersion (e.g., Burnett, 1988; Burnett et al., 

2002; DeFur & McMahon, 1984; Lagos et al., 2014; McGaw et al., 2009; Rastrick et al., 

2014). Despite being sound scientific practice, that has provided a wealth of valuable 

information about the physiology of intertidal organisms (e.g., Bertness et al., 2001; Denny 

et al., 2011; Helmuth et al., 2006a,b; Pörtner 2001; 2002; 2010; Tomanek & Helmuth, 

2002), it is not representative of the conditions these organisms experience in their native 

habitats.  

In the last decade, it has been increasingly recognized that assessing the responses 

of intertidal organisms exposed to conditions more representative of their natural habitat is 

imperative before we can fully understand their physiology (e.g., Drake et al., 2017; 

Paganini et al., 2014; Yin et al., 2017). For example, some articles have highlighted the 

importance that regular periods of emersion have on the physiological capacity of molluscs 

to respond to temperature or hypoxic stress (Altieri, 2006; Drake et al., 2017). Further, 

research on heat shock proteins (HSP’s) in Mytilus californianus determined that air 

exposure (desiccation, anaerobiosis) was the predominant driver of the heat shock (stress) 

response, rather than temperature stress (Roberts et al., 1997). This was identified by 

acclimating M. californianus to permanently submerged conditions in the laboratory and 

noting that the stress response was abolished (Roberts et al., 1997).  
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More importantly, this plasticity of physiological mechanisms and tolerance limits 

can occur on an intraspecific level. This was demonstrated in a study using Mytilus edulis, 

where individuals were reciprocally transferred between the intertidal and subtidal, and 

maintained at these respective shore heights for seven weeks (Altieri, 2006). After this 

period, emersion and hypoxia tolerance were assessed in the laboratory. Intertidal 

acclimated individuals had higher tolerance to air exposure and hypoxia than subtidal 

individuals. Furthermore, tolerance to emersion and hypoxia was gained by subtidal 

individuals acclimated to intertidal conditions and lost in intertidal individuals acclimated 

to subtidal conditions. This highlights that tolerance to aerial exposure is a plastic 

(inducible) response that can be lost or gained depending on the acclimation regime used 

(Altieri, 2006).  

This research suggests that taking individuals out of the intertidal and acclimating 

them to permanently submerged conditions, as is often done in the lab, could result in a 

loss / reduction in physiological capacity and ability to tolerate environmental stressors. In 

an attempt to understand this association, and to incorporate some ecological realism into 

laboratory experiments, some studies have acclimated intertidal organisms to simulated 

tidal cycles in the lab (Altieri, 2006; Dong & Williams, 2011; Drake et al., 2017; Han et 

al., 2013; Jimenez et al., 2016; Marshall & McQuaid, 1992; McMahon et al., 1991; 

Paganini et al., 2014; Widdows & Shick, 1985; Yin et al., 2017). The objective of the 

majority of these studies was to determine how repeated exposure to air affects the 

physiological responses to thermal or hypoxic stress, and the mechanisms controlling them. 

Routine exposure to air was more important than acclimation temperature in determining 
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upper temperature tolerance (Drake et al., 2017), resulted in the synthesis of more stress 

resistant proteins (Han et al., 2013; Yin et al., 2017), and allowed individuals to perform 

better under aerial exposure (McMahon et al., 1991; Widdows & Shick, 1985) than those 

acclimated to non-tidal conditions. 

The above studies suggest that physiological responses and tolerances to 

environmental stressors may be plastic (inducible) traits, and that intertidal species may 

have the capacity to maintain or recruit physiological mechanisms when aerially emersed 

that better allow them to tolerate environmental stress. However, as this association 

between emersion and stress tolerance is still in its early stages of evaluation, additional 

knowledge of how routine exposure to air affects physiological responses is needed. To 

date, studies that have simulated tidal cycles in the lab have mainly used sessile molluscs 

as their model organisms, and there is limited information on how repeated exposure to air 

affects the physiological responses of other invertebrate taxonomic groups; particularly 

mobile organisms such as decapod crustaceans.  

1.4 Thesis aims 

The aim of these studies was to understand if C. maenas acclimated to continuous 

cycles of immersion and emersion (i.e., simulating normal tidal cycles) exhibit different 

physiological responses as compared to those acclimated to constant submerged 

conditions. This research tested two hypotheses, which are presented as separate chapters.  
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Chapter 2:  Hypothesis - Individuals acclimated to a tidal cycle will have increased 

physiological capacity to tolerate emersion than individuals that had been acclimated to 

non-tidal conditions.  

 

Chapter 3: Hypothesis - Based on previous work on sessile molluscs (e.g.: Drake et al., 

2017; Roberts, 1997; Stenseng et al., 2005), I predicted that individuals acclimated to a 

tidal cycle will have different metabolic and physiological responses to acute temperature 

and hypoxic stressors.  
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Figure 1.1. Diagram illustrating the relationship between the three different, but related, 
experimental approaches used by ecophysiologists, and the strengths and weaknesses of 
each. Adapted from "What can an ecophysiological approach tell us about the 
physiological responses of marine invertebrates to hypoxia?" by Spicer (2014). 
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Chapter 2. Carcinus maenas acclimated to tidal conditions respond differently to 

emersion compared with those acclimated to non-tidal (submerged) conditions  

2.1 Abstract 

Animals inhabiting the intertidal zone are exposed to abrupt changes in environmental 

conditions associated with the rise and fall of the tide. For convenience, the majority of 

laboratory studies on intertidal organisms have acclimated individuals to permanently 

submerged conditions in seawater tanks, and not to the tidal cycle that would occur in their 

natural environment. In this study, the intertidal green crab Carcinus maenas was 

acclimated to either a simulated tidal regime of continuous emersion-immersion (referred 

to as ‘tidal’) or to permanently submerged conditions (referred to as ‘non-tidal’) to assess 

their physiological responses to subsequent submersion and emersion. Tidal crabs 

exhibited an endogenous rhythm of oxygen consumption during continuous submersion 

and lower oxygen consumption during periods of anticipated emersion, which was not 

detected in non-tidal crabs. During emersion, tidal crabs were able to buffer apparent 

changes in acid-base balance and exhibited no change in venous pH whereas non-tidal 

crabs developed an acidosis associated with a rise in lactate levels. These results indicate 

that tidal crabs are better able to sustain aerobic metabolism and have lower metabolic costs 

during emersion than non-tidal crabs. In addition, I suggest that the elevated levels of 

haemocyanin exhibited by tidal crabs, combined with potential buffering by the carapace, 

allowed them to maintain oxygen transport and buffer pH changes during emersion. This 

suggests that acclimation of C. maenas to submerged conditions, results in a loss of 

important physiological mechanisms that enable it to tolerate emersion. The results of this 
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study show that caution must be taken when acclimating intertidal organisms to submerged 

conditions in the laboratory, as it may abolish important physiological responses and 

adaptations that are critical to their performance or survival when exposed to air.  

2.1 Introduction 

The intertidal zone is defined as the area between the high and low water marks during 

the spring tide (Levington, 2009), and its defining feature is the continuous transition 

between aerial and aquatic environments. Organisms that inhabit the intertidal zone almost 

exclusively originate from the marine environment, and subsequently, one of the major 

challenges that they face is the shift from an aquatic to aerial respiratory medium. The 

dehydrating properties of air promote desiccation, which can have adverse effects on the 

metabolic performance of many intertidal organisms. Body water loss can lead to 

difficulties in ion regulation and nitrogen excretion (Truchot, 1990), and the desiccation of 

gas exchange surfaces can reduce or inhibit aerobic respiration (Burnett & McMahon, 

1987; DeFur, 1988; McMahon, 1988; Truchot, 1990). Furthermore, desiccation is often 

coupled with an inability to effectively excrete carbon dioxide, which can result in 

hypercapnia and respiratory acidosis (Truchot, 1990). In addition to periods of emersion, 

the transition between aquatic and aerial environments often results in rapid and large-scale 

changes in temperature, salinity, oxygen availability and exposure to solar radiation 

(Gunderson et al., 2016; Helmuth et al., 2010).  

On a temporal scale, fluctuations in environmental conditions in the intertidal are 

regular and predictable. Therefore, intertidal organisms have developed a variety of 

mechanisms to ensure survival during emersion. One common response to emersion is 
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avoidance, either temporally or spatially. Sessile animals use behaviour to reduce 

desiccation during low tide (i.e., temporal avoidance). Mussels and other bivalves exhibit 

shell closure to conserve water and avoid exposure to air (Byrne & McMahon, 1994; 

Nicastro et al., 2010). Limpets grind down a ‘home scar’ on the rock with their radula, 

returning to this depression during low tide to isolate themselves from air (Lowell, 1984), 

while anemones reduce evaporative water loss by withdrawing their tentacles into their 

body (Ottaway, 1973). Mobile species tend to exhibit spatial avoidance and seek 

microhabitats which have a higher humidity and smaller variations in temperature. Crabs 

and gastropods seek shelter in crevices, under damp rocks or seaweed, or in tidepools at 

low tide (Grant & McDonald, 1979; Kensler, 1967), whereas amphipods and some shrimps 

can construct burrows in the sediment to reduce desiccation (Williams, 1995). Intertidal 

fish remain in tidepools to avoid air exposure all together, and can stay within the pools 

even when they become hypoxic. During these periods they often rely on aquatic surface 

respiration or air breathing (Bridges, 1988). Although behavioural responses may be 

sufficient in certain species during low tide, ultimately many of them need to employ 

physiological mechanisms in order to maintain homeostasis (Helmuth et al., 2006a; 

Helmuth et al., 2006b; Hofmann & Todgham, 2010; Somero, 2002; Tomanek & Helmuth, 

2002). 

Despite the fact that intertidal zones are highly dynamic environments, they support a 

rich flora and fauna. The exposure of these organisms to large scale and rapid 

environmental changes, coupled with their ease of access, has resulted in intertidal 

organisms being an important group for studying physiological responses to environmental 
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change (Somero, 2002). The intricate nature and complexity of the physiological 

monitoring equipment required to perform these studies makes it difficult to conduct field 

studies, and thus, the majority of studies that have investigated the effects of air exposure 

on the physiology of intertidal organisms have been carried out in a laboratory setting (e.g., 

Burnett, 1988; Burnett et al., 2002; DeFur & McMahon, 1984; Lagos et al., 2014; McGaw 

et al., 2009; Rastrick et al., 2014; Widdows & Shick, 1985; Yin et al., 2017). For 

convenience, almost all of these studies acclimate intertidal organisms in aquaria in 

permanently submerged conditions rather than a routine cycle of immersion and emersion 

as they would typically experience in nature (e.g., Burnett, 1988; Burnett et al., 2002; 

DeFur & McMahon, 1984; Lagos et al., 2014; McGaw et al., 2009; Rastrick et al., 2014). 

Although a period of acclimation to constant conditions in the laboratory is sound scientific 

practice, evidence suggests that intertidal animals acclimated to a regular cycle of 

immersion-emersion exhibit different physiological responses when exposed to emersion 

than those maintained in permanently submerged conditions (Altieri, 2006; Bjelde & 

Todgham, 2013; Drake et al., 2017; Widdows & Shick, 1985; Yin et al., 2017). This 

difference in physiological responses was initially inferred by comparing intertidal (regular 

air exposure) and subtidal (limited / no air exposure) congener species. For example, when 

subjected to 12 hours of air exposure, the intertidal mussel Geukensia demissa 

granosissima is able to maintain aerobic respiration, whereas the subtidal mussel Modiolus 

squamosus displays a much greater reliance on anaerobic pathways (Nicchitta & Ellington, 

1983). Likewise, large specimens of the intertidal porcelain crab Petrolisthes cinctipes 

were able to maintain a higher respiration rate than its subtidal counterpart Petrolisthes 
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eriomerus when exposed to air at 25ºC. This was facilitated by a specialized leg membrane 

structure, not found in P. eriomerus (Stillman & Somero, 1996). More importantly, this 

plasticity in physiological mechanisms and tolerance limits occurs on an intraspecific level. 

In an in-situ translocation study by Altieri (2006), blue mussels, Mytilus edulis were 

reciprocally transplanted between the intertidal and subtidal zones over a seven-week 

period, following which tolerance (survival) to emersion was determined in a laboratory 

experiment. Intertidal individuals were found to have higher survival rates during air 

exposure than mussels from the subtidal zone (Altieri, 2006). Moreover, tolerance to 

emersion was lost in M. edulis from the intertidal zone when acclimated to subtidal 

conditions, and vice versa. This suggests that the responses of intertidal animals acclimated 

to permanently submerged conditions in the laboratory may not reflect the physiological 

responses that occur in situ. Recognition of this phenomenon has attracted some interest, 

particularly recently, and subsequently there are some studies that have acclimated 

individuals to simulated tidal conditions in the laboratory (e.g., Altieri, 2006; Dong & 

Williams, 2011; Drake et al., 2017; Han et al., 2013; Jimenez et al., 2016; Marshall & 

McQuaid, 1992; McMahon et al., 1991; Paganini et al., 2014; Widdows & Shick, 1985; 

Yin et al., 2017). Most of these studies investigated how tolerance to regular air exposure 

affects the ability of molluscs to cope with either hypoxia or elevated temperature stress 

(e.g., Altieri, 2006; Dong & Williams, 2011; Drake et al., 2017; Han et al., 2013; Jimenez 

et al., 2016; Marshall & McQuaid, 1992; McMahon et al., 1991). However, as far as I am 

aware, there are few studies that have investigated how acclimation to a simulated tidal 

cycle affects an intertidal animal’s response to subsequent air exposure (Drake et al., 2018; 
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Widdows & Shick; 1985; Yin et al., 2017). Further, this data suggests that the response to 

emersion is plastic. For example, these studies showed that routinely exposing bivalves to 

air resulted in an increased scope for growth during air exposure (Widdows & Shick, 1985) 

and an upregulation of antioxidant enzymes (Yin et al., 2017). Such studies are enhancing 

our understanding of the influence of acclimation history on the physiological capacity of 

intertidal organisms, as they combine the benefits of controlled laboratory experiments 

with ecologically realistic field observations. However, our knowledge of the effect of 

routine air exposure on the physiology of mobile intertidal invertebrates, such as sea stars 

and crabs, is still lacking. 

Small decapod crustaceans are common inhabitants of the intertidal zone and the green 

shore crab (Carcinus maenas) is a typical example. Carcinus maenas is native to Europe, 

where it is found in sheltered bays and estuaries. It primarily occurs from the mid intertidal 

zone down to shallow subtidal habitats (5-6 m) (Klassen & Locke, 2007), but can be found 

at depths up to 60 m (Crothers, 1968). Because of its tolerance of a wide variety of 

environmental conditions, C. maenas has become a successful marine invader with a global 

distribution (Klassen & Locke, 2007). This species utilises bimodal breathing and is 

considered an effective air breather (DeFur, 1988), and is therefore, an ideal candidate to 

be studied in the context of emersion. Carcinus maenas is able to utilize aerobic 

metabolism during air exposure (Dejours & Truchot, 1988; Depledge, 1984; Newell et al., 

1972; Taylor et al., 1973; Taylor & Butler, 1973, 1978; Wallace, 1972). However, the 

extent to which it can be maintained as compared to values when this species is submerged 

varies significantly. For example, aerobic respiration has been reported to vary from 
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between 50% (Simonik & Henry, 2014) to 120% (Taylor & Butler, 1978) of values when 

submerged. At the onset of emersion, C. maenas typically experiences a 50-75% decline 

in the partial pressure of arterial oxygen (PaO2) (Dejours & Truchot, 1988; Depledge, 1984; 

Taylor & Butler, 1978), despite an increased availability of oxygen in air. In addition, due 

to the difficulty in excreting CO2 in air, it experiences an increase in PCO2 levels which 

results in a decrease in haemolymph pH (Truchot, 1975; Taylor & Butler, 1978), which is 

sustained throughout the duration of emersion (Burnett, 1988). However, there are 

discrepancies among studies as to whether emersion in crustaceans results in a shift to 

anaerobic metabolism, with some studies reporting a significant increase in lactate 

production during short-term air exposure (Santos & Keller, 1993; Simonik & Henry, 

2014), while others report that no lactate build-up occurs during emersion (Johnson & 

Uglow, 1985; Taylor & Butler, 1978).  

Despite being a prominent model species in understanding the effects of emersion on 

crustacean physiology, previous researchers have maintained C. maenas in conditions 

more representative of subtidal than intertidal conditions (e.g., Dejours & Truchot, 1988; 

Depledge, 1984; Newell et al., 1972; Taylor et al., 1973; Taylor & Butler, 1973, 1978; 

Wallace, 1972). The influence of acclimation to tidal conditions on the physiological 

responses reported in other intertidal species (Widdows & Shick, 1985; Altieri, 2006; 

Jimenez et al., 2016; Drake et al., 2017, Yin et al., 2017), coupled with the disparity 

between physiological responses reported for this species, suggests that our understanding 

of C. maenas’s physiological response to emersion may not be accurate. Therefore, the 

focus of this study was to determine how acclimation to constant submergence (referred to 
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as ‘non-tidal’) vs. a simulated semi-diurnal tidal cycle (referred to as ‘tidal’) influenced the 

physiological responses of C. maenas to emersion. I hypothesise that C. maenas acclimated 

to a tidal regime will display physiological adjustments in oxygen delivery and acid base 

balance to tolerate periodic air exposure that will be absent in C. maenas acclimated to 

submerged conditions. 

2.2 Materials and methods 

2.2.1 Sampling site and collection 

Large adult male C. maenas (carapace width > 50 mm) were collected at Fox 

Harbour (47.3209° N, 53.9082° W), Long Harbour (47.4324° N, 53.8162° W) and 

Fairhaven (47.5343° N, 53.8998° W) in Newfoundland (NL), Canada using dome crab 

traps between September and November 2015, and June and November, 2016. Only 

individuals with no carapace damage or missing chelae were used in experiments. The 

crabs were transported to the Department of Ocean Sciences, Memorial University, NL, 

Canada, where they were placed in a flow-through system provided with unfiltered 

seawater at ambient temperatures (approximately 3°C - 12°C). This seawater was ~ 100% 

saturated with air and had a salinity of 32‰, and the crabs were fed mackerel once a week 

(uneaten food removed after two days). Perforated plastic pipes (diameter: 10 cm, length: 

20 cm) were placed in the holding tanks to discourage aggressive behaviour amongst 

conspecifics.   
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2.2.2 Experimental holding conditions 

Prior to experiments, the crabs were transferred to two separate flow through 

seawater tanks (155 cm x 95 cm x 50 cm deep, 1000L) where they were held in perforated 

containers (37 cm x 40 cm x 17.5 cm deep, 30 L). An air stone was placed in each container 

to ensure that the oxygen content of the water was close to air saturation. 

The crabs were maintained in either non-tidal (control) or tidal (experimental), 

conditions for at least 4 weeks prior to experimentation. The non-tidal tank received 

unfiltered seawater at 2.2 L min-1, and the crabs in this tank were kept permanently 

submerged (Fig. 2.1.). The tidal tank had a similar seawater supply, but the water level in 

this tank was controlled so that it simulated a semi-diurnal six-hour tidal regime (i.e., 

alternating periods of six hours of immersion and then six hours of emersion), to replicate 

the tidal cycle at the collection sites. This was achieved by manipulating the water level 

via a timer-controlled solenoid valve connected to the outflow. When off, the solenoid 

valve closed off the outflow, allowing the tank to slowly fill up with seawater and submerge 

the crabs. When turned on, the valve opened the outflow, allowing the water to gradually 

drain, and exposing the crabs to air (Fig. 2.1). The air temperature was controlled in both 

tanks (using an air conditioning unit) so that it was similar to that in the water in the tanks 

(15°C ± 0.5°C). Humidity during emersion was monitored using a hygrometer (11-661-16, 

Fisher Scientific, USA), and varied between 70-80%.  

Water temperature of both tanks was maintained at 15°C (± 0.5°C) via an in-tank 

heater and salinity remained constant at 31-32‰. A temperature of 15°C was used as it is 

the optimum temperature for growth and physiological processes in C. maenas (Robertson 
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et al., 2002). Water oxygen content was maintained at 100% saturation. Animals were held 

in constant dim red light to reduce any endogenous cycles associated with light change. 

Prior to experimentation, the crabs were fasted for 3-4 days to ensure that digestive 

processes did not affect any of the measured physiological parameters (McGaw, 2006; 

Robertson et al., 2002). Individual crabs from the non-tidal and tidal group  were matched 

as closely as possible with respect to size, mass and colour morph (Styrishave et al., 2004). 
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Figure 2.1. (A) Control (non-tidal) holding conditions, in which the crabs were 
continuously submerged. (B) Experimental (tidal) holding conditions. The height of the 
water in this tank was controlled by a solenoid valve in the outflow pipe which opened / 
closed every 6 hours, either exposing the crabs to air or immersing them. Both tanks were 
supplied with aerated seawater through the inflow line, and a heater maintained the 
seawater temperature at 15°C (± 0.5°C) Air temperature was maintained at 15°C (± 0.5°C) 
using an air conditioning unit. 
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2.2.3 Experiments 

Oxygen consumption during 72 hours of submersion 

To establish if acclimation to a cycle of emersion entrains any endogenous rhythms 

(see De la Iglesia & Hsu, 2010 and Palmer, 2000 for reviews), oxygen consumption was 

measured for both the non-tidal and tidal crabs (n = 12 per group) during 72 hours of 

immersion (100% air saturation) at a salinity of 32‰ and a temperature of 15°C. 

Individuals were transferred from their holding tanks to plexiglass respirometry chambers 

submerged in a seawater table. Although every precaution was taken to carefully transfer 

the animals, handling of crustaceans can result in a short-term increase in oxygen 

consumption (Jouve-Duhamel & Truchot, 1985). Thus, I assessed the potential impact that 

this handling may have had on oxygen consumption, and determined the least stressful 

method for transferring individual crabs from their holding tank to the respirometry 

chambers (see Appendix A.1 for details of how this transfer was performed). 

Oxygen consumption was measured using an L-DAQ intermittent flow 

respirometry system (Loligo Systems, Copenhagen, Denmark), with the oxygen probes 

calibrated to 0 and 100% saturation using a sodium sulphite (0.01 g mL-1) and air-bubbled 

seawater, respectively. The system consisted of 4 identical cylindrical chambers (20 cm in 

diameter x 12 cm deep), which were submerged in a tank (155 cm x 95 cm x 50 cm deep, 

1000L) containing normoxic seawater (32‰) at 15°C. Each chamber was equipped with 

two pumps. The first pump continually flushed seawater through the chamber between 

oxygen consumption measurements. This pump was turned off when the chamber was 

closed (sealed) for oxygen measurements, and a second pump recirculated water through 
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the chamber at a rate of 5 L min−1 to ensure that there were no oxygen gradients in the 

chamber. Two crabs from each treatment, with one crab in each chamber, were used during 

each measurement period. Experiments were carried out in constant dim red light, and 

black plastic sheeting surrounded the experimental tank to avoid visual disturbance to the 

animal. Oxygen consumption was measured every hour; with the chamber sealed for 30 

minutes (so that oxygen consumption could be measured), and then flushed with fresh 

seawater for the remaining 30 minutes. Oxygen levels in the chamber were continuously 

recorded using the AutoResp 4 (v 1.7) data acquisition system (Loligo Systems, 

Copenhagen, Denmark), which calculated oxygen consumption as mg O2 kg−1 hr−1 using 

the following equation: 

Ṁ"# = % &
∆("#
)

* ∙ , ∙ -. 

 
Where V is the volume of the respirometry chamber minus the volume of the crab (where 

1 kg is assumed to equal 1 L), Δ PO2/t is the change in oxygen partial pressure (kPa) per 

unit time, α is the solubility coefficient for oxygen in seawater (at salinity of 32‰ and 15.0 

°C) in mg O2 kPa−1, and MB is the body mass of the crab (kg). As I was interested to see if 

tidal acclimation lead to an endogenous rhythm, it was not possible to acclimate the crabs 

to the chambers before the respirometry experiments. To account for the effect of handling 

stress on the oxygen consumption rates, each oxygen consumption value was divided by a 

stress index as calculated in Appendix A.1, through preliminary tests. The experiment was 

also run with empty chambers and background microbial respiration was found to be 

negligible.   
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Simulated tidal cycle 

In a separate series of experiments, the crabs were subjected to a simulated tidal 

cycle: 6 hours immersed, 6 hours emersed, followed by re-immersion for 6 hours. This was 

carried out in synchronisation with times of anticipated immersion and emersion in the 

tidal holding tank. Oxygen consumption was measured at hourly intervals during the first 

6-hour immersion period using the aquatic respirometry system previously described. After 

6 hours, individual crabs were carefully transferred from the aquatic respirometry system 

to separate blacked out airtight respiration chambers (20 cm x 27cm x 12 cm deep, 3.3 L) 

(a detailed account of transfer methods from aquatic to aerial chambers is provided in 

Appendix A.1) and housed in an incubator (MIR-254-PE, Panasonic Biomedical, Europe) 

at 15°C and a relative humidity of 70%. These chambers were sealed for 30 minutes, which 

allowed a measurable drop in chamber oxygen level, without exposing the crabs to 

hypoxia. Following these measurements, the chambers were opened for 30 minutes before 

being sealed for the next reading. Samples of air in the chamber were taken every hour 

during the six-hour emersion period using a 60 ml syringe by inserting the syringe’s 18-

gauge needle through a small hole in the lid that was sealed with dental wax. The syringe 

was pumped in and out three times to circulate the air in the chamber before withdrawing 

an air sample. The sample was injected through a Drierite® column (to remove any 

moisture) and into a Q-S102 O2 analyser (Qubit Systems, Ontario, Canada). The analyser 

was pre-calibrated to 100% air saturation (20.95% oxygen saturation) with air from the 

incubator, while nitrogen gas was used to achieve 0% oxygen saturation. Following this 
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period of emersion, the crabs were carefully transferred back into their aquatic respiration 

chamber, and oxygen consumption was monitored at hourly intervals for a further 6 hours.  

Aerial oxygen consumption was calculated using the following formulas: which 

take into consideration incubator temperature, the volume of air displaced by the crab in 

the chamber, and the length of time the chamber remained closed: 
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Where uṀO2 is uncorrected oxygen consumption (mL O2 kg−1 hr−1) V is the volume of the 

respirometry chamber minus the volume of the crab (where 1 kg is assumed to equal 1 L), 

Δ PO2/t is the change in oxygen partial pressure (kPa) per unit time, MB is the body mass 

of the crab (kg).  BP is barometric pressure in kilopascals, and T is the temperature of the 

specimen (= incubator) in Kelvin. After STP correction, oxygen consumption was 

converted from millilitres per hour to milligrams per hour by multiplying by 1.43 (32 g 

mol-1 divided by 22.4 L mol-1 at STP). Preliminary tests were completed to assess the 

effects of handling stress on oxygen consumption of C. maenas in air (see Appendix, A.1). 

The results of these tests showed an effect of handling on oxygen consumption during the 

first hour of emersion. Therefore, to account for this effect, the oxygen consumption values 

from hour one of emersion for non-tidal and tidal crabs were divided by a ‘stress index’ as 

calculated in Appendix A.1. 
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In a third series of experiments, separate animals were subjected to the same 18 

hour simulated tidal cycle (used above) and haemolymph samples were collected and 

analysed for partial pressure of arterial oxygen (PaO2), venous pH (pHv), and haemocyanin 

and lactate concentrations. To avoid adversely affecting animals by the repeated collection 

of large samples from the same crab, separate animals (n = 7 per group) were used at each 

time point. Samples were collected at the start, middle and end of each stage in the 

simulated tidal cycle, which corresponded to hours 1, 3, 6, 7, 9, 12, 13, 15, and 18 hours 

after the experiment began. Lactate was determined at 1, 6, 7, 9, 12, 13, 15 and 18 hours. 

For PaO2 measurements, at least three days before sampling, a small hole was 

drilled directly over the heart which pierced through the carapace but left the pericardial 

membrane intact. A section of dental dam was placed over the hole and secured with 

cyanoacrylate glue. During the experiment, an arterial blood sample (400 µL) was taken 

by inserting a 21-gauge needle attached to a 1 mL airtight Hamilton syringe through the 

dental dam and into the pericardial cavity. Samples were taken within 30 seconds of 

removing the animal from their chamber, and approximately 200 µL of arterial 

haemolymph was injected below a layer of mineral oil in an Eppendorf® tube and 

immediately transferred to a water bath at 15°C. PaO2 was measured using a Fibox-3 O2 

analyser (PreSens, Regensburg, Germany). This meter was calibrated using fully aerated 

seawater as 100 % air saturation and seawater with sodium sulphite (0.06 g mL-1) as 0% 

air saturation. The dipping probe was inserted into the sample, and readings were taken 

once PaO2 had stabilised (after 3 minutes) using OxyView software (PreSens, Regensburg, 

Germany) running on a laptop computer (Dell Inspiron). 
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Once the arterial haemolymph sample was collected (for PaO2 analysis), 

approximately 400 µL of venous haemolymph was withdrawn from the same individual 

from the arthrodial membrane at the base of a walking leg. A 200 µL sample was injected 

below a layer of mineral oil in an Eppendorf® tube and transferred immediately to the water 

bath at 15°C. pHv was measured using a pH mini-V2 analyser (PreSens, Regensburg, 

Germany). This was calibrated using colourless pH reference buffers (Ricca Chemical 

Company, Arlington, Texas, USA). The dipping probe was inserted into the sample and 

readings were taken once levels had stabilised (3 minutes) using pH 1-view software 

(PreSens, Regensburg, Germany) running on a laptop computer (Dell Inspiron) The 

remaining 200 µL aliquots of arterial and venous haemolymph were immediately 

transferred to Eppendorf® tubes, and placed on ice before being transferred to a -80°C 

freezer for later haemocyanin and lactate analyses, respectively. 

Haemocyanin concentration was determined spectrophotometrically using a 

Spectramax M5 multimode microplate reader (Molecular Devices, California, USA) and 

an assay adapted from Pascke et al. (2010). Arterial haemolymph was thawed at room 

temperature, then vortexed for 5 seconds to evenly distribute the protein. A 1:20 dilution 

was made with deionized water and vortexed for a further 5 seconds (n = 7 per time point). 

Haemocyanin concentrations were estimated using the Beer – Lambert law from the peak 

absorbance measured at 335 nm, and using an extinction coefficient of 17.5 mmol L –1 cm-

1 based on the specific absorbance (A1%,1cm) value of 2.33 reported for C. maenas 

(Nickerson & Van Holde, 1971), and a molecular mass of 75·kDa. 
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Lactate concentration was determined using an assay that was adapted from Clow 

et al. (2016) using thawed venous haemolymph samples. Samples were deproteinized using 

6% perchloric acid with a dilution ratio of 1:10 (n = 7 per time period). The samples were 

vortexed and then centrifuged at 10,000 x g for 10 minutes. The subsequent supernatant 

was then extracted, and 25 μL of this extract was added to 200 μL of assay medium 

containing glycine buffer (Sigma, G5418) and 2.5 mmol L−1 NAD+, pH 9.0. Absorbance 

was determined at 340 nm using a DTX 880 microplate reader (Beckman Coulter, Ontario, 

Canada) before the addition of 10 IU mL−1 of lactate dehydrogenase (Sigma, L2500). 

Absorbance was read after 30 min or until stable. Lactate concentrations (mmol L-1) were 

then calculated from a standard curve. 

 

2.2.4 Data and statistical analyses 

All data passed the assumptions of normality, independence and homogeneity, 

except for the lactate data which was square root transformed before statistical analysis. 

Periodicity in oxygen consumption in the submersion experiment was determined by a 

Lomb-Scargle periodogram using the software PAST (Hammer et al., 2001). Periods of 

periodicity were determined using the equation (1 / x) where 1 is total frequency, and x is 

the frequency of peak power. Differences in oxygen consumption between groups were 

identified using a two-way repeated measures ANOVA, while PaO2, pHv and haemolymph 

lactate and haemocyanin concentrations were analysed using two-way ANOVAs. One-way 

ANOVAs, or Tukey’s HSD post-hoc tests were used when applicable to detect significant 

differences between levels of individual factors. One-way ANOVAs were performed to 
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compare immersion with re-immersion oxygen consumption values. A two-sample t-test 

was used to compare the drop in oxygen consumption from immersion to emersion in both 

acclimation groups. The statistical analyses were carried out using GraphPad Prism 

(version 5.3 for Windows; GraphPad Software, La Jolla California USA, 

www.graphpad.com). In all cases, a p value of < 0.05 was utilised as the criteria for 

statistical significance.  

2.3 Results 

2.3.1 Oxygen consumption during seventy-two hours of submersion 

There was considerable variation in oxygen consumption rates during the 72-hour 

period of submersion, both within individual animals and between the non-tidal and tidal 

crabs. However, this variation was more pronounced in non-tidal crabs. The mean oxygen 

consumption of non-tidal crabs was 53.4 ± 7.8 mg O2 kg-1 hr-1 during the 72-hour 

experiment, whereas that of individuals from the tidal treatment was 45.8 ± 4.2 mg O2 kg-

1 hr-1. There was a significant interaction between acclimation and time (two-way RM 

ANOVA, df = 71, F = 1.433, p = 0.0118, Fig. 2.2). When tested separately for main effects, 

this was due to significant variation in the oxygen consumption of tidal crabs (one-way 

RM, ANOVA, df = 71, F = 3.129, p = 0.0108), but not in non-tidal crabs (one-way RM 

ANOVA, df = 71, F = 0.9391, p = 0.4762) over time. Tidal crabs appeared to have an 

endogenous rhythm, and exhibited a small but significant, decrease in oxygen consumption 

during times of anticipated air exposure in comparison to anticipated immersion (two-way 

RM ANOVA, df = 1, F = 6.329, p = 0.0306). This periodicity in tidal crabs was confirmed 
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using a Lomb-Scargle periodogram (Fig. 2.3), which revealed a significant peak (p < 0.01) 

in the spectrum at 0.0809 cycles per hour (i.e., 12.36 hours per cycle).   
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Figure 2.2. Oxygen consumption of green crab (Carcinus maenas) that had been previously 
acclimated to non-tidal (dashed) or tidal (solid) cycles during a 72-hour period in seawater 
at 15ºC. The values represent the mean + SEM of 12 individuals for each treatment. White 
bars indicate times when ‘tidal’ crabs would be anticipating immersion in their acclimation 
regime, and grey bars indicate periods of anticipated emersion. 
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Figure 2.3. Lomb-Scargle periodogram used to test for the presence of periodicity in 
oxygen consumption of Carcinus maenas during a 72-hour period of immersion in 
seawater at 15ºC. These crabs were previously acclimated to non-tidal (A) and tidal (B) 
cycles for 4 weeks. Power represents statistical power, where the lower red dotted line 
indicates statistical significance at p < 0.05, while the upper line indicates significance at 
p < 0.01. Frequency is scaled from of 0 – 1 cycles per hour, where 1 represent the duration 
of the submersion period (72 hours), but the upper limit is plotted in terms of the Nyquist 
frequency, and thus, is half of the sampling frequency (0.5). 
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2.3.2. Physiological responses of tidal and non-tidal crabs subjected to a simulated 

tidal cycle 

Oxygen consumption 

During the initial immersion phase, the oxygen consumption of non-tidal and tidal 

crabs was similar, varying between 40.02 ± 4.62 and 51.41 ± 5.79 mg O2 kg-1 hr-1. The 

oxygen consumption of both non-tidal and tidal crabs decreased considerably when 

exposed to emersion (Fig. 2.4), with non-tidal crabs experiencing a larger drop (54%) than 

tidal crabs (45%) (two-sample t-test, df = 22, T = 2.171, p = 0.0410) and both groups 

maintained comparable oxygen consumption throughout the duration of emersion (two-

way RM ANOVA, df = 1, F = 0.2655, p = 0.6115). When the crabs were re-immersed, 

there was a significant increase in oxygen consumption in both the non-tidal and tidal crabs 

(two-way ANOVA, df = 1, F = 86.9, p = < 0.0001), oxygen consumption returning to initial 

immersion values in both groups (one-way ANOVA, non-tidal: df = 11, F = 0.3393, p = 

0.9753; tidal: df = 11, F = 0.805, p = 0.6325).  However, the oxygen consumption of non-

tidal individuals was significantly elevated over that in the tidal group for the majority of 

the re-immersion period (two-way RM ANOVA, df = 1, F = 7.808, p = 0.0106). 
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Figure 2.4. Oxygen consumption of Carcinus maenas during a simulated tidal cycle; 
immersion in seawater at 15ºC for 6 hours, followed by a 6-hour period of emersion in air 
at 15ºC, and a subsequent 6-hour recovery period in seawater at 15ºC. The data represent 
the mean + SEM of 12 crabs that were previously acclimated to a non-tidal (dashed line) 
or a tidal (solid line) regimen for > 4 weeks before measurements began. Asterisks indicate 
a significant difference (p < 0.05) between acclimation groups at a given time point. 
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PaO2 

The PaO2 of the crab’s haemolymph did not change significantly during the 

simulated tidal cycle in either group (two-way ANOVA, df = 8, F = 1.868, p=0.0725), and 

values were not significantly different between the two groups (two-way ANOVA, df = 1, 

F = 1.294, p= 0.2578); with values averaging between 93.60 ± 4.46 mm Hg and 75.57 ± 

5.96 mm Hg for non-tidal crabs and 97.75 ± 5.73 and 76.66 ± 11.1 mm Hg  for tidal crabs 

during immersion, emersion and re-immersion (Fig. 2.5).  
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Figure 2.5. Arterial oxygen partial pressure (PaO2) of Carcinus maenas haemolymph 
during a simulated tidal cycle of immersion in seawater at 15ºC for 6 hours, followed by a 
6-hour period of emersion in air at 15ºC, and finally a 6-hour period of re-immersion in 
seawater at 15ºC. The data represent the mean + SEM of 7 crabs previously acclimated to 
a non-tidal (dashed line) or tidal (solid line) regimen for > 4 weeks.  
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Venous pH (pHv) 

The pHv of tidal and non-tidal crabs was stable during the initial period of 

immersion, with mean values of 7.78 ± 0.04 and 7.80 ± 0.04 in the two groups, respectively 

(Fig. 2.6). The pHv of tidal crabs did not change during the experiment. However, the pHv 

of non-tidal crabs decreased significantly (by 0.17 pH units) during emersion, and then 

returned to values similar to those recorded during the initial immersion period. This 

difference in the pattern of changes in pHv resulted in the pHv of non-tidal crabs being 

significantly lower than measured in tidal crabs (two-way ANOVA, df = 1, F = 4.666, p = 

0.0330). This was due to significant decline in pH during the 3rd (Tukey HSD, p = 0.0151) 

and 6th (Tukey HSD, p = 0.0111) hour of emersion.   
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Figure 2.6. Venous pH of Carcinus maenas haemolymph during a simulated tidal cycle of 
immersion in seawater at 15ºC for 6 hours, followed by a 6-hour period of emersion in air 
at 15ºC, and a subsequent 6-hour period of re-immersion in seawater at 15ºC. The data 
represent the mean + SEM of 7 crabs previously acclimated to a non-tidal (dashed line) or 
to a tidal (solid line) regimen for > 4 weeks. Asterisks indicate a significant difference (p 
< 0.05) between acclimation treatments at a given time point. 
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Haemocyanin concentration 

The haemocyanin concentration of both groups remained relatively stable over the 

course of the simulated tidal cycle (two-way ANOVA, df = 8, F = 0.7726, p = 0.6277; Fig, 

2.7), with the haemocyanin concentration of non-tidal crabs varying from 0.54 mmol L-1 

to 0.75 mmol L-1, and that of tidal crabs varying from 0.7 mmol L-1 to 0.85 mmol L-1. 

However, the haemocyanin concentration of tidal acclimated individuals was significantly 

higher overall as compared to non-tidal individuals (two-way ANOVA, df = 1, F = 19.32, 

p = < 0.0001), and this was largely driven by significant differences between non-tidal and 

tidal crabs at hours 1, 7, 9 and 15 (Tukey’s HSD test, p = 0.0466; 0.0105; 0.0106; 0.0442, 

respectively). 
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Figure 2.7. Haemolymph haemocyanin concentration in Carcinus maenas during a cycle 
of immersion in seawater at 15ºC for 6 hours, followed by a 6-hour period of emersion in 
air at 15ºC, and a subsequent 6-hour period of immersion in seawater at 15ºC. The data 
represent the mean + SEM of 7 crabs previously acclimated to a non-tidal (dashed line) or 
to a tidal (solid line) regimen for > 4 weeks. Asterisks indicate a significant difference (p 
< 0.05) between acclimation treatments at a given time point. 
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Lactate concentration 

There was considerable inter-individual variation in haemolymph lactate 

concentration in both non-tidal and tidal crabs (Fig. 2.8), and a significant interaction effect 

between acclimation group and time (two-way ANOVA, df = 7, F = 2.619, p = 0.0164). 

When the main effect of time (sampling point) was analysed separately, it was revealed 

that the haemolymph lactate concentration of non-tidal crabs changed significantly over 

the course of the experiment (one-way ANOVA, df = 7, F = 2.226, p = 0.0495), whereas it 

was not significantly different in tidal crabs (one-way ANOVA, df = 7, F = 1.274, p = 

0.2835). Haemolymph lactate concentration increased from 1.34 mmol L-1 at the beginning 

of emersion (hour 7) to 2.22 mmol L-1 at the end of this period (hour 12) in non-tidal crabs 

(Tukey HSD, p = 0.0461); which was also significantly higher than that measured in tidal 

individuals at this time point (Tukey, HSD, p = 0.0018). During re-immersion the 

haemolymph lactate concentration of non-tidal crabs returned to pre-treatment levels 

(Tukey HSD, p = 0.9993), and was significantly lower than measured in tidal crabs after 3 

hours of re-immersion (i.e., at hour 15) (two-way ANOVA, df = 1, F = 5.255, p = 0.0282). 
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Figure 2.8. Lactate concentration of Carcinus maenas haemolymph during a cycle of 
immersion in seawater at 15ºC for 6 hours, followed by a 6-hour period of emersion in air 
at 15ºC, and a subsequent 6-hour re-immersion period in seawater at 15ºC. The data 
represent the mean + SEM of 7 crabs acclimated to a non-tidal regime (dashed line) and 7 
crabs acclimated to a tidal regime (solid line). Asterisks indicate significant (p < 0.05) 
differences between acclimation treatments at a given time point. 
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2.4 Discussion 

Endogenous rhythm 

In the present study, oxygen consumption had a periodicity of 12.35 hours in tidal 

crabs (Fig. 2.3), very close to that of a circatidal rhythm (~12.4 hour), with lower oxygen 

consumption rates during times of expected emersion (Fig. 2.3). Conversely, non-tidal 

crabs showed no evidence of periodicity in oxygen consumption, suggesting that 

acclimation to permanent submersion eliminates important stimuli that initiate circatidal 

rhythms. Circatidal rhythms allow intertidal organisms to anticipate and respond to 

predictable daily changes in tidal height (Tessmar-Raible et al., 2011; Wilcockson & 

Zhang, 2008), and play a key role in preparing physiological mechanisms for anticipated 

periods of stress (Schnytzer et al., 2018). Circatidal rhythms in various physiological 

parameters have been shown in a number of intertidal groups. For example, the Californian 

mussel Mytilus californianus exhibits notable metabolic rhythms during simulated tidal 

cycles (Connor & Gracey, 2012), and several studies report biological rhythms in 

locomotor activity and oxygen consumption in a variety of decapod species (e.g., Leiva et 

al., 2016; Naylor, 2010; Palmer, 1995). Circatidal rhythms can be entrained by a number 

of environmental variables such periodic inundation, changes in salinity, hydrostatic 

pressure, water turbulence, temperature and food availability (De la Iglesia & Hsu, 2010; 

Palmer, 1973; Reid & Naylor, 1990). As many of these entraining variables (e.g., salinity, 

food availability, and air-water temperatures) were maintained at constant levels in both 

acclimation treatments, periodic emersion and subsequent pressure increases associated 

with re-immersion were the most likely zeitgebers entraining this rhythm (Chabot et al., 
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2013; Harris & Morgan, 1984; Williams & Naylor, 1969). The cyclic fluctuations in 

oxygen consumption of tidal crabs were most likely due to changes in locomotor activity. 

Tidal and non-tidal crabs showed similar levels of activity during times when tidal crabs 

were expected to be immersed, but tidal crabs became noticeably quiescent during periods 

of expected emersion, even though they were continuously immersed. Locomotor activity 

is considered the primary mechanism underlying changes in cardiorespiratory responses 

(McGaw & McMahon, 1998), and this circatidal pattern of locomotor activity, and 

concomitant changes in oxygen consumption, are well established in C. maenas 

(Arudpragasam & Naylor, 1964; Naylor, 1958, 1996; Warman et al., 1993). This suggests 

that a reduction of locomotor activity is a key behavioural response to air exposure in this 

species. 

 

Responses to a simulated tidal cycle 

Overall, non-tidal crabs had elevated levels of oxygen consumption (aerobic 

metabolism) during immersion but showed similar levels as tidal crabs during emersion 

(Fig. 2.4). However, non-tidal crabs experienced a decline in pHv (Fig 2.6) and an increase 

in lactate production (Figure 2.8), whereas tidal crabs did not utilize anaerobic metabolism 

and were able to maintain acid-base homeostasis during emersion. These results suggest 

that acclimation to permanently submerged conditions may result in the loss of important 

compensatory mechanisms that allow C. maenas to tolerate air exposure.  

 

Routine metabolic rate and activity 
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Both non-tidal and tidal crabs were able to maintain oxygen consumption at 

approximately 50% of the rate measured during the initial period of immersion (Fig. 2.4). 

This is comparable to previous work on C. maenas under simulated field conditions (50%; 

Simonik and Henry, 2014), but lower than other studies with C. maenas (75%-120% of 

immersion values; Newel, 1972; Taylor & Butler, 1978). The maintenance of oxygen 

consumption during emersion in both non-tidal and tidal acclimated crabs was likely 

facilitated by the strengthened gill lamellae possessed by this species, which unlike most 

aquatic decapod crustaceans such as Callinectes sapidus (DeFur, 1988), Cancer productus 

(DeFur & McMahon, 1984) and Homarus gammarus (Taylor & Whiteley, 1989) do not 

collapse when in air, thus allowing some gas exchange to continue when emersed (Truchot, 

1975). This hypothesis is supported by the values for PaO2, which were similar to those 

measured during the initial period of immersion, and thus, it is likely that the decline in 

oxygen consumption partially due to a decline in locomotor activity, which is a typical 

response of aquatic decapods to emersion (see DeFur, 1988 and references therein). This 

behaviour has also been reported in C. maenas in response to emersion (Depledge, 1984; 

Simonik & Henry, 2014;) and was anecdotally observed with both non-tidal and tidal crabs 

during this study. Additionally, as previously discussed, periods of quiescence during 

emersion are often the predominant driver behind circatidal rhythms in oxygen 

consumption in this species (Arudpragasam & Naylor, 1964; Naylor, 1958, 1996; Warman 

et al., 1993).  

Although oxygen consumption during emersion was similar between tidal and non-

tidal crabs, the production of lactate only in non-tidal crabs suggests that their metabolic 
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demands could not be met aerobically during constant emergence, and that they had to 

supplement oxygen consumption during emersion with anaerobic metabolism. For 

example, non-tidal crabs had a higher RMR than tidal crabs (which was apparent both 

before and after emersion, and statistically significant for the latter, Fig. 2.4), and the 

capacity to transport and consume oxygen during emersion may not have been sufficient 

alone to support this elevated rate of metabolism. This hypothesis would be consistent with 

the larger drop in oxygen consumption for the non-tidal crabs (Fig. 2.4), and the reported 

lower metabolic demands in intertidal organisms than their subtidal (permanently 

submerged) conspecifics. There is evidence that acclimation to cyclic conditions can result 

in lower values for RMR. For example, diel fluctuating temperature regimens depress the 

oxygen consumption of mud crab Panopeus herbstii and fiddler crab Uca pugilator (Dame 

& Vernberg, 1978). In the rainbow trout (Oncorhynchus mykiss), exposure to diel cycling 

hypoxia results in lower oxygen consumption (Williams et al., 2019). Finally, in juvenile 

sea cucumber Apostichopus japonicus, a lower RMR occurred when acclimated to 

fluctuating temperatures, and this was proposed as a mechanism to make more energy 

available for growth (Dong et al., 2006). However, it is also possible that the elevated 

energy demand (and thus requirement for anaerobic metabolism) of non-tidal crabs was 

due to increased costs specifically related to emersion. In the anemone Anthopleura 

elegantissima, intertidal individuals were shown to have lower metabolic costs during air 

exposure in comparison to subtidal individuals (Shick, 1981; Shick & Dykens, 1984). 

When acclimated to intertidal conditions (continuous cycle of 7 hours immersed, 5 hours 

emersed) for greater than two weeks, intertidal Mytilus edulis reduced their daily rate of 
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heat dissipation (a proxy for metabolism) by 39% in comparison to only 17% in subtidal 

individuals during five hours of emersion (Shick et al., 1985), and this was attributed to a 

reduction in metabolic costs related to nitrogenous excretion (Shick et al., 1985; Shick et 

al., 1988). Further, while crabs from both the non-tidal and tidal groups appeared quiescent 

throughout the emersion period, this was not directly measured / analysed in this study and 

therefore possible than non-tidal crabs were more active (or agitated / stressed), which 

could have contributed towards the elevated metabolic costs observed in comparison to 

tidal individuals.  

The inability of non-tidal crabs to support their metabolic costs using aerobic 

metabolism may also have been partially related to an issue with oxygen delivery to the 

tissues. For example, haemocyanin concentration was higher in the tidal crabs (Fig. 2.7), 

and changes in haemocyanin concentration are often observed in response to cyclic or 

stochastic environmental variations in oxygen concentration (Giomi & Beltramini, 2007). 

C. maenas sampled in situ have a higher haemocyanin concentration than those acclimated 

to permanently submerged conditions in the laboratory (Massabuau & Forgue, 1996), 

which may reflect the need for increased oxygen delivery during environmental 

fluctuations. Increases in the contribution of O2 bound to haemocyanin to oxygen delivery 

also occur in response to both acute and prolonged exposure to increases in temperature, 

hypoxia and low salinity (Baden et al., 1990; Boone & Schoffeniels, 1979; DeFur et al., 

1990; Gilles, 1977; Giomi & Pörtner, 2013; Hagerman et al., 1990; McMahon,1988). 

Further, exposure to air for three or more hours has been shown to result in a higher 

percentage of oxygen delivered bound to haemocyanin as compared to that dissolved in the 
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haemolymph (Hsia et al., 2013; Lorenzon et al., 2007; 2008; Mangum et al., 1975; Morris 

et al., 1996; Taylor & Whiteley, 1989). For example, oxygen delivered by haemocyanin in 

the intertidal crab Hemigrapsus nudus increases from < 50% during submersion to over 

85% when exposed to air (Mangum et al., 1975; Morris et al., 1996). Even in subtidal 

crustaceans, such as Homarus gammarus, haemocyanin’s participation in oxygen delivery 

increases when exposed to air, with 94% of oxygen delivered under this condition (Taylor 

& Whiteley, 1989). The dependence on haemocyanin for oxygen transport during emersion 

could stem from a reduced PaO2-PvO2 difference that can occur when gill integrity is 

compromised, or bradycardia, which reduces cardiac output, and thus, the amount of 

haemolymph that is delivered to the tissues (DeFur, 1988). Here, as PaO2 in the tidal and 

non-tidal crabs was maintained at relatively high levels during emersion, and the oxygen 

consumption of the two groups of crabs was similar under this condition, it is unlikely that 

an arterial – venous PaO2 difference led to a discrepancy in the importance of haemocyanin 

for oxygen transport between the two groups. However, haemocyanin levels were lower in 

the non-tidal crabs, and this would have resulted in a lower level of O2 delivery overall to 

the tissues to meet metabolic demands. Bradycardia commonly occurs during emersion, 

and has been reported in several subtidal (DeFur, 1988; Truchot, 1990) and intertidal 

(Airriess & McMahon, 1996; Depledge, 1984; Greenaway et al. 1995) decapod species, 

and has been reported in C. maenas with comparable emersion durations (Styrishave et al., 

2003; Wallace, 1972; Newell et al., 1972). Therefore, while not investigated in this study, 

it is possible that a more severe bradycardia in non-tidal crabs (i.e., a greater reduction in 
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circulatory capacity) in conjunction with lower haemocyanin levels, could have imposed a 

limitation on aerobic metabolism during emersion in non-tidal crabs.  

 

pH regulation 

During emersion tidal crabs were able to maintain pHv at pre-emersion levels, 

whereas non-tidal crabs exhibited a progressive decline, suggesting that either tidal crabs 

do not experience acidosis during emersion, or they have developed adaptations to 

efficiently buffer pH changes. The decline in the pHv displayed by non-tidal crabs was 

likely to be largely caused by the progressive accumulation of lactate in the haemolymph, 

particularly towards the end of emersion. As such, the absence of lactate accumulation in 

the haemolymph of tidal crabs aided in maintaining a constant pH during emersion. As 

significant levels of lactate did not accumulate in non-tidal crabs until hour 6 of emersion 

(Fig. 2.8), the prior decline in pH exhibited by non-tidal crabs, could be due to an increase 

in PCO2. In addition to bradycardia, a respiratory acidosis would place limitations on 

haemocyanin function in non-tidal crabs via the Bohr effect, and therefore, could be a 

precursor for the initiation of anaerobic metabolism and the production of lactate to 

supplement aerobic respiration. Although not directly measured in this study, it is 

important to consider the influence of carbon dioxide (CO2) on acid-base balance within 

the context of emersion. As oxygen is much more available in air than in water, but CO2 is 

much harder to excrete, it has been well established that decapod crustaceans experience 

an increase in PCO2 during emersion (see DeFur, 1988; Truchot, 1990 for reviews). This 

is due to the difficulty of excreting CO2 across the gills in air (Truchot, 1990) and reduced 
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ventilation (Morris, 1991; Truchot, 1983), even when oxygen consumption and PaO2 are 

maintained (Luquet & Ansaldo, 1998; McMahon et al., 1991). The increase in PCO2 results 

in an increase in H+, and thus a decrease in pH, unless buffered by HCO3- derived from the 

dissolution of CaCO3 in the exoskeleton or by haemolymph proteins (Whiteley, 2011). 

Evidence indicates that low intertidal / subtidal species are more limited in their ability to 

compensate for increased PCO2 during emersion than species that experience regular 

exposure to air. For example, the velvet crab (Necora puber; a low intertidal / subtidal 

species) has a limited capacity to mobilise HCO3-, (Rastrick et al., 2014), and C. maenas 

acclimated to submerged conditions take 100 hours to compensate for PCO2 increases 

during emersion (Truchot, 1975). Conversely, intertidal species such as the purple rock 

crab (Leptograpsus variegatus) and Neohelice granulata (previously Chasmagnathus 

granulata) can better regulate PCO2 levels and restore pH within 1-2 hours of air exposure 

(Luquet et al., 1998; Butler & Morris, 1990). This is likely facilitated by elevated carbonic 

anhydrase (CA) activity in the gills, which has been shown to be 10-fold higher in intertidal 

crustacean species in comparison to subtidal species (Henry et al., 1984), and shows 

circatidal rhythmic activity, with higher activity during low tide (Connor & Gracey, 2012). 

Additionally, as haemocyanin makes up the majority of the protein component of 

crustacean plasma (Pascual et al., 2003) it is an important buffer of pH changes (Whiteley, 

2011; Rastrick et al., 2014). Therefore, it is possible that while both tidal and non-tidal 

crabs experienced a rise in PCO2 at the onset of emersion, tidal crabs can limit haemolymph 

pH changes due to elevated levels of haemocyanin and CA activity, and thus, its effects on 

haemocyanin affinity during emersion. 
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Haemocyanin mechanism 

The underlying mechanism promoting the elevated haemocyanin concentration in 

tidal crabs during acclimation to cyclic emersion could be hypoxia inducible factor (HIF-

1), which has shown to be upregulated during emersion in the swimming crab Portunus 

trituberculatus (Lu et al., 2016). HIF-1 is an important transcription factor that acts as a 

global regulator of oxygen homeostasis (Semenza, 1999). HIF-1 has also been identified 

as the primary regulator behind the increased synthesis of haemoglobin in Daphnia (Gorr 

et al., 2004; Hoogewijs et al., 2007) and haemocyanin in Cancer magister (Head et al., 

2010) during hypoxia, as well as selectively upregulating subunits that have a high affinity 

for oxygen (Head et al., 2010). Moreover, HIF-1 is one of the main factors coordinating 

anaerobic glycolysis (Discher et al., 1998; Hochachka & Lutz, 2001; Murphy et al., 1999). 

Based on the above, it appears that HIF-1 could be a key coordinator of physiological 

responses to acute and chronic emersion responses in C. maenas, and assessing its role 

during emersion could provide valuable information towards understanding the 

physiological responses of intertidal organisms to emersion.  

 

Lactate release dynamics 

Although oxygen consumption and lactate levels returned to pre-treatment levels 

on re-immersion, haemolymph lactate levels were slightly (but not significantly) higher in 

tidal crabs and this could suggest that non-tidal and tidal crabs use different mechanisms, 

or have different capacities, to regulate oxygen consumption and lactate production during 

emersion. The crayfish Austropotamobius pallipes exhibits elevated lactate levels during 
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re-immersion after a 24-hour emersion period (Taylor & Wheatly, 1981; Jackson et al., 

2001). This is due to the crayfish sequestering lactate and protons in the calcified skeleton 

(Jackson et al., 2001), which results in a reduction of lactate in the haemolymph during 

emersion. Upon re-immersion, there is a lactate wash-out into the haemolymph, that results 

in elevated haemolymph lactate levels. A similar phenomenon may have occurred in the 

present study, with lactate produced by tidal crabs being sequestered during emersion but 

released into the haemolymph during re-immersion. Sequestration by the exoskeleton 

could also aide in acid-base buffering capacity by the formation of calcium and bicarbonate 

from calcium carbonate and hydrogen (Jackson et al., 2001).  

 

Conclusions 

 This study showed that C. maenas acclimated to simulated tidal conditions respond 

differently to emersion than crabs acclimated to permanently submerged conditions. For 

example, my data shows that while oxygen consumption is similar in tidal and non-tidal 

crabs during emersion, the non-tidal crabs have higher haemolymph lactate levels and a 

lower pHV during emersion and an elevated oxygen consumption when re-immersed. 

Although this study cannot conclusively identify the contributions of various factors / 

mechanisms to the above  differences, it is probable that both behavioural (lower activity, 

and thus RMR) and physiological (better regulation of PCO2, elevated haemocyanin levels, 

differences in HIF- 1 expression, buffering of plasma lactate and haemolymph pH levels) 

factors contributed to the differences between groups.  
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Importantly, the results of this study on Carcinus maenas supports previous studies 

showing that caution must be taken when acclimating intertidal organisms to laboratory 

conditions. Although acclimation to constant conditions allows us to associate 

physiological responses with a particular stressor, it also risks abolishing important 

physiological responses and adaptations that may play a critical role in physiological 

performance of organisms in situ. With respect to intertidal studies, the cyclic exposure to 

air is a predictable (daily) occurrence, and it is clearly an important modulator of the 

physiology of intertidal animals. Moving forward, it is paramount that organisms are 

exposed to realistic ecological scenarios that incorporate a multifaceted design within the 

laboratory environment if we are to gain an accurate understanding of how these species 

respond in situ.  

With regards to the mechanisms that may enable tidal crabs to better balance aerobic 

metabolism vs. energy demands during emersion, the potential role played by HIF-1 is 

particularly interesting, and may provide insights into the roles played by this important 

molecule in regulating the energy available for long-term performance in terms of growth, 

reproduction and survival. Such information will be essential to understanding how 

additional environmental stressors impact the physiological limits and population shifts of 

intertidal organisms. 
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Chapter 3. The role of tidal acclimation in the physiological responses of Carcinus 

maenas to hypoxia and thermal stress 

 
3.1 Abstract 

Animals inhabiting the intertidal zone are exposed to abrupt changes in 

environmental conditions associated with the rise and fall of the tide. For convenience, the 

majority of laboratory studies on intertidal organisms have acclimated individuals to 

permanently submerged conditions, and thus we currently know little about how 

acclimation to cyclic emersion-immersion that occurs in the intertidal influences the ability 

of intertidal organisms to cope with fluctuations in environmental conditions. In the present 

study, the intertidal green crab Carcinus maenas was acclimated to either a simulated tidal 

regime of continuous emersion-immersion (tidal) or to permanently submerged conditions 

(non-tidal). Oxygen consumption was assessed when crabs were submersed and exposed 

to hypoxia (100% - 20% of normoxia), cooling (15°C - 5°C) or warming (15°C - 25°C) 

over 5 hours and during 12 hours of recovery. Tidal crabs generally had a lower oxygen 

consumption at their acclimation temperature (15oC) and during recovery from hypoxia. 

However, whether a crab was exposed to immersion or cyclical immersion-emersion did 

not have an effect on its response to acute hypoxia. During acute thermal stress, the Q10 

values for oxygen consumption of non-tidal crabs increased as temperature declined to 5oC, 

whereas tidal crabs maintained relatively consistent Q10 values across the temperature 

range (5°C-25°C). These results show that non-tidal and tidal crabs had different 

physiological responses to acute changes in water oxygen level and temperature. Further, 
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they suggest that while acclimation to a simulated tidal cycle may result in different 

physiological responses to environmental stressors, anticipation of emersion has few 

effects on these responses during submersion.   

3.2 Introduction 

 The intertidal zone is one of the most intensively studied ecosystems (Paine, 1974; 

Helmuth et al., 2006a). Large fluctuations in abiotic parameters that occur during the ebb 

and flood of the tide, such as temperature and oxygen availability, provide a unique 

opportunity to study the physiological and ecological responses of organisms to 

environmental stressors (Denny et al., 2011). Many of these organisms function at the 

limits of their physiological tolerance and regular exposure to fluctuating conditions means 

that these organisms can be useful indicators of the impact of climate change (Barry et al., 

1995; Harley et al., 2006; Helmuth et al., 2006b; Mieszkowska et al., 2006; Sagarin et al., 

1999; Thompson et al., 2002, 2004).  

 Organisms that inhabit the intertidal zone are almost exclusively marine in origin, 

subsequently, the major stressor that they have to adapt to is the shift from an aquatic to an 

aerial respiratory medium. The dehydrating properties of air promote desiccation which 

can have adverse effects on metabolic performance. For example, body water loss can lead 

to difficulties in ion regulation and nitrogen excretion (Truchot, 1990), while desiccation 

of gas exchange surfaces can reduce or inhibit aerobic respiration (Burnett & McMahon, 

1987; DeFur, 1988; McMahon, 1988; Truchot, 1990). Furthermore, emersion is often 

coupled with an inability to effectively excrete carbon dioxide which can result in 

hypercapnia and respiratory acidosis (Truchot, 1990). On a cellular level, the internal 
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hypoxia that often occurs during emersion results in the induction of hypoxia-inducible 

factors (HIFs) to help regulate metabolism, as well as heat-shock proteins (HSPs), 

inhibitors of apoptosis proteins and endoplasmic reticulum chaperones to ensure that cell 

homeostasis is maintained (Kawabe & Yokoyama, 2009; Lu et al., 2016; Zhang et al., 

2012; Zhang et al., 2016). Moreover, emersion can induce an increase in the activity of 

antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) (Yin et al., 

2017) to protect against free radical damage during re-immersion.  

In addition to the risk of desiccation, the transition between aquatic and aerial 

environments often results in rapid and large-scale fluctuation in temperature, salinity and 

oxygen availability (Gunderson et al., 2016; Helmuth et al., 2010). In temperate 

environments, daily temperature fluctuations typically exceed 20ºC as the tide ebbs and 

floods (Fangue et al., 2006). Crevices and tidepools can often provide refuge for intertidal 

animals seeking to avoid desiccation (Fangue et al., 2006). However, these tidepools can 

also experience large daily variations in oxygen availability (2 - 435 mm Hg) due to 

imbalances in the rate of photosynthesis vs. respiration (Truchot & Jouve-Duhamel, 1980; 

Richards, 2011), and thus, animals residing here can experience alternating periods of 

hyperoxia, hypoxia and related pH changes.  

Due to the complexity of this environment, and the difficulty in investigating the 

integrative effects of these stressors in situ, much of our understanding of the physiology 

of intertidal organisms to environmental stressors has come from laboratory experiments 

where individuals are submerged and acclimated to constant conditions. Despite being 

sound scientific practice that has provided a wealth of valuable information with regards 
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to our understanding of animal physiology (e.g., Bertness et al., 2001; Denny et al., 2011; 

Helmuth et al., 2006a; Pörtner 2001; 2002; 2010; Tomanek & Helmuth, 2002), such 

conditions are not representative of the cyclical conditions that intertidal organisms 

experience in nature, and acclimation to fluctuating or cyclic conditions often results in 

different physiological phenotypes (Todgham et al., 2006). For example, acclimation to a 

normal tidal cycle results in the depression of oxygen consumption in the blue mussel 

Mytilus edulis and the crab Panopeus herbstii when they are subjected to a subsequent 

increase in temperature as compared to individuals that were constantly submerged. This 

reduction in oxygen consumption may allow for more scope for growth in comparison to 

individuals acclimated to constant conditions (Dame & Vernberg, 1978; Widdows, 1976). 

Likewise, acclimation to a cyclical thermal regime results in an increase in thermal 

tolerance in the coral Acropora hyacinthus (Oliver & Palumbi 2011). This phenomenon, 

however, is not unique to the effects of temperature. Juvenile qingbo (Spinibarbus sinensis) 

acclimated to diel-cycling hypoxia (12 hours at 130 mm Hg, 12 hours at 55 mm Hg cycle) 

have a lower Pcrit (critical oxygen tension), and subsequently increased tolerance to 

hypoxia, than fish acclimated to constant moderate hypoxia (93 mm Hg) (Dan et al., 2014). 

Additionally, spot (Leiostomus xanthurus) acclimated to diel-cycles of hypoxia show a 

higher expression of hypoxia inducible factor-1 (HIF-1) than individuals acclimated to 

constant hypoxia (Smith et al., 2012). This data suggests that acclimation to permanently 

submerged conditions (as usually occurs in controlled lab conditions) instead of a cyclic 

regime of immersion and emersion could impair the physiological performance and 
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environmental tolerance of intertidal organism, and thus, may lead to misleading or 

inaccurate conclusions with regards to how these organisms respond in situ.  

 Experimental evidence also suggests that exposure to an initial stressor can confer 

increased tolerance to a different, subsequent stressor; an effect known as cross tolerance 

(Todgham & Stillman, 2013). This association is based on the initiation of similar 

mechanisms of cellular protection to a number of stressors (Kültz, 2005). For instance, 

exposure to a 12ºC heat shock conferred increased tolerance to severe hypoxia and osmotic 

shock in tidepool sculpin (Oligocottus maculosus), and it was suggested that this could be 

due to the priming of heat-shock proteins (HSPs) (Todgham et al., 2005). Chronic 

acclimation to particular stressors can produce similar physiological adjustments, and these 

can increase aerobic scope (Giomi & Pörtner, 2013). For example, acclimating Callinectes 

sapidus to either low salinity (Mason et al., 1983) or hypoxia (DeFur et al., 1990) results 

in an increase in haemocyanin concentration, and this suggests that exposure to low salinity 

could confer tolerance to hypoxia and vice-versa. As environmental stressors tend to be 

more pronounced during periods of low tide (Bjelde & Todgham, 2013), tolerance to 

emersion has been shown to influence physiological responses to both hypoxia and heat 

stress (e.g., Altieri 2006, Drake et al., 2017; Roberts et al., 1997). When subtidal Mytilus 

edulis are transplanted into the intertidal zone they gain increased tolerance to hypoxia in 

comparison to individuals that remain constantly submerged (Altieri, 2006). This increased 

tolerance is thought to be due to physiological adjustments induced by long-term (weeks 

of) cyclic exposure to air, including switching to alternative anaerobic pathways, changes 

in the regulation of key metabolic enzymes (e.g., pyruvate kinase), a lowered basal 
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metabolic rate, and possibly higher mitochondrial content (Altieri, 2006; Demers & 

Guderley, 1994; De Zwaan & Wijsman 1976; Shick et al., 1988; Sukhotin & Pörtner, 1999; 

Widdows & Shick 1985). Consequently, intertidal congeners often have increased thermal 

and hypoxia tolerance compared with their subtidal counterparts (Alteri, 2006; Stillman & 

Somero, 2000).  

To date, the majority of studies assessing the importance of tidal acclimation on 

tolerating other stressors has primarily focused on sessile species, and less is known about 

this concept in mobile intertidal organisms. Small decapod crustaceans are common 

inhabitants of the intertidal zone and play crucial roles in determining community structure. 

The green shore crab Carcinus maenas is native to Europe, but has become a successful 

marine invader with a global distribution because of its tolerance of environmental 

perturbations. Accordingly, it has become a model organism to investigate the 

physiological responses of marine organisms to environmental stressors (Hyde et al., 2012; 

Klassen & Locke, 2007; Leignel et al., 2014). Given the importance of the tidal cycle in 

influencing responses to other environmental stressors as highlighted in previous literature, 

coupled with the evidence of physiological adjustments in tidal acclimated green shore 

crabs (Carcinus maenas) shown in Chapter 2, I was interested to see if C. maenas 

acclimated to a tidal regime would exhibit different physiological responses with regards 

to hypoxia and thermal stress, typical stressors for this species in the intertidal. 

Furthermore, as acclimation to a tidal regime develops a metabolic endogenous rhythm 

(see Chapter 2), I was interested to see if timing of hypoxic or thermal stress in relation to 

anticipated medium conditions (air or water) influenced the metabolic response to such 
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stressors. I hypothesised that C. maenas acclimated to a tidal regime would be more 

tolerant to hypoxic and thermal stress due to a more efficient oxygen delivery system and 

better buffering of the acid base balance, and this would be most pronounced when 

subjected to stress in synchronisation with their acclimation regime. If differences are 

found between crabs exposed to immersion vs. cycles of submersion-emersion, this 

questions whether physiological responses derived from previous laboratory experiments 

are accurate representations of the responses that intertidal organisms exhibit in situ. Such 

information will be critically important for predicting shifts in the environmental 

tolerances, and the population distributions of species, in the era of global climate change. 

3.3 Materials and methods 

3.3.1 Sampling site and collection 

Large adult male C. maenas (carapace width > 50 mm) were collected at Fox 

Harbour, Long Harbour and Fairhaven (Newfoundland (NL), Canada) using dome crab 

traps between September and November 2015, and June and November 2016. Only crabs 

without carapace damage or missing chelae were used in experiments. Females were not 

taken due to permitting regulations in Newfoundland. The crabs were transported to the 

Department of Ocean Sciences, Memorial University, NL, Canada, where they were placed 

into holding tanks receiving unfiltered, aerated, seawater at ambient temperature 

(approximately 3°C – 12°C) and with a salinity of 32‰, and fed mackerel once a week 

(any uneaten food removed after two days). Perforated plastic pipes (diameter, 10 cm; 

length, 20 cm) were placed in the holding tanks to discourage aggressive behaviour 

amongst conspecifics.   
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3.3.2 Experimental holding conditions 

The crabs were transferred to two separate flow through seawater tanks (155 cm x 

95 cm x 50 cm deep, 1000 L) where they were held in perforated containers (37 cm x 40 

cm x 17.5 cm deep, 30 L). An air stone was placed in each container to ensure that the 

water was fully saturated with oxygen, the temperature of both tanks was maintained at 

15°C (± 0.5°C) via an in-tank heater, and salinity was constant at 31-32‰. A temperature 

of 15°C was used as it is the optimum temperature for growth and normal physiological 

function in C. maenas (Robertson et al., 2002). The crabs were acclimated to either non-

tidal (control) or tidal (experimental) conditions for at least 4 weeks prior to 

experimentation. The non-tidal tank was constantly provided with unfiltered seawater at a 

rate of 2.2 L/min. Crabs were kept submerged for 24 hours a day (Fig. 3.1), which 

represented the conditions that intertidal organisms are typically maintained for laboratory 

experiments.  

The tidal tank had a similar flow rate, but the water level of the tank was controlled 

to replicate a semi-diurnal, six-hour, tidal regime (alternating periods of six hours 

immersed and six hours emersed). A semi-diurnal tide was deemed the most appropriate 

as it is the most common tidal pattern in their natural environment (Little & Kitching, 

1996). This was achieved by manipulating the water level via a timer-controlled solenoid 

valve connected to the tank outflow. When off, the solenoid valve closed the outflow, 

allowing the inflow to slowly fill up the tank, submerging the crabs. When on, the valve 

opened, allowing the water to gradually drain and exposing the crabs to air (Fig. 3.1). The 

air temperature was controlled at a similar temperature to the water (15°C ± 0.5°C) via an 
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air conditioning unit. Humidity during emersion was monitored using a hygrometer (11-

661-16, Fisher Scientific, USA) and varied between 70-80%. Animals were held in 

constant dim red light to reduce any endogenous cycles associated with photoperiod. Prior 

to experimentation, the crabs were fasted for 3-4 days to ensure digestive processes did not 

affect physiological readings (McGaw, 2006; Robertson et al., 2002). Individual crabs from 

the non-tidal and tidal group were matched as closely as possible with respect to size, mass 

and colour morph (Styrishave et al., 2004). 
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Figure 3.1. (A) Control (non-tidal) holding conditions. Crabs were permanently 
submerged. (B) Experimental (tidal) holding conditions. An inflow provides the tank with 
fully oxygenated flow through seawater. The height of the water is controlled by a timer-
controlled solenoid valve which opens / closes every 6 hours, either exposing the crabs to 
air or immersing them. 

 

3.3.3 Experiments 

Hypoxia 

To establish if acclimation to periodic emersion affected the ability of C. maenas 

to cope with hypoxic conditions, oxygen consumption was measured for both the non-tidal 

and tidal crabs (n = 10 per group) subjected to acute hypoxia when submerged. Crabs were 

transferred directly from their holding tanks to plexiglass respirometry chambers 

maintained at 15ºC and 32‰, and the recording of oxygen consumption began 

immediately. This was because the specific timing of the air / water exposure in the tidal 

acclimation tank prevented acclimation to the respirometry chambers prior to recording 
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oxygen consumption. An effort was made to assess whether this handling response may 

have had any effect on oxygen consumption, and a detailed method for how this transfer 

was carried out can be found in A.1 of the appendix. Similarly to Chapter 2, the raw oxygen 

consumption values were adjusted to remove the effects of handling stress on oxygen 

consumption, which was calculated through preliminary tests outlined in Appendix A.1. 

Crabs from both acclimation groups were then exposed to progressive hypoxia. The 

oxygen concentration of the water was controlled using an oxygen analyser and control 

system (OX10000, Loligo Systems, Tjele, Denmark). The system consists of a control unit 

connected to a galvanic oxygen probe which monitors the oxygen partial pressure of the 

seawater. The control unit monitors the oxygen level in the water and opens / closes 

solenoid valves connected to nitrogen or air cylinders if the dissolved oxygen level deviates 

from the desired set point. The oxygen level of the water was decreased in increments of 

40% air saturation (i.e., from 100% to 60% and then 20% air saturation) over a period of 

an hour. It was then maintained at each concentration for an hour during which time the 

oxygen consumption rate of the crabs was measured. Following this, oxygen levels were 

returned to 100% saturation (over an hour) and oxygen consumption was measured during 

a 12-hour recovery period in normoxia (15ºC, 32 ‰). This meant that the overall time the 

crabs were exposed to the hypoxia treatment was 5 hours with an additional hour to return 

to normoxic conditions. 

To understand whether the endogenous rhythm developed by tidal crabs (Fig 2.2; 

2.3) influenced the response to hypoxia, non-tidal and tidal crabs were subjected to 

progressive hypoxia at the time of anticipated immersion in the tidal acclimation regime 
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(referred to as HI), and then repeated with other individuals at the time of anticipated 

emersion (HE).  

Oxygen consumption (MO2) was measured using an L-DAQ intermittent flow 

respirometry system (Loligo Systems, Tjele, Denmark). The system consisted of 4 identical 

cylindrical chambers (20 cm diameter x 12 cm depth), which were submerged in a shallow 

tank (155 cm x 95 cm x 50 cm deep, 1000 L). Each chamber was equipped with two pumps. 

The first pump continually flushed seawater through the chamber while it was open. The 

chamber was automatically sealed by the computer for MO2 measurements, and a second 

pump recirculated the water through the chamber at a rate of 5 L min−1. A total of four 

replicates were used at any one time (two from each treatment), with one crab in each 

chamber. Experiments were carried out in constant dim red light and black plastic sheeting 

surrounded the apparatus to avoid visual disturbance to the animal. Oxygen consumption 

was calculated at 1-hour intervals; a reading was taken whilst the chamber was sealed for 

30 minutes, then the chamber was continuously flushed with fresh hypoxic seawater. Data 

was recorded with the data acquisition system AutoResp 4 (v 1.7) (Loligo Systems, Tjele, 

Denmark) which calculated oxygen consumption as mg O2 kg−1 hr−1 using the following 

equation: 

 

Ṁ"# = % &
∆("#
)

* ∙ , ∙ -. 

 
Where V is the volume of the respirometry chamber minus the volume of the crab (L), Δ 

PO2/t is the change in oxygen partial pressure (kPa) per unit time, α is the solubility 
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coefficient of oxygen in water (salinity of 32‰, 15.0°C) in mg O2 kPa−1, and MB is the 

body mass of the crab (kg). 

 

Thermal stress 

In another series of experiments, oxygen consumption was measured for both non-

tidal and tidal crabs (n = 10 per group) subjected to either an acute increase or decrease in 

water temperature. The crabs were transferred from their holding tank to the plexiglass 

respirometry chambers mentioned above using the method detailed in A.1 of the appendix 

and recording started immediately. The temperature of the tank was manipulated via in-

tank heaters, and increased or decreased by 5ºC (over a period of an hour) and held at each 

temperature for an additional hour while the MO2 of the crabs was recorded. In the first 

experiment, the crabs were subjected to an acute decrease in temperature, and oxygen 

consumption was recorded at 15ºC, 10ºC and 5ºC. In the second experiment, a separate set 

of animals were subjected to an acute increase in temperature and MO2 was recorded at 

15ºC, 20ºC and 25ºC. Following both experiments, the temperature was restored to the 

initial temperature of 15ºC (over an hour) and oxygen consumption was measured during 

a 12-hour recovery period (at normoxia, 32‰ salinity). As with the hypoxia experiment, 

the temperature increase or decrease occurred over a period 5 hours. This allowed the 

experiments to be performed at times when tidal crabs expected to be immersed in the tidal 

acclimation regime and when tidal crabs expected to be emersed (the latter using different 

individuals). This created four separate experimental scenarios: acute cooling during 

anticipated immersion (CI), acute cooling during anticipated emersion (CE), acute 
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warming during anticipated immersion (WI), acute warming during anticipated emersion 

(WE). Oxygen consumption was measured using the experimental apparatus described in 

the hypoxia experiment, and was calculated as described in Chapter 2. However, the 

oxygen solubility coefficient was adjusted to match each experimental temperature. 

Similarly to Chapter 2 and the hypoxia experiment, the raw oxygen consumption values 

were adjusted to remove the effects of handling stress on oxygen consumption, which was 

determined in the preliminary tests outlined in Appendix A.1. 

The temperature coefficient (Q10) for oxygen consumption was determined for all 

individuals at every 5°C interval (5°C – 10°C, 10°C - 15°C, 15°C - 20°C, 20°C - 25°C) 

for both acclimation groups during each of the four scenarios. Q10 was determined using 

the equation:  

 

ABC = 	&
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Where R1 and R2 are the oxygen consumption rate at the first (T1) and second (T2) 

temperatures, and Q10 was reported as a mean value of all individual determinations.  

The thermal stress experiments revealed interesting differences between the tidal 

and non-tidal crabs with regards to MO2, particularly during expected emersion. Therefore, 

measurements of parameters important for haemolymph oxygen delivery [arterial partial 

pressure of oxygen (PaO2), haemocyanin concentration] and those indicative of anaerobic 

metabolism [venous pH (pHv), lactate concentration] were measured to try and understand 

what physiological mechanisms might be mediating these differences. In this final series 

of experiments, separate crabs (from the non-tidal and tidal groups) were subjected to a 
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temperature increase as outlined above and haemolymph samples were collected at 15°C, 

20°C, 25°C and hour 1, 2, 6 and 12 of recovery. To avoid adversely affecting animals by 

the repeated collection of large samples, separate animals (n = 7 per acclimation group) 

were used at each time point. 

For PaO2 measurement, at least three days before sampling, a small hole was drilled 

directly over the heart which pierced through the carapace but left the pericardial 

membrane intact. A section of dental dam was placed over the hole and secured with 

cyanoacrylate glue. During sampling, an arterial blood sample (400 µL) was taken by 

piercing the dental dam and the pericardial membrane with a 1 mL airtight Hamilton 

syringe and a 21-gauge needle. Samples were taken within 30 seconds of removing the 

animal from the apparatus. Approximately 200 µL of arterial haemolymph was then 

injected below a layer of mineral oil in an Eppendorf® tube and immediately transferred to 

a water bath. As C. maenas is an ectotherm, the temperature of the water bath was adjusted 

throughout the experiment to parallel the changes in temperature the crabs were exposed 

to in the experimental system. PaO2 was measured using a pre-calibrated Fibox-3 O2 

analyser (PreSens, Regensburg, Germany). The dipping probe was inserted into the sample 

and readings were taken once PaO2 had stabilised (after 3 minutes) using OxyView 

software (PreSens, Regensburg, Germany) running on a laptop (Dell Inspiron). 

Immediately after arterial haemolymph was collected (for PaO2 analysis), approximately 

400 µL of venous haemolymph was withdrawn from the same crab from between the 

arthrodial membrane at the base of a walking leg. A 200 µL sample was injected below a 

layer of mineral oil in an Eppendorf® tube and transferred immediately to a water bath set 



 74 

to the temperature of the experimental system. The venous pH (pHv) was measured using 

a pH mini-V2 analyser (PreSens, Regensburg, Germany) and a probe calibrated using 

colourless pH reference buffers (Ricca Chemical Company, Arlington, Texas, USA). To 

measure pH, the dipping probe was inserted into the sample and readings began once levels 

had stabilised (3 minutes) using pH 1-view software (PreSens, Regensburg, Germany). The 

remaining 200 µL aliquots of arterial and venous haemolymph were transferred to 

Eppendorf® tubes and placed on ice before being transferred to a -80°C freezer for later 

measurement of haemolymph haemocyanin and lactate levels.  

Haemocyanin concentration was determined by spectrophotometry using a 

Spectramax M5 multimode microplate reader (Molecular Devices, California, USA). 

Arterial haemolymph was thawed at room temperature, then vortexed for 5 seconds to 

evenly distribute the protein. A 1:20 dilution was then made with distilled water and 

vortexed for a further 5 seconds (n = 7 per time period). Haemocyanin concentrations were 

estimated using the Beer – Lambert law from peak absorbance at 335 nm, using an 

extinction coefficient of 17.5 mmol L–1 cm–1, based on the specific absorbance value (A1%, 

1 cm) of 2.33 reported for C. maenas (Nickerson & Van Holde, 1971) and a molecular mass 

of 75·kDa. 

Lactate concentration was determined from an assay adapted from Clow et al. 

(2016) using thawed venous samples. Samples were deproteinized using 6% perchloric 

acid at a dilution of 1:10 (n = 7 per time period). The samples were then mixed and 

centrifuged at 10,000x g for 10 minutes. The subsequent supernatant was then extracted, 

and 25 μL of this extract was added to 200 μL of assay medium containing glycine buffer 
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(Sigma, G5418) and 2.5 mmol L−1 NAD+, pH 9.0. Absorbance was measured at 340 nm 

using a DTX 880 microplate reader (Beckman Coulter, Ontario, Canada) before the 

addition of 10 IU mL−1 of L-lactic dehydrogenase (Sigma, L2500). Absorbance was read 

after 30 min or after it stabilised, and compared with a standard curve to determine the 

sample’s lactate concentration.   

 

3.3.4 Statistical analyses 

All data passed tests of normality, independence and homogeneity, apart from the 

lactate data which was square root transformed. Differences in MO2 during hypoxia, acute 

warming and acute cooling were identified using separate three-way repeated measures 

(RM) ANOVAs, with temperature, acclimation group and timing of exposure (in relation 

to tidal acclimation regime) as factors. PaO2, pHv, lactate and haemocyanin concentration 

were analysed using separate two-way ANOVAs, with temperature and acclimation group 

as factors. Differences in MO2 during recovery from hypoxia and thermal stress were 

measured using separate three-way RM ANOVAs with time (hour), acclimation group and 

timing of exposure as factors whereas PaO2, pHv, lactate and haemocyanin concentration 

were analysed using separate two-way ANOVAs. Differences in Q10 values between 

acclimation groups under the four thermal scenarios were examined using a three-way 

ANOVA with temperature, acclimation group, and timing of exposure as factors. To 

understand if hypoxia or thermal stress resulted in a prolonged change in physiological 

parameters, initial 15°C values were compared to recovery values for all parameters 

measured. This was done using a one-way RM ANOVA for MO2 values, and a one-way 
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ANOVA for PaO2, pHv, lactate and haemocyanin values. One-way ANOVAs, or Tukey 

HSD post-hoc tests were used when applicable to identify significant differences between 

factors. The statistical analyses were carried out using GraphPad Prism software (version 

8.03 for Windows, GraphPad, La Jolla California USA, www.graphpad.com). In all cases, 

a p value of < 0.05 was utilised as the criteria for statistical significance.  

3.4 Results 

3.4.1 Oxygen consumption in response to acute hypoxia  

Initial oxygen consumption at normoxia (100% air saturation) during the HI 

treatment was 49.06 ± 2.40 mg O2 kg-1 hr-1 for non-tidal and 42.09 ± 2.06 mg O2 kg-1 hr-1 

for tidal crabs, whereas during the HE treatment MO2 was 49.45 ± 4.61 mg O2 kg-1 hr-1 for 

non-tidal crabs and 35.31 ± 2.58 mg O2 kg-1 hr-1 for tidal crabs. Exposure to decreasing 

water oxygen levels resulted in a stepwise decline in oxygen consumption in both non-tidal 

and tidal crabs (Fig. 3.2) (three-way RM ANOVA, df = 2, F = 54.7, p = < 0.0001) with the 

MO2 of non-tidal crabs dropping to 29.87 ± 2.52 mg O2 kg-1 hr-1  (HI)  and 27.60 ± 1.62 

mg O2 kg-1 hr-1 (HE), and tidal crabs dropping to 25.77 ± 1.80 mg O2 kg-1 hr-1 (HI) and 

21.86 ± 1.72 mg O2 kg-1 hr-1 (HE), at 20% air saturation. During this decline, tidal crabs 

displayed a consistently lower MO2 (three-way RM ANOVA, df = 1, F = 13.6, p = 0.0008). 

There was no difference in MO2 values, or their response to hypoxia, between crabs tested 

during anticipated periods of immersion and emersion (three-way RM ANOVA, df = 1, F 

= 1.796, p = 0.1886). 

Although non-tidal crabs appeared to have an elevated MO2 during the first hour of 

recovery compared to initial (100% air saturation) values, this was not statistically 



 77 

significant (HI: one-way RM ANOVA, df = 12, F = 1.524, p = 0.234; HE: one-way RM 

ANOVA, df = 12, F = 0.5972, p = 0.6659). The oxygen consumption of tidal crabs 

subjected to the HI treatment also returned to initial values by hour one of recovery (One-

way RM ANOVA, df = 12, F = 1.184, p = 0.3344). However, tidal crabs from the HE 

treatment had elevated oxygen consumption (from initial 15°C and 100% air saturation) 

for the first two hours of recovery (One-way RM ANOVA, df = 12, F = 1.881, p = 0.0496; 

Tukey HSD, hour 1: p = 0.0245; hour 2: p = 0.0391). During recovery, tidal crabs had 

significantly lower oxygen consumption rates compared with non-tidal crabs (three-way 

RM ANOVA, df = 1, F = 13.63, p = 0.0007). There was also a significant difference over 

time (three-way RM ANOVA, df = 11, F = 2.606 p = 0.0297), with oxygen consumption 

at hour one elevated above hour two to five of recovery in tidal crabs (Tukey HSD, p < 

0.05 for all). There was no difference in oxygen consumption during recovery from 

hypoxia between crabs tested during periods of anticipated immersion vs. emersion (three-

way RM ANOVA, df = 1, F = 0.1096, p = 0.7426). 
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Figure 3.2. Oxygen consumption of submerged Carcinus maenas at 15oC that were 
subjected to a decrease in seawater oxygen content (100 - 20% of air saturation) over 5 
hours at times corresponding to immersion (A) and emersion (B) in the tidal crabs, 
followed by a 12-hour recovery period in normoxic seawater. The data are means + SEM 
values for 10 crabs acclimated to non-tidal and tidal regimes. Asterisks (*) indicate 
significant differences between acclimation treatments (p <0.05) at a particular oxygen 
level or time point during recovery. Plus sign (+) indicates significant difference between 
MO2 at initial 15°C and MO2 at a particular hour of recovery in tidal crabs. 
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3.4.2 Physiological response to acute temperature change 

Oxygen consumption during cooling 

The initial MO2 (at 15°C) of non-tidal crabs was similar between the CI and CE 

treatments; 52.82 ± 1.53 mg O2 kg-1 hr-1 and 51.55 ± 3.15 mg O2 kg-1 hr-1, respectively. In 

contrast, tidal crabs from the CI treatment had a higher MO2 at 15°C (39.58 ± 3.28 mg O2 

kg-1 hr-1) than the CE treatment (32.92 ± 1.6 mg O2 kg-1 hr-1). Further, the oxygen 

consumption of tidal crabs and non-tidal crabs responded differently to acute cooling (g 

3.4). When cooled to 5°C, non-tidal and tidal crabs from both the CI and CE treatments 

had similar values of MO2 at 5°C [non-tidal: 14.24 ± 0.52 mg O2 kg-1 hr-1 (CI), 14.04 ± 1.25 

mg O2 kg-1 hr-1(CE); tidal: 16.13 ± 2.13 mg O2 kg-1 hr-1 (CI), 16.62 ± 1.38 mg O2 kg-1 hr-1 

(CE)], and this resulted in significant main effects for temperature (three-way RM 

ANOVA, df = 2, F = 162.8, p = < 0.0001) and acclimation group (three-way RM ANOVA, 

df = 1, F = 9.378, p = 0.004), and a significant interaction between temperature and 

acclimation group (three-way RM ANOVA, df = 2, F = 14.98, p = < 0.0001). Post-hoc 

tests revealed that this interaction was due to non-tidal crabs experiencing a stepwise 

decline in oxygen consumption in response to cooling, where the oxygen consumption at 

each temperature was significantly different (Tukey HSD, Table 3.1). However, in tidal 

crabs there was no difference between 15°C and 10°C in the CI or CE group (Tukey HSD, 

CI: p = 0.0708; CE: p = 0.4699), and no difference between 10°C and 5°C in the CE group 

(Tukey HSD, p = 0.2361). Anticipated immersion or emersion had no effects on oxygen 

consumption during the acute decrease in temperature (three-way RM ANOVA, df = 2, F 

= 0.478, p = 0.4970).  
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 When the temperature was returned to 15ºC, the oxygen consumption of non-tidal 

crabs in both the CI and CE treatments returned to initial levels during the first hour (CI: 

one-way RM ANOVA, df = 12, F = 1.030, p = 0.4040; CE: one-way RM ANOVA, df = 

12, F = 0.3442 p = 0.7933). This trend was similar for tidal crabs in the CI treatment (one-

way RM ANOVA, df = 12, F = 0.5322, p = 0.6641), but tidal crabs from the CE treatment 

had elevated values for oxygen consumption as compared to initial values at 15°C for the 

first three hours of the recovery period (one-way RM ANOVA, df = 12, F = 3.538 p = 

0.0177; Tukey HSD, hour 1: p = 0.0216; hour 2: p = 0.0389; hour 3: 0.0450). During 

recovery, tidal crabs had significantly lower oxygen consumption rates than non-tidal crabs 

(three-way RM ANOVA, df = 1, F = 7.636 p = 0.0090). There was no difference in oxygen 

consumption during the recovery period with regards to whether cooling was experienced 

during expected immersion or emersion (three-way RM ANOVA, df = 1, F = 0.6409 p = 

0.4286).  

 

Oxygen consumption during warming 

As seen with the acute cooling experiment, the initial MO2 at 15°C for non-tidal 

crabs was similar between the WI and WE treatments (50.15 ± 4.84 mg O2 kg-1 hr-1 and 

53.02 ± 2.61 mg O2 kg-1 hr-1 respectively) whereas tidal crabs from the WI treatment had 

a higher MO2 at 15°C (39.66 ± 1.15 mg O2 kg-1 hr-1) than tidal crabs from the WE treatment 

(31.91 ± 3.28 mg O2 kg-1 hr-1 1.61). During acute warming, there was a significant 

interaction between temperature and acclimation (three-way RM ANOVA, df = 2, F = 

9.687, p = 0.0002; Fig. 3.3. C, D). This interaction was due to tidal crabs experiencing a 
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stepwise increase in oxygen consumption in response to warming (regardless of whether 

warming occurred during anticipated emersion or immersion), where the oxygen 

consumption at each temperature was significantly different (Tukey HSD, Table 3.1). 

However, in non-tidal crabs there was no difference in oxygen consumption between 15°C 

and 20°C (regardless of whether the crabs were anticipating  immersion vs. emersion) 

(Tukey HSD, Table 3.1), but there was a difference between 15°C and 25°C and between 

20°C and 25°C (Tukey HSD, Table 3.1). This resulted in non-tidal and tidal crabs from 

both the WI and WE treatment having similar MO2 values at 25°C [non-tidal: 87.71 ± 5.26 

mg O2 kg-1 hr-1 (WI), 87.40 ± 3.59 mg O2 kg-1 hr-1(WE); tidal: 87.66 ± 6.13 mg O2 kg-1 hr-

1 (WI), 87.37 ± 5.74 mg O2 kg-1 hr-1 (WE)]. Similar to acute cooling, there was also a 

significant difference between the two acclimation groups during the temperature change 

(three-way RM ANOVA, df = 1, F = 6.797, p = 0.0178). Tidal crabs in the WE group had 

a significantly lower oxygen consumption at 15ºC and 20ºC as compared to non-tidal crabs 

(Tukey HSD, 15°C: p = 0.0008; 20°C: p = 0.0431); whereas this difference was not evident 

at 25ºC (Tukey HSD, p = > 0.9999). Whether warming was experienced during anticipated 

emersion or immersion had no effect of the oxygen consumption of non-tidal or tidal crabs 

(three-way RM ANOVA, df = 1, F = 0.3701 p = 0.546). 

When the temperature was decreased back to 15ºC, oxygen consumption of non-

tidal acclimated crabs in both the WI and WE treatments returned to pre-treatment levels 

after one hour (WI: one-way RM ANOVA, df = 12, F = 1.311, p = 0.297; WE: one-way 

RM ANOVA, df = 12, F = 0.7663, p = 0.512). This trend was similar for tidal crabs in the 

WI treatment (one-way RM ANOVA, df = 12, F = 2.632, p = 0.0674), but tidal crabs from 
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the WE treatment exhibited an elevated oxygen consumption (above initial 15°C) for the 

first three hours of the recovery period (one-way RM ANOVA, df = 12, F = 3.542, p = 

0.0116; Tukey HSD, hour 1: p = 0.0007; hour 2: p = 0.0029; hour 3: p = 0.0081). During 

recovery, although tidal crabs also had lower oxygen consumption than non-tidal crabs, 

this difference was not statistically significant (three-way RM ANOVA, df = 1, F = 2.846 

p = 0.1002).  
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Figure 3.3. Oxygen consumption of submerged Carcinus maenas subjected to an acute temperature decrease from 15ºC – 5ºC during 
anticipated immersion (CI, A and emersion (CE, B, and an acute temperature increase from 15ºC – 25ºC during anticipated immersion 
(WI, C) and emersion (WE, D) over 5 hours followed by a 12 hour recovery at 15ºC. The data are means + SEM values for 10 crabs 
acclimated to non-tidal and tidal regimes. Asterisks (*) indicate significant (p < 0.05) differences between acclimation treatments at a 
particular temperature or time point during recovery. Plus sign (+) indicates significant difference between MO2 at initial 15°C and 
MO2 at a particular hour of recovery in tidal crabs. 
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Figure 3.4. Thermal performance curves for non-tidal and tidal Carcinus maenas subjected 
to temperatures of 5°C-25°C during anticipated immersion (AI) and emersion (AE). As 
oxygen consumption at 15°C was recorded during both warming and cooling, these values 
were averaged to produce one oxygen consumption value at 15°C for each acclimation 
group – timing combination.  
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Table 3.1. Summary of Tukey’s multiple comparison tests comparing oxygen consumption 
for Carcinus maenas acclimated to non-tidal and tidal conditions (at 15oC) and subjected 
to decreases (C) or increases in temperature (W) when crabs were anticipating immersion 
(I) or emersion (E). Significantly different (p < 0.05) oxygen consumption values between 
the two temperatures are indicated by an asterisk. Ns = Non-significant. 

 

Treatment Acclimation Adjusted P value Summary 
CI 
15°C - 10°C Non-tidal 0.0152 * 

Tidal 0.0708 Ns 
15°C - 5°C Non-tidal <0.0001 * 

Tidal 0.0003 * 
10°C - 5°C Non-tidal 0.0184 * 

Tidal 0.0031 * 
CE 

15°C - 10°C Non-tidal 0.0337 * 
Tidal 0.4699 Ns 

15°C - 5°C Non-tidal <0.0001 * 
Tidal 0.0005 * 

10°C - 5°C Non-tidal 0.0176 * 
Tidal 0.2361 Ns 

WI 
15°C - 20°C Non-tidal 0.3420 Ns 

Tidal 0.0229 * 
15°C - 25°C Non-tidal 0.0092 * 

Tidal 0.0008 * 
20°C - 25°C Non-tidal 0.0041 * 

Tidal 0.0003 * 
WE 

15°C - 20°C Non-tidal 0.0572 Ns 
Tidal 0.0009 * 

15°C - 25°C Non-tidal 0.0005 * 
Tidal <0.0001 * 

20°C - 25°C Non-tidal 0.0106 * 
Tidal 0.0002 * 

 

 

 

 

 

 



 86 

Q10 

Assessment of Q10 values revealed a significant two-way interaction (three-way 

ANOVA, df = 1, F = 9.58, p = < 0.0001; Fig. 3.5) suggesting that Q10 was influenced by 

acclimation group and temperature. Regardless of the timing (E vs. I) of acute thermal 

stress, non-tidal crabs had the highest Q10 between 5°C-10°C (CI: 5.80 ± 0.60, CE: 5.81 ± 

0.79; Fig. 3.5), and this was significantly higher than the Q10 at all other temperature ranges  

(Tukey HSD, p = < 0.0001 for all comparisons), where Q10 was between 3.17 ± 0.60 and 

1.67 ± 0.13. The Q10 of non-tidal crabs between 5°C-10°C was also significantly higher 

than tidal crabs (CI:3.22 ± 0.57, CE: 2.41 ± 0.50; Fig. 3.5; Tukey HSD, p = 0.0001), but 

similar across all other temperatures (Tukey HSD, 10°C-15°C: p = 0.9617; 15°C - 20°C: p 

= 0.9617; 20°C - 25°C: p = 0.3257). Tidal crabs exhibited a more consistent Q10 across all 

temperatures, with Q10 varying between 2.08 ± 0.18 and 3.23 ± 0.60, with no significant 

difference between temperatures (Tukey HSD, p > 0.05 for all interactions). The Q10’s of 

both tidal and non-tidal crabs were not significantly affected by whether they experienced 

a temperature change during expected immersion or emersion (three-way ANOVA, df = 1, 

F = 0.049, p = 0.824). 
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Figure 3.5. Mean Q10 values (± SEM) calculated for every 5°C period from 5°C to 25°C 
for non-tidal and tidal crabs subjected to warming or cooling over 5 hours during 
anticipated immersion (AI) and emersion (AE).  Asterisks (*) indicate significant (p < 0.05) 
difference in Q10 between acclimation treatments at the given temperature range. 
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PaO2 during WE 

There was a significant decline in PaO2 in response to the temperature increase 

(two-way ANOVA, df = 2, F = 12.22, p = < 0.0001; Fig. 3.6). PaO2 in non-tidal crabs 

declined from 126.85 ± 8.56 mm Hg at 15°C to 87.38 ± 8.13 mm Hg at 25°C, and that of 

tidal crabs declined from 114.05 ± 8.75 mm Hg at 15°C to 71.33 ± 6.86 mm Hg at 25°C. 

However, there were no statistically significant differences between the PaO2 of non-tidal 

and tidal acclimated crabs (two-way ANOVA, df = 1, F = 3.195, p = 0.0823) either before 

or during warming. When the temperature was returned to 15ºC, the PaO2 of both groups 

increased back to pre-exposure levels (one-way ANOVA, non-tidal: df = 4, F = 0.724, p = 

0.401; tidal: df = 4, F =0.067, p = 0.797). Although there was a trend for PaO2 to decline 

somewhat in the tidal crabs after 3 hours, this was not statistically significant (two-way 

ANOVA, df = 3, F = 0.586, p = 0.6263). However, this apparent decline resulted in the 

PaO2 of tidal crabs resulted in these values being significantly lower than those measured 

in the tidal group at hour 6 and 12 of recovery (two-way ANOVA, df = 1, F = 6.91, p = 

0.0117). 
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Figure 3.6. Arterial oxygen partial pressure (PaO2) in Carcinus maenas in normoxic 
seawater during exposure to an acute temperature increase from 15ºC to over 5 hours 
followed by a 12 hour recovery at 15ºC. The crabs were exposed to the temperature 
increase when emersion was anticipated. The data represent the mean + SEM of 7 crabs 
acclimated to non-tidal and tidal regimes. Asterisks indicate significant differences 
between acclimation groups (p < 0.05). 
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Venous pH (pHv) during WE 

Both non-tidal and tidal crabs experienced a similar stepwise decrease in venous 

pH (pHv) when subjected to the acute temperature increase (two-way ANOVA, df = 2, F = 

26.81, p = < 0.0001; Fig. 3.7). The pHv of non-tidal crabs declined from 7.76 ± 0.02 at 

15°C to 7.52 ± 0.05 at 25°C, and the pHv of tidal crabs declined from 7.76 ± 0.03 at 15°C 

to 7.49 ± 0.03 at 25°C. The initial (15°C) pHv of both non-tidal (one-way ANOVA, df = 4, 

F = 1.550, p = 0.2141) and tidal acclimated crabs (one-way ANOVA, df = 4, F = 0.2658, 

p = 0.8976) was re-restored within 1 hour of the temperature being lowered back to 15ºC. 

These values remained unchanged during the 12-hour recovery period (two-way ANOVA, 

df = 3, F = 1.265, p = 0.2971). There was no significant difference in pHv between non-

tidal and tidal crabs either before or after the temperature challenge (two-way ANOVA, df 

= 1, F = 0.1977, p = 0.6592). 
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Figure 3.7. Venous pH in Carcinus maenas during exposure to an acute temperature 
increase from 15°C to 25ºC over 5 hours followed by a 12 hour recovery period at 15ºC. 
The crabs were exposed to the temperature increase when emersion was anticipated. The 
data are means + SEM of 7 crabs for each group. 
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Haemocyanin concentration during WE 

Tidal crabs had a significantly higher haemocyanin concentration at 15oC and this 

difference was largely maintained as temperature increased;  levels ranging in tidal crabs 

between 0.75 ± 0.03 mmol L-1 and 0.80 ± 0.06 mmol L-1  in comparison to 0.47 ± 0.07 

mmol L-1 and 0.63 ± 0.09 mmol L-1 in non-tidal crabs (two-way ANOVA, df = 1, F = 

0.8036, p = < 0.0001; Fig. 3.8). This difference between the two groups was significantly 

different at15°C (Tukey HSD, p = 0.0155) and at 25°C (Tukey HSD, p = 0.001). There 

was no significant change in haemocyanin concentration during the temperature increase 

in non-tidal or tidal crabs (two-way ANOVA, df = 2, F = 0.8036, p = 0.4556). 

 When the temperature was returned to 15°C for the recovery period, there was no 

significant change in haemocyanin concentration from initial 15°C values in either the tidal 

or non-tidal crabs (non-tidal: one-way ANOVA, df = 4, F = 1.512 p = 0.2239; tidal: one-

way ANOVA, df = 4, F = 1.535 p = 0.2174). Tidal crabs continued to maintain a higher 

haemocyanin concentration than non-tidal crabs (two-way ANOVA, df = 1, F = 11.04, p = 

0.0017), and this was most apparent between the two acclimation groups after 6 (Tukey 

HSD, p = 0.0139) and 12 hours of recovery (Tukey HSD, p = 0.0434).  
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Figure 3.8. Haemolymph haemocyanin concentration in Carcinus maenas during exposure 
to an acute temperature increase from 15°C to 25ºC over 5 hours followed by a 12 hour 
recovery period at 15ºC. The crabs were exposed to the temperature increase when 
emersion was anticipated. The data are means + SEM for 7 crabs for each group. Asterisks 
indicate significant differences between acclimation groups (p < 0.05). 
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Lactate concentration during WE 

Initially (i.e., at 15°C) non-tidal and tidal crabs had similar haemolymph lactate 

concentrations [1.30 ± 0.13 mmol L-1 (non-tidal) and 1.36 ± 0.14 mmol L-1 (tidal)]. No 

statistically significant difference in lactate concentration due to temperature (two-way 

ANOVA, df = 2, F = 0.3859, p = 0.6826) or between the two acclimation groups (two-way 

ANOVA, df = 1, F = 1.082, p = 0.3052) during the temperature increase was found. 

There was a trend towards lower lactate levels after 1 hour of recovery in both tidal 

and non-tidal crabs, however, this proved to be statistically insignificant (non-tidal crabs, 

one-way ANOVA, df = 4, F = 1.377, p = 0.263; tidal crabs, one-way ANOVA, df = 4, F = 

1.102, p = 0.373). There was also no change in lactate concentration over the course of the 

recovery period (two-way ANOVA, df = 3, F = 2.559, p = 0.0660). Tidal crabs consistently 

had higher lactate levels than non-tidal crabs (two-way ANOVA, df = 1, F = 5.135, p = 

0.0280), but this difference only reached statistical significance between the two 

acclimation groups 12 hours after the crabs had been returned to 12oC (Tukey HSD, p = 

0.0242).  
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Figure 3.9. Haemolymph lactate concentrations in Carcinus maenas during exposure to an 
acute temperature increase from 15°C to 25ºC over 5 hours followed by a 12 hour recovery 
period at 15ºC. The crabs were exposed to the temperature increase when emersion was 
anticipated. The data are means + SEM of 7 crabs. The asterisk indicates a significant 
difference between acclimation treatments (p < 0.05). 
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3.5 Discussion 

Overall, acclimation to cyclical emersion-immersion had limited effects of the 

green crab’s physiological responses to either hypoxia or changes in temperature when 

submerged.  However, there were some interesting, and potentially very important, 

differences.  These include: 1) tidal crabs had lower MO2 values and higher haemocyanin 

concentrations at 15oC; 2) while their temperature sensitivity (Q10 values) was / were 

relatively similar over the range tested, the non-tidal crabs were more sensitive to low 

temperatures and less sensitive to high temperatures; and 3) these changes in thermal 

sensitivity resulted in the oxygen consumption of crabs exposed to immersion vs. cyclical; 

immersion-emersion being the same at 5 and 25oC. These results suggest that crabs 

exposed to cyclical increases and decreases in tidal height are less sensitive to changes in 

temperature, and are able to deal better with temperature fluctuations. Thus, there appears 

to be a complex relationship environmental stressors and oxygen consumption in non-tidal 

vs. tidal crabs that depends on the type of stress experienced, and over what part of the 

crab’s thermal niche parameters are measured.   

Interestingly, whether the crabs were tested during periods of anticipated 

immersion vs. emersion had few effects on their physiology when submerged. While this 

data suggests whether a crab is anticipating changes in tidal height does not affect its 

physiology, it does not rule out the possibility that significant differences would be 

observed when the crabs were tested during emersion. This is the portion of the tidal cycle 

where the majority of physiological challenges are expected.   
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Metabolism under resting conditions 

Tidal crabs had a lower metabolic rate over the 15°C-20°C range as compared with 

non-tidal crabs. These data are consistent with that reported in Chapter 2, and collectively 

indicate that physiological adjustments to periodic emersion may result in a lower routine 

metabolic rate (RMR). There are a limited number of studies that have compared the 

metabolic rate of animals acclimated to cyclical variables (e.g. air exposure, hypoxia, 

temperature etc.) in comparison to constant conditions, and these also suggest that 

acclimation to a cyclic regime can lower RMR. For example, diel fluctuating temperature 

regimes depress the oxygen consumption of mud crab Panopeus herbstii and fiddler crab 

Uca pugilator (Dame & Vernberg, 1978). In the rainbow trout (Oncorhynchus mykiss), 

exposure to diel cycling hypoxia results in lower oxygen consumption (Williams et al., 

2019). Finally, in juvenile sea cucumber Apostichopus japonicus, a lower RMR occurs 

when acclimated to a fluctuating temperature regime, and it was proposed that the decrease 

in RMR was to ensure that energy was available for growth (Dong et al., 2006). In the 

present study, cyclical immersion-emersion resulted in increased haemocyanin levels in 

the tidal crabs (Fig. 3.8). It is possible that elevated haemocyanin contributed to the lower 

RMR observed, whereby an increased oxygen carrying capacity would provide energy 

savings with ventilation and circulation (Giomi & Pörtner, 2013). In support of this, 

elevated haemocyanin levels in the lobster, Homarus gammarus, cause a reduction in 

ventilation, scaphognathite beating and heart rate (Spoek, 1974). It is important to note that 

differences in activity between non-tidal and tidal crabs could perhaps have contributed 

towards the differences in RMR reported here. Although activity was generally observed 
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to be similar between non-tidal and tidal crabs during acute stress and recovery, this was 

not quantified, and thus cannot, be ruled out as a contributing factor. 

 

Exposure to, and recovery from, acute hypoxia 

Aerial exposure and hypoxia can impose similar challenges on aquatic animals, 

namely difficulty in extracting and utilising environmental oxygen (Wilmer et al., 2009). 

Prior acclimation to hypoxia has been shown to increase the ability of crustaceans to cope 

with subsequent periods of low oxygen, often through the upregulation of different 

isoforms or increased concentrations of haemocyanin (Baden et al., 1990; DeFur et al., 

1990; Hagerman et al., 1990; Senkbeil & Wriston, 1980). I, therefore, hypothesised that 

because tidal crabs were regularly exposed to air and had elevated levels of haemocyanin 

(Fig. 2.7), they would be better able to maintain oxygen consumption during hypoxia than 

non-tidal crabs. However, non-tidal and tidal crabs showed a similar decline in oxygen 

consumption when subjected to hypoxia (Fig. 3.2), suggesting that increased levels of 

haemocyanin did not alter how tidal crabs regulated aerobic metabolism when oxygen 

becomes limited. However, my results do not exclude the possibility that these elevated 

haemocyanin levels might improve the tolerance of green crabs to very low oxygen levels 

or decrease their critical oxygen tension. In support of this hypothesis, it has been shown 

that while tadpole shrimp Triops longicaudatus acclimated to normoxia, moderate hypoxia 

(75 – 97 mm Hg) or severe (7-22.5 mm Hg) hypoxia had a similar decrease in oxygen 

consumption as environmental PO2 decreased, only the group acclimated to severe hypoxia 

group was able to maintain cardiac output below Pcrit (Harper & Reiber, 2006). Similarly, 

while juvenile qingbo (Spinibarbus sinensis) acclimated to either stable or cyclical hypoxia 
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showed a similar decline in oxygen consumption with reductions in environmental PO2, 

they had a lower Pcrit than those acclimated to normoxia, (Dan et al., 2014). In this study, I 

tested hypoxia tolerance down to 20% air saturation (~30 mm Hg) to represent typical low 

oxygen conditions reported for tidepools (Sloman et al., 2008; Todgham et al., 2005). The 

reported Pcrit of C. maenas is also around ~30 mm Hg (McGaw & Nancollas, 2018) and 

therefore while there appeared to be no difference in metabolic performance between tidal 

and non-tidal crabs during hypoxia, it is possible that there might have been a difference 

in the Pcrit of the two acclimation groups. 

 

Response to acute thermal stress 

 Despite tidal crabs having lower MO2 values at 15- 20oC, the oxygen consumption 

of non-tidal crabs was more sensitive to low temperatures and less sensitive to high 

temperatures as compared to tidal crabs, and this resulted in similar values for MO2 at the 

measured temperature extremes (5 and 25oC) (Figs. 3.3 and 3.4). The similarity of oxygen 

consumption in these two groups at these temperatures suggests that these temperatures are 

critical set points for C. maenas. This would be consistent with studies which report that 

their typical average thermal range is 6°C - 23°C (Kelley et al., 2011; McGaw & Whiteley, 

2012; Tepolt & Somero, 2014). Low temperatures result a reduction in mitochondrial 

performance which causes a decrease in ATP production rates and can result in a difficulty 

to meet the energetic demand of ventilation and circulation (Frederich & Pörtner, 2000; 

Zielinski & Pörtner, 1996). Consequently, at 5°C-7°C, C. maenas enters a state of torpor, 

reduces activity (Whiteley et al., 1997) and ceases feeding (Behrens Yamada, 2001; Berrill, 

1982). My results could suggest that at 5°C, non-tidal crabs are struggling to maintain 
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metabolic demand, and are likely going into a state of torpor. The matching of oxygen 

consumption at 25°C is more complex, but suggests that regardless of acclimation, C. 

maenas may be approaching the maximum capacity of its aerobic systems at 25°C, and this 

would correlate with the observed upper thermal limit in their native range (Tepolt & 

Somero, 2014). 

Tidal crabs maintained a more consistent Q10, than non-tidal crabs throughout the 

experimental temperature range, suggesting that tidal crabs may be better able to 

compensate for temperature changes (Magozzi & Calosi, 2015). In this study, I was 

interested in assessing thermal performance over the typical range of temperatures for C. 

maenas (6°C - 23°C; Kelley et al., 2011; McGaw & Whiteley, 2012; Tepolt & Somero, 

2014), and the trends in Q10 reported here do indicate that acclimation to periodic emersion 

could be an important modulator of metabolic adjustments to temperature changes, and 

thus may play an important role this species’ physiology over is typical temperature range. 

However, given that oxygen consumption at the two temperature extremes was the same, 

this does not suggest that aquatic thermal tolerance was affected by immersion-emersion. 

This interpretation is in contrast to the results of studies that propose that exposure to 

regular periods of emersion can lead to physiological adjustments that enhance the ability 

to extract oxygen, and support a higher thermal tolerance in aerial conditions (Bjelde & 

Todgham, 2013; Drake et al., 2017). Whether differences in MO2 and Q10 values at high 

temperatures, and the thermal tolerance, of tidal and non-tidal green crabs is different 

awaits further studies. In this regard, based on the assumption that thermal tolerance is 

fundamentally linked to the ability to obtain or efficiently utilise oxygen (Frederich & 

Pörtner, 2000; Pörtner, 2001; Pörtner, 2010; Pörtner & Knust, 2007), one might expect that 
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the higher haemocyanin levels (Fig. 3.8) would enhance maximum oxygen delivery in tidal 

crabs, and could lead to a higher thermal tolerance. 

The fact that the Q10 of tidal crabs was more stable could indicate that tidal crabs 

have a more plastic metabolism, and thus, are able to adjust their metabolic performance 

over a larger range of temperatures than non-tidal crabs (Magozzi & Calosi, 2015). 

Metabolic plasticity is an important adaptive trait for intertidal organisms as it allows for 

the maintenance of aerobic scope during rapid fluctuations of environmental conditions 

(Bozinovic et al., 2011; Via et al., 1995). Previous studies comparing the metabolic rate of 

intertidal and closely-related subtidal counterparts have shown similar a trend between 

metabolic rate and temperature as found here for C. maenas (Burggren & McMahon, 1981; 

Jost et al., 2012; Magozzi & Calosi, 2015). For example, at cooler temperatures subtidal 

hermit crab species Paguristes turgidus and Elassochirus tenuimanus have a significantly 

higher Q10 between 15°C and 5°C compared with similar intertidal species (Pagurus 

granusirnanus, Pagurus hirsutiusculus) (Burggren & McMahon, 1981). During warming 

(10°C-25 °C) a decline in Q10 also occurs in the subtidal prawn Palaemon serratus, 

whereas intertidal species (Palaemon elegans, Palaemon varians) either maintain or 

exhibit an increase in Q10 (Magozzi & Calosi, 2015). This association between temperature 

and metabolic rate has traditionally been linked to intertidal species experiencing a wider 

range of temperatures. However, the crabs used in the present study were acclimated to 

15°C (during both immersion and emersion), suggesting that periodic emersion may also 

be a contributing factor that drives thermal sensitivity in intertidal crustaceans.  

As expected, there was no significant effect when the non-tidal crabs experienced 

heating or cooling (Fig. 3.3; Fig. 3.4), because they were maintained in constantly 
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submerged conditions, and showed no circatidal rhythm (Fig. 2.2). Overall, the timing of 

the temperature change (i.e., whether it occurred during the period of anticipated emersion 

or immersion) also had no effect on the oxygen consumption of tidal crabs. Nevertheless, 

subtle decreases in oxygen consumption were noted when the tidal crabs experienced 

temperature changes during periods of expected emersion at 15°C and 20° (Fig. 3.3 B and 

D), and this led to lower MO2 values for tidal crabs at these temperatures. These data 

suggest that there is an underlying endogenous rhythm that influences the metabolic 

responses to thermal stress in C. maenas. A reduction of metabolic rate during low tide is 

common for many intertidal animals, often due to risk of desiccation coupled with a 

reduction in activity (see DeFur, 1988 and Taylor, 1990 for reviews). Consequently, some 

intertidal organisms have been shown to have lower metabolic demands during emersion 

than their subtidal conspecifics (Dykens & Shick, 1981; Shick et al., 1985; Shick et al., 

1988). Recent evidence also indicates that intertidal organisms may invoke other energy 

saving mechanisms during emersion. For example, the swimming crab Portunus 

trituberculatus increases the expression of the energy regulators AMP-activated protein 

kinase alpha (AMPKa) and HIF-1a during air exposure to maintain energy homeostasis 

(Lu et al., 2016). Similarly, the intertidal limpet Cellana rota, which also exhibits an 

endogenous circatidal rhythm in oxygen consumption, has endogenous control over the 

mTOR pathway, which is a central regulator of metabolism and AMPK (Schnytzer et al., 

2018). Such mechanisms are controlled by a circatidal clock, and play a key role in 

enabling organisms to anticipate and respond to predictable daily changes in tidal height 

(O’Neill et al., 2015; Schnytzer et al., 2018; Tessmar-Raible et al., 2011; Wilcockson & 
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Zhang, 2008; Zhang et al., 2013), and may have influenced the responses of C. maenas in 

the present study. 

The circatidal production of enzymes and energy regulators may have also 

influenced patterns of oxygen consumption during the recovery phase, as was apparent 

when the crabs recovered from hypoxia and thermal stress experienced during anticipated 

emersion. For example, while the oxygen consumption of tidal crabs continued to be lower 

than measured in non-tidal crabs, it was elevated (for the first 2-3 hours of recovery) above 

pre-treatment levels measured at 100% oxygen saturation/15°C (Fig 3.2 B; Figs. 3.3. B and 

D) in tidal crabs measured when they anticipated emersion. Recovery from air exposure 

often results in an increase in antioxidant enzymes to reduce oxidative stress that can occur 

during re-oxygenation following re-immersion (Nicastro et al., 2010; Romero et al., 2007; 

Romero et al., 2011; Togni, 2007; Yin et al., 2017). For example, the Manilla clam 

Ruditapes philippinarum, chronically acclimated to periodic emersion had significantly 

higher levels of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), 

and consequently a higher oxygen consumption when re-immersed in comparison to 

individuals that received no air exposure (Yin et al., 2017). Similarly, after 6 hours of air 

exposure, false king crab Paralomis granulosa displayed elevated levels of SOD, CAT and 

glutathione s-transferase (GsT) in haemolymph, muscle and gill tissues during the first 2 

hours of re-immersion (Romero et al., 2011). These antioxidant enzymes act as an 

important defence mechanism against reactive oxygen species produced by changes in 

mitochondrial activity and rapid reoxygenation (Gorr et al., 2010; Pöhlmann et al., 2011).  

 

Changes in haematological parameters 
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To try and elucidate the underlying mechanisms behind some of the differences in 

oxygen consumption between tidal and non-tidal crabs, oxygen delivery (haemolymph 

PaO2, haemocyanin concentration) and acid-base (pHv, lactate concentration) parameters 

were assessed when warming occurred during expected periods of emersion. In each case, 

there were only a few time points at which statistically significant differences were 

observed between the two treatment groups. Nevertheless, there were consistent trends 

during the initial measurements, and those during the treatment and recovery periods, with 

tidal crabs having elevated haemocyanin and lactate levels, and a somewhat lower PaO2 

than non-tidal crabs. These data suggest that acclimation to cyclic emersion resulted in 

physiological adjustments, particularly in regards to oxygen delivery, and were consistent 

with the results found in Chapter 2. 

Both tidal and non-tidal crabs exhibited a decrease in PaO2 as the water warmed 

(Fig. 3.6), this was most likely related to the lower solubility of oxygen at warmer 

temperatures (Wilmer et al., 2009). Tidal crabs had marginally lower PaO2 values at the 

initial measurement at 15oC, and at 20oC and 25oC, which became significantly different 

as compared to non-tidal crabs after 6 and 12 hours of recovery. Amphibious and terrestrial 

crabs generally have a lower PaO2 than aquatic crabs (Adamczewska & Morris, 1994; 

Greenaway et al., 1988; McMahon & Burggren, 1979; Morris et al., 1996), and this has 

been attributed to an increased concentration of high affinity haemocyanin which facilitates 

substantial oxygen uptake (McMahon & Burggren, 1979; Morris, 1991), and thus reduces 

the need for the high ventilation rates typically associated with aquatic crustaceans 

(O’Mahoney & Full, 1984). A similar pattern occurs in aquatic crustaceans: lobsters 

Homarus gammarus with elevated haemocyanin reduce scaphognathite frequency beat 
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(ventilation) frequency, and thus oxygen consumption (Spoek, 1974). Therefore, the 

elevated levels of haemocyanin observed here for tidal crabs could also explain the lower 

PaO2 and contributed to their lower oxygen consumption. 

Venous haemolymph pH declined in both the tidal and non-tidal crabs as the water 

was warmed, and this is the typical pattern for pH in crustaceans due to an increase of 

ionization of water with increasing temperature (Wilmer et al., 2009). There were no 

obvious differences in pH between tidal and non-tidal crabs during warming despite the 

tidal crabs having somewhat higher levels of lactate. It is likely that the increased levels of 

haemocyanin in the tidal crabs minimised the pH changes produced by lactate, as 

haemolymph proteins (>90% of which are haemocyanin) are an important mechanism for 

buffering pH in crustaceans (Whiteley, 2011; Rastrick et al., 2014). There was more 

variation in pH during the recovery phase, but lack of consistency suggested that these 

levels were unrelated to lactate or haemocyanin levels. 

Haemocyanin concentration increases in response to several environmental 

perturbations such as hypoxia (Baden et al., 1990; Haegerman & Oksama, 1985; Spicer & 

Baden, 2001) and low salinity (Boone & Schoffeniels, 1979; Gilles, 1977; Mason et al., 

1983), and the adaptive modulation of haemocyanin concentration and affinity is 

considered to be an important adaptation for tolerating environmental change in 

crustaceans (Giomi & Beltramini, 2007). As discussed, this increased level of haemocyanin 

in tidal crabs could play several key roles. Primarily, it would carry more oxygen allowing 

for more enhanced delivery to the tissues (Spoek, 1974; Mangum, 1983). Furthermore, 

Giomi and Pörtner (2013) measured components of the oxygen transport cascade during 

acute warming and argued that the presence of haemocyanin extended the upper critical 
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temperature from 16°C to 22°C in crabs acclimated to 10°C. This implies that increases in 

haemocyanin concentration would increase available oxygen, and therefore, may play an 

important role in maintaining oxygen delivery during the temperature fluctuations that 

frequently occur in the intertidal.  

In addition to elevated haemocyanin levels, tidal crabs had consistently higher 

lactate levels both prior to and during warming, and this difference became more noticeable 

during the recovery phase. Although greater reliance on anaerobic resources has been 

shown in some intertidal species (Newell et al., 1973; Shick et al., 1988), the present results 

(i.e., for pHv and PaO2) did not suggest that tidal crabs were relying on anaerobic 

respiration to a greater degree. Although lactate is typically regarded as an end-product of 

anaerobic metabolism, it may also be an important metabolic fuel (Gladden, 2004, 

Jayasundara & Somero, 2013). Crustaceans living in more dynamic environments display 

higher constitutive levels of lactate (Jost et al., 2012, Maciel et al., 2008) which may reflect 

the need to have fuel readily available to tolerate unpredictable conditions. Furthermore, 

in many crustaceans, elevated levels of lactate can increase the oxygen affinity of 

haemocyanin, ensuring optimal oxygen delivery during periods of stress (Truchot, 1980). 

Due to its role as an end product from anaerobic metabolism, it is understandable that less 

work has been done investigating whether lactate plays a role during normoxia (but see 

suggestions by Gladden, 2004; Jayasundara & Somero, 2013; Maciel et al., 2008). Studies 

on the fate of lactate after events such as exercise, hypoxia and temperature stress in 

crustaceans indicate that there is a lot of inter-specific variability (Hervant et al., 1997; 

Henry et al., 1994; Maciel et al., 2008; Morris and Adamczewska, 2002; Zebe, 1982; Zou 

et al., 1996), and thus, the potential role of lactate will largely depend on ecological and 
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biological factors specific to each species (Maciel et al., 2008). Nevertheless, in the crab 

Neohelice granulata [previously Chasmagnathus granulata (which lives in an estuarine 

environment)], elevated haemolymph lactate levels during normoxia are common and 

utilized as fuel either via oxidation through the tricarboxylic acid cycle (TCA), or 

conversion to glucose via gluconeogenesis (Maciel et al., 2008). Therefore, the elevated 

lactate observed in tidal C. maenas during normoxia could serve as a metabolic fuel during 

changes in respiratory medium, or to enhance the oxygen affinity of haemocyanin 

(Truchot, 1980). 

Conclusion 

The aim of this study was to determine if acclimation to cyclic immersion-emersion 

affected how the metabolic physiology of the green crab hypoxia and changes in 

temperature when submerged. Overall, while emersion reduced the temperature sensitivity 

of oxygen consumption to changes in temperature, whether the crabs were anticipating 

emersion or immersion when they were exposed to these stressors had only minor effects 

on the physiological responses of C. maenas to hypoxia and thermal stress (with the 

exception of oxygen consumption at 15 and 20oC; Figs. 3.3. and 3.4). Assessment of 

physiological parameters associated with oxygen delivery (PaO2) and acid base balance 

(pHv, lactate) did not reveal clear explanations for the relationships observed in the oxygen 

consumption data, suggesting that other mechanisms must be regulating these changes. 

While I have speculated about potential mechanisms in the above discussion, we currently 

know very little about what protective mechanisms and pathways are upregulated during 

air exposure alone, and which of these mechanisms are endogenously controlled. I have 

suggested that energy mediators such as AMPK, and antioxidant enzymes such as SOD 
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and CAT, may play a role in the observed metabolic differences between the tidal and non-

tidal crabs during recovery, but detailed experiments / measurements need to be performed 

to test this hypothesis. Understanding physiological responses to cyclical air exposure, and 

how they are regulated, would be a fruitful area for future research. Such information would 

be important for understanding how global environmental change may affect the growth 

and performance of intertidal and subtidal communities. The results of this study also 

indicate that more caution must be taken when inferring physiological responses of 

intertidal animals to environmental perturbations when species are acclimated to constant 

conditions. In order to gain a more accurate understanding of how intertidal species 

respond to environmental perturbations, a more realistic approach must be taken where 

animals are subjected to multiple cycling parameters, as typically occurs in nature. 

 

Chapter 4. General Discussion 

Summary of findings 

The main goal of this thesis was to examine if the intertidal green crab C. maenas 

displayed different physiological responses to common intertidal environmental stressors 

when acclimated to continuous submersion (non-tidal) or cyclical immersion-emersion 

(tidal) regimes. I focused on physiological parameters associated with oxygen delivery and 

acid-base balance, in order to give a broad understanding of physiological adjustments 

associated with aerial exposure. Chapter 2 revealed that acclimation to a tidal regime of 

cyclic immersion-emersion entrained a circatidal rhythm of oxygen consumption in C. 

maenas, with tidal crabs displaying lower oxygen consumption during expected periods of 
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emersion. In contrast, non-tidal crabs displayed no evidence of a circatidal rhythm, 

suggesting that periodic inundation is an important zeitgeber for entraining circatidal 

rhythms in C. maenas. With regards to their physiology over a tidal cycle, tidally 

acclimated C. maenas had higher constitutive levels of haemocyanin and were able to 

maintain acid-base balance during periods of emersion, with no change in lactate 

production. In contrast, non-tidal crabs experienced an acidosis, and a partial reliance on 

anaerobic metabolism (as evidenced by an increased haemolymph lactate concentration).  

The results of Chapter 2 led me to wonder whether the physiological differences between 

the two acclimation groups could affect how C. maenas responded to other environmental 

stressors that typically fluctuate over the tidal cycle, such as oxygen concentration and 

temperature. Initially, the oxygen consumption of both non-tidal and tidal crabs was 

measured when subjected to three different environmental challenges when immersed: 1) 

a stepwise decline in water oxygen content (100%-20% air saturation); 2) a stepwise 

decline in temperature (15°C – 5°C); or 3) a stepwise increase in temperature (15°C – 

25°C). All these challenges occurring over a period of 5 hours with an additional hour to 

return to initial conditions. Due to evidence of a circatidal rhythm in tidal C. maenas (Fig. 

2.2; 2.3), I also thought it would be interesting to see whether anticipated immersion vs. 

emersion would influence oxygen consumption in response to these stressors. Therefore, 

these three experiments were repeated, first in synchronization with the times tidal crabs 

would be expecting to be immersed, and secondly out of synchronization - when tidal crabs 

expected to be emersed. The results from these experiments indicated that the relationship 

between acclimation to cyclic immersion-emersion, and the response to aquatic hypoxia or 

temperature stress, was complex. Interestingly, while tidal crabs had a lower oxygen 
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consumption at 15 - both groups had sin consumption rates at the temperature extremes 

tested (25° C and 5° C). This was because the temperature sensitivity of tidal crabs was 

relatively similar (as judged by Q10 values) over the tested temperature range, whereas non-

tidal crabs were more and less sensitive to changes in temperature from 15-5oC and 20-

25oC, respectively (Fig. 3.5). These results suggest that, at 5 and 25oC temperatures are 

crucial physiological set-points for C. maenas, and that the tidal crabs (i.e., exposed to 

immersion – emersion) were better able to regulate their metabolic rate of the range of 

temperatures they would experience in nature. However, the results also revealed that 

anticipation of being immersed vs. emersed has minor effects of the oxygen consumption 

of this species.  

Measurement of parameters related to oxygen delivery and acid-balance provided 

few insights into the mechanisms mediating the differences in temperature sensitivity 

between tidal vs. non-tidal crabs; with the exception of higher haemocyanin levels in tidal 

crabs (Fig. 2.7; 3.8). This suggests that underlying molecular or cellular mechanisms may 

be responsible for the observed differences in oxygen consumption during thermal stress.

 Together, the results from the experimental chapters suggest that the relationship 

between acclimation to cyclic emersion and physiological responses to other 

environmental stressors is complex, particularly when these stressors are applied in an 

aquatic setting. 

 

Importance of results 

In this thesis, I highlight two important points. First, C. maenas acclimated to cyclic 

immersion-emersion show different physiological responses to environmental conditions, 
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(particularly during emersion) than C. maenas acclimated to permanently submerged 

conditions. As the majority of previous experimental laboratory work on intertidal 

organisms has subjected intertidal organisms to permanently submerged conditions, this 

brings into question the accuracy of the physiological responses reported in these studies, 

and how representative they are for in situ responses. Clearly, future laboratory studies 

should try and acclimate intertidal organisms to tidal conditions within the laboratory 

setting in order to achieve more accurate and representative physiological responses. 

Furthermore, whereas many studies have looked at the combined physiological effects of 

emersion and thermal stress on physiology, this study has provided evidence of 

physiological adjustments that can be specifically attributed to air exposure. Such 

information is important for teasing apart how forecasted environmental change(s) (i.e. 

those predicted to accompany climate change) will affect the physiology of intertidal 

organisms. 

Second, acclimation to cyclic emersion may impact how intertidal organisms 

respond to aquatic environmental stressors, such as hypoxia and temperature fluctuation, 

that can commonly occur in tidepools and coastal waters. To date, few studies have 

addressed whether acclimation to cyclic emersion imparts tolerance to other aquatic 

environmental stressors. However, this is a key area for future study as it is presumed that 

intertidal organisms rely on these periods of submersion to recover between low tides. 

Here, I just scratch the surface, but the relationships for Q10 suggests that acclimation to 

cyclic immersion-emersion may affect the performance of C. maenas in aquatic 

environments, and a more comprehensive assessment of this phenomenon will be 
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important to predicting the  long-term effects of climate change on the fitness and survival 

of intertidal organisms. 

 

Future directions 

Together, the breadth of these two experimental chapters has provided a wealth of 

new questions and multiple avenues for further research. Below, I identify and discuss what 

avenues I would prioritise in building upon this research. The primary goal of this thesis 

was to determine whether acclimation affects the physiological responses of C. maenas to 

environmental stressors. Now that some differences have been identified, the next step 

should be identifying the specific mechanism(s) involved in driving these physiological 

differences.  

One of the most important results from Chapter 2 was the higher constitutive levels 

of haemocyanin exhibited by tidal crabs. Due to its role as the primary regulator of 

increased synthesis of haemoglobin in Daphnia (Gorr et al., 2004; Hoogewijs et al., 2007) 

and haemocyanin in Cancer magister (Head et al., 2010) during hypoxia, assessing the role 

of HIF pathways could provide useful information with regards to the driver behind this 

change in oxygen transport capacity. Moreover, HIFs play fundamental roles in controlling 

energy metabolism, and may provide important information with regard to aerobic and 

anaerobic metabolism in non-tidal and tidal crabs. The variation in haemocyanin 

concentrations during temperature changes and emersion may indicate that varying 

haemocyanin levels could be a plastic response in crustaceans that allows them to tolerate 

environmental challenges as has been suggested by Spicer and Baden (2001).  
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The results in Chapter 3 suggested a more complex relationship between exposure 

to cyclical immersion-emersion and responses to aquatic environmental stressors. The 

mechanisms behind this were not clearly elucidated from measuring parameters involved 

in oxygen delivery and acid-base balance, which suggests that other mechanism/s are 

responsible for the observed differences in the temperature sensitivity of oxygen 

consumption. Assessment of other physiological mechanisms such as energy regulation, 

ion regulation or excretion could provide information that may shed light on the 

mechanism(s) responsible for these observed differences. Specifically, there could be a 

difference in enzyme regulation and activity between non-tidal and tidal crabs, and  

assessment of enzyme activity [particularly of those associated with metabolism such as 

AMPK, HIF-1 or ion regulation (Na+/K+-ATPase or carbonic anhydrase)] could provide 

crucial information to help elucidate the mechanisms regulating organismal performance 

under different temperature regimes.  

In all of the experimental treatments, there was a trend for tidal crabs to have lower 

oxygen consumption rates in aquatic conditions than non-tidal crabs (although this was not 

statistically significant in all cases). From this, a question that arises is how and why 

acclimation to cyclical immersion-emersion produced changes in RMR. Here I have 

proposed that the differences in haemocyanin concentration between tidal and non-tidal 

crabs could have contributed to the observed differences in oxygen consumption through 

an enhancement of oxygen delivery, and a reduction in energetic demands with respect to 

ventilation and circulation. However, it is likely that there are other factors that contributed 

towards this trend. For example, although activity was anecdotally monitored, and 

appeared similar between non-tidal and tidal crabs during anticipated immersion and 
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exposure to air, it is possible that differences in activity could have occurred between the 

two acclimation groups and that this could have contributed to the differences observed in 

RMR. The relationship between lactate production and clearance also appeared to be 

different between tidal and non-tidal crabs. This finding is supported by data which 

suggests that tidal crabs may be able to utilize lactate as metabolic fuel during emersion, 

and therefore, maintain higher constitutive lactate levels than non-tidal crabs. Maciel et al. 

(2008) and Jost et al. (2012) have suggested that lactate is an important metabolic substrate 

for crustaceans, and an assessment of the production and utilization of lactate in association 

with metabolic rate changes could help in elucidating shifts in metabolic strategies 

associated with acclimation to cyclic emersion. Further, they could identify potential 

influences on long-term performance and fitness under a variety of environmental 

scenarios. 
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Appendices 

A.1 Stress Response 

Oxygen consumption in water 

To determine the least stressful method to transfer individuals from the holding 

tanks to the respirometry chambers, I examined how hand vs. cage transfer affected oxygen 

consumption in C. maenas, Twenty-four hours before the trial, four individuals were 

removed from the non-tidal holding tank, weighed, measured, labelled and had their colour 

morph noted. Two of the four individuals were then placed in a perforated plastic cage (15 

cm x 9 cm x 6 cm deep) and placed back into their container in the non-tidal holding tank. 

The perforated nature of the cages allowed for the free flow of water. Individuals that would 

be transferred by hand were placed back into containers in the holding tank.  

For the experiment, the two caged individuals and two free individuals were 

removed from the holding tank and placed in four respirometry chambers submerged in a 

tank supplied with normoxic seawater (at 15ºC and 32‰). For all individuals, transfer 

occurred in three stages. Stage 1: the individuals were transferred from the container in the 

holding tank to a bucket that had been submerged in the tank. Stage 2: this bucket was then 

removed from the holding tank and submerged in the experimental tank where the 

respirometers were situated. Stage 3: individuals were taken out of the bucket (while 

remaining submerged) and placed in the respirometry chamber. This method was used to 

ensure that the crabs were not exposed to air at all during the transfer process. Individuals 

subjected to hand transfer were transferred to the bucket and subsequently to the 

respirometry chamber by being picked up from behind by pinching the abdomen and the 

carapace. Individuals transferred by cage were moved into the bucket, the cage was then 
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placed into the respirometry chamber where one side was opened to allow the crabs to 

leave the cage and enter the chamber of their own accord. Once this occurred, the plastic 

cage was removed, the chamber was sealed and recordings began immediately. 

This experiment was repeated many times, and thus, also allowed me how three levels 

of stress affected their metabolism / oxygen consumption.: 

1. Minimal Stress: 

a. Stage 1: Crabs were gently and slowly moved into the bucket within five 

seconds.  

b. Stage 2: The bucket was very carefully submerged into the experimental 

tank within eight seconds. 

c. Stage 3: Individuals were carefully taken out of the bucket and placed 

slowly into the chamber within five seconds.  

2. Moderate Stress: 

a. Stage 1: Crabs were moved into the bucket in less than three seconds. 

b. Stage 2: Bucket was submerged in five seconds. 

c. Stage 3: Individuals taken out of bucket and moved into chamber in within 

approximately three seconds. 

3. Maximum Stress: 

a. Stage 1: Crabs were quickly moved into bucket (within a second). 

b. Stage 2: Bucket was submerged in less than three seconds. 

c. Stage 3: Crabs taken out of the bucket, shaken (under water) for five 

seconds before placing in chamber, and the transfer process took less than 
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six seconds. If caged crabs did not leave of their own accord, the cage was 

opened up completely to allow individuals to fall into the chamber. 

 

This experiment was repeated twelve times so that eight individuals were tested for each 

of six transfer x stress level combinations (n=8 per treatment, 48 individuals in total). 

Oxygen consumption of individuals was then taken every hour for 24 hours at 15°C in 

normoxia as described in the Materials and Methods section of Chapter 2. 

To identify the least stressful method of handling, a two-way repeated measures 

ANOVA was performed using GraphPad Prism (version 5.03 for Windows, GraphPad 

Software, La Jolla California USA, www.graphpad.com). To determine the duration of 

stress, Tukey HSD post-hoc tests were used to compare oxygen consumption values for 

every hour of each combination, and to establish when values became stable. Stable values 

were considered to be indicative of ‘resting’ oxygen consumption.   

 

Results 

Overall, crabs transferred by hand with maximal stress levels had the highest initial 

oxygen consumption (143.8 mg O2 kg-1 hr-1). This was followed by the ‘hand moderate’ 

(132.8 mg O2 kg-1 hr-1), and then the ‘cage maximal’ (127.0 mg O2 kg-1 hr-1) groups. Crabs 

exposed to the ‘hand minimal’ protocol had the next highest initial oxygen consumption 

(117.6 mg O2 kg-1 hr-1), but appeared to stabilise quicker than the other treatments. The 

‘cage moderate’ group had the next lowest oxygen consumption (113.8 mg O2 kg-1 hr-1), 

while crabs in the ‘cage minimal’ treatment had the lowest initial oxygen consumption 

(107.19 mg O2 kg-1 hr-1). Statistical analysis concluded that there was no overall difference 
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between the transfer method type at any stress level (two-way RM ANOVA, df = 5, F = 

1.58, p = 0.2408). However, there were significant differences between the treatments of 

‘cage minimal’, ‘cage moderate’ and ‘hand minimal’, and ‘hand maximum’ at hours 1-3 

(Tukey HSD, p <0.05). 
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Figure A.1. Oxygen consumption of Carcinus maenas exposed to two different handling treatments (cage vs. hand) at three different 
stress levels (minimal, moderate, maximal) when submersed for 24 hours. The data are means + SEM for 8 crabs for each handling/stress 
combination (n=48 in total).
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 From Figure A.1, it is clear that: 1) the decline between hours 1 and 6 accounted 

for the majority of elevated oxygen consumption values; and that 2) there was a significant 

difference between treatments (two-way RM ANOVA, df = 5, F = 2.926, p = 0.0235; Fig. 

A.2) and over time (two-way RM ANOVA, df = 5, F = 105.9; p = <0.0001). Crabs exposed 

to the cage-minimum stress protocol had a significantly lower oxygen consumption than 

those in the ‘hand-moderate stress’ (Tukey HSD, p=0.0170) and hand-maximum stress 

(Tukey HSD, p = 0.0007) groups. The oxygen consumption of the cage-moderate stress 

group was also significantly lower than those exposed to the hand-moderate stress (Tukey 

HSD, p = 0.039) and hand-maximum stress (Tukey HSD, p = 0.0074) protocols. Finally, 

crabs in the hand- minimum stress group had a lower value for oxygen consumption as 

compared to those in the hand-maximum stress group (Tukey HSD, p = 0.0329). 

After 15 hours, oxygen consumption reached a baseline value (Tukey HSD, p < 

0.05). After 15 hours the average resting oxygen consumption for C. maenas at 15 ºC in 

normoxia as 44.5 mg O2 kg-1 hr-1. Average oxygen consumption values for hours 1 – 14 

for each treatment group were then compared to the average resting value to quantify the 

magnitude of stress placed on an individual at each hour after handling (Table A.1). This 

was done by calculating a stress index; i.e. the fold increase in oxygen consumption value 

at a particular hour in comparison to the resting value. 
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Figure A.2. A close-up examination of the first six hours of the stress experiment depicted 
in Figure A.1. 
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Table A.1. Comparison of stress indices at hours 1-14 for individuals transferred by cage 
and hand, and subjected to minimal, moderate and maximal stress in comparison to resting 
values of oxygen consumption.  

 Cage Hand 
Hour Minimal Moderate Maximal Minimal Moderate Maximal 

1 2.406 2.555 2.851 2.641 2.982 3.230 
2 1.560 1.729 2.181 2.093 2.129 2.343 
3 1.387 1.615 1.928 1.858 2.005 2.211 
4 1.350 1.508 1.721 1.585 1.854 1.880 
5 1.378 1.238 1.573 1.343 1.724 1.789 
6 1.343 1.289 1.321 1.249 1.575 1.569 
7 1.221 1.342 1.255 1.230 1.471 1.398 
8 1.223 1.215 1.134 1.131 1.405 1.426 
9 1.183 1.326 1.371 1.133 1.414 1.554 
10 1.064 1.149 1.342 1.025 1.242 1.435 
11 1.059 1.234 1.149 1.015 1.229 1.464 
12 1.133 1.322 1.242 1.025 1.177 1.206 
13 1.180 1.124 1.284 1.103 1.201 1.104 
14 1.093 1.255 1.301 1.096 1.195 1.154 
15 1.036 1.059 1.134 0.948 1.254 1.106 

 

 

Conclusion 

From these results, it was determined that transferring the individuals by cage 

would result in the least amount of stress, as oxygen consumption rates and subsequent 

stress indices were lower than measured in those crabs transferred by hand. The transfer 

method described for the cage moderate-stress group was used in the experiment, thus, the 

stress values calculated for this method were used to correct for the effect of handling stress 

placed on individuals used in Chapters 2 and 3. This was done by dividing oxygen 

consumption by the stress value for each specific hour after stress in Table A.1. This 

produced oxygen consumption values that were independent of the effect of handling 

stress.   
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Aerial oxygen consumption 

An effort was also made to determine the handling stress associated with removing 

a crab from the aquatic chamber and transferring them directly to the aerial chamber. For 

aerial oxygen consumption, to separate handling stress from the emersion response, two 

separate treatments were carried out. In the first treatment individuals (n = 6) were 

transferred by hand from the non-tidal holding tank into an “aerial” respirometry chamber 

(4.8 L) that was also submerged in the non-tidal holding tank. This ensured the animal was 

not exposed to air. The chamber was sealed and the crab in this chamber (that remained 

filled with seawater) was removed from the holding tank and carefully placed into in an 

incubator (MIR-254-PE, Panasonic Biomedical, Europe) set to 15°C. As the period of 

emersion in Experiment 2.3.2 was 6 hours in duration, aerial handling stress was only 

assessed for the first 6 hours. Therefore, and the crab was left submerged for six hours to 

settle in the chamber. Air was injected into chamber every 20 minutes using a 60 mL 

syringe with an 18-gauge needle via the sampling hole on the lid of the chamber. This 

allowed the individual to recover from handling stress, but was not long enough for the 

water to become hypoxic. After six hours, the chamber was slowly drained at a rate of 2 L 

min-1 via a small hole in the bottom. The chamber was then sealed, and oxygen 

consumption was taken every hour for six hours as described in the Methods and Materials 

section of Chapter 2. In the second treatment, individual crabs (n = 6) of similar size and 

colour morph were transferred directly by hand from the aquatic chamber to the empty 

aerial chamber. The chamber was then carefully placed in the incubator, sealed, and aerial 

oxygen consumption measurements started immediately.  
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Statistical analysis was performed in GraphPad Prism (version 5.03 for Windows, 

GraphPad Software, La Jolla California USA, www.graphpad.com). A two-way repeated 

measures ANOVA was used to compare individuals acclimated to the chamber to those 

that were transferred immediately to determine if transfer caused an elevated level of 

oxygen consumption. Tukey HSD post-hoc analysis was then used to identify differences 

over time, and therefore, the duration of the elevation in oxygen consumption.  

 

Results 

There was a significant interaction between time and acclimation group (two-way 

RM ANOVA, df = 5, F = 2.442, p = 0.0468), and post-hoc tests revealed this was due to 

the oxygen consumption of the group directly to respirometry chambers containing air 

being significantly higher than that of the group initially placed into respirometers 

containing seawater (Tukey HSD, p = 0.039) . 

Due to the significant difference in oxygen consumption between hour 1 and all 

other hours that occurred in the direct transfer group, but not the group of crabs acclimated 

to the respirometry chamber containing seawater, it was determined that the effect of 

handling stress needed to be accounted for at 1 hour post-transfer. Therefore, a stress index 

was created at hour one post-transfer by comparing the average oxygen consumption value 

of the directly transferred group to that of the acclimated group (Table A.2). This stress 

index was 1.34, and represents how many fold the oxygen consumption of the directly 

transferred group was above that in crabs that were acclimated to the chambers initially. 
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Figure A.3. Mean (± SEM, N = 6) oxygen consumption (mg O2 kg-1 hr-1) of individuals 
previously acclimated to the ‘aerial’ respirometry chamber (purple), and not acclimated to 
this chamber (orange), prior to the measurement of oxygen consumption in air over 6 hours.   

 

Table A. 2. Mean oxygen consumption (mg O2 kg-1 hr-1) of individuals previously 
acclimated and to the aerial chamber and those directly transferred at 1 hour post-transfer. 
‘Direct’ is divided by ‘acclimated’ to calculate the stress index. 

Acclimated Direct Stress value 

26.322 35.306 1.341 

 

Conclusion 

To correct for the effect of handling stress placed on crabs when directly 

transferring them from aquatic respirometry chamber to the aerial respirometry chamber, 

the raw aquatic oxygen consumption values obtained in hour one of emersion in Chapter 1 

were divided by the stress index value of 1.341. This produced oxygen consumption values 

that were independent of the effect of handling stress, and these were subsequently used in 

analysis of the oxygen consumption data in this chapter.
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A.2 Chapter 2 Experimental Design 

 

Figure A.4. Graphical representation of the experimental design for the manipulation of 
(A) hypoxia, (B) an acute temperature decrease, and (C) acute temperature increase to 
examine how tidal and non-tidal crabs respond to these stressors. (D) is a graphical 
representation of how the experiments were repeated at two different times (using an acute 
temperature increase as an example): i.e., during anticipated immersion (upper red line) 
and anticipated emersion (lower red line). 


