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Abstract—Supervisory Control and Data Acquisition (SCADA) has
largely been proprietary, pricey, and therefore uneconomical for smaller
applications. With proprietary SCADA systems, there is also the problem
of interoperability with the existing system components, and communi-
cation systems. In this paper, we present the design and implementation
of a low-cost, open source SCADA system based on the Internet of
Things SCADA architecture. The proposed SCADA system consists of
current and voltage sensors for data collection, an ESP32 micro-controller
(Remote Terminal Unit) for receiving and processing the sensor data, and
ThingsBoard IoT Server (Master Terminal Unit) for historic data storage
and human machine interactions. The ThingsBoard IoT Server is locally
installed on a Raspberry Pi single-board computer. Message Queuing
Telemetry Transport protocol is implemented for data transfer over a
local Wi-Fi connection. The system design procedures, testing and the
results are presented in the paper.

Index Terms—Low Cost, Open Source, SCADA, ThingsBoard, Internet
of Things, ESP32 with OLED, Raspberry Pi, MQTT, Automation,
Instrumentation and Control.

I. INTRODUCTION

Energy shortage and Global Warming are some of the major
challenges facing the world today, especially with the recent rapid
industrial development across the globe. As energy experts continue
to capture clean and renewable energy sources for the benefit of
mankind, these sources are continuously being injected into today’s
power systems. These clean and renewable sources are incorporated
with the conventional energy generation systems to form Hybrid
Power Systems (HPS). These hybrid power systems together with
energy storage systems, power electronic converters, as well as other
power system devices such as communication systems needed for their
successful operations are usually spread over large geographical areas,
sometimes in harsh environments. As a result of this distributed nature,
the interconnection of these systems to generate and supply energy
presents numerous challenges, such as power quality issues, voltage
tolerances, frequency control, grid synchronization and metering, data
exchange and communications between components, as well as the
safety and security of both assets and personnel. In order to overcome
these challenges and to ensure seamless power system operations,
diverse sensors, micro-controllers, micro-processors, actuators, valves,
pumps, etc. are usually connected to various points of interest in the
entire HPS to acquire important data such as current, voltage, power,
and so on. and for real-time data monitoring, remote and co-ordinated
controls. Supervisory Control and Data Acquisition (SCADA) is the
perfect solution for these tasks [1].

SCADA refers to the combination of telemetry and data acquisition.
It encompasses the collection of information (data) from distributed
process facilities, the transfer of these data to a central location,
analysis of these data to know the current states of the distributed
process facilities, supervisory control of the process facilities, dis-
playing these data on a number of operator screens, and conveying
the necessary control actions back to these distributed process fa-
cilities for the local operator’s actions [2]. The major functions of

SCADA include [2]: Data acquisition; Data presentation; Supervisory
Control; Networked data communication; Alarm processing; Historic
data storage, data trending and reporting; and Remote monitoring.
The architectural design of a SCADA system is made up of four
basic elements: field instrumentation devices such as sensors which
collect data from the distributed process facilities being managed,
Remote Terminal Units (RTUs) such as single-board computers (PLCs,
micro-controllers, etc.) for acquiring, processing and parsing these
sensor data, Master Terminal Units (RTUs) such as IoT servers and
platforms for data processing and human machine interactions, and
finally SCADA communication channels for connecting the RTUs
to the MTUs, and for data transfer [3]. SCADA architectures have
evolved over the years, starting from the very first generation SCADA
systems in the 70s called Monolithic SCADA, through the second
generation SCADA systems called distributed SCADA (80s and 90s),
and the third generation SCADA systems called Networked SCADA
systems in the 90s and early 2000s, to the most recent SCADA
architecture called the Internet of Things (IoT) SCADA architecture
(4th generation) [4]. The SCADA system proposed in this work is
based on the Internet of Things SCADA architecture. The Internet
of Things concept refers to the interconnection of physical objects,
embedded electronics, software and sensors, and so on, to enable
real-time data exchange and communication between these devices
and an operator over a common network or the web [5]. The IoT-
based SCADA system incorporates web or cloud services with the
conventional SCADA system for a more robust remote monitoring
and control [4]. In general, there are two classes of SCADA systems,
and they include Proprietary (Commercial), and Open Source SCADA
systems. However, proprietary SCADA solutions are largely expensive
and mostly economically unjustifiable for smaller power system ap-
plications. In addition, there is the problem of interoperability with
the existing power system infrastructures. For these reasons, an open
source SCADA system represents the most flexible and the most cost-
effective SCADA solution [6].

II. RELATED WORKS

Numerous attempts have been made to reduce the over-dependence
on proprietary SCADA systems. For power system applications for
example, J. Lee et al. [1] have proposed an IoT-based open source
SCADA system for the remote monitoring, power control, and dis-
tributed data processing of a standalone offshore wave-wind hybrid
power generation system based on the IEC61850 standard. Elsewhere,
K. Kao et al. [7] developed an IoT-based SCADA system for inverter
monitoring and remote control. In another development, authors in
[8] proposed a cloud-based SCADA system by integrating JustloT
framework with the conventional open source SCADA architecture.
Although there are some studies on the design of SCADA systems in
general for standalone or grid connected hybrid power systems, most
IoT-based remote monitoring and control systems, especially using
the lightweight data transfer protocol for the Internet of Things called



MQTT, have focused on applications such as smart healthcare [9],
[10], home automation [11], [12], infrastructure and transport [13],
and so on.

The major issue with most of the reviewed IoT-based open source
SCADA systems above is that the solutions are rather cumbersome as
they involve a lot of technologies, tools and programming. In addition
to the complex nature of the reviewed solutions, most of the authors
either used a web-based IoT platform for data visualization, storage,
and other human machine interactions or designed a web platform
for data visualization and human machine interactions using multiple
web technologies. The major problem with using web-based platforms
for data management in a critical SCADA system is that the stored
data are highly susceptible to internet attacks since the web-based
platforms require the public internet for data access just like every
other website out there. However, the importance of data security in
a SCADA system cannot be overemphasized. This is because attacks
on a SCADA system can compromise the critical infrastructures being
managed, which could result in devastating economic and operational
setbacks. Data integrity in a SCADA system can be ensured by
using several techniques, including securing the data communication
channel or network such as data encryption, securing the hardware
components, or securing the cloud server where the data are stored
(21, [4].

In this paper, we implement a combination of private network man-
agement and private cloud server management strategies to ensure the
security of the proposed IoT-based SCADA system. To achieve this,
the ThingsBoard IoT Server for data management, storage and human
machine interaction is locally hosted on a Raspberry Pi machine, and a
private Wi-Fi network is created with a Wi-Fi router while data transfer
is made possible using the MQTT data transfer protocol over the Wi-
Fi network, such that only the users with the right authorizations can
have access to the stored data. On this private network (MUN and Wi-
Fi Network), the operator can take multiple measures such as access
control, authentication, authorization, firewalls, etc. to protect the data
in the cloud. In addition to taking these measures to ensure the security
of the proposed SCADA system, we implement the lightweight ISO
standard data transfer protocol for the Internet of Things, the Message
Queueing Telemetry Transport (MQTT) protocol, for the sensor data
transfer from the MQTT client (ESP32 device) to the Raspberry Pi-
installed ThingsBoard IoT Server which serves as the MQTT broker.
To the best of our knowledge, we have not found a single literature
where a locally installed ThingsBoard IoT Server has been used as
the MTU in an IoT-based SCADA system design. Furthermore, with
the organic light-emitting diode (OLED) display of the ESP32 device
(RTU) used in our design, we ensure that a local operator is able
to visualize the current state of the process plant being managed by
seeing the data values on the OLED screen, in addition to receiving
updates from the remote SCADA operator at the server side. This is
also an additional SCADA feature considered in this work.

III. PROPOSED SCADA SYSTEM ARCHITECTURE

Two configurations are considered in our proposed solution. In
configuration A (Fig. 1), the Raspberry Pi 2 micro-controller hosting
the ThingsBoard IoT server (MQTT Broker) where the received PV
data are processed and stored is connected through an Ethernet cable
to MUN network. Here, authorized users on MUN network can
access the stored PV data and visualize the created dashboards on the
ThingsBoard Server. Although this configuration presents a great deal
of flexibility, it poses security risks to the stored data since external
internet users can access the stored data remotely. In configuration B
(Fig. 2), the public internet is not used, and the Wi-Fi Router is used
to create a form of industrial network such that only the authorized

users nearby can access the stored PV data on the ThingsBoard IoT
server platform.
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Fig. 1. The proposed SCADA system configuration A.

— .
Vpv DC Load o
vb vb

Voltage Sens

Solar PV

Solar Photovltaic (PV)
System

ESP32 OLED

Local Data
Display

')) Wi-Fi HMIs on

((. PCs

(MQTT Client)

120v AC 558 0C Power Supply

-)) WiFi

8
'
'
Publish (5
PRy 3 oy e |

pberry
ThingsBoard loT Server

Local WiFi
Router

SCADA System

Dashboards (HWIs):
Desktops/Laptops/Phones,

on Local Wi-Fi Network | _Subseribe

(MQTT Broker)

MQTT Clients

Fig. 2. The proposed SCADA system configuration B.

IV. PROPOSED SCADA SYSTEM COMPONENTS

The components of the proposed open source SCADA system
include the Hall Effect Current and Voltage Sensors which serve as
the field instrumentation devices to acquire the PV system data, the
versatile ESP32 micro-controller, with OLED display, which is the
remote terminal unit, and is configured as the MQTT Client to process
and publish the sensor data using MQTT protocol, a Raspberry Pi2
single-board computer upon which the ThingsBoard IoT server, which
is the master terminal unit, and is configured as the MQTT Broker,
is built for human machine interactions, data storage, dashboards,
alarms, data publishing and subscription, and finally, a Wi-Fi Router
for creating the TCP/IP Wi-Fi connection for the MQTT protocol
implementation.

A. Sensors (field instrumentation devices)

Three low-cost analog sensors are used, including two MH Elec-
tronic Voltage Sensor modules, and one ACS 712 Hall Effect Current
Sensor.

1) MH Electronic voltage sensors: This low-cost analog voltage
sensor uses the concept of voltage divider to measure voltage with its
in-built series connection of a 7.5 K resistor and a 30 K resistor. Its
operating voltage range is 3.3 V to 5.0 V, and it is capable of detecting
supply voltages in the range of 0.025 V to 25 V using a 12-bit ADC.



2) ACS 712 Hall Effect current sensor: This low-cost sensor is
based on the principle of Hall Effect. It has a low-noise resistance
current conductor, low-noise analog signal path, and close to zero
magnetic hysteresis. The 30 A DC module used in this work has 66
to 185 mV/A output sensitivity, and it operates on a 5 V single supply
voltage. Because the signal voltage of the current sensor is 5 'V, it is
not suitable for direct connection to the ADC pins of the ESP32 micro-
controller as the ADC pins operate between 0 V to 3.3 V. Therefore, a
pull-down or step-down resistors arrangement is used to match the 5 V
signal requirement of the current sensor to the 3.3 V signal capability
of the ESP32 ADC pins.

B. TTGO ESP32 LoRa32 OLED micro-controller (RTU)

The most important specifications of the board include the follow-
ing: IEEE 802.11 b/g/n Standards HT40 Wi-Fi Transceiver; Dual Core
Processor, clocked at 240 MHZ; 4 MB on-board Flash, and Wi-Fi and
Bluetooth Antenna; 18 ADC pins and over 30 GPIO pins (I/O Pins);
0.96 inch white OLED display screen; 5 V single power supply, and
support for a single-cell lithium-polymer (LiPo) battery; and Operating
ADC signal voltage range of 1.8 V - 3.7 V.

C. Raspberry Pi single-board computer

The Raspberry Pi 2 model B device is a portable credit card-sized
single-board computer featuring the BCM2836 quad core (4 processors
in one chip) ARMvV7 processor, and it is completely open source. In
this work, the ThingsBoard IoT server is installed on the Raspberry
Pi computer together with the PostgreSQL Database.

1) Wi-Fi Router (TCP/IP Wi-Fi connection): The D-Link Router
(DI-524 Airplus G) is used to create the TCP/IP Wireless network
connectivity over which the MQTT protocol is implemented for
data transfer from the MQTT Client (ESP32) to the MQTT Broker
(ThingsBoard IoT server).

D. ThingsBoard local server loT platform

ThingsBoard is an open-source IoT platform for data collection,
processing, visualization, and device management [15]. It provides an
out-of-the-box IoT cloud or on-premises solution to enable server-
side infrastructure for various IoT applications [15]. Built on Java
8 platform, ThingsBoard provides 100 percent support for standard
IoT protocols for device connectivity, including MQTT, CoAP, and
HTTP(S), and it presently supports three different database options:
SQL, NoSQL, and Hybrid databases. The ThingsBoard platform uses
these databases to store entities (such as devices, assets, dashboards,
users, alarms, customers, etc.), and telemetry data (attributes, time-
series sensor readings, statistics, events, etc.). Telemetries are time-
series of key-value pairs of data associated with a specific device,
and ThingsBoard stores its received data as telemetries. In this work,
the PostgreSQL database is installed on the ThingsBoard server for
entities and telemetry storage. ThingsBoard has two different editions,
the Community Edition, which is free and wholly open source, and
the Professional Edition, which has more advanced features. The
Community Edition is used in this project. The key features and
functions of the major components of the ThingsBoard architecture
are presented as follows [15];

o Transport components: These include MQTT, HTTP, and
CoAP-based APIs for device applications and firmware. Being a
part of the ThingsBoard “Transport Layer”, each of the compo-
nents here helps to push data to the Rule Engine, and could also
use Core Services to issue requests to the database to validate
device credentials. The MQTT-based device API supported by
the MQTT communication protocol is implemented in this work.

MQTT is favoured ahead of the HTTP and CoAP because of
its unique features like support for constrained resources such as
low bandwidth, and it can be implemented over various TCP/IP
connectivities. In addition, ThingsBoard server nodes act as an
MQTT Broker that supports QoS levels 0 (at most once) and 1
(at least once), and a set of predefined topics which means that
an external device (ESP32 in this case) can be configured as an
MQTT Client to publish data to the server nodes.

o Rule Engine components: The ThingsBoard Rule Engine, which
comprises of Rule Node and Rule Chain, helps in processing the
incoming messages with user-defined logic and flow.

e Core services: These are responsible for handling REST API
calls, monitoring device connectivity states, and WebSocket Sub-
scriptions on entity, telemetry and attribute changes.

o External systems: Using the Rule Engine, communications
can be established between ThingsBoard and external systems.
This involves pushing data to external systems, processing the
data, and reporting the results of the processed data back to
ThingsBoard server for visualization.

ThingsBoard server can either be utilized directly on the Live Demo
platform, installed on a private machine On-Premise, or hosted on
a Cloud Server such as Amazon Web Services (AWS). The Live
Demo platform requires the public internet for data access just like
every other web application out there, which could leave the stored
data vulnerable to internet attacks. On the other hand, hosting the
ThingsBoard server on a Cloud platform such as AWS, requires not
just the public internet for data access, it also requires subscriptions,
which means more cost and the possibility of internet attacks [15].
However, security in a SCADA system is a critical issue as attacks on
the SCADA could compromise the important company data stored
in the cloud. Therefore, in our proposed solution, the on-premise,
self-hosted ThingsBoard server option is implemented. By installing
the ThingsBoard server on the Raspberry Pi machine connected to
a private network, it can be operated with and without the public
internet, depending on what configuration is chosen based on the
desired security and flexibility of the operation. This represents a major
contribution of this paper as no related works have been found where
such measures were considered.

The interface of the installed ThingsBoard server on the Raspberry
Pi machine showing the IP address, and the numerous menus such
as Rule Chains, Customers, Assets, Devices, and so on, for various
actions is shown in Fig. 3, and Fig. 4 shows the sensor data being
posted to the ThingsBoard server nodes.

Fig. 3. Raspberry Pi-installed ThingsBoard server interface

E. MUN ECE Laboratory PV System Overview

In order to test the functionalities of the designed open source
SCADA system, it is setup to acquire the solar photovoltaic (PV)
data of the PV system at Memorial University (MUN) Electrical and
Computer Engineering Department Laboratory. This PV system is
made up of 12 Solar Panels covering a total area of 14 square meter



Fig. 4. Sensor data posting

and producing about 130 W and 7.6 A each. The proposed SCADA
system is connected to just one set of the modules (about 260 W, and
14 A output) for testing purposes.

V. IMPLEMENTATION METHODOLOGY

The pseudocode describing the data (information) flow process is
shown in Algorithm 1 below.

Algorithm 1: Data acquisition and logging algorithm:

Initialization;

1. Analog sensors measure and collect PV system data;

2. ESP32 reads sensor values on analog Pins 32, 34 and 35,
and calculates values for Pins 32x34;

3. ESP32 displays the above values on Arduino IDE Serial
Monitor and ESP32 OLED Screen;

4. ESP32 connects to local TCP/IP Wi-Fi Network with Wi-Fi
Name and Password,

5. ESP32 MQTT Client identifies the local ThingsBoard IoT
Server (MQTT Broker) via the Server IP Address;

6. ESP32 MQTT Client publishes sensor data to MQTT
Broker over the TCP/IP Wi-Fi connectivity;

7. ThingsBoard Server displays data as Telemetry Messages on
the specified Device using the Device Name and Access
Token;

8. ThingsBoard Server Node logs the Telemetry Messages to
Dashboards for data visualization;

while ThingsBoard Server acknowledges data receipt do
9. Display sensor data on ThingsBoard Server Node,

Dashboards and ESP32 OLED Screen, and;
10. Display "DONE” on Arduino IDE Serial Monitor;
if No data receipt acknowledgement from ThingsBoard

Server Node then
11. Display "FAILED......retrying in 5 seconds” on

Arduino IDE Serial Monitor;
else
| 12. Go to step 1;
end

end

VI. PROTOTYPE DESIGN

As shown in Fig. 5, the Analog Current and Voltage Sensors are
connected to the TTGO ESP32 LoRa32 OLED device on a Breadboard
using electrical wires. The inputs of the sensors are connected to the
points of interest on the PV panel and storage battery system (PV
System) as shown.

VII. EXPERIMENTAL SETUP OF THE PROPOSED SCADA
SYSTEM

As described in Section VI above, the hardware components were
programmed, configured and setup for operation. The setup was then

Fig. 5. Hardware implementation of the proposed SCADA system

hooked up to the solar PV System in MUN ECE Laboratory. Fig. 6
shows the analog sensors and ESP32 OLED device connected together
and to the PV System, as well as some of the Dashboards created on
the ThingsBoard IoT server platform (shown on the Laptop) for real-
time data monitoring and supervisory control actions.

Fig. 6. Experimental setup of the proposed SCADA system

VIII. TESTING AND RESULTS

Having tested the proposed IoT-based open source SCADA system
solution extensively, we present the results and some of the created
HMIs (Dashboards) in this section.

A. Results

Each of the two hardware configurations, A and B (Figs. 1 and 2
respectively) was set up and connected to the standalone solar PV
system. At the ThingsBoard IoT server platform, dashboards were
created for the remote monitoring of the received sensor data, and for
easy data trends visualizations. Fig. 7 shows multiple dashboards for
the various PV system variables being acquired; the storage battery
Voltage, and the PV Current, Voltage and Power. As can be seen,
the vibrations of the values of each of the variables were due to
the weather conditions in St. John’s at the various times of testing
as expected since PV system outputs are affected by environmental
conditions such as solar irradiance and temperature. At the time of
logging these data, a digital multimeter was also used to locally
measure each of the PV system variables so as to validate the accuracy
of the acquired data seen on both the OLED display screen and at
the ThingsBoard server platform. The acquired sensor values were
found to be the same as those measured locally with the multimeter.
Fig. 8 shows a dashboard created to specifically test configuration
A, while Fig. 9 shows another dashboard specifically created to test
configuration B. As seen in the figures, the sudden increase and
decrease in the values (especially in Fig. 8) happened at various times
when the storage battery was being discharged with an electric load
(a light bulb) connected across it. As expected, similar data values
were recorded using both configurations A and B, with the values
only affected by the prevalent environmental conditions at the time
of testing. The major difference between the two configurations is the
manner in which the recorded and stored data on the ThingsBoard
server platform can be accessed as described earlier.



The proposed SCADA was tested extensively at various times of
the day, and left connected to the PV system to continuously log the
PV data for about a month so as to confirm the robustness of the
designed system, and the results were found to be consistent with the
locally measured values using a digital multimeter, showing that the
SCADA system performed optimally and accurately regardless of the
environmental conditions and duration of testing. Also, as shown in
Figs. 5 and 6, the most recent data values were available for viewing
on the ESP32 OLED display screen, thereby providing a local data
monitoring interface whenever necessary.
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IX. CONCLUSIONS

In this paper, we proposed a low-cost open source SCADA system
based on the most recent SCADA architecture, the Internet of Things
(IoT). We also demonstrated the hardware implementation of our
proposed SCADA system solution using very few low-cost, low-
power, open source and readily available components as the essential
elements of the SCADA system. In designing our proposed SCADA
solution, data security, data integrity, and system reliability were taken
into consideration since security in a SCADA system is a critical issue.
These considerations were implemented by locally installing the main
data server, the ThingsBoard IoT server, on a Raspberry Pi single-
board machine. Thus, the data server was locally hosted and self-
managed on MUN Network such that data security and data integrity
measures such as authentication, authorization, access control, log
analysis, and firewalls are self-managed by the system administrator
to ensure data security, data integrity, and system availability, and thus
making sure that the system is reliable. We also demonstrated the use
of the lightweight IoT application protocol, MQTT protocol, for data

transmission in such applications. The overall SCADA system cost
was found to be extremely low, about $280 CAD, and the overall
power consumption while in operation was found to be minimal,
about 9.3 W. We also demonstrated the performance of our proposed
open source SCADA solution by testing it with a standalone solar
photovoltaic (PV) system. From our testings and results, we showed
that the proposed open source SCADA system operates properly
and accurately. With the OLED display screen of the ESP32 micro-
controller board used, a local real-time data monitoring interface was
also incorporated into the proposed SCADA system solution. As a
future work, we will look at incorporating various alarm types into
the system to increase the functionalities of the system.
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