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A b s t r a c t

It is shown that flexible manufacturing cells can
conveniently be represented and evaluated by colored
Petri nets in which transitions represent operations
performed by the machines of the cell and the trans-
porting robot, tokens represent parts transported by
the robot from one machine to another, and the col-
ors are used to indicate different scheduling policies
for the same cell.

1. INTRODUCTION

In colored Petri nets [3], information can be asso-
ciated with individual tokens. These token attributes
are called ‘token colors’. Token colors can be quite
complex, for example, they can describe the value of a
variable or the contents of a message package. Token
colors can be modified by (firing) transitions and also
the conditions enabling transitions can be different
for different colors.
Colored Petri nets can be used to integrate several

models representing different variants of the same sys-
tem; in this case the colors are used to indicate dif-
ferent versions of the model, and color–sensitive tran-
sitions are used for those activities which differ form
one version to another.
Flexible manufacturing systems are discrete–event

systems which are composed of a set of versatile ma-
chines, an automatic transportation system, and a
decision–making system which determines what has
to be done, when and where. Machines are often
grouped into manufacturing cells (or robotic cells),
in which a robot performs sequences of pickup, move,
load, unload and drop operations, transporting the
manufactured parts from one machine of the cell to
another [7]. The behavior of flexible manufacturing
cells is represented by ‘events’ and ‘activities’; an ac-
tivity corresponds to an operation performed by a
machine or by the robot while an event corresponds
to a change of activities. Different sets of activities
determine the states of the system. In each state,
several activities can occur concurrently, for exam-
ple, several machines can perform their operations
simultaneously and the robot can also transport a
part. Petri nets [6, 5] provide a simple and conve-
nient formalism for modeling systems of events which

can occur concurrently, but there are constraints on
precedence and frequency of such occurrences. On
a number of occasions Petri nets have been used for
modeling and analysis of production systems [2, 8].
In order to study performance aspects of Petri net

models, the duration of activities must also be taken
into account and included into model specifications.
Several types of Petri nets ‘with time’ have been pro-
posed by assigning ‘firing times’ to the transitions or
places of a net. In timed nets [10], transition firings
are ‘real–time’ events, i.e., tokens are removed from
input places at the beginning of the firing period, and
they are deposited to the output places at the end of
this period (sometimes this is also called a ‘three–
phase’ firing mechanism). The firing times may be
either deterministic or stochastic, i.e., described by
some probability distribution function. In both cases
the concepts of state and state transitions has been
formally defined and used in derivation of different
performance characteristics of the model [10].
Analysis of net models can be based on their be-

havior (i.e., the space of reachable states) or on the
structure of the net; the first case is called reachability
analysis and the second the structural approach. In-
variant analysis is the most popular example of struc-
tural analysis [4]. Invariant analysis decomposes the
net model into a number of simpler subnets and de-
rives the properties of the model from properties of
its components. In the case of net models of manu-
facturing cells, invariant analysis is used to determine
the cycle time (or the throughput) of a cell from cycle
times of its invariant subnets.
The throughput of a cell depends on the sequence of

robot’s activities as well as on the sequence in which
different parts enter the cell [1]. The sequence of
robot’s activities is called the schedule of a manufac-
turing cell. Two types of schedules can be identified
for analysis of the throughput of manufacturing cells.
For simple schedules, exactly one part enters and one
leaves the cell in each cycle. For composite schedules,
several parts enter and leave the cell in each cycle. It
appears that models of composite schedules can be
obtained by combining several simple schedules [11].
Consequently, the approach used for analysis of sim-
ple schedules can also be used (with straightforward
modifications) to analyze composite schedules.
In colored Petri net models of manufacturing cells,
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colors are used to represent different schedules of the
same cell, so, analysis of several schedules can be per-
formed simultaneously.
The main contributions of this paper include a sys-

tematic development of a colored Petri net model of
a complete family of schedules for a manufacturing
cell composed of m machines, and analysis of the de-
veloped colored net model by net invariants. The re-
sult of this analysis determines the optimal schedule
with respect to the throughput of the cell. Several
possible extensions of the proposed approach are also
discussed.

2. TIMED COLORED PETRI NETS

A convenient concept of ‘multisets’ is frequently
used in the definitions which follow. A multiset (or
a bag) X over a (nonempty) set A is any function
A → N , N = {0, 1, 2, ...}. Intuitively, a multiset is
a ‘set’ which can contain multiple occurrences of the
same elements; if X = A → N and a ∈ A, then X(a)
denotes the number of occurrences of a in X.

A colored Petri net is a 6–tuple N = (P, T,
A,C,w,m0) where:

P is a finite (nonempty) set of places,

T is a finite (nonempty) set of transitions,

A is a (nonempty) set of directed arcs which con-
nect places with transitions and transitions with
places, A ⊆ P×T ∪T×P , such that there are no
isolated places or transitions; moreover, for each
t ∈ T , Inp(t) denotes the set of places which are
connected by arcs directed to t, and Out(t) the
set of places which are connected by arcs directed
from t; Inp(p) and Out(p) are defined similarly,

C is a finite (nonempty) set of colors,

w is the arc function which associates, with each arc
of the net, a function from the set of (occurrence)
colors into a multiset of token colors, w : A →
C → C → N , i.e., for each arc a ∈ A, w(a) :
C → C → N ,

m0 is the initial marking function which assigns mul-
tisets of token colors (or colored tokens) to places
of a net, m0 : P → C → N .

This definition is a slightly modified version of a
colored Petri net matrix [3]; the modification is made
in order to simplify the definition, and to emphasize
the relationship between colored nets and ‘ordinary’
nets (i.e., non–colored nets [6]). It should be observed
that ordinary nets correspond to such colored nets in
which: (i) the set of colors C contains just one color,
and (iii) the arc function assigns the weights equal to
1 to all arcs of the net.

Let any function m that maps P into multisets of
token colors, m : P → C → N , be called a marking
of the net N.
An occurrence o (or occurrence color) of a transi-

tion t ∈ T , o ∈ C, is enabled at the marking m if and
only if

∀(p ∈ Inp(t)) w(p, t)(o) ≤ m(p),

where w(p, t)(o) denotes the application of the arc
function w of the arc (p, t) to the occurrence color o,
and ≤ denotes element–wise comparison of multisets.
If an occurrence o of the transition t is enabled at

the marking mi, it can fire; firing o of t transforms
mi into another marking mj which is directly (t, o)–
reachable (i.e., reachable in ‘one step’) from mi

∀(p ∈ P ) mj(p) = mi(p)−
∑

t∈Out(p) w(p, t)(o)+
∑

t∈Inp(p) w(t, p)(o)

where
∑

is used for element–wise addition of multi-
sets. During o of t’s firing, tokens are removed from
t’s input places in numbers corresponding to the (in-
put) arc functions applied to o, and tokens are added
to t’s output places in numbers corresponding to the
(output) arc functions applied to o.
A colored net is conflict–free iff no two enabled oc-

currences of transitions share the same place color,
i.e., iff

∀(ti, tj ∈ T ) ∀(oℓ, ok ∈ C) p ∈ Inp(ti) ∩ Inp(tj) ⇒
∀(c ∈ C) w(p, ti)(oℓ)(c) ∗ w(p, tj)(ok)(c) = 0.

Only conflict–free colored nets are considered in
this paper.

In timed colored nets, a ‘firing time’ is associated
with each occurrence color of each transition. This
firing time may be deterministic or it can be a random
variable with some distribution function, for example,
negative exponential distribution. Only deterministic
firing times are considered in this paper.

In timed colored nets, the firing of an occurrence o
of a transition t can be considered as a three–phase
event; first, the (colored) tokens are removed from t’s
input places (in numbers corresponding to the input
arc functions) and are transformed into occurrence
colors of the firing transitions, the second phase is
the firing time period when the firing (initiated in
the phase one) continues, and in the last phase, oc-
currence colors are transformed into colored tokens
of t’s output places (in numbers corresponding to the
output arc functions). If a transition occurrence be-
comes enabled while the transition is firing, a new in-
dependent firing cycle begins. All firings are initiated
in the same instant of time in which the correspond-
ing occurrences become enabled.

A conflict–free timed colored net is a pair, T =
(N, f) where

N is a conflict–free colored net, N = (P, T,A,
C,w,m0),

f is a firing–time function which assigns a nonnega-
tive firing time to each occurrence of each tran-
sition of the net, f : T → C → R+, where R+

denotes the set of nonnegative real numbers.

The behavior of timed colored nets can be described
by a sequence of states and state transitions [9].



Schedules of flexible manufacturing cells and their timed colored Petri net models 2144

3. NET INVARIANTS

The arc functions are mappings C → C → N , or
(C × C) → N ; the second form can be represented
quite conveniently by a rectangular array indexed by
occurrence colors (columns) and token colors (rows).
The incidence (or connectivity) matrix of a colored
net is a k × ℓ matrix A, where k is the number of
places and ℓ the number of transitions, and:

A[k, ℓ] = w(tk, pℓ)− w(pk, tℓ)

i.e., each element of A is a C×C → N mapping, and
the difference is componentwise (for each occurrence
color and each token color), so if the arc functions
w(p, t) and w(t, p) are represented as (C×C) matrices
of elements of N , the difference is in the sense of the
corresponding elements of these matrices.
A place invariant of a colored net is a k–element

(column) vector of multisets C → N such that

transp(A) ∗ I = 0

where transp(A) is the transpose of A, and the oper-
ation “∗” is a componentwise application of elements
of A to multisets of I (and “0” is the ℓ–element vector
of zero multisets C → {0}):

∀(1 ≤ j ≤ ℓ)
∑

1≤i≤k A[i, j](I[i]) = 0

and the sum is performed componentwise (on multi-
sets):

∀(1 ≤ j ≤ ℓ) ∀(ct ∈ C) ∀(cp ∈ C)
∑

1≤i≤k A[i, j][cp, ct] ∗ I[i](cp) = 0

A colored net N = (P, T,A,C,w,m0) is decoupled
iff the occurrences of transitions do not ‘mix’ the col-
ors, i.e., iff there is a partition P(C) of the set of
colors C (and an implied equivalence relation Heq on
C), such that all occurrences of transitions have their
(nonzero) input and output arc mappings in the same
equivalence classes of P:

∃(Heq ⊂ C × C) ∀(t ∈ T ) ∀(o ∈ C) ∀(pi ∈ Inp(t))
∀(pj ∈ Out(t)) ∀(cℓ, ck ∈ C) w(pi, t)(o)(cℓ) > 0 ∧

w(t, pj)(o)(ck) > 0 ⇒ (cℓ, ck) ∈ Heq.

It should be observed that if a net is decoupled,
it can be analyzed independently for each equivalent
class of colors because different classes of colors never
interfere one with another.

4. SCHEDULES AND THEIR MODELS

A simple manufacturing cell composed of three ma-
chines and a robot is sketched in Fig.1; the machines
are denoted by M1, M2 and M3, In represents a con-
veyor bringing the parts in while Out a conveyor for
outgoing parts. Let, for simplicity, all parts follow
the same path from In to M1, from M1 to M2, from
M2 to M3, and finally from M3 to Out.
The parts are moved between machines by the

robot which follows a cyclical pattern of actions called
its schedule. It is known that for an m–machine cell
there are m! different simple schedules [7]. The six

M3

M1

M2

M3

In Out

Robot

Fig.1. Layout of a three–machine cell.

simple schedules for a three–machine cell are as fol-
lows (the robot moves from X to Y are denoted by
X ⇒ Y if the robot carries a part, and by X → Y
otherwise):

A: In ⇒ M1 ⇒ M2 ⇒ M3 ⇒ Out → In

B: In ⇒ M1 ⇒ M2 → M3 ⇒ Out → M2 ⇒ M3

→ In

C: In ⇒ M1 → M3 ⇒ Out → M1 ⇒ M2 ⇒ M3

→ In

D: In ⇒ M1 → M2 ⇒ M3 → M1 ⇒ M2 → M3

⇒ Out → In

E: In ⇒ M1 → M2 ⇒ M3 ⇒ Out → M1 ⇒ M2

→ In

F: In ⇒ M1 → M3 ⇒ Out → M2 ⇒ M3 → M1

⇒ M2 → In

Examples of Petri net models of simple schedules
are shown in Fig.2 and Fig.3 [11] (the schedules are
shown in the instant of time when the robot is going
to pick a part from the input conveyor). In timed
models, transitions represent operations and places
‘conditions’ (in the most general sense); the three ma-
chines (or rather machine operations) are represented
by t1, t2 and t3, each transition with its input and
output place (for ‘part loaded’ and ‘machine opera-
tion finished’ conditions). The firing times associated
with these transitions (the same for all occurrences)
f(t1) = o1, f(t2) = o2 and f(t3) = o3 represent the
(average) times of performing the operations on ma-
chines M1, M2 and M3, respectively. The remaining
parts of the models represent the robot’s activities. It
is assumed that there is always an available part in In
and that Out removes manufactured parts sufficiently
quickly, so In and Out are not shown.

A colored Petri net model of all six schedules is
shown in Fig.4. There are six basic colors represent-
ing the schedules (and also denoted A, B, ..., F), and
five auxiliary colors which are used for elimination of
potential conflicts when the models of different sched-
ules are combined together. These auxiliary colors
are needed for schedules B, C, D, E and F, and are
denoted by b, c, d, e i f; they are used as token col-
ors only, so there are eleven token colors and only six
occurrence colors (formally, the arc functions are par-
tial functions which are undefined for the occurrence
auxiliary colors).
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t1 t2 t3p12 p21 p23 p32 p34

p40p04 t40

t12 t23 t34t01

p11 p22 p33

p10

Fig.2. Petri net model of the simple schedule A.

t1 t2 t3p12 p21 p23 p32 p34

t01 t12 t23 t34

t42t30p03

p11

p42

p24 p30

t32p22 p33

p10

Fig.3. Petri net model of the simple schedule B.

The transitions correspond to the following actions:

robot’s operation exec time

t1 M1 operation o1
t2 M2 operation o2
t3 M3 operation o3
t01 pick from In, move to M1, load u+ w + y

t11 move from M1 to M2 [D,E] y

t12 unload M1, move to M2, load v + w + y

t13 move from M1 to M3 [C,F] 2y
t20 move from M2 to In [E,F] 2y
t22 move from M2 to M3 [B,D] y

t23 unload M2, move to M3, load v + w + y

t30 move from M3 to In [B,C] 2y
t31 move from M3 to M1 [D,F] 2y
t34 unload M3, move to Out, drop v + x+ y

t40 move from Out to In [A,D] y

t41 move from Out to M1 [C,E] 2y
t42 move from Out to M2 [B,F] 2y

the occurrence colors – or the schedules – are in-
dicated in square brackets for those transitions for
which only some occurrence colors are used.
The execution times are the same for all transition

occurrences, and are given assuming that ‘u’ denotes
the (average) pickup time, ‘v’ the (average) unload
time, ‘w’ the (average) load time, ‘x’ the (average)
drop time and ‘y’ the average ‘travel’ time between
adjacent machines; it is assumed, for simplicity, that
the travel time the same for all adjacent machines,
and also the same for M3 to Out, Out to In and In
to M1 moves).
The arc functions w are mappings C → C → N ; for

most of arcs, the arc functions are (partial) identity

functions for the basic colors A, B, ..., F, i.e., for an
arc a, an occurrence color o ∈ C and a token color
c ∈ C:

w(a)(o)(c) =







1, if o, c ∈ {A,B,C,D,E,F} ∧ o = c,

0, if o, c ∈ {A,B,C,D,E,F} ∧ o 6= c,

undefined, otherwise.

The definitions of all ‘non–standard’ arc functions
are as follows (the occurrence colors correspond to
columns and each entry is a function g : C → N
which is shown using a simplified notation “X : i”
denoting g(c) = i if c = X and 0 otherwise):

arc A B C D E F
(t01, p11) A:1 B:1 c:1 d:1 e:1 f:1
(t12, p22) A:1 b:1 C:1 d:1 e:1 f:1
(t23, p33) A:1 b:1 c:1 d:1 E:1 f:1
(t34, p40) A:1 b:1 c:1 D:1 e:1 f:1
(p11, t11) — — — d:1 e:1 —
(p11, t13) — — c:1 — — f:1
(p22, t20) — — — — e:1 f:1
(p22, t22) — b:1 — d:1 — —
(p33, t30) — b:1 c:1 — — —
(p33, t31) — — — d:1 — f:1
(p40, t41) — — c:1 — e:1 —
(p40, t42) — b:1 — — — f:1

It can be observed that, in addition to the repre-
sentation of machines, there is a systematic structure
of the net model shown in Fig.4:
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t1 t2 t3p12 p21 p23 p32 p34

p40p04 t40

t12 t23 t34t01 p11 p22 p33

t30

t20

t41

t31
t11 t22

t42

t13

p10

Fig.4. Colored net model of a three–machine cell.

• there is a place corresponding to each of the ma-
chines (p11, p22 and p33 in Fig.4), and single
places corresponding to Input and Output (p40
and p04 in Fig.4); in general, for an m–machine
cell, there are m+2 such places;

• places representing Input and all machines (i.e.,
p04 and p11, p22, p33) have three input transi-
tions each (orm input transitions in general) rep-
resenting moves from the ‘other’ machines and
Output (and from Input in the case of M1); the
‘other’ machines do not include the ‘next’ ma-
chine (with Output as ‘the next machine’ forM3);
so, for p04 the input arcs are from M2, M3 and
Output, for p11 the input arcs are from M3, Out-
put and Input, for p22 the input arcs are from
Output, M1 (carrying a part) and M1 (without
a part), and for p33 the input arcs are form M1,
M2 (carrying a part) and M2 (without a part);

• places representing Output and all machines have
three output transitions each (or m output tran-
sitions in general) representing moves to ‘other’
machines and Input (and Output in the case of
M3); the ‘other’ machines do not include the
‘previous’ machine (with Input as ‘the previous
machine’ for M1); so for p11 the output arcs are
toM2 (carrying a part), M2 (without a part) and
M3, for p22 the output arcs are to M3 (carrying a
part), M3 (without a part) and Input, for p33 the
output arcs are to Output, Input and M1, and for
p40 the output arcs are to Input, M1 and M2;

• the place representing Input (p04) has only one
output transition (t01, representing ‘pick a part,
move and load M1’);

• the place representing Output (p40) has only one
input transition (t34, representing ‘unload M3,
move and drop),

• the total number of ‘scheduling’ transitions, re-
sulting from the above rules, is equal to (counting
either the input or output arcs) 1 +m ∗ (m+1),
so for a three–machine cell there are 13 transi-
tions modeling the possible robot schedules (see
Fig.4); a net model of a four–machine cell needs
21 transitions (and 6 places) to represent all pos-
sible robot’s schedules, and a model of a five–
machine cell, needs 31 such transitions (and 7
places).

The colored net shown in Fig.4 is decoupled and
the partition of the set of colors is as follows:

P(C) = {{A}, {B, b}, {C, c}, {D, d}, {E, e}, {F, f}}

Consequently, the invariants are grouped in sec-
tions corresponding to different colors (i.e., different
schedules). There are 8 invariants for color/schedule
A, 5 invariants for color/schedule B, 6 invariants
for color/schedule C, etc.; total number of place–
invariants for this model is 33. The minimum cycle
time of each schedule is determined by the invariant
subnet with the maximum total cycle time. Since all
invariant subnets are simple cyclic nets, each subnet
cycle time is equal to the sum of firing times assigned
to all transitions of the (invariant) subnet. The cycle
times of the six schedules are as follows (since the sets
of transitions of some invariant subnets are subsets of
those of other invariant subnets, not all invariants are
used in the formulas)

schedule cycle time

A τA = τ1
B τB =max(τ9, τ10, τ12)
C τC =max(τ14, τ16, τ17, τ19)
D τC =max(τ20, τ21, τ22, τ23, τ24)
E τE =max(τ25, τ26, τ28)
F τE =max(τ30, τ31, τ32, τ33)
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where

τ1 = o1 + o2 + o3 + u+ 3v + 3w + x+ 5y
τ9 = o1 + o2 + u+ 2v + 3w + 5y
τ10 = o1 + u+ 3v + 3w + x+ 9y
τ12 = o3 + v + w + 5y
τ14 = o1 + o2 + u+ 2v + 2w + 5y
τ16 = o2 + o3 + 3v + 2w + x+ 5y
τ17 = o2 + u+ 3v + 3w + x+ 7y
τ19 = u+ 3v + 3w + x+ 10y
τ20 = o1 + o2 + o3 + u+ 3v + 3w + x+ 5y
τ21 = o1 + u+ 2v + 2w + x+ 5y
τ22 = o2 + 2v + 2w + 4y
τ23 = o3 + u+ 2v + 2w + x+ 5y
τ24 = u+ 2v + 2w + x+ 8y
τ25 = o1 + u+ v + 2w + 4y
τ26 = o2 + o3 + 3v + 2w + x+ 5y
τ28 = o3 + u+ 3v + 3w + x+ 9y
τ30 = o1 + u+ v + 2w + 4y
τ31 = o2 + 2v + 2w + 4y
τ32 = o3 + 2v + w + x+ 4y
τ33 = u+ 3v + 3w + x+ 12y

Because the optimal schedule is the schedule with
the minimum cycle time, so:

τopt = min(τA, τB , τC , τD, τE , τF ).

6. CONCLUDING REMARKS

It has been shown that timed Petri nets can conve-
niently model (at least a large class of) flexible man-
ufacturing cells. A number of different schedules can
be analyzed simultaneously within one model by us-
ing token attributes (i.e., colors). For simple sched-
ules, the modeling nets are conflict–free nets, so the
cycle time (or throughput) can easily be determined
from cycle times (or throughputs) of the invariant
subnets. In fact, a symbolic solution can be derived,
with times of basic operations (like ‘unload’, ‘move’)
as parameters. This symbolic solution can than be
used for very efficient comparisons and selections of
optimum schedules for any given sets of parameter
values.
Composite schedules, i.e., schedules in which sev-

eral parts enter (and leave) the cell in each cycle,
can be obtained by combining several simple sched-
ules [11]. Since all simple schedules are modeled by
the same (colored) net (as shown in Fig.4), the same
modeling net will also represent the composite sched-
ules of a manufacturing cell. For example, to model a
composite schedule AB obtained by combining sched-
ules A and B (Fig.2 and 3), two additional basic colors
Ab, aB and an auxiliary color ab should be introduced
with the following occurrences of transitions (the oc-
currences of Ab correspond to part A of the schedule
AB, while occurrences aB to part B of this schedule):

arc ... Ab aB
(t12, p22) ... aB:1 ab:1
(t23, p33) ... Ab:1 ab:1
(t34, p40) ... Ab:1 ab:1
(p22, t22) ... — ab:1
(p33, t30) ... — ab:1
(p40, t42) ... ab:1 —

so that the complete robot’s path is (p04, t01, p11,
t12, p22, t22, p33, t34, p40, t42, p22, t23, p33, t30, p04,
t01, p11, t12, p22, t23, p33, t34, p40, t40, p04). System-
atic generation of such composite schedules and their
analysis need to be investigated in greater detail.
A number of simplifying assumptions were used in

the discussion presented in previous sections, e.g., all
parts are identical, robot ‘travel times’ are equal, etc.
It should be noted, however, that all these assump-
tions were made to simplify the discussion and they
can easily be removed by straightforward modifica-
tions and extensions of the presented approach.
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