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A b s t r a c t

It is shown that for some classes of closed timed Petri net
models the steady–state behavior can be determined on the
basis of structural properties only (i.e., without reachability
analysis), using the concept of throughput and simple rules
of operational analysis. Throughput analysis is based on the
average values of firing times rather than firing time distribu-
tion functions, so the same approach can be used to a variety
of net models. Bounded as well as unbounded (but ergodic)
net models can be analyzed by the proposed approach.

1. INTRODUCTION

Petri nets [Mu89,Re85] have been proposed to model sys-
tems of events in which it is possible for some events to oc-
cur concurrently, but there are constraints on the occurrence,
precedence, or frequency of these occurrences. Examples of
such systems include multiprocessor and distributed systems,
communication networks and data flow architectures. In or-
der to study performance aspects of Petri net models, the
duration of activities must also be taken into account and
included into model specifications. Timed Petri nets have
been introduced by assigning firing times to the transitions
of Petri nets (t–timed nets) [Ram74,Zu86,Ho86,Zu88] or by
assigning time to places of a net (p–timed nets) [Sif77]. It
should be noted that a fundamental difference between these
two approaches is in the mechanism of transition firings. In
t–timed nets, transition firings are not instantaneous events; a
firing occurs in ‘real-time’, i.e., the tokens are removed from
transition’s input places at the beginning of the firing pe-
riod, and they are deposited to the output places at the end
of this period (sometimes this is called a ‘three–phase’ firing
mechanism). In p–timed nets, the ‘firing time’ determines
the period of time that tokens must ‘wait’ (in places) before
firing can occur, and the firing is is an instantaneous event,
as in ordinary nets (so the ‘firing times’ are – in fact – ‘en-
abling times’). A simple consequence of this difference is that
the ‘firing’ process in a p–timed net can easily be discontin-
ued (using a simple configuration of conflicting transitions),
while in t–timed nets there in no ‘access’ to tokens once the
firing started, so a special type of inhibitor arcs has been pro-
posed to provide this capability [Zu88]. On the other hand,
in p–timed nets, the conflict resolution policies cannot be de-
fined independently of timing specifications [C3S89], while in
t–timed nets conflict resolution and timing specification are

quite independent aspects. Stochastic Petri nets [Na80] and
generalized stochastic nets [ACB84] are also p–timed nets.
And there is a variety of generalized, augmented, extended
and enhanced net models [CMT89,Du85,Ho86] which belong
to one of these basic categories of nets ‘with time’.

This paper discusses free–choice timed Petri nets in which
(deterministic or stochastic) firing times are associated with
transitions of a Petri net, as in [Ram74,Zu86,Ho86,Zu88]. For
such models, the ‘state space’ is a discrete–space, discrete–
time or continuous–time (depending upon the character of
firing times of transitions) homogeneous semi–Markov process
[Zu86,Zu88]. If this process is ergodic, the stationary prob-
abilities of the states can be determined [Ki90], and many
performance measures, such as utilization of systems compo-
nents, average waiting times and turnaround times or average
throughput rates, characterizing the steady–state behavio of
the model, can be derived from stationary probabilities of
states.

Analysis of net models based on the derivation of the state
space is known as the reachability analysis. Although reacha-
bility analysis is quite general (e.g., it can easily handle state–
dependent routing probabilities as well as state–dependent
timing properties), it becomes inefficient for large state spaces
(for some models, the number of states grows exponentially
with model parameters, which is known as the ‘state explosion
problem’). Also, reachability analysis is usually restricted to
bounded nets. Therefore, approaches that avoid the genera-
tion of the state space are recently gaining popularity. Such
approaches are based on structural properties of models. Al-
though structural approaches do not provide as much informa-
tion as the reachability approach does, quite often, however,
all the detailed results of reachability analysis are not really
needed, and more synthetic performance measures, that can
also be provided by structural approaches, are quite satis-
factory. Structural approaches can be used to obtain exact
or approximate performance measures, e.g., lower and upper
performance bounds [BG85,C3S89].

In performance analysis, one of basic performance mea-
sures is throughput of a model or a model’s component.
Many other performance characteristics can be obtained from
throughputs, for example, the throughput and the maximum
service rate of a component determine its utilization factor,
which – in turn – is an indicator of systems saturation. The
throughput is one of the elements used in the Little’s formula,
etc. Throughput analysis of net models is similar to opera-
tional methods developed for analysis of queueing systems
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[Bu76,DB78]. It is based on the first moment (the average
value) of random variables, and general relationships which
do not depend upon probability distribution functions.
The paper is organized in four main sections. Section 2 re-

calls basic concepts for free–choice timed Petri nets. Section
3 briefly describes fundamental concepts of operational anal-
ysis, while Section 4 introduces the concept of throughputs in
nets and derives throughput values for several classes of closed
net models. Section 5 illustrates the proposed approach using
a simple model of a multiprogrammed computer system.

2. TIMED PETRI NETS

This section recalls and formalizes concepts used in sub-
sequent parts of this paper. It is rather concise since more
detailed discussion is provided elsewhere [Zu86,Zu88].

A Petri net (or a Petri net structure) N is a triple N=(P, T,A)
where:

P is a finite, nonempty set of places,

T is a finite, nonempty set of transitions,

A is a set of directed arcs, A ⊆ P × T ∪ T × P such that for
each transition there is at least one place connected with
it.

For each place p and each transition t, the input and output
sets are defined as follows:

Inp(p) = {t ∈ T |(t, p) ∈ A}, Out(p) = {t ∈ T |(p, t) ∈ A},
Inp(t) = {p ∈ T |(p, t) ∈ A}, Out(t) = {p ∈ P |(t, p) ∈ A}.

and this notation is extended on sets of places and transitions.

A marked Petri net M is a pair M = (N ,m0) where:

N is a Petri net, N = (P, T,A),

m0 is an initial marking function, m0 : P → {0, 1, ...}.

Let any function m : P → {0, 1, ...} be called a marking in
a net N = (P, T,A).

A place p is shared iff it is an input place for more than
one transition. A shared place p is free–choice (or extended
free–choice) iff the input sets of all transitions sharing p are
identical. A net is free–choice iff all its shared places are free–
choice. Only free–choice nets are considered in this paper
since in most cases free–choice nets are sufficient for mod-
eling random events, e.g., random faults in communication
networks or any random events described by discrete distri-
butions.
Since the relation of sharing a free–choice place is an equiv-

alence relation in T , it determines a partition of T into a
set of free–choice equivalence classes denoted by Free(T ) =
{T1, T2, ..., Tk}.
A transition t is enabled by a marking m iff every input

place of this transition contains at least one token. Every
transition enabled by a markingm can fire. When a transition
fires, a token is removed from each of its input places (but not

inhibitor places) and a token is added to each of its output
places. This determines a new marking in a net, a new set of
enabled transitions, and so on.

In timed Petri nets each transition takes a ‘real time’ to fire,
i.e., there is a ‘firing time’ associated with each transition of
a net. The firing times can be defined in several ways. In D–
timed Petri nets [Zu88] they are deterministic (or constant),
i.e., there is a nonnegative number assigned to each tran-
sition of a net which determines the duration of transition’s
firings. In M–timed Petri nets [Zu86] (or stochastic Petri nets
[Na80,ACB84]), the firing times are exponentially distributed
random variables, and the corresponding firing rates are as-
signed to transitions of a net. In this paper, the firing times
associated with transitions of the net are the average values
of firing times.

A free–choice timed Petri net T is a triple T = (M, c, f)
where:

M is a free–choice marked Petri net, M = (N ,m0), N =
(P, T,A),

c is a choice function which assigns a ‘free–choice’ probability
to each transition t of the net in such a way that for each
free–choice equivalence class Ti ∈ Free(T ) the sum of
these probabilities is equal to 1,

f is a firing time function which assigns the nonnegative
(average) firing time f(t) to each transition t of the net,
f : T → R⊕, and R⊕ denotes the set of nonnegative real
numbers.

The behavior of a timed Petri net can be represented by
a sequence of ‘states’ where each ‘state’ describes the dis-
tribution of tokens in places and firing transitions of the net;
detailed definitions of states and state transitions for D–timed
and M–timed nets are given in [Zu88] and [Zu86], respectively.
The states and state transitions can be combined into a graph
of reachable states; this graph is a semi–Markov process de-
fined by the timed net T .

A timed net is ergodic iff the semi–Markov process defined
by it is ergodic. Only ergodic timed nets are considered in
this paper.

3. ELEMENTS OF OPERATIONAL ANALYSIS

Two principal reasons for the introduction of operational
analysis are [FSZ83]:

• the need for providing performance analysis with math-
ematical relationships involving experimentally measur-
able quantities and characterizing a system’s perfor-
mance during a given time interval,

• the possibility of deriving performance results by using
only measurable quantities under assumptions that can
be experimentally verified.
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The time period in which a system is observed is called the
‘observation interval’. The variables measured (or observed)
over an observation interval are called ’operational variables’.
Operational analysis tries to provide a framework in which
system performance can be studied using only operational
variables and mathematical relationships among them (called
‘operational laws’).
There are two main assumptions on which operational anal-

ysis is based. First, the system, during observation interval,
is in operational equilibrium. i.e., flow balanced; the average
number of processing requests that the system or one of its
components receives must be equal to the the average num-
ber of requests processed by the system or its components.
Second, the arrival rate of processing requests is independent
of the length of queues at other resources (homogeneous ar-
rivals); similarly, the mean time between completions is inde-
pendent of the length of queues at system resources (homo-
geneous services). Essentially, the homogeneity assumptions
state that there must not be interactions between the behavior
of a component and that of the rest of the system except for
those occurring through the local queue of this component.
These assumptions are approximately satisfied by real sys-
tems if they are observed by sufficiently long periods [FSZ83].
Operational variables are either basic quantities, which are

directly measured during the observation interval, or derived
quantities, which are computed form the basic quantities. For
a typical single–server queueing system the basic operational
variables are:

• T – the observation interval,

• A(T ) – the number of arrivals occurring during T ,

• C(T ) – the number of completions occurring during T ,

• B(T ) – the total amount of time during which the system
is busy during T (B(T ) ≤ T ),

• Q(T ) – the total time spent in the system by all requests.

Typical derived quantities include:

• λ = A(T )/T – the arrival rate (i.e., the average number
of arrivals per time unit),

• θ = C(T )/T – the output rate or the throughput (i.e.,
the average number of completions per time unit),

• u = B(T )/T – the utilization factor (i.e., the fraction of
time when the system is busy),

• s = B(T )/C(T ) – the mean service time,

• µ = 1/s – the service rate,

• Rt = Q(T )/A(T ) – the mean response time (i.e., the
average time spent in the system),

• N = Q(T )/T – the mean number of requests in the sys-
tem.

Operational laws or operational identities are relations be-
tween operational variables which must hold for every obser-
vation interval:

• N = λRt – Little’s law,

• u = sθ – utilization law,

• θi = θ1Ai(T )/A1(T ) – forced flow law (for systems com-
posed of a number of components indicated by subscripts;
subscript ‘1’ indicates the ‘reference’ component).

4. THROUGHPUTS IN NETS

Intuitively, throughput of a place p in a timed net T , θT (p),
is equal to the average number of tokens entering p in a unit
time, or leaving p (or t) in a unit time; in the steady–state of
the net, the average numbers of tokens entering and leaving
p must be equal since no ‘accumulation’ of tokens can oc-
cur. Similarly, throughput of a transition t in a net T , θT (p),
is equal to the average number of new (or completed) tran-
sition’s firings in a unit time. It should be noted that the
throughput of a transition does not depend upon the number
of incoming or outgoing arcs.
More formally, the throughput of a timed net T is defined

as a function θ : P ∪ T → R⊕ which assigns a nonegative
number to each place and each transition of the net in such a
way that:

∀(x ∈ P ∪ T ) θ(x) = lim
n→∞

n

τn(x)

where τn(x) denotes the time instant at which the n-th con-
secutive token enters (or leaves) the place x or at which the
transition x initiates (or terminates) its n-th firing.

It follows immediately from the definition of throughput
that [Zu92]:

• the throughput of a place p is equal to the sum of
throughputs of its input transitions as well as the sum
of throughputs of its output transitions:

∀(p ∈ P ) θ(p) =
∑

ti∈Inp(p) θ(ti) =
∑

tj∈Out(p) θ(tj),

• for each non–shared place p, the throughput of p’s output
transition is equal to the throughput of p:

∀(p ∈ P ) Out(p) = {t} ⇒ θ(t) = θ(p),

• for each free–choice place p, throughputs of p’s output
transitions are determined by the choice function c:

∀(Ti ∈ Free(T )) ∀(p ∈ Inp(Ti)) ∀(t ∈ Ti) θ(t) =
c(t)θ(p).

An elementary net is a connected net in which there is ex-
actly one input place and exactly one output place for each
transition of the net, and one input transition and one output
transition for each place of the net. In other words, the (di-
rected) graph of an elementary net is a (simple) cycle. It fol-
lows from property 1 that in elementary nets the throughputs
of all transitions and all places are the same. To determine
the value of these throughputs, the Little’s law can be applied
to an elementary net considered as an open system (by brak-
ing one of the arcs) in which the mean response time is equal
to the sum of (the average) firing times of all transitions.
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For a timed elementary net T :

∀(x ∈ P ∪ T ) θ(x) =

∑

p∈P m0(p)
∑

t∈T f(t)

A state graph (or a FSM net) is a connected net in which
there is exactly one input and one output place for each tran-
sition of the net (so only the places can have several incoming
and/or outgoing arcs associated with them). State graphs
are obviously free–choice, so the selections of conflicting fir-
ings are random variables described by the choice function c,
from which the relative frequencies of visiting (relative with
respect to one of elements) called the ‘visiting ratios’, v(x),
x ∈ P ∪ T , can be determined by solving a system of simul-
taneous equations:







∀(p ∈ P ) v(p) =
∑

t∈Inp(p) v(t)

∀(t ∈ T ) v(t) = c(t)v(Inp(t))
v(x0) = 1 where x0 is the ‘reference element’

For a timed state graph T :

∀(x ∈ P ∪ T ) θ(x) = v(x)

∑

p∈P m0(p)
∑

t∈T v(t)f(t)

Analysis of nets in which transitions can have more than
one input arc must take into account ‘synchronization delays’
which do not exist in state graphs (and elementary nets).
Since firing of a transition removes (single) tokens from all
input places simultaneously, some tokens may wait (in places)
for the enabling of a transition. Such waiting times will affect
the response time of timed models. Moreover, since response
times usually depend upon the throughput of a server, the
behavior of such models must be characterized by nonlinear
dependencies with respect to throughputs.
More specifically, in a very simple model of a single server

queueing system shown in Fig.1 place p1 represents the queue
of waiting requests, the transition t1 is the server with the
average service time f(t1), place p2 indicates (by a single to-
ken) that the server is idle. Whenever there is a (waiting)
request in p1 and the server is idle, t1 is enabled and starts its
firing by removing (single) tokens from p1 and p2. It can be
observed that multiple (initial) tokens in p2) would represent
multiserver systems.

t1p1

p2

Fig.1. Petri net model of a single server system.

For a given service rate, the response time of such a system
depends upon the arrival rate (and throughput which, in the
steady–state is equal to the arrival rate). For example, in
the case of M/M/1 system, i.e., a system with exponentially
distributed interarrival and service times, the response time
is [Ki90]:

Rt =
s

1− θs

where s is the average service time and θ the throughput.
Consequently, the server represented by the transition t1 and
place p2 in Fig.1 can be modeled by a single–input single–
output transition with the average firing time equal to the
response time of the original system. Such delay–equivalent
transformations can be very useful in analysis of net models.

5. EXAMPLE

The M–timed net shown in Fig.2 is a model of an inter-
active multiprogramming system. p1 and t1 model the users
with f(t1) representing the average ‘terminal time’ or ‘think-
ing time’; the initial marking of p1 represents the number of
(active) users. p6 and t2 represent the central server with its
waiting queue p2, while p5 and t5 model a disk server with its
queue p4; the number of (identical) processors in the central
server is determined by the initial marking of the place p6,
and the number of (identical) disk drives by the initial mark-
ing of the place p5. The place p3 is a free–choice place with
two choices, termination of job execution (transition t3 with
probability q) or continuation of execution (transition t4 with
probability 1− q).

p1

p2
p3

p4
p5

p6

t1

t2 t3

t4t5

Fig.2. Petri net model of a multiprogramming system.

Let m(p6) = m(p5) = 1. Then the delay–equivalent
replacement of t2 and p6 is a simple transition t′2 with
throughput–dependent average firing time f(t′2) = f(t2)/(1−
θ(t2)f(t2)). Similarly, t5 and p5 can be replaced by t′5 with
f(t′5) = f(t5)/(1 − θ(t5)f(t5)). Moreover, the visit ratios for
t2, t4 and t5 with respect to t1 are v(t5) = v(t4) = (1 − q)/q
and v(t2) = 1/q, so the total average processing time of each
job can be assigned to a single transition, for example t′3,
replacing t′2, p3, t4, p4 and t′5, as shown in Fig.3:

f(t′3) = v(t2)f(t
′
2) + v(t4)f(t4) + v(t5)f(t

′
5) + f(t3)

t1

p1p2

t3’

Fig.3. Simplified Petri net model of a multiprogramming
system.
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The throughput for the elementary net from Fig. 3 is sim-
ply θ = m0(p1)/(f(t1)+f(t′3). Taking into account the forced
flow law, θ(t2) = v(t2)θ(t1) and θ(t5) = v(t5)θ(t1), so:

θ = θ(t1) = m0(p1)/[f(t1) + v(t2)f(t2)/(1− θv(t2)f(t2))+
v(t4)f(t4) + v(t5)f(t5)/(1− θv(t5)f(t5)) + f(t3)]

which defines the value of θ in terms of model parameters,
i.e., the firing time function f , the initial marking function
m0 and the choice function c.

6. CONCLUDING REMARKS

It has been shown that, for a class of closed timed Petri
net models, steady–state throughputs in the model can be
determined on the basis of structural properties of the net
(and – of course – model parameters defined by the m0, c and
f functions). The approach avoids the complexity (the “state
explosion” problem) of the reachability analysis and it can be
used to nets with different distribution functions associated
with different transitions of the same nets; for example, some
transitions may have deterministic firing times while other
transitions may use stochastic firing times. For stochastic
firing times, the actual distribution functions may be needed
for delay–equivalent simplifications of net models.
Although the discussion in this paper was restricted to nets

with simple arcs, it is believed that similar results can be
derived for generalized nets, i.e., nets with multiple arcs (or
arc weights).
The proposed approach can be used for analysis of un-

bounded nets, but the ergodicity condition is strictly required.
As shown in [Zu92], the ergodicity of the solution can be ‘veri-
fied’ by checking additional requirements (e.g., utilization fac-
tors or performance bounds).
An attractive aspect of throughput analysis is the possibil-

ity of obtaining the solution in a symbolic form rather than
as a numerical value. Different combinations of parameter
values, sensitivity of the results with respect to different pa-
rameters or functional dependencies can be investigated very
conveniently when symbolic solutions are available.
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