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Abstract

In parameter extraction programs, the performance of
repeated analyses of linear (or linearized) circuits can be
significantly improved by representing the dependence of
circuit responses on some parameters in a symbolic form.
This symbolic form can then be evaluated very efficiently
for different sets of parameter values. An intergrated
numerical–symbolic parameter extraction program, called
FIT–S, has been developed in which all linear circuit anal-
yses can be performed using symbolic or numerical ap-
proach. A comparisons of execution times is presented
for extraction of a submicron HEMT’s parameters.
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1. INTRODUCTION

Verifying designs through simulation has become an in-
dispensable part of IC design process. However, increas-
ing complexity of IC circuits continuously creates demand
for new and more efficient methods for analysis of analog
circuits. In some applications, symbolic circuit analysis
can significantly improve the performance of computer–
aided circuit analysis tools. Parameter extraction is an
example of such applications.
Because existing device models use large sets of pa-

rameters, the determination of values of these parame-
ters becomes a nontrivial task if device characteristics are
to be represented accurately in the full range of operat-
ing conditions. Usually these model parameters cannot
be determined by direct measurements because of device
nonlinearities. Different approaches to parameter extrac-
tion have been developed which include general or spe-
cialized, and direct or iterative extraction methods. Spe-
cialized methods extract some subsets of model parame-
ters, for example, model resistances, or capacitances, or
DC parameters only, while general methods determine

all parameters of the model. Direct extraction methods
approximate model equations by linear functions and de-
termine the values of parameters graphically or by solving
linearized equations, while iterative methods fit the model
responses to a set of measured characteristics by minimiz-
ing an objective function that quantitatively characterizes
the fit. Sometimes a mixed approach is used in which
some parameters are extracted using a direct method,
and the remaining ones by an iterative procedure.

Iterative extraction of model parameters can be re-
garded as an optimization process [1, 2, 3, 4] which mini-
mizes the (total) differences between a set of measurement
data and the corresponding circuit responses by adjust-
ing the values of model parameters (which are optimiza-
tion variables). The result of this optimization determines
such values of model parameters for which the circuit re-
sponses are ‘as close as possible’ to the measurement data
(in the sense of the error function used).

Simulation–based parameter extraction [5] uses a cir-
cuit simulator rather than an explicit set of model equa-
tions to obtain the circuit responses during the extrac-
tion process. A simple advantage of such an approach is
that the extractor can use many capabilities of the cir-
cuit simulator, so all packaging and mounting parasitics
can easily be taken into account during extraction, and
also the extraction can use many types of measurement
data, including noise, distortion, etc. However, iterative
extraction process often requires numerous analyses of a
circuit with the same topology, especially when numerous
parameters are extracted from large sets of measurement
data. If a significant part of the measurement data cor-
responds to linear analyses of the circuit (as is usually
the case for microwave applications), symbolic simula-
tion can be uses to eliminate repetitive solutions of circuit
equations. For linear analyses, the dependence of circuit
responses on some variables can be derived as a sym-
bolic function, and if the analyzed circuit is rather simple
(which is typical for parameter extraction), the symbolic
functions are reasonably complex and usually exact.
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A practical implementation of a parameter extractor
with numerical and symbolic simulation was obtained by
designing an interface from an existing symbolic simulator
(SYBILIN [6]) to a simulation–based parameter extractor
(the FIT program). This integrated numerical–symbolic
simulation is used in a simulation–based data–driven pa-
rameter extraction program called FIT–S [7].
The paper briefly describes the basic characteristics

of numerical and symbolic simulations, discusses the
specifics of symbolic simulation in the context of parame-
ter extraction, and compares the performance of the pro-
posed integrated numerical–symbolic approach with a nu-
merical simulation for a typical example of parameter ex-
traction.

2. NUMERICAL AND SYMBOLIC

SIMULATION

Characteristic features of popular ‘third–generation’
(numerical) circuit simulators [8] include modified nodal
analysis and Newton–Raphson iteration to solve the sys-
tem of simultaneous nonlinear algebraic equations which
describe the balance of currents at the nodes of the net-
work in terms of node voltages (and some branch cur-
rents) X [9, 10]:

F (X) = 0

If the solution is denoted by X∗, the Newton–Raphson
iteration solves the original system of nonlinear equations
through a sequence of linear approximations to the non-
linear function F (X) at points X(j), j = 1, 2, ...

F (X(j)) +G(X(j))(X∗

−X(j)) ≈ 0

where G(X(j)) is the Jacobian of F with respect to X
evaluated at X(j). The (j + 1)–st approximation to the
solution X∗ is obtained by solving a system of simultane-
ous linear equations with respect to the correction ∆(j)

G(X(j))∆(j) = −F (X(j))

with X(j+1) = X(j) + ∆(j). The iteration terminates
when ∆(j) is sufficiently small.

This basic scheme is used in the DC operating point,
DC transfer curve, and even time–domain analysis; in
the last case, the dependence upon time is eliminated
by approximating the differential equations by difference
equations [10, 11]. Only frequency–domain (small–signal)
analyses are significantly different because they require
(for each frequency) a solution of a system of simultaneous
linear equations in the complex domain; this is often done
by separating the real and imaginary parts of coefficients
and variables, and solving a twice as large system of linear
equations in the real domain.

The principle of symbolic simulation [12, 13] is to derive
analytic (or symbolic) network functions using (some of)
circuit parameters as variables in the derived functions.
Circuit responses are obtained very efficiently by evalu-
ations of these symbolic functions for different values of
circuit parameters (i.e., variables).
For linear, lumped and stationary circuits, the transfer

functions H(s) of two–port networks are in the form of
rational functions of the complex frequency s:

H(s) =
Fj(s)

Fk(s)

in which the numerator Fj(x) and the denominator Fk(x)
are characteristic polynomials of the two–port:

Fi(s) =

ni∑

ℓ=0

sℓPiℓ(x1, ..., xm)

and the coefficients P(x1, ..., xm) are (nested or ex-
panded) polynomial functions in symbolic elements
x1, ..., xm. In the fully expanded form, the polynomial
coefficients are in the ‘sum–of–product’ form:

P(x1, ..., xm) =

p∑

i=1

Ci

r∏

j=1

xij

where Ci are real numbers, xij are circuit parameters,
and p and r depend upon the topology of the circuit.

Circuit representations used to derive the symbolic
functions are usually different than the ones used for nu-
merical simulation. The algorithm used in the symbolic
analyzer integrated with FIT uses the Coates flowgraph
representation, in which variables corresponding to graph
nodes are the same as those used in the modified nodal
analysis. The integration of these two simulators was thus
relatively straightforward.
An important aspect of integrated symbolic–numerical

analysis is the representation of symbolic functions. FIT
represents the (symbolic) characteristic polynomials in
a modified ‘sum–of–product’ form. By extracting com-
mon factors and rearranging the terms, the coefficients
P(x1, ..., xm) can be represented equivalently as

Fi = skiTi

ni∑

j=0

sjRij

where each Ti is a product of a constant Ci and (some)
symbols xik, k = 1, ...,mi

Ti = Ci

mi∏

k=1

xik

and each Rij , j = 0, 1, ..., ni, is a sum of products
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Fig.1. Representation of symbolic functions.

Rij =

ℓij∑

k=1

Cijk

mijk∏

ℓ=1

xijkℓ

FIT represents the products Ti and sums Rij using a
collection of arrays (actually, vectors) which store (real)
coefficients and (integer) indices to other arrays as well
as symbol identifiers (i.e., integer indices to a ‘Symbol
Table’ which is a link between the numerical and symbolic
simulators):

• Ntab – integer, the degrees of characteristic polyno-
mials,

• Ktab – integer, the exponents of s associated with
the products Ti,

• Ltab – integer, the numbers of terms in Rij sums,

• Ctab – real, the values of coefficients Ci and Cijk,

• Mtab – integer, the lengths of (i.e., the number of
symbols in) products Ti and all terms of Rij ,

• Itab – integer, the identifiers of symbols used in all
products Ti and all terms of Rij .

The organization of these arrays for 5 symbolic func-
tions, i = 1, ..., 5, is sketched in Fig.1. An outline of the
evaluation procedure using these arrays is given in the
next section.

3. PARAMETER EXTRACTION WITH

SYMBOLIC SIMULATION

Analysis of the small–signal, linear behavior of a circuit
is an important part of parameter extraction in general,
but it is especially significant in the case of microwave
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applications. Using symbolic rather than numerical sim-
ulation for linear analyses can save much of the ‘computa-
tional effort’ required by numerical simulation, and con-
siderably speed up the extraction process. Moreover, it is
often the case that the extraction of a set of parameters is
decomposed into a sequence of ‘partial extractions’, per-
formed on subsets of parameters (and relevant subsets of
measurement data [7]). For such partial extractions, the
sets of parameters usually contain only a few symbols,
which means that the corresponding symbolic functions
are also quite simple and their evaluations very efficient.
Since the frequency–domain analyses are performed for

the circuit with the same topology, the generation of sym-
bolic functions can be done only once. Furthermore, the
circuit parameters (or symbols) used in symbolic analysis
can be subdivided into variable symbols and fixed sym-
bols. Variable symbols can change their values from one
optimization step to another; these symbols include op-
timization variables, i.e., a subset of parameters updated
in the optimization loop (all such symbols are called di-

rect), and all those symbols whose values depend upon
the operating point solution (these symbols are called de-

pendent). All remaining symbols are ‘fixed’ in the sense
that their values do not change during the optimization
process. Consequently, all fixed symbols can be replaced
in the symbolic functions by their numerical values dur-
ing the generation of the symbolic functions, reducing the
functions and simplifying all subsequent evaluations.
The values of variable symbols can be retrieved in two

steps: (i) at the beginning of the optimization loop (for
all direct symbols), and (ii) after each operating point so-
lution (for all dependent symbols). The values of variable
symbols are used for a transformation of the symbolic
functions to their reduced form, performing evaluation of
all products Ti and sums Rij :

F
(r)
i = skiAi

ni∑

j=0

sjAij

where all Ai and Aij , j = 0, 1, ..., ni, are constants pro-
vided that no frequency–dependent elements are used.
Only this very simple polynomial form needs to be eval-
uated for each frequency.
For the representation of symbolic functions described

in Section 2, the outline of the evaluation of reduced func-
tions is as follows (Nf is the number of characteristic poly-
nomials, equal to 5 in Fig.1);

il := 0;

im := 0;

is := 0;

for i := 1 to Nf do

A[i] := Product(im,is);

for j := 0 to Ntab[i] do

sum := 0.0;

il := il + 1;

for l := 1 to Ltab[il] do

sum := sum + Product(im,is)

endfor;

A[i,j] := sum

endfor

endfor;

where the real function Product increments the variables
im and is, so the ‘passing by reference’ mechanism is
assumed (and ST denotes the “Symbol Table”, i.e., an
array containing the values of all symbols as well as their
attributes):

real function Product (int im, int is);

begin

real val;

int last;

im := im + 1;

val := Ctab[im];

last := is + Mtab[im];

while is < last do

is := is + 1;

val := val * ST[Itab[is]]

endwhile;

return val

end;

4. EXAMPLE

A comparison of execution times for numerical and
symbolic simulations is given for parameter extraction of
a submicron (0.25 µ) HEMT device on InP substrate.
A small-signal model (with its parameters) is shown in
Fig.2.

Lg Rg

Cpg

Ri

Cgs

Rd Ld

Cpd

Gds

Rs

Ls

gm Cds

Cgd

Fig.2. HEMT small-signal model.

For the model shown in Fig.2, the (five) reduced sym-
bolic functions are polynomials of degrees 3, 6, 8, 6 and
7, while the exponents of the common factors are equal
to -2, -2, -3, -3 and -3.
FIT–S performs all evaluations of the symbolic func-

tions in the real domain, independently for the real and
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imaginary parts because such an evaluation appears to
be the most efficient one. However, the evaluation of the
symbolic functions is only a rather small part of all com-
putations involved in parameter extraction; the values of
symbolic functions must be converted into S–parameters
(or some other form which is used by the measurement
data), they must be stored in a database of results, com-
pared with the corresponding measurement values to up-
date the value of the error function, etc. Therefore, a
more realistic performance comparison of symbolic and
numerical analysis is obtained by measuring the total ex-
ecution times for a typical extraction process. Such com-
parison results, with corresponding values of the speedup,
are shown in the following table in which the columns cor-
respond to data groups with 10, 20, 50 and 100 frequen-
cies (the execution times are in seconds, on a SPARCsta-
tion 2, for 100 iteration steps):

frequencies per data group 10 20 50 100
symbolic simulation 3.36 3.70 4.46 5.88
numerical simulation 8.69 12.4 23.7 42.3

speedup 2.6 3.4 5.3 7.2

The evaluation times of the polynomials account for a
rather small part of the total execution time of symbolic
analysis. The evaluation time of (reduced) characteristic
functions (i.e., the evaluation of the polynomials as well
as the exponential factors) and its contribution to the
execution time of symbolic analysis is as follows (the ex-
ecution times are in seconds, for a SPARCstation 2, and
correspond to 100 iteration steps):

frequencies per data group 10 20 50 100
symbolic simulation 3.36 3.70 4.46 5.88
function evaluation 0.14 0.28 0.72 1.45

percent of execution time 4.2 7.6 16.1 24.7

If the conversion of symbolic function values to S–
parameters is taken into account, the comparison is as
follows:

frequencies per data group 10 20 50 100
symbolic simulation 3.36 3.70 4.46 5.88
function evaluations 0.26 0.60 1.36 2.78

percent of execution time 7.7 16.2 30.5 47.3

The difference between the total execution times and
the evaluation times shown in the last table is practically
independent of the number of frequencies; this difference
corresponds to: (i) updating circuit parameters (in the
numerical simulator), (ii) finding operating point solu-
tions, (iii) retrieving the values of all variable symbols,
(iv) evaluation of coefficients of reduced functions, and
(v) storing the results and evaluation of the error function
(only this part depends upon the number of frequencies,
but its contribution is rather insignificant).

5. CONCLUDING REMARKS

An integration of symbolic approach with traditional
numerical circuit analysis can reduce several times the
simulation time. This reduction can be used for more
sophisticated simulation strategies, which – in general –
are more computationally demanding.
In the case of parameter extraction, the analyzed cir-

cuits are rather small (typically they contain less than
10 nodes and less than 15 elements), so the symbolic
functions are relatively simple and no function approx-
imations are really needed. Moreover, many symbols can
usually be eliminated during the generation of symbolic
function because their values do not change during the
extraction (fixed symbols). More general applications of
symbolic and integrated numerical–symbolic simulation
must take into account that for larger circuits the sym-
bolic functions become very complex, so additional func-
tion simplification is required [12].
The presented approach was developed with the as-

sumption that no frequency–dependent elements are used
in the small-signal analysis (the proposed ‘reduced’ does
not support frequency–dependency). If this assumption
is not true and frequency–dependent elements are to be
taken into account, the approach must be modified by in-
troducing slightly different reduction step, which creates
‘reduced symbolic products’ by eliminating all frequency–
independent symbols. These (usually small) reduced
symbolic products must be evaluated for each frequency
(instead of simple polynomials). An outline of the mod-
ified reduction step, which creates (new, reduced) tables
LtabR, CtabR, MtabR and ItabR) can be as follows:

il := 0;

im := 0;

is := 0;

imr := 0;

isr := 0;

for i := 1 to Nf do

sbase := isr;

imr := imr + 1;

CtabR[imr] := Reduce(im,is,isr);

MtarR[imr] := isr - sbase;

for j := 0 to Ntab[i] do

sum := 0.0;

imbase := imr;

il := il + 1;

for k := 1 to Ltab[il] do

isbase := isr;

val := Reduce(im,is,isr);

if isr = isbase then

sum := sum + val

else

imr := imr + 1;

CtabR[imr] := val;

MtabR[imr] := isr - isbase

endif

endfor;
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if sum <> 0.0 then

imr := imr + 1;

CtabR[imr] := sum;

MtabR[imr] := 0

endif;

LtabR[il] := imr - imbase;

endfor

endfor;

where the procedure Reduce deals with one symbolic
product, checking for frequency–dependent symbols, and
returning the product of all frequency–independent sym-
bols (while copying all frequency–dependent symbols to
ItabR):

real function Reduce (int im, int is, int isr);

begin

real val;

int last;

im := im + 1;

val := Ctab[im];

last := is + Mtab[im];

while is < last do

is := is + 1;

if frequency_dependent(symbol(Itab[is])) then

isr := isr + 1;

ItabR[isr] := Itab[is]

else val := val * ST[Itab[is]] endif

endwhile;

return val

end;

It should be observed that if there are no frequency–
dependent symbols, the (completely) reduced form (all
elements of MtabR are zeros and all elements of LtabR
are equal to 1) is equivalent to a ‘reduced polynomial’
but is less efficient in both representation and evaluation
time than a simple polynomial discussed earlier.
In FIT–S, symbolic analysis is used for (small–signal)

frequency–domain analyses only. If ongoing research suc-
ceeds in developing symbolic methods that can be applied
to non–LLS (linear, lumped and stationary) circuits, fur-
ther reduction of the ‘computational effort’ required for
simulation–based parameter extraction will be possible.
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