
3-rd Int. Conf. on Dependability of Computer Systems, Szklarska Poreba, Poland, 26-29 June 2008, pp.293-300.

Copyright c© 2008 IEEE (DOI 10.1109/DepCoS-RELCOMEX.2008.37).

Performance analysis of component–based systems

W.M. Zuberek and I. Bluemke

Department of Computer Science Institute of Informatics

Memorial University Warsaw University of Technology

St.John’s, Canada A1B 3X5 00-661 Warsaw, Poland

Abstract

Dependability assessment of component-based systems must include verification

of temporal and performance requirements as they can be of primary importance

for many real-time and embedded systems. This paper uses labeled timed Petri

nets as models of the behavior of components at their interfaces. These compo-

nent models are systematically composed into an integrated model of the system

which is used for verification of temporal characteristics and performance anal-

ysis.

1 Introduction

As software engineering continues to adopt a component-based approach toward the con-
struction of increasingly complex software architectures, the need to assess the compatibil-
ity and interoperability of the individual software components is becoming critical during
the integration phase of the software production process [9], [14]. This assessment includes
performance analysis of integrated systems and verification of temporal requirements which
can be of primary importance for many real-time and embedded systems. While manual
and ad hoc strategies toward component integration have met with some success in the
past, such techniques do not lend themselves well to automation. Clearly, a more formal
approach toward the compatibility and interoperability assessment is needed. Such a for-
mal approach would permit and assessment based on automaed techniques and would also
help promote the reuse of existing software components.

Components represent high-level software models; they must be generic enough to work
in a variety of contexts and in cooperation with other components, but they also must be
specific enough to provide easy reuse. Although there are many (informal) component
definitions [3], [12], very few attempts have been made to formalize these concepts. One
aspect which many component definitions have in common is the notion of an interface that
defines the component’s access points [13]. These access points allow other components
to use the services provided by a component. Normally, a component can have multiple
interfaces corresponding to its different access points.

This paper extends previous work on using Petri net models for the representation of
components’ behavior at their interfaces. It is known that languages defined by (labeled)
Petri nets include regular languages, some context–free and even context–sensitive lan-
guages [10]. Therefore, they are significantly more general than languages defined by finite

Performance analysis of component-based systems 294

automata [4], however the verification of component compatibility is significantly more
difficult than in the case of regular languages [7], [5].

Petri net models proposed earlier for the verification of component compatibility [6],
[7], are extended by temporal characteristics of provided services. This makes it possible
to study the performance aspects of modeled systems and to verify their time-critical
behavior.

Similarly as before, interacting components are composed in such a way that their inter-
operability can be assessed systematically. Reachability analysis, structural methods and
even simulation techniques can be used for performance analysis of the composed model.
The proposed approach is sufficiently flexible to allow multiple “client-like” and “server-
like” components to be combined in a variety of ways to achieve different specification
goals.

Section 2 recalls the besic concepts of timed Petri nets. Section 3 is a brief introduction
to component modeling using Petri nets. Composition of component models is formally
defined in Section 4 while Section 5 contains a simple example illustrating the proposed
approach. Concluding remarks are provided in Section 6.

2 Timed Petri Nets

Petri nets are known as a simple and convenient formalism for modeling systems that
exhibit parallel and concurrent activities [10], [11]. In Petri nets, these activities are
represented by the so called tokens which can move within a (static) graph–like structure of
the net. More formally, a marked place/transition Petri net M is defined as M = (N ,m0),
where the structure N is a bipartite directed graph, N = (P, T,A), with a set of places
P , a set of transitions T , a set of directed arcs A connecting places with transitions and
transitions with places, A ⊆ T × P ∪ P × T , and an initial marking function m0 which
assigns nonnegative numbers of tokens to places of the net, m0 : P → {0, 1, ...}.

A place is shared if it is connected to more than one transition. A shared place p is
free–choice if the sets of places connected by directed arcs to all transitions sharing p are
identical. Each free–choice place determines a free–choice class of transitions sharing it.
A shared place which is not free–choice is a conflict place and transitions sharing conflict
places are called conflicting transitions.

In order to study performance aspects of Petri net models, the duration of activities
must also be taken into account and included into model specifications. In timed nets [15],
occurrence times are associated with transitions, and transition occurrences are real–time
events, i.e., tokens are removed from input places at the beginning of the occurrence period,
and they are deposited to the output places at the end of this period (sometimes this is also
called a three–phase firing mechanism as opposed to one–phase instantaneous occurrences
of transitions in stochastic nets [1], [2] and time nets [8]). All occurrences of enabled tran-
sitions are initiated in the same instants of time in which the transitions become enabled
(although some enabled transitions cannot initiate their occurrences). If, during the oc-
currence period of a transition, the transition becomes enabled again, a new, independent
occurrence can be initiated, which will overlap with the other occurrence(s). There is no
limit on the number of simultaneous occurrences of the same transition (sometimes this is
called infinite occurrence semantics). Similarly, if a transition is enabled “several times”
(i.e., it remains enabled after initiating an occurrence), it may start several independent
occurrences in the same time instant.

Performance analysis of component-based systems 295

More formally, a timed Petri net is a triple, T = (M, c, f), where M is a marked net,
c is a choice function which assigns choice probabilities to free-choice classes of transitions
and relative occurrence frequencies to conflicting transitions, and f is a timing function
which assigns an (average) occurrence time to each transition of the net, f : T → R

+,
where R

+ is the set of nonnegative real numbers.
The occurrence times of transitions can be either deterministic or stochastic (i.e., de-

scribed by some probability distribution function); in the first case, the corresponding
timed nets are referred to as D–timed nets, in the second, for the (negative) exponential
distribution of firing times, the nets are called M–timed nets (Markovian nets). In both
cases, the concepts of state and state transitions have been formally defined and used in
the derivation of different performance characteristics of the model [15].

In timed nets, the occurrence times of some transitions may be equal to zero, which
means that the occurrences are instantaneous; all transitions with zero occurrence time are
called immediate (while the others are called timed). Since the immediate transitions have
no tangible effects on the (timed) behavior of the model, it is convenient to ‘split’ the set
of transitions into two parts, the set of immediate and the set of timed transitions, and to
first perform all occurrences of the (enabled) immediate transitions, and then (still in the
same time instant), when no more immediate transitions are enabled, to start the occur-
rences of (enabled) timed transitions. It should be noted that such a convention effectively
introduces the priority of immediate transitions over the timed ones, so the conflicts of
immediate and timed transitions are not allowed in timed nets. Detailed characterization
of the behavior or timed nets with immediate and timed transitions is given in [15].

3 Component model

The behavior of a component, at its interface, can be represented by a (cyclic) labeled
timed Petri net:

Mi = (Pi, Ti, Ai,mi, ci, fi, Si, ℓi),

where (Pi, Ti, Ai,mi, ci, fi) is a timed Petri net, Si is an alphabet representing the set of
services that are associated with transitions by the labeling function ℓi : Ti → Si ∪ {ε} (ε
is the “empty” service; it labels transitions which do not represent services).

In order to represent component interactions, the interfaces are divided into provider

interfaces (or p-interfaces) and requester interfaces (or r-interfaces). In the context of a
provider interface, a labeled transition can be thought of as a service provided by that
component; in the context of a requester interface, a labeled transition is a request for
a corresponding service. For example, the label can represent a conventional procedure
or method invocation. It is assumed that if the p-interface requires parameters from the
r-interface, then the appropriate number and types of parameters are delivered by the
r-interface. Similarly, it is assumed that the p-interface provides an appropriate return
value, if such a value is required. The equality of symbols representing component services
(provided and requested) implies that all such requirements are satisfied.

For unambiguous interactions of requester and provider interfaces, it is required that
in each p-interface there is exactly one labeled transition for each provided service:

∀ti, tj ∈ T : ℓ(ti) = ℓ(tj) 6= ε ⇒ ti = tj .

Performance analysis of component-based systems 296

Moreover, all providers must be ε–conflict–free, i.e.:

∀t ∈ T ∀p ∈ Inp(t) : Out(p) 6= {t} ⇒ ℓ(t) 6= ε

(the last condition could be used in a more relaxed form which is not discussed here for
simplicity of presentation.)

Component behavior is determined by the set of all possible sequences of services (re-
quired or provided by a component) at a particular interface. Such a set of sequences is
called the interface language. Interface languages are used to define component compati-
bility and to verify the compatibility of interacting components [6], [7].

Although some performance characteristics can also be derived from interfaces lan-
guages of interacting components, a more general approach is used, based on performance
analysis of the composed model. In this way all effects of potential concurrent executions
of requester and provider components can easily be taken into account.

4 Component composition

Verification of temporal behavior of interacting components is performed by analyzing
the composed model of interacting components. The composition operation follows the
CORD (compatible or deadlocked) composition proposed in [5], [6], [7] for the verification
of component compatibility.

4.1 Composition of a single requester wiit a single provider

A requester interface Mi = (Pi, Ti, Ai,mi, ci, fi, Si, ℓi) composed with a provider interface
Mj = (Pj , Tj , Aj ,mj , cj , fj , Sj , ℓj), where Pi ∩ Pj = Ti ∩ Tj = ∅, creates a net Mij .

The composition is based on service transitions, i.e., those transitions in the p-interface
and r-interface that have non-empty labels. Let:

T̂i = { t ∈ Ti : ℓi(t) 6= ε }, T̂j = { t ∈ Tj : ℓj(t) 6= ε }.

For a single service (denoted by “a”), the composition is outlined in Fig.1, which shows
a fragment of requester and provider interfaces before and after composition [5] [6].

tj

a

ti

a

p′′j
...

...

p′j
...

...

p′′ip′i

t′i t′′i

εε

......

p′ti

t′′′iε

p′tjp′j p′′tj p′′j

pti

tj

p′i
...

...

p′′i

Before Composition

Requester Mi

Provider Mj

Provider Mj

Requester Mi

After Composition

a

Fig.1. Composition of an r-interface with a p-interface.

Performance analysis of component-based systems 297

The composition of an r-interface Mi with a p-interface Mj , with the same sets of
services S = Si = Sj , is a net Mij = (Pij , Tij , Aij ,mij , cij , fij , S, ℓij) where:

Pij = Pi ∪ Pj ∪ { pti , p
′

ti
: ti ∈ T̂i } ∪ { p′tj , p

′′

tj
: tj ∈ T̂j };

Tij = Ti ∪ Tj − T̂i ∪ { t′i, t
′′

i , t
′′′

i : ti ∈ T̂i };

Aij = Ai ∪Aj − Pi × T̂i − T̂i × Pi − Pj × T̂j − T̂j × Pj ∪
{ (p′i, t

′′′

i), (t
′′′

i , p
′

ti
), (p′ti , t

′

i), (t
′

i, pti), (pti , t
′′

i), (t
′′

i , p
′′

i) :

ti ∈ T̂i ∧ p′i ∈ Inp(ti) ∧ p′′i ∈ Out(ti) } ∪
{ (p′j , t

′

i), (t
′

i, p
′

tj
), (p′tj , tj), (tj , p

′′

tj
), (p′′tj , t

′′

i), (t
′′

i , p
′′

j) :

ti ∈ T̂i ∧ tj ∈ T̂j ∧ ℓj(tj) = ℓi(ti) ∧
p′j ∈ Inp(tj) ∧ p′′j ∈ Out(tj) };

∀p ∈ Pij : mij(p) =

mi(p), if p ∈ Pi,

mj(p), if p ∈ Pj ,

0, otherwise;

∀t ∈ Tij : cij(t) =

ci(t), if t ∈ Ti,

cj(t), if t ∈ Tj ,

1.0, otherwise;

∀t ∈ Tij : fij(t) =

fi(t), if t ∈ Ti,

fj(t), if t ∈ Tj ,

0, otherwise;

∀t ∈ Tij : ℓij(t) =

ℓi(t), if t ∈ Ti,

ℓj(t), if t ∈ Tj ,

ε, otherwise;

where Inp(t) is the set of t’s input places and Out(t) is the set of its output places.
For each service, the composition merges the corresponding service transitions of the

requester and the provider, and introduces two new places in the provider and two new
places and three new transitions in the requester. The first new transition/place pair of the
requester (t′′′i and p′ti) allows each requester to initiate and control its interaction with the
provider without any effect from the provider. The other place (pti) is enveloped by two
transitions (t′i and t′′i) that straddle the boundary between each requester and the provider.
These elements help coordinate each requester’s access to the provider’s service transition
(the requester can request the same service several times). The two new provider’s places
(p′tj and p′′tj) with the requester places pti , ptk perform serialization of accesses to the
provider’s service.

All new transitions are assigned empty labels. The marking function of the composition
is based upon the markings of the interacting components – all new places introduced by
the composition are unmarked. Also, the composition introduces only conflict–free places,
so the choice probabilities are all equal to 1.0, and the occurrence times are equal to zero.

4.2 Composition of multiple requesters with multiple providers

In multirequester composition, several requester interfaces interact concurrently with the
same provider interface. For example, multiple web clients connecting to a web server
would constitute a multirequester composition.

Performance analysis of component-based systems 298

For a single service (denoted by “a”), the multirequester composition is outlined in Fig.2
which shows two requester interfaces and a provider interface before and after composition.
It can be observed that the composition is a systematic extension of the single requester
case.

...

p′i

Before Composition

tj

a

ti

tk

a

a

Requesteri

Requesterk

p′j
Provider

... ...

p′′j

...

p′′i

... ...
p′k p′′k

... ...

... ...

p′k p′′k

ptk

εε

p′tk

... ...

p′i p′′i

pti
εε

p′ti

p′j p′′j

t′k t′′k

ε

ε

t′i t′′i

t′′′i

t′′′k

Requesteri

Provider

Requesterk...

After Composition

p′tj

tj

a

p′′tj

Fig.2. Multirequester composition.

The composition introduces conflict places in sequentialization of (potentially concur-
rent) accesses of several requesters to the same provider’s service. All such conflicts are
resolved in a random way by using equal probabilities for all conflicting requests.

Let the family of requesters be denoted MI = {M1,M2, . . . ,Mk}. For simplicity it is
assumed that all components use one common set of services, soMi = (Pi, Ti, Ai,mi, ci, fi, S, ℓi),
i = 1, ..., k. Similarly, let the family of providers be denoted MJ = {M1,M2, . . . ,Mℓ},
Mj = (Pj , Tj , Aj ,mj , cj , fj , S, ℓj), j = 1, ..., ℓ. As in the case of single requester, the
composition is based on service transitions. Let:

T̂i = { t ∈ Ti : ℓi(t) 6= ε }, i ∈ I, T̂I =
⋃

i∈I

T̂i;

T̂j = { t ∈ Tj : ℓj(t) 6= ε }, j ∈ J, T̂J =
⋃

j∈J

T̂j .

Also, let the set of all the requesters’ and providers’ transitions (both labeled and
unlabeled), all places, all arcs and all final markings be denoted, respectively, as:

TI =
⋃

i∈I

Ti, PI =
⋃

i∈I

Pi, AI =
⋃

i∈I

Ai;

TJ =
⋃

j∈J

Tj , PJ =
⋃

j∈J

Pj , AJ =
⋃

j∈J

Aj .

The composition of a family of r-interfaces, MI = {M1,M2, . . . ,Mk}, with a family of
p-interfacesMJ = {M1,M2, . . . ,Mℓ}, is a netMIJ = (PIJ , TIJ , AIJ , L,mIJ , cIJ , fIJ , S, ℓIJ)

Performance analysis of component-based systems 299

where:

PIJ = PI ∪ PJ ∪ { pti , p
′

ti
: ti ∈ T̂i ∧ i ∈ I } ∪ { p′tj , p

′′

tj
: tj ∈ T̂j ∧ j ∈ J};

TIJ = TI ∪ TJ − T̂I ∪ { t′i, t
′′

i , t
′′′

i : ti ∈ T̂i ∧ i ∈ I };

AIJ = AI ∪AJ − PI × T̂I − T̂I × PI − PJ × T̂J − T̂J × PJ ∪
{ (p′i, t

′′′

i), (t
′′′

i , p
′

ti
), (p′ti , t

′

i), (t
′

i, pti), (pti , t
′′

i), (t
′′

i , p
′′

i) :

ti ∈ T̂i ∧ i ∈ I ∧ p′i ∈ Inp(ti) ∧ p′′i ∈ Out(ti) } ∪
{ (p′j , t

′

i), (t
′

i, p
′

tj
), (p′tj , tj), (tj , p

′′

tj
), (p′′tj , t

′′

i), (t
′′

i , p
′′

j) :

tj ∈ T̂j ∧ j ∈ J ∧ ti ∈ T̂i ∧ i ∈ I ∧ ℓj(tj) = ℓi(ti) ∧
p′j ∈ Inp(tj) ∧ p′′j ∈ Out(tj) };

∀p ∈ PIJ : mIJ(p) =

mi(p), if p ∈ Pi ∧ i ∈ I,

mj(p), if p ∈ Pj ∧ j ∈ J,

0, otherwise;

∀t ∈ TIJ : cIj(t) =

ci(t), if t ∈ Ti ∧ i ∈ I,

cj(t), if t ∈ Tj ∧ j ∈ J,

1.0, otherwise;

∀t ∈ TIJ : fIj(t) =

fi(t), if t ∈ Ti ∧ i ∈ I,

fj(t), if t ∈ Tj ∧ j ∈ J,

0, otherwise;

∀t ∈ TIj : ℓIj(t) =

ℓi(t), if t ∈ Ti ∧ i ∈ I,

ℓj(t), if t ∈ Tj ∧ j ∈ J,

ε, otherwise.

It can be shown that if a family of r-interfaces MI = {M1,M2, . . . ,Mk} is compatible
with a p-interface, Mj , then each r-interface Mi, i = 1, 2, . . . , k, is also compatible with
Mj .

The presented multirequester composition model can represent pragmatic features of
traditional software architectures. For example, the notion of resource exhaustion can be
represented by initially marking a provider with a finite number of tokens in the place
connected to its first operation. As requesters connect with the provider, the provider’s
tokens are transferred from this place to implement the interaction. When this place be-
comes unmarked, the provider is operating at full capacity and cannot serve more requests
concurrently. Any future requesters connecting with the provider would have to wait until
an earlier requester completes interacting with the provider.

Another observation is that the nature of the composition makes it impossible for a
requester to perform its operations in any order that is different from the one imposed by
the provider. Although the service transitions are ultimately shared by all requesters, the
orders in which each requester can access the services is consistent with the order imposed
by the provider.

5 Example

Fig.3(a) shows a simple configuration of two (cyclic) requester components and a single
provider of two services named a and b. In both requester components, the requested

Performance analysis of component-based systems 300

services are separated by a “local” operations with the execution time equal to 5 time
units (shown as an additional description of the corresponding transitions). It is assumed
(quite arbitrarily) that the execution time of both provided services is equal to 2 time units
(shown as descriptions attached to the transitions within the provider component). The
composed model is shown in Fig.3(b).

a b

Requester 2

5

Provider

a

b

Requester 1

ba

5
2

2

(b)(a)

a b

5

5

Fig.3. Composition of two requesters with a single provider.

Performance analysis of the composed model shown in Fig.3(b) results in the utilization
of the service transitions (labeled by a and b in Fig.3(b)) equal to 0.2222, which can easily
be deduced (in this particular case) from the analysis of each of the requester modules as
their requested services are provided in strictly sequential manner.

If this performance of the provider is unsatisfactory, the provider component can be
redesigned allowing more independence of the provided services. Fig.4(a) shows a model of
a component which still requires that each operation b is preceded by an operation a, but
which also allow the operations a of several requesters to be performed before any of the
corresponding b operations (which is not allowed in model shown in Fig.3). Consequently,
when one of the requesters performs its local operations separating the a and b service
requests, the second requester can have its services provided.

a b

Requester 2

5
2

2

Provider

a

b

Requester 1

ba

5

(b)(a)

5

5

a b

Fig.4. Composition of two requesters with a modified provider.

The utilization of the service transitions in Fig.4(b) is 0.3636, so it is significantly
improved with respect to the solution shown in Fig.3.

Performance analysis of component-based systems 301

6 Concluding Remarks

The paper proposes an extension of earlier work on component compatibility. The ex-
tension introduces temporal characteristics of services provided by interacting components
and this allows to study the performance properties of component-based systems.

The derived models of realistic systems can be quite complicated and their performance
analysis can become a non-trivial task. Fortunately, there are several techniques that can
be used for analysis of Petri net models. For small models, reachability analysis can be
used for all kinds of performance and verification aspects. For some classes of models,
structural analysis can very efficient avoiding the difficulties (and in particular, the “state
explosion”) of some models. For large models, the simulation techniques can offer the
robustness that is not provided by the other techniques.

The proposed approach is based on the integrated model of interacting components.
An interesting research question would be to to develop an incremental model development
as it would allow a software architect to “reuse” the verification steps for subsystems that
are not affected by modifications.

Another interesting related problem is how to obtain Petri net models of components;
could such models be generated (automatically) from component specifications or, perhaps,
from the implementation code?

Acknowledgement

The Natural Sciences and Engineering Research Council of Canada partially supported
this research through grant RGPIN-8222.

References

[1] M. Ajmone Marsan, G. Conte, and G. Balbo, “A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems”; ACM Trans. on Com-

puter Systems, vol.2, no.2, pp.93-122, 1984.

[2] F. Bause and P.S. Kritzinger, Stochastic Petri nets – an introduction to the theory

(Academic Studies in Computer Science); Vieweg Publ. 1996.

[3] A.W. Brown, “An overview of components and component–based development”; in
“Advances in Computers”, vol.54 – Trends in Software Engineering, pp.1-34, Aca-
demic Press 2001.

[4] S. Chaki, E.M. Clarke, A. Groce, S. Jha, H. Veith, “Modular verification of software
components in C”; IEEE Trans. on Software Engineering, vol.30, no.6, pp.388-402,
2004.

[5] D.C. Craig, “Compatibility of software components – modeling and verification”;
Ph.D. Thesis, Department of Computer Science, Memorial University, St.John’s,
Canada A1B 3X5, 2006.

[6] D.C. Craig, W.M. Zuberek, “Compatibility of software components – modeling and
verification”; Proc. Int. Conf. on Dependability of Computer Systems, Szklarska
Poreba, Poland, pp.11-18, 2006.

Performance analysis of component-based systems 302

[7] D.C. Craig, W.M. Zuberek, “Verification of component behavioral compatibility”;
Proc. Second Int. Conf. on Dependability of Computer Systems, Szklarska Poreba,
Poland, pp.294-301, 2007.

[8] P.M. Merlin and D.J. Farber, “Recoverability of communication protocols – implica-
tions of a theoretical study”; IEEE Trans. on Communications, vol.24, no.9, pp.1036–
1049, 1976.

[9] B. Meyer, “The grand challenge of trusted components”; Proc. 25-th Int. Conf. on
Software Engineering, Portland, OR, pp.660-667, 2003.

[10] T. Murata, “Petri nets: properties, analysis and applications”; Proceedings of IEEE,
vol.77, no.4, pp.541-580, 1989.

[11] W. Reisig, Petri nets – an introduction (EATCSMonographs on Theoretical Computer
Science 4); Springer-Verlag 1985.

[12] C. Szyperski, “Component software and the way ahead”; in “Foundations of
component–based systems”, G.T. Leavens, M. Sitaraman (eds.), pp.1-20, Cambridge
University Press 2000.

[13] C. Szyperski (with D. Gruntz, S. Murer), “Component software: beyond object–
oriented programming” (2 ed.); Addison-Wesley 2002.

[14] C. Szyperski, “Component technology – what, where, and how?”; Proc. 25-th Int.
Conf. on Software Engineering, Portland, OR, pp.684-693, 2003.

[15] W.M. Zuberek, “Timed Petri nets – definitions, properties and applications”; Micro-

electronics and Reliability (Special Issue on Petri Nets and Related Graph Models),
vol.31, no.4, pp.627-644, 1991.

