CENTRE FOR NEWFOUNDLAND STUDIES

MAY BE XEROXED

(Without Author’s Permission)

PRASANNANT DUTTA













INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, sul margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9 black and white photographic
prints are i for any 1s or il i ing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600



| L |

National Library Bibliothéque nationale

of Canada du Canada
jstions and wisiions et
s OV KIAORA s ON KIA O
Canada Canada
T —
Our il Koo thronce
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-55504-6

Canadi



Thei of i inhibitor, rolipram, on plasma tumor necrosis
factor-a levels and ics in lij ide-treated rats

by

Prasannajit Dutta

A thesis i to the School of Grad Studies in partial fulfillment of the
degree of Master of Science

Division of Basic Medical Sciences, Faculty of Medicine
i iversity of

September 2000
St. John’s, Newfoundland



ABSTRACT

Septic shock is the thirteenth most common cause of death in the United States and the
leading cause of death of individuals in intensive care units once it progresses to multiple
organ dysfunction syndrome (MODS) (Parrillo et al., 1993). Mortility ranges from 20%
to 95% (Eidleman et al., 1995; Parrillo et al., 1993; Wiessner et al., 1995). Septic shock
is caused most often by gram-negative bacteria and it has increased dramatically in the
past 10 years. Even when properly treated with available therapies, it carries a 60%

mortality (Wiessner etal., 1995).

The ini: ion of lij ide (LPS) has been reported to produce
hypotension and reduced cardiac output. The aim of the present investigation was to (a)
examine the influence of type IV phosphodiesterase inhibitor rolipram on
haemodynamics, plasma levels of tumor necrosis factor-o (TNF-ct) levels, and
production of inducible nitric oxide synthase (iNOS) in the lungs, ex vivo, in LPS-treated
rats, and (b) determine the cardiovascular effects of a selective a,-adrenoceptor agonist,
methoxamine, in the absence or presence of rolipram in rats treated with LPS.

Blood pressure, cardiac index, heart rate and arterial resistance were assessed in Long-
Evans rats anaesthetized with thiobutabarbital. Cardiac output was measured using
radioactive labeled microspheres and arterial blood pressure was measured via an intra-

arterial catheter. Plasma levels of TNF- a were by an i




and nitric oxide synthase (inducible & constitutive) activity in lung homogenate was
assessed by measuring the conversion of PH]L-arginine to "H]L-citrulline.
Administration of LPS (0.8 mg/kg i.v.) to animals resulted in a significant reduction in
cardiac index over time. Changes in arterial resistance, heart rate and blood pressure
were insignificant over time in LPS-treated animals. The administration of LPS to rats
resulted in a substantial rise in the plasma levels of TNF-c.. Furthermore, the injection of
LPS resulted in a significant increase in the iNOS activity in lungs. Pre-treatment with
rolipram (10 mg/kg) or dexamethasone (5 mg/kg) prevented the decline in cardiac index
in animals that received LPS. Infusion of methoxamine into animals injected with
rolipram and pre-treated with LPS did not result in significant changes in cardiac index.
In contrast, in animals treated with dexamethasone and subsequently LPS, infusion of
methoxamine significantly reduced cardiac index and increased blood pressure and
arterial resistance. Pre-treatment with rolipram (10 mg/kg) or dexamethasone in animals
injected with LPS significantly prevented the rise in TNF-a: when compared to respective
values in vehicle treated animals. However, pre-treatment with dexamethasone but not
rolipram was found to significantly reduce iNOS activity in the lungs of animals injected
with LPS.

The present observations support the view that cardiac index can be maintained in

animals treated with LPS i of iNOS inhibiti E our findings

seem to support the idea that induction of NOS may occur independently of TNF-a in

LPS-treated rats.
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1.0 INTRODUCTION

The cardiovascular system serves the body by supplying blood to the tissues in

volume to meet ic needs. Blood carried in the vasculature provides

oxygen and nutrients to different parts of the body and removes carbon dioxide and
metabolic waste products. These transport functions are made possible by the
cardiovascular system (Guyton et al., 1973; Sagawa, 1973; Levy, 1979; Greenway,

1982).

Itis ised that the main i of cardiac output are heart rate, cardiac

contractility, blood volume, preload and afterload (Greenway, 1982). Under certain

in the function of the cardiovascular system play
a critical role in the demise of circulation (Forfia et al., 1998). For instances, in
endotoxaemia, hypotension and reduction of cardiac output are evident. Recently it has

been suggested that changes that result from ia are due to an

of nitric oxide (NO) (Forfia et al., 1998). Clearly, there is evidence in the current

literature to indicate that the inistration of lij ide (LPS) results in the

induction of inducible nitric oxide synthase (iNOS) (Salter et al., 1991; Thiemermann et
al., 1993). Evidently, the administration of LPS has been reported to result in reduction
in cardiac output and associated with this is a fall in blood pressure (Poon et al., 1997;

Cheng et al., 1998). The prevailing view seems to support the idea that LPS mediated



reduction in cardiac output is the result of an over-production of NO, which is to be the

key mediator responsible for the collapse of the cardiovascular system.

1.1 Nitric oxide production

The ion of NO in ian cells is on the enzyme nitric oxide

synthase (NOS) which produces NO from the amino acid L-arginine (Palmer et al.,
1988). NO is generated by oxidation from the terminal guanidinium nitrogen of L-
arginine and the reaction is both oxygen and nicotinamide adenine dinucleotide
phosphate (NADP) dependent, and produces L-citrulline in addition to NO (Tayeh, 1989;

Bush et al,, 1992). To date, three different isoforms of NOS have been identified by

protein purification and cloning These isoforms are: (1) a
constitutive form (NOS-I or nNOS), which is dependent on Ca™ and calmodulin for its
enzymatic action and is mainly present in neural tissue, both central as well as peripheral
(Mayer et al., 1990; Forstermann et al., 1991; Schmidt et al., 1991). (2) A constitutive
(NOS-III or eNOS) form which also requires Ca™ and calmodulin for its enzyratic
action and is present to a major extent in vascular endothelial cells, (Pollock etal., 1991).
(3) A Ca” independent form (iNOS or NOS-II) which was originally isolated from
macrophages (Hevel et al., 1991), and subsequently found to be present in vascular
smooth muscle cells and hepatic cells and can be induced by the action of cytokines

(Stuehr et al., 1991; Evans et al., 1992; Wood et al., 1990).



NOS activity requires a particular cofactor, NADPH, as a source of electrons for
oxygen activation and substrate oxidation (Watanabe et al., 1992). The heme moiety of
NOS resembles cytochrome P-450. Due to this similarity, carbon monoxide (CO) and
other heme binding agents inhibit NOS activity. It is believed that the heme component
of NOS represents the catalytic center, responsible for binding and reducing molecular
oxygen and subsequent oxidation (Havel et al., 1991). Calmodulin is also important for
the regulation of NOS activity but different quantities of calmodulin are required by
different isoenzymes (Abu-Soud et al., 1993).

There are two reactions by which NO is produced from L-arginine. The initial
reaction involves N-hydroxylation of the guanidium nitrogen to form N-hydroxy-L-
arginine. This reaction utilizes one equivalent of NADPH and oxygen to conduct a
simple two-electron oxidation of nitrogen (Marletta et al., 1988). However, the
subsequent steps in the conversion of N-hydroxy-L-arginine to NO and L-citrulline
remain unclear. Recent studies supported the view that there are two mechanisms
responsible for the production of NO. First, nitroxyl (HNO) has been shown to possess
biological activity indistinguishable from NO, which seems attributable to the rapid
conversion of HNO to NO, by a variety of physiologically relevant oxidants including
superoxide dismutase (SOD), oxygen and hemoproteins (Fukuto et al., 1992, 1993).
Second, SOD has been demonstrated to directly enhance the formation of free NO from
L-arginine by NOS (Hobbs et al., 1994). Thus, SOD appears to accelerate the conversion

of an intermediate in the L-arginine and NO pathway. In a similar manner to cytochrome

-3-



P-450, NOS also appears to be able to uncouple from its substrate, L-arginine, and
generate superoxide anion and hydrogen peroxide via the NADPH-dependent reduction
of molecular oxygen (Klatt et al., 1992; Heinzel et al., 1992; Pou et al., 1992). Therefore,
it can be concluded that oxygen and NADPH are essential for the production of NO from

L-arginine and SOD plays an intermediate role.

1.2 Regulation of NO synthesis

Regulation of NOS activity and NO synthesis is different for constitutive and
inducible isoforms. For both nNOS and eNOS, the main mechanism of regulation is
provided by the Ca®”/ calmodulin system. At resting intracellular free Ca®” concentrations
([C2*]=100 nM), cNOS does not interact with calmodulin and therefore it is inactive.
But when [Ca® ], increases, calmodulin binds to NOS and stimulates NO formation

(Schmidt et al., 1991). In endothelial cells, the presence of specific receptors for

thrombin, or ad ine-5"-trij or simply shear stress of blood flow
increases [Ca®); and therefore activate eNOS activity (Buga et al., 1991). Thus, due to
cellular regulation of [Ca™]; the production of NO by cNOS can be controlled. It has

been d that i ists such as tri ine and

block [Ca®"); dependent activation of cNOS (Mayer et al., 1992; Schini et al., 1992).
Inducible form of NOS contains highly bound calmodulin and therefore it is not
controlled by Ca*™ (Xie et al., 1994). For this isoform, NO synthesis is regulated by

expression of protein that are not constitutively expressed in tissues, but that require



induction by specific cytokines such as tumour necrosis factor alpha (TNF-a).
interleukin-1, and interferon-gama (Hevel et al., 1991; Stuehr et al., 1991). The actions
of these cytokines cause an increase in the transcription of appropriate NOS gene thus
resulting in production of iNOS (Stuehr et al., 1991). Cytokines not only induce NOS but
also increase the availability of co-factors, to increase NO synthesis (Hattori et al., 1993).
Evans and associates (1992) have reported that cytokines such as TNF-a can regulate the
synthesis of iNOS from immune cells (Evans et al., 1992).

NOS activity also appears to be regulated by a negative feedback mechanism that is

mediated by NO. Recent studies have shown that NO generated by nNOS and iNOS is

capable of inhibitil ic activity (Gri etal, 1993). It appears
that the enzymatic activity of nNOS and eNOS may also be regulated by phosphorylation
(Bredt et al, 1991). In addition, it seems that cyclic adenosine 5'-monophosphate
(cAMP)-dependent protein kinase C and Ca®"/calmodulin-dependent protein kinase have
been found to modulate the activity of NOS (Bredt et al., 1991; Nakane et al., 1991).
These reports indicate that the activity of NOS is under the regulation of a number of

intracellular mediators.

1.3 Gram negative endotoxin and NOS
It has been found that during septic shock induced by endotoxin from gram-negative
bacteria, the left ventricular ejection fraction is decreased (Parker et al., 1990). This

reduction of ejection fraction indicates that there is a decrease in left ventricular



contraction due to reduction of the left ventricular end-systolic pressure to volume ratio

(Parker et al., 1990). A number of studies suggest that NO may play a pivotal role in

It has been that TNF-a, i in-2 (IL-
2), and interleukin-6 (IL-6), are mainly responsible for the induction of NO (Finkel et al.,
1992; Walley et al., 1994). As mentioned earlier these cytokines can induce a Ca®
independent form of NOS, iNOS (Gross et al., 1990). As result of induction of NOS,
there is enhanced production of NO within myocytes, and nearby endothelial and
macrophages which can cause a reduction of myocardial contractility (Finkel et al.,
1992). A number of potential pathways have been implicated by which NO may produce
depression of the myocardium. First, there could be an increase in turn-over of cyclic
guanosine monophosphate (cGMP) which can result in a decrease in cytosolic availability
of Ca™ leading to depression of the myocardium (Stuehr et al., 1991). Second, NO may
decrease myocardial contractility by forming toxic peroxynitrites in the presence of
oxygen free radicals (Schulz et al., 1992). Finally, NO binds to heme related proteins

thereby inhibiting the cytosolic and mitochondrial proteins (Estrada et al., 1992).

NOS inhibition during ia has been found to increase capillary
leak, and this may cause edema and thus “indirectly” impair ventricular systolic and
diastolic function (Hutcheson et al., 1990).

Previously, it has been demonstrated that NOS inhibitor, N*-nitro-L-arginine (L-
NNA), prevents the decrease in left ventricular contractility during endotoxaemia in intact

animals (Stuehr et al., 1991). Moreover, based on the measurement of the end-systolic



pressure volume ionship, it has been that L-NNA partially prevents the

ion in left i ility in ised pig with ia (Kaszaki

etal., 1996). Therefore, it would appear that NO plays a critical role in the depression of
the myocardium in the latter stages of sepsis.

Although NO has been suggested to be an important mediator in reducing
myocardial contractility in vitro (Finkel et al., 1992), it would appear that it has a minor

protective role in the early stage of i in ia in vivo

(Kaszaki et al., 1996). This is a paradoxical effect of NO which appears to occur at the
initial stages of sepsis. This difference between the in vitro and in vivo effects of NO
initially could be attributed to various protective effects of NO in the intact animal.

Certainly, NO may play a direct role in the mai and control of

blood flow by virtue of it dilator effect (Parker et al., 1990). In addition, NO may have an
indirect effect on microvascular blood flow by inhibiting platelet aggregation and
leukocyte adhesion (Radomski et al., 1990; Kubes et al., 1991). It is evident that a
comparison between the impact of inhibiting NOS in vivo and in vitro is quite complex as

different variables play different roles in each paradigm.

1.4 Septic shock and TNF-o
There is evidence in the current literature which indicates that administration of LPS
results in the release of cytokines such as TNF-a (Thiemermann et al., 1993; Liebeman et

al., 1989). In addition, it is believed that TNF-c is one of the factors that activates the



process responsible for INOS, ultimately leading to an over-production of NO in the body
(Ruetten et al., 1997). Multiple organ and system failure is the main pathology associated
with septic shock which occurs after a serious bacterial, viral,or parasitic infection initiate

aseries of i i ic, and ic reactions in the host (Solorzano

etal., 1987). Over the past ten years, it has been recognized that one class of endogenous

host mediators, the cytokines (TNF-a, and i in-1), contril igni to the
pathophysiology of septic shock (Lieberman et al., 1989). Cytokines are capable of
mediating a wide range of biological effects.

TNF-a. was first purified and characterised by Aggarwal and colleagues (1985).

They it that this ide has a weight of 17 kDa. Subsequently,
Beutler and associates (1987) reported that it contains 157 amino acids. It is secreted by
a variety of myeloid cells, such as monocytes, lymphocyte, Kupfer cells (Hesse et al.,
1988), and peritoneal macrophages (Halme et al., 1989). Mast cells and endothelial cells
also synthesize TNF-o. Expression of TNF-a is very strictly controlled on a
transcriptional as well as translational level (Beutler et al., 1988). Unstimulated
monocytes express low levels of TNF-c. messenger ribonucleic acid (mRNA), and

stimulation causes both increased translation and transcription of the mature protein

within minutes (Beutler et al., 1988). i ions and i ry stimuli
elicit TNF-a synthesis, including bacterial cell wall-derived LPS bacterial exotoxins,
protozoa, fungi and viral particles (Wong et al., 1986). Bacterial infections after injecting

bacterial endotoxin in rats, rabbits, and baboons cause an increase in circulating levels of



TNF-o which reaches a peak within 90 to 120 minutes post injection (Beutler et al.,
1985; Hesse et al., 1988). Further studies demonstrated that bolus infusion of endotoxin
in animals and humans induces a similar monophasic peak 1.5 hours after infusion
(Michie et al., 1988). Experimental studies have further demonstrated a causal
relationship between TNF-a and sepsis. Beutler and associates (1985) have reported that
circulating TNF-a. levels appear in rabbits within 15 minutes after a sublethal intravenous
dose of endotoxin, where TNF-a levels peaked within 2 hours, and returned to baseline
within 5 hours (Beutler et al., 1985). Hesse and coworkers (1988) demonstrated the same
findings in humans. They have shown that TNF-a is detectable in the human plasma
‘within 30 minutes and reaches the peak level at 1.5 hours after infusion of endotoxin, and

these occurred with the of ! (Michie

etal.,, 1988; Ding et al., 1989). Similar observations have also been reported in rabbits
(Ulevitch et al., 1989) and rats (He et al., 1992).

More specific effects of TNF-o were identified following administration of TNF-a..
For example, high doses of TNF-a in animals have been reported to precipitate a
syndrome similar to that seen in human septic shock (Tracey et al., 1987). Further, acute
infusion of TNF- in rats has been shown to produce hypotension , lactic acidosis, and
subsequently death (Tracey et al., 1986). Pathological findings following a lethal dose of
TNF-a have shown adrenal necrosis, pulmonary congestion, and intestinal congestion
and intestinal necrosis consistent with those found in septic shock (Tracey et al., 1987).

Furthermore, administration of TNF-c. to humans elicits similar metabolic and



hemodynamic changes, including an increase in glucose and free fatty acid turnover,
amino acid efflux and energy expenditure (Warren et al., 1987; Michie et al., 1988; Van
der Poll et al., 1991). Also TNF-c stimulated expression of a cell surface tissue factor
initiates coagulation via generation of thrombin (Van der Poll et al., 1990).

It has been reported that p i inistration of a anti TNF-a

antiserum protected mice from the lethal effects of endotoxin (Beutler et al., 1985).

Tracey and i (1987) also that the septic shock due to lethal

Escherichia coli infusion in primates can be prevented with a monoclonal murine anti-
human TNF-a antibody. These results clearly identified the proximal role of TNF-a in
the inflammatory cascade of sepsis. Although TNF-a has the capacity to elicit
deleterious responses in the host, it has also been found that TNF-a possesses significant

beneficial properties, including the capacity to elicit an endogenous anti-viral and anti-

bacterial response. It serves as an pyrogen with i 2 activity
(Dinarello et al., 1986). TNF-a promotes the release of neutrophil from the bone
marrow, as well as enhance neutrophil function. It initiates neutrophils margination,
transendothelial passage (Moser et al., 1989) and activation (Ulich et al., 1987), including
degranulation, production of super oxide radicals, and release of lysozymes (Shalaby et

al., 1985), which enhance antibody cellular ic and il mediated

inhibition of functional growth (Djeu et al, 1986). Furthermore, it promotes

of cells to ytes and as well as



of these cells. TNF-a also ici in inhibition of i ication of viral

and parasitic organisms (Beutler et al., 1985).

1.5 The role of cGMP/cAMP in TNF-a production

Most of the effects of NO are mediated through a unique cGMP signaling pathway.
NO activates the enzyme guanylate cyclase, and thereby elevating intracellular cGMP
concentration (Ignarro et al., 1982; Craven et al., 1978; Ignarro, 1990). This increase in
cGMP subsequently activates certain protein kinase, which phosphorylate target proteins
involved in regulation of cell function (Ignarro, 1990; Stewart et al., 1994; Kuo et al.,
1995). Although the role of cGMP as a NO second messenger is undisputed, some

findings have led to the ion regarding the exi of cGMP-il signal

transduction pathways for NO. Studies have shown that some effects of NO cannot be

reproduced with cell permeable cGMP analogs. For example, the synthesis of TNF-a. is

d in human perj blood cells (Van Dervort et al., 1994), as

well as LPS-sti i ions by NO (Lander et al., 1995).
Although NO increases cGMP concentrations in these cells, cGMP analogs have no
effect on TNF-ct production (Van Dervort et al., 1994; Lander et al., 1995). Collectively,
these investigations suggest that NO might use cGMP-independent signaling pathways
for some of its cellular functions.

Studies have found that enzyme adenylate cyclase can be modified by NO (Duhe et

al., 1994). Treatment of cell b with NO d cAMP ion by




inhibiting calmodulin activation of type I adenyl cyclase, presumably through thiol

at the calmodulin-binding site (Duhe et al., 1994; Vorherr et al., 1993).

Notably, increase in cAMP in leukocyte activate cAMP-depended protein kinase. This
cAMP-depended protein kinase phosphorylate transcription factors that bind to the
cAMP-response element on the TNF-c promoter, thereby inhibiting TNF-c mRNA
transcription (Zhong et al., 1995). The effect of NO on type [ adenyl cyclase suggest that
NO might up-regulate TNF-at systhesis in human monocytes by decreasing cCAMP

concentrations.

1.6 The relationship between TNF-c and phosphodiesterase

A part of the physiological responses to both cGMP and cAMP are governed by a

family of i (PDE) that i the cyclic ide to

biologically inert 5"-nucleotide. There are five sub-types of PDE that have been isolated

and ised. The Ca" i or type I PDEs catalyze both cGMP
and ¢cAMP hydrolysis and there are at least six isoforms of this type (Beavo et al., 1990;
Wu et al,, 1992). This form of PDE is found in high concentrations in the brain, heart,
lung and testis, and to a lesser extent in the kidney, adrenal glands, pancreas, and thyroid.
One of its isoforms, a 63-kDa protein, catalyses cGMP hydrolysis several times more
efficiently than cAMP hydrolysis (Sharma et al., 1986). Furthermore, a 75-kDa form that
is expressed in the central nervous system appears to specifically degrade cGMP

(Yamamoto et al., 1983). The Types Il and [II are both cAMP selective PDEs, but they



have significant relevance to the NO-cGMP transduction system since the rate of
hydrolysis by these two emzymes is stimulated and inhibited respectively, by cGMP
(Martins et al., 1982; Yamarmoto et al., 1983). Type IV is a cGMP specific PDE, but its
activity is not affected by cG:MP (Li et al., 1990; Charbonneau et al., 1990). Type V PDE
is an important regulator »f ¢cGMP function. This enzyme was first identified and
partially purified from rat lumg and platelets (Francis et al., 1980; Coquil et al., 1983). It
has been reported that the imtracellular concentration of cAMP plays an important role
during inflammation (Brandit et al., 1992). TNF-a production inside the monocyte and
macrophages increases durimg inflammation (Semmler et al., 1993; Evan et al., 1992;
Torphy et al, 1992; Trophay et al., 1993). CAMP analogs such as dibutyryl cAMP
(dbcAMP) can also increase the production of TNF-a. PDE inhibitors, attenuate the
catabolism of cAMP and cGMP and regulation of inflammatory function in many cells,
including monocytes, mast cells, basophils and neutrophils (Torphy et al., 1992;
Giembycz et al., 1992; Torphy et al., 1993). Evidently a specific putative selective
inhibitor of type IV PDE ro lipram, (Nemoz et al., 1985) reportedly was able to reduce
TNF-a production in vitro (Navarro et al., 1998; Navikas et al., 1998) and in vivo
(Griswold et al., 1998). It h.as been suggested from in vitro studies that PDE inhibitors
can suppress LPS induced TNF-a production, and the type-IV PDE is mainly involved in
this process. This type of agent which increases the intracellular concentration of cAMP

can inhibit the TNF-a production inside the macrophages.
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1.7 Nature of problem and Experimental Objectives

The administration of LPS has been reported to produce hypotension (Thiemermann,
1994). It has also been reported that a reduction in cardiac output is associated with the
fall in blood pressure (Poon et al., 1997; Cheng et al., 1998). It has also been suggested
that changes in haemodynamics resulting from the administration of LPS are the result of
an over-production of NO (Forfia et al., 1998). There is evidence in the literature that
indicates that the administration of LPS does result in the induction of inducible iNOS
(Salter et al.,, 1991; Thiemermann et al, 1993). It has been reported that LPS is
responsible for the over-production of NO within the system (Thiemermann, 1994). The
increase in NO production has been suggested to result in vascular hyporeactivity
ultimately producing loss of vascular tone and cardiovascular collapse (Fleming et al.,
1991; Gray et al., 1991; Kengatharan et al., 1996).

There is evidence in the current literature which indicates that administration of LPS

results in the release of cytokines such as TNF-o (Thi etal., 1993; Lieb n

etal., 1989). In addition, it is believed that TNF-c is one of the factors that activates the

process ible for INOS i i i leading to an ion of NO

in the body (Ruetten etal., 1997), and this over production of NO can be inhibited by
rolipram, a putative selective inhibitor of PDE type [V (Nemoz et al., 1985).
Collectively, published data in the literature seem to support the view that in septic shock

cardiovascular collapse results from an increase in plasma TNF-a which eventually

results in from an increase in ion of NO (K etal., 1996; Avontuur



etal., 1990). The ion of NO has been implis in the of

wvascular hypo- ivity treated i such as ine. Thus, the purpose

of the present investigation was twofold: (a) to examine the influence of rolipram on
hemodynamics, plasma TNF-a levels and production of iNOS in the lungs, ex vivo, in

LPS-treated rats, and (b) to ine the effects of administration of a

selective o agonist, ine to observe the vascular hypo-reactivity

and haemodynamics in LPS-treated rats in the absence or presence of rolipram.

in an additi series of i a parallel ison was made
between the effects of dexamethasone, an inhibitor of iNOS, and rolipram on the

cardiovascular system in rats treated with LPS.



2. METHODS

2.1. Surgical preparation of animals

Male Long-Evans rats (330 - 360 g) were anaesthetized with thiobutabarbital (100
mg/kg) ip.. Catheters (polyethylene tubing; L.D. 0.58 mm, O.D. 0.965 mm) were
inserted into the left and right iliac arteries and veins. The catheters inserted into left iliac
artery and vein were used for the measurement of blood pressure, and drug/vehicle
administrations, respectively, while the catheters inserted into right iliac artery and vein

‘were used for blood wil of radi i and return of blood samples

after each cardiac output i An additi catheter was inserted

into the left ventricle via the right carotid artery for injection of radiolabeled
microspheres. The animals were tracheotomized and allowed to stabilize for a period of 1
h while arterial pressure and heart rate were monitored continuously.

All catheters were filled with heparinized saline (25 iwml). Body temperature was

maintained at 37 + 1°C using a heating lamp and monitored using a rectal thy
Arterial blood pressure was recorded with a pressure transducer (Gould Statham, USA;
Model PD23B) connected to a Gould Universal amplifier and recorder (Gould, France,

Model 8188-2202-00). Heart rate was calculated from the blood pressure tracing.



2.2. Measurement of cardiac output

This i has been described in detail (Pang, 1983). Briefly,

suspensions of microspheres (Mandel Canada; 15 pm diameter) labeled with “'Co
(20,000-22,000 in 150 pL) were injected into the left ventricle over a period of 10 s.
Blood was withdrawn from the right femoral artery at the rate of 0.35 ml/min starting 15
s. before microsphere injection using an infusion/withdrawal pump (Kd Scientific USA;
Model 120) for 1 min. The blood sample and syringes used for injection of microspheres
or withdrawal of blood were counted for radioactivity at 80-160 Kev using a dual channel
automatic gamma counter (LKB Wallac, Clinic Gamma Counter, Canada; Model 1272).
The withdrawn blood sample was slowly injected back into the animals immediately after

counting of radioactivity.

2.3. Experimental Protocol

Series [: Animals were randomly assigned to two groups (n = 5): saline-treated (0.8
ml/kg bolus; Group I) and LPS (0.8 mg/kg; Group II). After the completion of surgery,
blood pressure and heart rate were continuously monitored for 60 min, after which each
animal received either saline or LPS. Five blood samples (120 ul each) were collected
into a pre-chilled syringe containing EDTA to yield a final concentration of 1 mg/ml.
After centrifugation, the plasma was frozen and stored at -80°C until it was assayed for
TNF-o.. The first blood sample was taken just before the administration of saline or LPS

and the other four samples were collected at 30, 60, 120 and 180 min post saline or LPS

-17-



administration. Cardiac output was also measured five times in these groups of animals,
the first measurement being just before the administration of saline or LPS and four other
measurements thereafter every hr. At the end of each experiment, the lungs were quickly
excised, placed in liquid nitrogen and stored at -80°C.

Series II: Animals were randomly assigned to four groups (n = 5): vehicle-treated
(2-hydroxypropyl-B-cyclodextrin; 2.0 mlkg; Group III), rolipram-treated (3 mg/kg;
Group IV and 10 mg/kg; Group V), and dexamethasone-treated (5 mg/kg; Group VI).
After the stabilization period each animal was treated with vehicle or drugs. 15-20 min

post treatment with vehicle/drugs a blood sample (120 pl) was collected for plasma TNF-

o as previ described, and cardiac output was measured. Each animal
(Groups I1I-VI) was then treated with a bolus dose of LPS (0.8 mg/kg). Two more blood
samples (120 ul each time) were subsequently collected for plasma TNF-a assessment at
60 and 120 min post-LPS treatment. Four hr after the administration of LPS a second
cardiac output measurement was made. Subsequently, methoxamine (100 or 300
pg/kg/min) was infused and cardiac output was measured 14-16 min after the start of
infusion. In each animal, repeated cardiac output measurements were made during the
infusion of each dose of methoxamine. The time allowed between each dose of
methoxamine was 15-16 min. At the end of each experiment, the lungs were quickly

excised, placed in liquid nitrogen and stored at -80°C.



2.4. TNF-a assay in plasma

The total TNF-a in plasma was ined by a ially available

enzyme linked immunosorbent assay kit (R&D Systems, MN, USA) for rat TNF-o.. The

sensitivity of the assay was 6 pg/ml.

2.5. Nitric oxide synthase assay in lungs

Nitric oxide synthase was assessed by measuring the conversion of "H]L-arginine to

[H]L-citrulline as ibed by Thi et al., (1993), with slight modifications.

Frozen lungs were homogenized on ice in buffer composed of (in mM): Tris-HCI, 50;

EDTA, 0.1; EGTA, 0.1; 2 12; and p yl fluoride, 1
(pH 7.4). 50 pl of homogenates were incubated in the presence of [H]L-arginine/L-
arginine (10 uM), NADPH (1.0 mM), calmodulin (10 pg/ml), tetrahydrobiopterin (5.0
HM) and Ca™* (2.0 mM) (total volume of 200 ul) at 37°C for 30 min. The reaction was
stopped using stop buffer (1.0 ml) of the following composition (in mM): HEPES, 20;
EDTA, 2.0; and EGTA, 2.0 (pH 5.5). Each sample was applied to a 2-ml column of
Dowex AG 50W-X8 (sodium form) (Bio-Rad Laboratory, Canada) and eluted four times
with 1.0 ml of stop buffer. Radioactivity in each sample was measured using a
scintillation counter (Beckman, USA; Model LS 3801). Assays were performed in
duplicate in the presence of NADPH to determine constitutive NOS activity, the absence
of NADPH to determine the extent of [*H]L-citrulline formation independent of NOS,

and in a Ca™-free buffer containing NADPH and EGTA (5 mM) to determine Ca®-



independent INOS activity. Protein concentration was measured using Bradford’s

method (Bradford, 1976).

2.6. Chemicals
Rolipram, thiobutabarbital, L-arginine and 2-hydroxypropyl-B-cyclodextrin were

from Research Bi i i (Natick, MA, USA). All other fine

chemicals were purchased from Sigma Chemical Company (Ontario, Canada). Rolipram

was dissolved in 2: B- in and this was the vehicle used in the

experiments.

2.7. Analysis of data
Mean arterial blood pressure (mmHg) is reported as diastolic blood pressure plus one
third of the difference between systolic and diastolic blood pressures. Cardiac output

(ml/min) was cal as the rate of wil of blood iplied by injected

c.p.m. divided by c.p.m. in withdrawn blood. Cardiac index is cardiac output divided by
body weight. Arterial resistance (mmHg min/ml/kg) was obtained by dividing mean
blood pressure by cardiac index.

The data were analyzed by one-way analysis of variance with repeated measures for
comparison. Duncans multiple range test was used for comparison between means. In all
cases, a probability of error of less than 0.05 was selected as the criterion for statistical

significance.



3. RESULTS

There were no signi changes in ic values (cardiac index, mean
blood pressure, arterial resistance and heart rate) over time afier the administration of
saline (Figure 1 & 2). In addition, plasma levels of TNF-a did not change following the
administration of saline (Figure 3).

The administration of LPS to animals resulted in a significant reduction in cardiac
index over time (Figure 1A). At 4 hr post-LPS treatment, cardiac index was reduced by
over 27% when compared to cardiac index measured prior to the administration of LPS.
Although arterial resistance and heart rate did increase over time in LPS-treated animals,
these changes were found to be insignificant (Figure |B & 2B). There were no
appreciable changes in mean blood pressure in animals treated with LPS over time
(Figure 2A). The administration of LPS to rats resulted in a substantial rise in the plasma
levels of TNF-a (Figure 3). The time course for the peak and subsequent decline in
plasma concentrations of TNF- was within the 180 min time frame after the injection of
LPS (Figure 3). In the present investigation, the peak concentration of TNF-a detected in
the plasma at 120 min post-LPS injection was 190 times that of control levels prior to
LPS administration. Furthermore, the injection of LPS resulted in a significant increase

in the iNOS activity in the lungs of animals ex vivo (Table 1).
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Figure 1. The effects of treatment of anaesthetized rats with saline (0.8 ml/kg) (closed
circles) or LPS (0.8 mg/kg) (opened circles) on (A) cardiac index and (B) heart
rate over time. Data represents the mean of five experiments + SEM.
“Significantly different from respective values in saline-treated animals, P<

0.05.



Time (h)

150

8 8

(8f1uw) 2055914 pooyg

)

© © « ~

(pwyupux8gww) sdueysisay (eany

Time (h)

-24-



Figure 2. The effects of treatment of anaesthetized rats with saline (0.8 ml/kg) (closed
circles) or LPS (0.8 mg/kg) (opened circles) on (A) blood pressure and (B)
arterial resistance over time. Data represents the mean of five experiments +
SEM.



[RRXXKRXXRIKRIR
CRGIRR AR KKK
b DO’Q‘Q’Q"".".’Q.".’

RRXTIIILLKS
RIS

30

20

20

(w/3u) [0-gNL] Bwseld

© o 0 °

Time (h)

-26-



Figure 3. The effects of treatment of anaesthetized rats with saline (0.8 ml/kg) (closed
bars) or LPS (0.8 mg/kg) (cross-hatched bars) on plasma concentration of

TNF-a over time. Data represents. the mean of five experiments + SEM.

different from values i ed animals, P <

0.05.
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Table 1. Values of enzymatic activity of inducible nitric oxide synthase (iNOS) and
constitutive (cNOS) forms of nitric oxide synthase (pmol/mg protein/min) in lungs of
various groups of animals treated with saline (0.8 mlkg; Group I), LPS (0.8 mg/kg;
Group II), and vehicle (2 ml/kg; Group III), rolipram (3 mg/kg; Group IV or 10 mg/kg;
Group V) and dexamethasone (5 mg/kg; Group VI) prior to treatment with LPS (0.8
mg/kg). Each value represents mean of five experiments + S.E.M.

Groups iNOS cNOS
Saline (T) 03004 04+0.1
LPS (I) 15.0+3.0* 28+08"
Vehicle+LPS (1II) 132+16* 18+06"
Rolipram3+LPS (IV) 19.0 £3.0* 18+06
Rolipram 10+LPS (V) 17.0 £4.0% 26+08
Dexamethasone (VI) 430+0.7* 0.80+0.2

*Significantly different from group [; P <0.05
*Significantly different from group VI; P <0.05
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3.1. Effects of and on ics in LPS-treated rats

Prior to the inistration of LPS, pr of animals with rolipram (3 & 10

mg/kg) or dexamethasone (5 mg/kg) did not result in significant changes to cardiac index,
mean blood pressure, arterial resistance or heart rate when compared to animals that were
treated with vehicle (Table 2 & 3). There were no significant changes detected in mean
blood pressure, arterial resistance or heart rate in animals that were pretreated with
vehicle, rolipram or dexamethasone after LPS injection (Table 2 & 3). In animals that
were pre-treated with vehicle, LPS-treatment reduced cardiac index by over 25% when
compared to cardiac index measured prior to the administration of LPS (Table 2). In
contrast, pre-treatment with rolipram (10 mg/kg) and dexamethasone prevented the
decline in cardiac index in animals that received LPS (Table 2). Cardiac index was
significantly higher in rolipram (10 mg/kg) and dexamethasone treated animals when

compared to vehicle-treated animals injected with LPS (Table 2).

3.2. Effects of o i ion on ics in LPS-treated rats

Infusion of ine (100 & 300 w in) did not appear to have any

significant effects on cardiac index in either vehicle-treated or rolipram-treated rats when
compared fo the respective values within each group prior to infusion of the o,-
adrenoceptor agonist 4 hr post-LPS treatment (Table 2). In contrast, the administration

of ine (100 & 300 pg/kg/min) to d rats produced a




Table 2. Haemodynamic changes in various groups of animals treated with LPS (0.8
mg/kg) in the absence or presence of vehicle (2 ml/kg), rolipram (3 or 10 mg/kg) or
dexamethasone (Dexa; 5 mg/kg). The values represents the mean of five experiments +

SEM.

Pre-LPS Post-LPS Methoxamine  Methoxamine

(H4hr)

(Groups) Cardiac Index (100 pg/kg/min) (300 pg/kg/min)
Vehicle ()~ 295+22.0 220+10.0° 236+11.0 200 +8.0
Rolipram IV) 334 +17.0 258 £12.0 258 +20.0 226+7.0
Rolipram (V) 342+15.0 280 £21.0° 288 +29.0° 290 +27.0%
Dexa (VI) 302+£27.0 318 +36.0° 192 +10.0° 216 +£20.0°

Mean Blood

Pressure

(mmHg)
Vehicle (IIT) 102+2.0 89+6.0 99 £4.0° 107 £3.0°
Rolipram (IV) 96 +3.0 81+6.0 84 +6.0* 85+6.0°
Rolipram (V) 103 +5.0 8360 88+50° 92+4.0°
Dexa (VI) 117+£5.0 107 +7.0 114£7.0° 116 £6.0°

*Significantly different from Pre-LPS within the same group; P < 0.05
“Significantly different from Post- LPS-treatment (+4 hr) within the same group; P < 0.05
“Significantly different from respective values in vehicle-treated group; P < 0.05

“Significantly different from

P

values in

d group; P <0.05



Table 3. Haemodynamic changes in various groups of animals treated with LPS (0.8
mg/kg) in the absence or presence of vehicle (2 mlkg), rolipram (3 or 10 mg/kg) or
dexamethasone (Dexa; 5 mg/kg). The values represents the mean of five experiments +
SEM.

Pre-LPS Post-LPS Methoxamine ~ Methoxamine
(+4hr)
(Groups) Ag (mmHg (100 pg/kg/min) (300 pg/kg/min)
Vehicle (IIT) 0.38+0.03 0.39+0.03 0.42 £0.02¢ 0.51 +0.02%
Rolipram (IV) 029 +0.01 0.31+0.02 0.33£0.03* 0.38 +£0.04°

Rolipram (V) 0.30£0.02 030+0.03 031£002  033£0.02°
Dexa (VI) 0.40+0.03 035£0.02 061£007°  0.56+0.05°

Heart Rate
Vehicle (IIT) 34411 430£28 392+23 382%19
Rolipram (IV) ~ 424+13 462+13 460 £ 12 456 17
Rolipram (V) 39819 44516 428+16 43024
Dexa (VI) 332+ 14 380+ 12 388 £24 372 £20

*Significantly different from Post- LPS -treatment (+4 hr) within the sam: group; P <0.05
“Significantly different from resp values in d group; P <0.05




significant reduction in cardiac index when compared to respective values prior to

infusion in ted rats 4 hr post-LPS treatment (Table 2).

of ine did not signil affect mean blood pressure and

arterial resistance in rolipram treated animals when compared to respective values prior to
infusion of methoxamine 4 hr post-LPS treatment. However, in vehicle-treated animals,
infusion of methoxamine significantly increased blood pressure and arterial resistance at
the higher but not lower dose when compared to respective values prior to the
administration of cov-adrenoceptor agonist 4 hr post-LPS treatment (Table 2 & 3).

A inistration of ine also signi i d mean blood

pressure and arterial resistance at both dose levels in dexamethasone-treated rats when
compared to respective values prior to the infusion of methoxamine 4 hr post-LPS
treatment (Table 2 & 3). Stimulation of c,-adrenoceptors did not result in any significant

changes in heart rate in any group of animals (Table 3).

3.3. Effects of rolipram and dexamethasone on plasma levels of TNF-a

Plasma concentrations of the cytokine TNF-a were significantly elevated in all
groups subsequent to injection of LPS (Table 4). In animals that had received rolipram
(10 mg/kg) or dexamethasone, significantly lower plasma levels of TNF-o were detected

at both 60 and 120 min post LPS when to

pective values in
vehicle-treated animals that had also received LPS (Table 4). However, even though

plasma levels of TNF-a were lower in LPS-treated rats administered the lower dose of
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Table 4. Plasma TNF-o values in various groups of animals treated with LPS (0.8
mg/kg) in the absence or presence of vehicle (2 mUkg), rolipram (3 or 10 mg/kg) or
dexamethasone (Dexa; 5 mg/kg). The values represents the mean of five experiments +
S.EM.

TNF-o (ng/ml)

(Groups) Pre-LPS Treatment  -hr Post-LPS 2-hr Post-LPS
Vehicle (IIT) 0.004 +0.001 6.0£2.1° 14838
Rolipram (IV) 0.008 +0.004 34£09° 9.6+3.5
Rolipram (V) 0.003 +0.001 3.1%1.0° 40£12*
Dexa (VI) 0.008 + 0.005 08+0.2% 0.9+0.3*

“Significantly different from respective values pre-LPS treatment; P < 0.05
*Significantly different from respective values in group III; P < 0.05



rolipram (3 mg/kg) when compared to vehicle-treated animals, differences in plasma

levels of TNF-a were not found to be significant (Table 4).

3.4. Effects of rolipram and dexamethasone on NOS activity in lungs in LPS-treated
animals

The activity of NOS was elevated significantly following the treatment of animals
with LPS (Table 1). Pre-treatment of animals with rolipram or vehicle did not affect
'NOS activity in animals that had received LPS. However, dexamethasone pre-treatment
significantly reduced iNOS activity in the lungs of animals that had received LPS when

compared to vehicle-treated animals that had also received LPS (Table 1).



4.0. DISCUSSION

Cytokines, such as TNF-a and interleukin-1f (IL-1B) play an important role in the
cardiovascular sequelae of endotoxaemia (Cavaillon et al., 1992; Blackwell and
Chritsman, 1996). In a number of pathopysiological states such as septic shock (Kumar
et al., 1996), acute viral myocarditis (Smith et al., 1992), cardiac allograft rejection

(Arbustini et al., 1991), jial infarction (Maury et al., 1990), and congestive heart

failure (Levine et al., 1990) the concentration of TNF-a in blood increases. Recently, it
has been reported that the administration of TNF-a alone or in combination with a low

dose of endotoxin causes several cardiovascular effects including peripheral

shock and organ damage (Billiau and

Vanderkerckhove, 1991). It has been established that during ia, there is a rise

in TNF-o concentration in blood (Beutler et al., 1985). However, it is not known if co-
infusion of TNF-c and [L-IB produces cardiovascular changes similar to those that have
observed with LPS administration. Like LPS, TNF-« also induces the Ca®" independent
isoform of NOS in vitro (Drapier et al., 1988; Kilboume and Belloni, 1990). Systemic
administration of TNF-a increases NO production (Kosaka et al., 1992). An increase in
NO production results in systemic vasodilatation (Kilbourne et al., 1990) and vascular
hyporeactivity to vasoconstrictors (Vicaut, 1992).

Gardiner and associates (1998) have reported that TNF-a. evokes significant

by ia, and dilatation in the renal and hindquarters



vascular beds. But this effect is not seen in mesenteric vessels due to endothelin
production by the TNF-a (Goto et al., 1996; Gardiner et al.,1996). It has been also
reported that TNF-a induces rapid (minutes) as well as slow (hours) effects on heart
muscle (Tracy et al., 1993). It has been established that TNF-a is responsible for many
of the cardiovascular sequelae of septic shock (Tracey and Cerami 1994).

Current evidence in the literature suggests that phosphodiesterase type-IV inhibitors
are potential tools that can inhibit the production of TNF-« as a result of the action in
elevating the intracellular cAMP level (Strieter et al., 1988; Endres et al., 1991).
Rolipram is a specific type [V PDE inhibitor, the type IV PDE being the predominant
isoenzyme present in monocytes and it is the enzyme responsible for controlling the
cellular production of TNF-a (Beavo and Reifsnyder, 1990; Nicholson et al., 1991;
Torphy et al., 1991). Semmler and associates (1993) have found that PDE inhibitors like
rolipram, methylxanthine and pentoxifylline, markedly suppress the TNF-a production in
human mononuclear cells. They also have established that the inhibitory action of
rolipram is very selective for decreasing TNF-a level rather than IL-1B level. The
substantial effectiveness of rolipram in suppressing TNF-a synthesis may be explained
by its effect in inhibiting type IV PDE (Torphy etal., 1991).

Evidence from the present study indicates that treatment with LPS results in a
progressive decline in cardiac index over time. There was also an increase in circulating
levels of TNF-a in plasma, as well as an induction of NOS activity in lungs ex vivo.

Pretreatment of animals with the putative selective phosphodiesterase type IV inhibitor,



rolipram, or synthetic icoi the decline in cardiac

output due to LPS administration. Rolipram and dexamethasone also significantly
reduced the rise in plasma levels of TNF-a that had resulted from injection of LPS.
However, only dexamethasone but not rolipram was able to significantly inhibit iNOS
activity in lungs of animals that had received LPS.

Administration of LPS to rats leads to hypotension (Thiemermann, 1994). More
recently, it was reported that a single bolus injection of LPS to the rat resulted in a
progressive reduction of cardiac output over time. Associated with this reduction in
cardiac output there was a reduction in mean circulatory filling pressure, an index of total
venous tone (Poon et al., 1997). Treatment of rats with LPS did not appear to
significantly affect vascular resistance to venous return (Poon et al., 1997). However,
endotoxic shock has been reported to lead to an impairment of portal venous flow with
portal venous resistance causing an increase in splanchnic blood pooling and subsequent
decrease in venous retumn and thus cardiac output in anaesthetized pigs (Ayuse et al.,
1995). Taken together, the evidence would suggest that the reduction in cardiac output in
endotoxic shock is, in part, due to a reduction in venomotor tone. In the present
investigation, data indicate that pretreatment with LPS resulted in a reduction in cardiac
output without any significant change in arterial resistance. In addition there were no
significant changes in heart rate. Thus it is possible that the reduction in cardiac output
observed in animals treated with LPS in the present investigation was the result of a

reduction in venous return (Poon et al., 1997; Ayus et al., 1995). It is possible that
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treatment with rolipram and dexamethasone augmented venous return thereby resulting in
the maintenance of cardiac output in LPS-treated rats.

However, it is also possible that reduction of cardiac output may be due to reduction
of cardiac contractility. Finkel and associates (1992) have reported that TNF-o causes a
reduction in the contractile force in the isolated hamster papillary muscle and this effect
can be blunted by NOS inhibitor (Finkel et al., 1992). A similar NO dependent effect of
TNF-o described in isolated rabbit ventricular tissues (Goldhaber et al, 1996). In
contrast, Yokoyama and associates (1993) showed that the reduction of contractile force
of feline myocytes induced by TNF-a was not affected by pretreatment with either N°-
nitro-L-arginine or N® monomethyl-L-arginine (Yokoyama et al., 1993). The impact of

TNF-c on isolated hamster papillary muscle, was immediate, and this effect of TNF-a on

the myocardium is unlikely to be due to ion of NO by the activation of INOS
(Finkel et al,. 1992; Goldhaber et al., 1996; Yokoyama et al., 1993). In the present

investigation, the reduction of cardiac output in LPS treated rats may have been due to a

reduction in ile function of the

It is evident from the present investigation that pre-treatment with rolipram in LPS-
treated rats did not result in inhibition of iNOS but that cardiac index in these animals
was maintained. This may imply that the reduction in cardiac index following the

administration of LPS is not ily due to an ion of NO. There is

" evidence to indicate that treatment of patients in a state of septic shock with a non

selective inhibitor of nitric oxide synthase, N°-nitro-L-arginine methyl ester, results in



increase mean arterial pressure and arterial resistance with concomitant reduction in

cardiac output (Avontuur et al., 1998). F under

treatment of rats with methylene blue in endotoxaemia results in increased arterial
resistance and reduction in cardiac output (Cheng et al., 1998). The evidence in the
literature seems to suggest that inhibition of nitric oxide synthase and/or NO pathways
does not improve cardiac output in endotoxaemia, and that cardiac output can be

of iNOS inhibition in

In the present investigation, we have found that pretreatment of animals with
dexamethasone attenuated the rise in TNF-o concentration in plasma following treatment
with LPS. This finding is consistent with the evidence in the literature which also
indicates that glucocorticoids are capable of suppressing the rise in TNF-a plasma
concentration (Stosic-Grujicic et al., 1982; Smith et al., 1980; Oppenheim et al., 1982). It

is also apparent from the present i igation that with also

inhibited the activity of iNOS. Such a finding is consistent with reports presented in the
literature (Beutler et al., 1990). However, in our view it is unlikely that the inhibitory
effect of this substance in maintaining the cardiac output is the result of inhibition of
NOS. It is perhaps most likely that the effects of dexamethasone in maintaining cardiac
output in LPS treated rats was in part, due to its effect in reducing levels of plasma TNF-
o. Itis evident from the literature that inhibition of NOS does not result in improvment

in cardiac output during endotoxaemia (Avontuur et al., 1998; Cheng et al., 1998).



NO is an important mediator for regulation of vascular tone as well as blood pressure

(Huang et al., 1995; Takahashi et al., 1995; Kassab et al., 1998). However evidence

suggest that there is an ion of NO in ic and ic shock

(Szabo and Thiemermann, 1994). It has also been established that the acute

sustained ion, and ivity to ic agonists, which

the ci y failure in ic shock in vivo, are mediated by increased

release of NO (Thiemermann and Vane, 1990; Kilbourn et al., 1990; Wright et al., 1992).

Under physiological it ion of NO from L-arginine by the constitutive

NO synthase (NOS) present in vascular cells keeps the vasculature in a state of active
vasodilatation (Rees et al., 1990). An enhanced formation of NO in response to LPS is an

‘mediator of i i) ilatation and vascular

to i agents in ia. In addition, LPS and a number of cytokines

induce NOS in phagocytic cells (Stuehr et al., 1989).

The current result indicate that infusion of methoxamine into animals injected with
rolipram and pre-treated with LPS did not result in a significant increase or decrease in
either cardiac index or heart rate. However, in animals treated with dexamethasone and
pre-treated with LPS, infusion of methoxamine significantly reduced cardiac index. This
was probably due to a substantial increase in arterial resistance. Since, dexamethasone
did inhibit iNOS, vascular reactivity to methoxamine was not reduced and thus an

increase in arterial resi: occurred ing infusion with




It appears that the reduction in cardiac output in dexamethasone treated rats was not
the result of significant changes in the heart rate. Similar pattern was observed with
infusion of noradrenaline in animals that were hemorrhaged but were pre-treated with the

same dose of dexamethasone (Tabrizchi, 1998). Under normal circumstances an increase

in arterial resi: ) can result in a reduction in cardiac output which occurs
due to increased impedance to flow (Nekooeian et al., 1996). Moreover, a reduction in
arterial resistance can result in the opposite effect and thus increase cardiac output under
normal, as well as pathophysiological conditions (Tabrizchi, 1997; Nekooeian et al.,
1998).

Treatment of animals with LPS resulting in endotoxaemia leads to an induction of
iNOS secondary to an elevation of circulating levels of TNF-a.. However, the decline in
cardiac output following administration of LPS does not correlate well with induction of
iNOS. At this point, it is evident that cardiac index is reduced within an hour following
injection of LPS. Similar observation were made by other investigators (Poon et al.,
1997; Forfia et al., 1998). It seems that iNOS begins to have a substantial impact on the
cardiovascular system within approximately 3 hr post-LPS injection (Thiemermann et al.,

1994). It is also evident from the present i igation that the peak ion of

TNF-a in plasma does not occur until at least 120 min post-LPS injections. Such an
observation is supported by other reports (Michie et al., 1998; Ruetten et al., 1997).

However, it is also apparent that the ion of TNF- is signi elevated one

hr post-LPS, and certainly this could trigger other processes that may have an immediate
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impact on cardiac output and circulatory system. It has been demonstrated that anti-TNF-

« antibodies prevent in-induced ion of (Tracey et

al., 1987). Tracey and associates also ized that i ion occurs in

response to TNF-a because they found that infusion of TNF-a produces hypotension and
decreased cardiac output whereas pretreatment with TNF-o. monoclonal antibody
attenuates these effects (1987). Myocardial contractility however, was not measured in
their studies. Collectively, evidence in the literature and present findings indicate that the
initial negative impact of LPS on the cardiovascular system, and especially on cardiac
output, may be independent of iNOS activity.

The possibility that LPS can produce induction of NOS independent of TNF-a also
needs to considered. Recently, it was reported that in vivo exposure of human colon
epithelial cells to Escherichia coli results in induction of NOS (Witthoft et al., 1998). In
addition, there is evidence in the literature which suggests that LPS is able to induce NOS
in cytokine receptor-deficient mice (Le Roy et al., 1998). Moreover, in a recent report, it
was demonstrated that endogenous TNF-a is not required for LPS-mediated induction of
NO in rats (Xie et al, 1997). However, in contrast to these observations, earlier studies

had indicated that pre-treatment with TNF-a

associated with shock in anaesthetized baboons (Tracey et al., 1987). Recently,
Thiemermann and associates (1993) had reported that pretreatment of rats with
monoclonal antibody for TNF-o. prevented the induction of NOS activity in the lung of

animals that were subsequently treated with LPS (Thiemermann et al., 1993). However,
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in the present investigation, the data indicate that a signi! ion in the cis i

levels of TNF-a in animals treated with rolipram did not prevent induction of NOS in the
lungs of animals treated with LPS. The present findings support the view that perhaps
mediators other than TNF-a may contribute to induction of NOS in animals treated with
LPS (Ruetten et al., 1997). However, it is possible that the effect of LPS may directly
activate pathways that result in induction of NOS.

To summarise, the present findings indicate that treatment of rats with LPS results in
a reduction in cardiac index, elevated plasma levels of TNF-a, as well as, induction of
NOS in lungs. Pre-treatment with rolipram and dexamethasone prevents the decline in
cardiac index and significantly reduces the rise in plasma levels of TNF-a as a result of
LPS. Our findings show that dexamethasone inhibits induction of NOS where as

rolipram does not. The results suggests that the induction of NOS may occur, in part,

of TNF-a. F it ing TNF-a may affect cardiac output

independent of iNOS.
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