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Abstract

Multithreaded distributed–memory multiprocessor
architectures are composed of a number of (multi-
threaded) processors, each with its memory, and an
interconnection network. The long memory latencies
and unpredictable synchronization delays are toler-
ated by context switching, i.e., by suspending the cur-
rent thread and switching the processor to another
‘ready’ thread provided such a thread is available. Be-
cause of very simple representation of concurrency and
synchronization, timed Petri net models seem to be
well suited for modeling and evaluation of such ar-
chitectures. However, accurate net models of multi-
threaded multiprocessors become quite complicated,
so their analysis can be a nontrivial task.

This paper describes a timed colored Petri net
model of a multithreaded multiprocessor architecture,
and presents some results obtained by simulation of
this model. A simplified approach to modeling such
architectures is also proposed.

1. Introduction

Current microprocessors employ various techniques
to increase parallelism and processor utilization. For
example, modern superscalar architectures, such as
DEC’s Alpha [9], PowerPC [22] or SUN’s Ultra-
SPARC [23], issue up to four instructions per cy-
cle. Multiple instruction issue increases performance,
but is limited by instruction dependencies and long–
latency operations within the single executing thread.

Multithreading provides a means of tolerating long,
unpredictable communication latency and synchro-
nization delays. Its basic idea is quite straightforward.
In a traditional architecture, when a processor accesses
a location in memory, it waits for the result, possibly
after executing a few instructions that are independent
of the memory operation. In a large multiprocessor,
this wait may involve more than one hundred cycles [8]
since the memory request may need to be transmitted

across the communication network to a remote mem-
ory module, serviced, and then the value returned. As
a result, the utilization of the processor tends to be
low. Alternatively, if the processor maintains multiple
threads of execution, instead of waiting the processor
can switch to another thread and continue doing useful
work. With multithreading, the processor utilization
is largely independent of the latency in completing re-
mote accesses.

Several multithreaded architectures have recently
been proposed in the literature [1, 6, 8, 10, 11, 15]. An-
alyzing the performance of such architectures is rather
involved as it depends on a number of parameters re-
lated to the architecture — memory latency time, con-
text switching time, switch delay in interconnection
network — and a number of application parameters —
number of parallel threads, runlengths of threads, re-
mote memory access pattern and so on. The perfor-
mance of multithreaded architectures have been eval-
uated using discrete–event simulation [11, 15, 10], an-
alytical models — using either queuing networks or
Petri Nets [2, 5, 17, 18, 14, 20], or using trace-driven
simulation [24].

Petri nets have been proposed as a simple and con-
venient formalism for modeling systems that exhibit
parallel and concurrent activities [19, 16]. In order
to take the durations of these activities into account,
several types of Petri nets with time have been pro-
posed by assigning firing times to the transitions or
places of a net. In timed nets [25], deterministic or
stochastic (exponentially distributed) firing times are
associated with transitions, and transition firings oc-
cur in real–time, i.e., tokens are removed from input
places at the beginning of the firing period, and they
are deposited to the output places at the end of this
period. In color nets [13], tokens are associated with
attributes (called colors), so different activities can be
assigned to tokens of different types.

The behavior of timed net models can be deter-
mined by systematic analysis of all possible states
(the so called reachability analysis), or by simulation.
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Since timed nets are discrete–event systems, typical
discrete–event simulation techniques, and in particu-
lar, event–driven simulation, can be used for analysis
of the behavior of net models.

This paper describes a multiprocessor multi-
threaded architecture in a greater detail, outlines its
timed Petri net model, and presents some performance
results obtained by simulation of this model. An al-
ternative modeling approach, taking into account the
symmetries of the model, is also presented and its re-
sults are compared with those obtained for the original
model.

2. Multithreaded Multiprocessor
Architecture

In the multithreaded execution model, a program
is a collection of partially ordered threads, and a
thread consists of a sequence of instructions which
are executed in the conventional von Neumann model.
Scheduling of different threads follows the data–driven
approach.

Switching from one thread to another is performed
according to one of the following policies [7]:

• Switching on every instruction: the processor
switches from one thread to another every cycle.
In other words, it interleaves the instructions from
different threads on a cycle-by-cycle basis [21].

• Switching on block of instructions: blocks of in-
structions from different threads are interleaved.

• Switching on every load: whenever a thread
encounters a load instruction, the processor
switches to another thread after that load instruc-
tion is issued. The context switch is irrespective
of whether the data is local or remote [6].

• Switching on remote load: processor switches to
another thread only when current thread encoun-
ters a remote access [1].

A model where the context switching takes place
on every load is assumed in this paper (concluding re-
marks contain a brief discussion of the other models).
That is, if the executed instruction issues an opera-
tion for accessing either a local or a remote memory
location, the execution of the current thread suspends,
the thread changes its state to waiting, and another
ready thread is selected for execution. When the long–
latency operation for which a thread was waiting is
satisfied, the thread becomes ready and joins the pool
of ready threads waiting for execution. The thread
that is being executed is said to be executing. Thus in

a model of multithreaded execution, a thread under-
goes state transitions shown in Fig.2.1.

Executing

Ready Suspended

Fig.2.1. State transitions of a thread.

The average number of instructions executed by a
thread before issuing a load operation (and switching
to another thread) is called thread runlength, and is
one of the important parameters that affect the perfor-
mance of multithreaded architectures. When a thread
gets suspended, the processor saves the context of the
current thread and switches to another thread from
the Ready Pool (refer to Fig.2.2). It is assumed that
the context switching overhead is small in comparison
to the thread execution time.
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Fig.2.2. Architecture of single multithreaded processor.

The memory operation request of a suspended
thread is sent either to the Local Memory Queue or
to the Outbound Queue depending on whether the
access is local or remote. Operation requests from
other processors to this memory also arrive at the Lo-
cal Memory Queue through the Network Switch and
Inbound Interface (Fig.2.2). For each request serviced
by this Memory unit, a message is sent either to the
Outbound Queue or to the local synchronization unit
(not shown in Fig.2.2) depending on whether the op-
eration request has come from a remote node or this
processor. Thus remote memory requests (generated
by this processor) and responses to remote processors
(generated by the local memory) are queued in the
Outbound Queue. These are serviced by the Outbound

Interface and sent to remote nodes through the Net-

work Switch. A message sent to the synchronization
unit (either from the local memory or a remote mem-
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ory) causes the appropriate thread to become ready

and join the Ready Pool.
A constant parallelism model, under which each

processor owns n parallel threads which can be exe-
cuted only in that processor, is assumed. Threads in-
teract through shared memory locations. The shared
memory model assumed in this work is distributed
shared memory. That is, each processor contains some
part of the shared address space. As mentioned ear-
lier, all accesses to shared space are considered to be
long–latency operations whether the shared address
space is available locally or in a remote processor. The
memory access pattern is assumed to be uniformly dis-
tributed over all the processors in the system. The
probability that a long–latency operation is an access
to a remote processor is another important parame-
ter, which characterizes (in some sense) the locality of
memory references.

The nodes of a multithreaded multiprocessor ar-
chitecture are connected by a two-dimensional torus
interconnection network. Fig.2.3 sketches a 16–
processor system connected by a 4 × 4 torus net-
work. It is assumed that all messages in the system
are routed along the shortest paths, but in a non–
deterministic manner. That is, whenever there are
multiple (shortest) paths between the source and des-
tination, any of the paths is equally likely to be taken.
The delay for a message is proportional to the num-
ber of hops between the source and destination, and
it also depends upon the traffic in the chosen path.
The interface between the network switch and proces-
sor node is through a pair of outbound and inbound
network interfaces, as shown in Fig.2.2.

Fig.2.3. 16–processor system.

The delay of a single hop (the switch delay) is an-
other parameter in performance studies of multipro-
cessor architectures.

3. Petri Net Models

This section first briefly recalls basic concepts of

timed Petri nets, and then describes the timed net
model of the multithreaded architecture.

3.1. Basic concepts of timed Petri nets

The basic (place/transition) Petri net is usually de-
fined as a system composed of a finite, nonempty set
of places P , a finite, nonempty set of transitions T ,
a set of directed arcs A, A ⊂ P × T ∪ T × P , and
an initial marking function m0 which assigns nonneg-
ative numbers of so called tokens to places of the net,
m0 : P → {0, 1, ...}. Usually the set of places con-
nected by (directed) arcs to a transition is called the
input set of a transition, and the set of placed con-
nected by (directed) arcs outgoing from a transition,
its output set.

A place is shared if it belongs to the input set of
more than one transition. A net is conflict–free if it
does not contain shared places. A shared place is (gen-
eralized) free–choice if all transitions sharing it have
the same input sets. Each free–choice place deter-
mines a class of free–choice transitions sharing it. It
is assumed that selection of a transition for firing in
a free–choice class of transitions is a random process
which can be described by (free–choice) probabilities
assigned to transitions in each free–choice class. More-
over, it is usually assumed that the random choices in
different free–choice classes are independent one from
another.

A shared place which is not free–choice, is a con-
flict place. The class of enabled transitions sharing a
conflict place depends upon the marking function, so
the probabilities of firing conflicting transitions must
be determined in a dynamic (i.e., marking–dependent)
way. A simple but usually satisfactory solution is to
use relative frequencies of transition firings assigned
to conflicting transitions [12]; the probability of firing
an enabled transition is then determined by the ratio
of transition’s (relative) frequency to the sum of (rela-
tive) frequencies of all enabled transitions in a conflict
class. Another generalization is to make such relative
frequencies (and probabilities of firings) dynamic, de-
pending upon the marking function, for example, by
using the number of tokens in a place rather than a
fixed, constant number as the relative frequency.

In basic nets the tokens are indistinguishable, so
their distribution can be described by a simple mark-
ing function m : P → {0, 1, ...}. In colored Petri nets
[13], tokens have attributes called colors. Token col-
ors can be modified by (firing) transitions and also a
transition can have several different occurrences (or
variants) of its firings.

In order to study performance aspects of Petri net
models, the duration of activities must also be taken
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into account and included into model specifications.
Several types of Petri nets ‘with time’ have been pro-
posed by assigning ‘firing times’ to the transitions or
places of a net. In timed nets, firing times are associ-
ated with transitions (or occurrences), and transition
firings are ‘real–time’ events, i.e., tokens are removed
from input places at the beginning of the firing pe-
riod, and they are deposited to the output places at
the end of this period (sometimes this is also called a
‘three–phase’ firing mechanism as opposed to a ‘one–
phase’, instantaneous firings of nets without time or
stochastic nets).

In timed nets, all firings of enabled transitions are
initiated in the same instants of time in which the
transitions become enabled (although some enabled
transition cannot initiate their firings). If, during the
firing period of a transition, the transition becomes
enabled again, a new, independent firing can be ini-
tiated, which will ‘overlap’ with the other firing(s).
There is no limit on the number of simultaneous fir-
ings of the same transition. Similarly, if a transition is
enabled ‘several times’ (i.e., it remains enabled after
initiating a firing), it may start several independent
firings in the same time instant.

The firing times of some transitions may be equal to
zero, which means that the firings are instantaneous;
all such transitions are called immediate (while the
other are called timed). Since the immediate transi-
tions have no tangible effect on the (timed) behavior
of the model, it is convenient to fire first the (enabled)
immediate transitions, and then (still in the same time
instant), when no more immediate transitions are en-
abled, to start the firings of (enabled) timed transi-
tions. It should be noted that such a convention in-
troduces the priority of immediate transitions over the
timed ones, so the conflicts of immediate and timed
transitions should be avoided. Similarly, the free–
choice classes of transitions must be ‘uniform’, i.e.,
all transitions in each free–choice class must be either
immediate or timed.

3.2. Petri net model of the multithreaded

architecture

Each node in the torus network shown in Fig.2.3
contains a processor. A Petri net model of a node
is shown in Fig.3.1 which also shows the two switches
(one for incoming and one for outgoing traffic) and the
interconnection of the node with its four neighbors.

Execution of (ready) threads is modeled by Trun
with Proc representing the (available) processor and
Ready – the queue of threads waiting for execution.
Mem is a free–choice place, with a random choice rep-
resenting a request for accessing either local memory

(T loc) or remote memory (Trem); in the first case,
the request is directed to Lmem where it waits for the
Memory, and after accessing the memory, the thread
returns to the queue Ready of waiting threads. Mem-

ory is a shared place with two conflicting transitions,
Trmem (for remote accesses) and T lmem (for local
accesses); the resolution of this conflict (if both ac-
cesses are waiting) is based on marking–dependent
(relative) frequencies determined by the numbers of
tokens in Lmem and Rmem, respectively.

The free–choice probability of Trem (or of T loc) is
one of model parameters.

Requests for remote accesses are directed to Out,
and then, after a sequential delay (the switch mod-
eled by Sout and Tsout), to Net, where they are dis-
tributed to all four adjacent nodes with equal prob-
abilities. Similarly, the incoming messages (memory
access requests from remote nodes and responses to
remote accesses) are collected from all four neighbor-
ing nodes in Inp, and, after a sequential delay (Sinp
and Tsinp), enter Dec. Dec is a free–choice place with
three transitions sharing it: Tret, which represents
satisfied requests returning to their ‘home’ nodes; Tgo,
which represents requests as well as responses for-
warded to another node (another ‘hop’); and T local,
which represents remote requests accessing the mem-
ory at this node; remote requests are queued in Rmem
and served by Trmem when the memory module be-
comes available.

The traffic outgoing from a node (place Net) is
composed of requests and responses forwarded to an-
other node (transition Tgo), responses to requests
from other nodes (transition Trmem) and remote
memory requests originating in this node (transition
Trem). The free–choice probability of Tgo can be
determined from the ‘traffic patterns’ in the intercon-
necting network. Assuming that all (remote) memory
requests are uniformly distributed over the nodes, the
average number of hops can be calculated from the
lengths of the (shortest) paths between the nodes. For
a 16–processor system, for each node there are 15 re-
mote nodes, 4 of which are at the distance of 1 hop, 6
at the distance of 2 hops, 4 at the distance of 3 hops,
and 1 node at the distance of 4 hops, as sketched in
Fig.3.2, where “0” denotes the ‘reference node’. The
average distance is thus:

4 ∗ 1 + 6 ∗ 2 + 4 ∗ 3 + 1 ∗ 4

15
≈ 2 hops

Since the distribution of the distance of remote re-
quests, as modeled in Fig.3.1, corresponds to the ge-
ometric distribution, the average value for this distri-
bution is:
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Fig.3.1. Petri net model of a single node.

1

1− p
= 2 hops

so p, the probability that a request is forwarded to
a next node (i.e., the free–choice probability of Tgo)
is p = 0.5. It should be observed that this simple
model does not restrict forwarded requests to 4 hops;
consequently, there is a small probability (of the order
of 0.54) of requests forwarded beyond the limit of 4
hops.
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Fig.3.2. The minimal distance between nodes.

Accurate representation of the behavior of the in-
terconnecting network is quite important for the per-
formance of the whole system. Since the traffic is ‘two–
directional’, i.e., there are streams of requests (for re-
mote accesses) and also streams of responses (to these

requests) that ‘return’ to the original nodes, the total
traffic in the switches of the interconnecting network
must take into account both these streams. In order to
separate these two streams, the model uses two colors
of tokens in the interconnecting network, “F” for for-
ward moving requests and “B” for backward moving
responses. The requests generated by Trem are thus
of color “F”, while those by Trmem are of color “B”.
Moreover, the stream of colored tokens reaching Dec
is separated so that only tokens of color “F” enable
T local and only tokens of color “B” enable Tret (Tgo
is enabled by tokens of both colors). Consequently,
the free–choice probability of T local is 0.5 for color
“F” (and 0 for color “B”), and of Tret is 0.5 for color
“B” (and 0 for color “F”); free–choice probability of
Tgo is 0.5 for both colors, “F” and “B”.

There is one more consequence of using colored
tokens in the interconnecting network: the switches
represented by Tsinp and Tsout have different oc-
currences for different colors of tokens, and these oc-
currences are in conflict because of sharing common
places Sinp and Sout, respectively. The solution
used to resolve these conflicts is based on marking–
dependent (relative) frequencies, determined by the
numbers of tokens in Inp and Out, respectively (simi-
larly to the conflict resolution of T lmem and Trmem).

There are five timed transitions in the model shown
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in Fig.3.1. It is convenient to assume that all firing
times are expressed in terms of the ‘cycle time’ used
as a ‘unit of time’.

The memory cycle time (T lmem and Trmem) is
assumed to be 10 units of time.

The execution time of a thread (or the runlength),
represented by the firing time of Trun, which is one
of the main parameters of the performance study, is
assumed to be exponentially distributed; typical val-
ues of the runlength are 5, 10 and 20 units of time
(in fact, a geometric distribution with the same av-
erage value would be a more realistic representation
of the runlength, but the model with exponential dis-
tribution is simpler and more efficient for simulation,
providing results which are practically the same; the
differences between results for these two distributions
are less than 1 percent).

It should be observed that the context switching
time is not explicitly represented in the model; it is
assumed that this time is included in the firing time
of Trun (explicit representation of context switching,
with a typical value of 1 time unit, does not affect the
performance results in a significant way; the differ-
ences between exact representation of context switch-
ing and simplified one, as in Fig.3.1, are less than 1
percent).

The switch delay time (represented by the firing
times of Tsinp and Tsout) is another model parameter
with typical values of 5 and 10 units of time.

The initial marking function assigns a single token
to Proc,Memory, Sinp and Sout, and a number of to-
kens to Ready. The initial marking of Ready is equal
to the (average) number of threads; it is another im-
portant parameter of the model, and its typical values
are between 2 and 20.

The model parameters are thus (m0 denotes the
initial marking, f the firing times, and c the free–
choice probabilities of transitions):

Parameter Model
Number of threads m0(Ready)
Average runlength of a thread f(Trun)
Probability of local access c(T loc)
Switch delay f(Tsinp),

f(Tsout)

4. Simulation Results

Event–driven simulation [26] was used to obtain
performance characteristics for the timed net model
of the multithreaded multiprocessor architecture with
different combinations of the values of modeling pa-
rameters. Some of these results are presented in

Fig.4.1 to Fig.4.4. Fig.4.1 shows the utilization of the
processor (at each node) as a function of the number of
threads and the probability of long–latency accesses to
the local memory; the remaining two parameters are
constant (f(Trun) = 10, f(Tsinp) = f(Tsout) = 10).
The results confirm the rather straightforward pre-
diction that the utilization grows with the number
of threads (the probability that the processor is idle
becomes smaller) and with the probability of local
long–latency accesses (because the threads remain sus-

pended for shorter periods of time).
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Fig.4.1. Processor utilization.

Fig.4.2 shows the utilization of the memory for re-
mote accesses as a function of the number of threads
and the probability of remote memory accesses (it
should be noted that in Fig.4.2 the probability of re-
mote accesses is used rather than local accesses).
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Fig.4.2. Memory utilization for remote accesses.

The results show a large ‘saturation’ region cor-
responding to larger number of threads and smaller
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probabilities of local memory accesses (i.e., greater
probabilities of remote accesses). This saturation, at
the level of utilization equal to 0.25, is due to the in-
put switches Tsinp which become the bottleneck of
the system. It can be observed that the throughput of
transitions Tsinp in the 16–processor system is four
times greater than the throughput of Trmem (the
free–choice probability of T local is 0.5 for color “F”,
that of Tret is 0.5 for color “B”, and the average num-
bers of tokens of colors “F” and “B” passing through
Tsinp are equal). Since the firing times of Tsinp and
Trmem are equal (both are 10 time units), the utiliza-
tion of Trmem close to 0.25 corresponds to near max-
imum (i.e., close to 1.0) utilization of Tsinp. It should
be noticed that if the switch delay (i.e., f(Tsinp) and
f(Tsout)) is reduced to 5 time units (and all other
parameters remain the same), the saturation level of
Trmem’s utilization increases to 0.5 .

Fig.4.3 shows the utilization of the processor as a
function of the number of threads and the probability
of long–latency accesses to the local memory (as in
Fig.4.1), but with a different value of the runlength
(f(Trun) = 5 in Fig.4.3).
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Fig.4.3. Processor utilization.

The utilization of the processor is approximately
half of that in Fig.4.1 (if all long–latency accesses are
to the local memory, the interconnecting network can
be ignored, each processor can be analyzed in iso-
lation, and the processor utilization, for large num-
bers of threads, approaches f(Trun)/f(Trmem) if
f(Trun) ≤ f(Trmem)).

Fig.4.4 shows the effect of the probability distribu-
tion function on the utilization of the processor; more
specifically, the results shown in Fig.4.4 correspond to
the case when all firing times are exponentially dis-
tributed (so the model is Markovian), and the average
values of firing times are equal to those used for the

results shown in Fig.4.1.
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Fig.4.4. Processor utilization.

The results in Fig.4.4 are very similar to those in
Fig.4.1, which indicates that the model is rather in-
sensitive to the probability distribution functions.

Many other characteristics can be obtained from
simulation results, for example, the waiting times of
Ready threads, utilizations of the network switches,
average queue lengths and waiting times of requests
at network switches (in the forward and backward di-
rections), the latency of the interconnecting network.

5. Simplified Model

The model discussed in Section 3 is composed of
many identical submodels (of nodes), connected by a
two–dimensional torus network. An obvious question
is if this ‘regularity’ of the model can be used for model
simplification.

A similar problem is discussed in [4] and [3]. In
both cases, however, the structure of the models is
significantly different. In [4], the processors are con-
nected by buses, so the ‘folding’ of individual processor
models does not require any other adjustments of the
model. In [3], the multiprocessor system is composed
of (identical) transputer–like processors, each of them
running memory handling, receiver, transmitter and
application tasks. The model can easily be ‘folded’ to
a single processor in which the outgoing ‘stream’ is be-
coming the incoming stream of requests as the effects
of messages passing through a node are not analyzed.

The model discussed in this paper is composed of
two distinct parts, a number of (identical) processors
and the interconnecting network. For any reduction
of the number of processors, the model of the inter-
connecting network must be adjusted in such a way
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Fig.5.1. Simplified model of a multithreaded multiprocessor architecture.

that the behavior of the (remaining) processor(s) is
preserved.

A simplification of the ‘expanded’ model can be
based on an observation that if the original through-
puts of the switches associated with a node can be
preserved in a simplified model, the node’s behavior
should be the same as in the original ‘expanded’ model
because the two switches (the input and the output
switch) provide the only interaction (or an ‘interface’)
of the node with the other nodes. It appears that a
2–node model, shown in Fig.5.1, can preserve the be-
havior of the switches quite accurately.

The simplified model is based on the following con-
sideration. Let the throughput of Trem (i.e., the
rate of generating remote memory access requests),
in the original model, be θrem. In the steady–state,
the throughputs of Tret and Trmem are also equal to
θrem. Then it follows immediately that the through-

put of Tsout, the output switch, is 2θrem, and since
the free–choice probability of Tgo (for a 16–processor
system) is 0.5 (Section 3), the throughput of Tsinp,
the input switch, is 4θrem.

The same conclusions can be reached by consider-
ing the remote requests. Since the average distance
of remote requests is 2 hops (Section 3), each request
passes (on average) 3 switches in the forward direc-
tion, and also 3 switches in the backward direction.
Out of these 6 switches, 4 are Tsinp switches, and 2
are Tsout switches. For a uniform distribution of re-
quests over the whole system, in the steady–state, the
throughputs of Tsinp and Tsout are thus 4θrem and
2θrem, respectively. In order to provide the required
throughput of Tsinp in the simplified model (Fig.5.1),
a loop is introduced from Dec to Inp and from Dec2
to Inp2 with free–choice probabilities (of Tcont and
Tcont2) equal to 0.5; the consequence of these loops is
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that each token (on average) passes the switch twice,
which effectively doubles the original throughputs of
these switches.

Fig.5.2 shows the processor utilization obtained by
simulation of the simplified model. The results are
very similar to those in Fig.4.1 (they are obtained for
the same values of model parameters; the differences
between these two sets of results are within a few per-
cent).
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Fig.5.2. Processor utilization – simplified model.

6. Concluding Remarks

A Petri net model of a multithreaded multiproces-
sor architecture is presented at a more detailed level
than than the one in [17]. The model is developed
using colored timed nets. Event–driven simulation
is used to obtain performance characteristics of the
model.

An approach to simplified modeling is also dis-
cussed and illustrated by results which match quite
accurately the results obtained for the original model.

The accuracy of the results obtained from the sim-
plified model indicates that the ‘expanded’ model may
be needed rather infrequently, and that quite simple
models can be used for analysis of complex systems.
However, more research is needed in this area in order
to identify the limitations of the simplified approach.

The same simplified model (Fig.5.1) can be used for
many architectures with only minor adjustments. For
example, it can be used for analysis of 16–processor
systems as well as 9–processor systems, 25–processor
ones, etc.; the only modification which needs to be
done is an adjustment of the free–choice probability
of Tcont and Tcont2 in Fig.5.1.

The simplified model is sufficiently small to be an-
alyzed by the reachability analysis, especially for the

small numbers of threads (provided that the deter-
ministic and stochastic transitions can be dealt with
in the same model, otherwise one of these two types
of transitions must be converted into the other).

The simulation results are consistent with results
presented in the literature [17]. Because of several
low–level differences between the models, and differ-
ences in probability distribution functions, the numer-
ical results are slightly different, but all the relation-
ships and trends seem to be preserved.

The timed Petri net model of the multithreaded
processor (Fig.3.1) is very simple; it is much simpler
than stochastic net models of (similar) processors pre-
sented for example in [4].

Although only one specific multithreaded architec-
ture was discussed in this paper, the models can very
easily be adjusted to the other architectures indicated
in Section 2. For example, only a minor modifica-
tion of transitions T loc and T lmem (Fig.3.1) is needed
to model “switching on remote load”; on the other
hand, however, it can be observed that the utilization
of processors for this approach will be lower than for
“switching on every load” because the processor will
be idle during the (local) memory accesses (typically
10 time units) while the context switching typically
requires only one time unit. These utilization differ-
ences will be more pronounced for high probabilities
of long–latency accesses to local memory. Similarly,
“switching on block of instructions” should result in
(slightly) lower utilization since context switching is
(sometimes) performed when it is not necessary. The
effect of ‘unnecessary’ context switching is even more
significant for “switching on every instruction”. The
“switching on every load” approach is thus expected
to provide the best performance (in the sense of uti-
lization of processors) unless the timing parameters
differ very significantly from the assumed ones (e.g.,
when the context switching time is rather long). Also,
more research is needed to use all the resources of a
multithreaded multiprocessor system in the optimal
way.
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