
Compatibility of Software Components – Modeling and Verification

D.C. Craig and W.M. Zuberek

Department of Computer Science
Memorial University, St. John’s, Canada A1B 3X5

{donald,wlodek}@cs.mun.ca

Int. Conf. on Dependability of Computer Systems, Szklarska Poreba, Poland, 25-27 May 2006, pp.11-18.

Copyright c© 2006 IEEE (DOI 10.1109/DEPCOS-RELCOMEX.2006.13).

Abstract: Component-based software engineering (CBSE) has been emerging as a
promising approach to the development of large-scale software architectures in which soft-
ware components with well-defined interfaces can be quickly assembled into complex soft-
ware systems. However, assembled components must be compatible in the sense that any
sequence of operations requested by one of the interacting components must be provided
by the other component(s). Component incompatibility may result in subtle software fail-
ures which are difficult to detect and correct. A formal model of component interaction
is proposed by representing component behaviors by labeled Petri nets. These net models
are designed in such a way that component incompatibility is manifested by deadlocks in
the net model of interacting components. Reachability-based as well as structural methods
of deadlock detection are discussed. A simple example illustrating the proposed approach
is provided.

Keywords: software architecture, software components, component compatibility,
Petri nets, deadlock detection.

1 Introduction

Numerous strategies have been proposed to address the difficulties and challenges involved
in the development of large-scale software systems [3]. Object-oriented programming [8]
and ADLs (Architecture Descriptions Languages) [14] have been introduced to mitigate
the complexities of development and integration of dependable software systems.

The concepts of systematic software decomposition into modules and reuse of modules
have been aggressively promoted as a means to handle the complexity inherent in the
design and implementation of software systems [15, 16, 19]. Unfortunately, while this
approach was initially very appealing, the design and implementation of modules that
are simultaneously generic and useful, can be challenging. Also, truly generic software
entities can be very difficult for software designers to efficiently deploy, thereby limiting
the advantages gained by module reuse.

Design patterns [4] have been proposed as an attempt to make software development
more template-oriented. Design patterns originate from recognizing the frequent occur-
rence of similar design structures across several successful software systems. These design
structures can then be generalized and documented, thereby creating a library of patterns.
These patterns, once shared with the development community, can then be adapted and
reused for similar problems in other domains. For example, the Composite pattern can
be easily adapted to represent the hierarchical composition of graphic elements in a vi-
sualization product or can be used to represent the hierarchical composition of hardware
components in a CAD package. While design patterns can, in theory, transcend all levels



Compatibility of Software Components – Modeling and Verification 12

of software representation, they are most commonly employed in the context of object-
oriented and component-based software development [8].

Scenario-based software analysis has also met with some success in the comprehension
and maintenance of software systems [11]. In this strategy, the various activities that the
system is required to support are identified. These so-called “system uses” are developed
from the perspective of both the different end-users and the developers of the systems.
By analyzing software from these two perspectives, multiple views of the system can be
derived and studied. Scenarios can be used to determine whether an existing software
system successfully satisfies its qualitative requirements in domain specific areas. High
degrees of coupling and low degrees of cohesion, both of which can negatively impact the
design of a system, can also be found by identifying locations in the software where scenario
interaction and interdependence are at their greatest.

Somewhat related to this is the method of Aspect Oriented Programming (AOP) [7].
Under this paradigm, functionality that is employed by several software subsystems is iden-
tified as cross-cutting concerns. For example, functionality that involves writing diagnostic
or debugging information to a file or database would be regarded as a cross-cutting concern
since it has the potential to be used by a large number of subsystems. Other cross-cutting
concerns can involve aspects related to authentication and database transactions. AOP
involves the identification of locations in the code base where cross-cutting concerns or
aspects arise (these locations are called join points) and the injection of appropriate code
segments that implement the aspects into those join points. This injection of code, called
weaving, is most effectively done automatically by software tools.

Agile methods [2] are also becoming more relevant in both research and industry. Agile
methods deemphasize the predictive nature of the traditional waterfall software life-cycle
in favour of a more adaptive style of software development which can more readily contend
with rapidly changing requirements. This style promotes more frequent releases of code,
greater collaboration with the intended consumers of the software and greater communi-
cation between the software developers themselves. As a result, agile methods appear to
be most effective in relatively small, collocated teams of about a dozen developers. One
of the more successful variants of the agile methodology is extreme programming [1, 18],
which emphasizes the notions of pair-programming, test-driven development, unit testing
and continuous integration of software, amongst many other aspects.

Currently, concepts related to software architecture [9] are becoming more widespread
in addressing the complexity associated with software development. Software architec-
ture attempts to tie together many of the more recent trends in software developments,
including object–oriented design patterns and scenario–based software analysis. Software
architecture uses components as the fundamental building blocks of software systems.

Components can be considered as the primary functional units and the fundamental
data types in architectural designs. The connections between components serve to de-
termine the flow of control and to provide a context or environment for the components.
Components are a means of representing a high–level software models; they must be generic
enough to work in a variety of contexts and in cooperation with other components, but
also specific enough to provide easy reuse.

This paper provides a foundation for a formal model of component interaction by rep-
resenting the behaviour of components by their interface languages, i.e., sets of all possible
sequences of services (required or provided). These languages are modelled by labelled
Petri nets. Component compatibility is established by determining those components
which, when connected, are free of deadlock.

Section 2 introduces Petri net models of components. Composition of components and
verification of component compatibility is discussed in Section 3, while Section 4 illustrates



Compatibility of Software Components – Modeling and Verification 13

the proposed approach by a simple example of component composition. Section 5 concludes
the paper.

2 Component models

Informally, a component is a cohesive logical unit of abstraction with a well-defined inter-
face that provides services to its environment. In order to behave correctly, the component
would also likely require the services of other components in its environment. Several at-
tempts have been made to formally define a component and its behaviour, some of which
made extensive use of Petri nets [21].

For the purpose of component compatibility, internal details of components can be
disregarded, and the component’s behaviour can be represented at its interface(s). It is
believed that all essential effects of component’s internal behaviour can be satisfactorily
represented at the component’s interface, significantly simplifying the model.

2.1 Petri net models

A component’s behaviour at its interface is represented by a labelled Petri net:

Mi = (Pi, Ti, Ai, Si,mi, ℓi)

where Pi and Ti are disjoint sets of places and transitions, Ai ⊆ Pi × Ti ∪ Ti × Pi is a set
of directed arcs, Si is an alphabet representing a set of services which are associated with
transitions by the labelling function ℓi : Ti → Si ∪ {ε} (ε is the “empty” service; it labels
transitions which do not represent services provided or requested by an interface), and mi

is the initial marking function mi : P → {0, 1, ...}.
In order to represent component interactions, the interfaces are divided into provider

interfaces (or p–interfaces) and requester interfaces (or r–interfaces). In the context of a
provider interface, a labelled transition can be thought of as a service provided by that
component; in the context of a requester interface, a labelled transition is a request for
a corresponding service. In both cases, Petri net models of a component’s behaviour are
designed in such a way that the sequences of possible services correspond to the firing
sequences of (labelled) transitions. For example, the model shown in Fig.1(a) can be a
model of a provider interface, and that shown in Fig.1(b), a requester interface.

cb

d

cb

d
a

(a)

a

(b)

Figure 1: Example provider and requester interfaces

It is required that in each p–interface there is exactly one labelled transition for each
provided service:

∀ti, tj ∈ T : ℓ(ti) = ℓ(tj) ⇒ ti = tj .

The label assigned to a transition represents a service or some unit of behaviour. For
example, the label can represent a conventional procedure or method invocation. It is



Compatibility of Software Components – Modeling and Verification 14

assumed that if the p–interface requires parameters from the r–interface, then the appro-
priate number and types of parameters by be delivered by the r–interface. Similarly, it
is assumed that the p–interface provides an appropriate return value, if required. The
equality of symbols representing component (requested and provided) services implies that
all such requirements are satisfied.

Petri net models of component interfaces must be deadlock–free. Typically, models of
component interfaces are cyclic nets, as shown in Fig.1.

2.2 Component compatibility

Component’s behaviour can be represented by the set of all possible sequences of services
(required or provided by a component). Such a set of sequences is called the interface
language [6], and, for an interface modelled by a net M, is denoted by L(M). Interface
languages of interacting components can be used to define the compatibility of components;
a requester component Mi is compatible with a provider component Mj if and only if
all sequences of services requested by Mi can be provided by Mj , i.e., if and only if
L(Mi) ⊆ L(Mj).

Component models shown in Fig.1(a) (p–interface) and Fig.1(b) (r–interface) are com-
patible; the requester language can be described by a regular expression (a(bc)*d)* and
the provider language by (a(b+c)*d)*.

3 Component composition

Component composition and compatibility assessment of Petri net models has been studied
in the past [17, 12]. Related to this area is the composition and interoperation of web
services [13] and verification of workflow composition [20].

Since the interface languages of interacting components are usually represented by net
models (for example, developed from component specifications), component compatibility
should be verified using such models. A composition of net models is used for this purpose.

3.1 Compositions of interfaces

Informally, the composition of component interfaces is performed by “merging” an r–
interfaceMi with a corresponding p–interfaceMj into a single netMij , assuming Pi∩Pj =
∅ and Ti ∩ Tj = ∅. The composition is formally defined in [6], and is outlined in Fig.2.

tj

a

ti

a

p′′j
...

...

p′j
...

...

p′′ip′i

t′i t′′i

εε

......

p′ti

t′′′iε

p′tjp′j p′′tj p′′j

pti

tj

p′i
...

...

p′′i

Before Composition

Requester Mi

Provider Mj

Provider Mj

Requester Mi

After Composition

a

Figure 2: Composition of an r–interface and p–interface



Compatibility of Software Components – Modeling and Verification 15

The composition of a requester and a provider interfaces introduce two new places
(pti , p′ti in Fig.2) and three transitions (t′i, t′′i , t′′′i in Fig.2) for each service request in
the r–interface. The transition-place pair t′′′i and p′ti allows the requester to initiate the
interaction with the provider and to direct the ensuing sequence of operations. The other
place (pti) and transitions (t′i and t′′i ) serve to coordinate the requester’s interaction with
the provider at the service point. The place pti constitutes an implicit place. Generally,
during net analyses, this place can be removed without adversely affecting the underlying
behaviour of the net.

Composition of several requester interfaces with a single provider interface is outlined
in Fig.3. In the case of concurrent requests, one service request is selected randomly but
priorities can easily be implemented by additional elements of the model.

...

p′i

Before Composition

tj

a

ti

tk

a

a

Requesteri

Requesterk

p′j
Provider

... ...

p′′j

...

p′′i

... ...
p′k p′′k

... ...

... ...

p′k p′′k

ptk

εε

p′tk

... ...

p′i p′′i

pti
εε

p′ti

p′j p′′j

t′k t′′k

ε

ε

t′i t′′i

t′′′i

t′′′k

Requesteri

Provider

Requesterk...

After Composition

p′tj

tj

a

p′′tj

Figure 3: Composition of multiple r–interfaces with a p–interface

3.2 Compatibility verification

It can be shown that components are compatible if and only if the composition of com-
ponent models is free of deadlocks [6]. Component compatibility verification can thus be
performed by checking deadlock freeness in the composed net models.

There are two basic approaches to deadlock detection in Petri nets, one uses reachabil-
ity analysis and the other is based on structural properties of nets. The reachability–based
approach performs exhaustive analysis of the space of reachable markings, looking for
markings with the empty set of enabled transitions. The approach is quite straightfor-
ward, but it is effective only for models with relatively small spaces of reachable markings.
Structural methods determine the existence or absence of deadlocks on the basis of sub-
nets of the original net and the initial marking function. In particular, it is known that an
unmarked siphon (i.e., such a subset of places for which the set of their input transitions
is a subset of the set of their output transitions) is a necessary condition for a deadlock
[5]. Therefore, once the set of (proper) net siphons is determined, and all these siphons
are marked by the initial marking function, what remains to be checked is if there exists a
firing sequence of transitions for which a siphon becomes unmarked. Linear programming
can be used for this purpose [6]. More specifically, for each proper siphon, linear program-
ming can be used to find a firing vector which reduces the token count in the siphon to



Compatibility of Software Components – Modeling and Verification 16

zero. If such a vector exists, it needs to be verified for feasibility, i.e., if, for the given ini-
tial marking function m0, there is a firing sequence which corresponds to the firing vector
determined by linear programming. If there such a sequence exists, a deadlock can occur
in the composed model, so the components are incompatible.

4 Example

This examples considers the composition of a database provider interface with an interface
requesting the services of the database. The interfaces are the same as shown in Fig.1.
In this particular context, the a and d operations could represent services that open and
close the database, respectively; the b and c operations could represent services that read
from and write to database, respectively. The composition of the two interfaces is shown
in Fig.4.

Requester

Provider

a

b c

d

Figure 4: Compatible composition

This composed net contains fifteen reachable markings, none of which results in dead-
lock, thereby verifying the compatibility of the two component interfaces. This is expected
intuitively, because the requester performs each write operation only after doing a corre-
sponding read operation, while the database server imposes no order on the sequences of
read and write operations; the language of the r–interface is a subset of the p–interface’s
language.

Switching the models of requester and provider interfaces, i.e., using model shown in
Fig.1(a) as an r–interface, and that from Fig.1(b) as a p–interface, results in a composed
model in which deadlocks can occur; Fig.5 shows the composed net and one of its (three)
deadlocks.

The firing sequence which leads to the deadlock shown in Fig.5 is (t1, t5, a, t6, t3). In
this case, the requester demands a sequence of operations that cannot be satisfied by
the provider, so the two components are not compatible. The deadlocks can be identi-
fied by using either reachability analysis (there are 17 reachable markings) or by using
structural techniques and linear programming, as described in Section 3. In this second
case, one of the siphons that become unmarked by the firing sequence (t1, t5, a, t6, t3) is
{p1, p5, p3, p2, p6, p7, p15, p9, p10, p4}. The other deadlocks are reached by firing sequences
(t1, t5, a, t6, t2, t7, b, t8, t4) and (t1, t5, a, t6, t2, t7, b, t8, t2).



Compatibility of Software Components – Modeling and Verification 17

Requester

Provider

a

b c

d

t11 t12t10t9t8t7t6t5

t4t3t2t1

p21

p20p19p17p16

p13p12

p11 p14

p10

p9

p8

p7

p6p5

p4p3

p1

p2

p15

p18

Figure 5: Incompatible composition resulting in deadlock

5 Concluding Remarks

Component compatibility is a multifaceted problem which requires a comprehensive un-
derstanding of the static as well as dynamic nature of components involved. However, ab-
stracting the internal, low–level behaviour of components, and concentrating solely upon
the behaviour exhibited at component interfaces, makes it possible to (formally) verify the
compatibility of components by checking if the composed model is free of deadlocks.

For small models, reachability analysis of the composed model seems to be the simplest
approach to deadlock detection. For larger models as well as for unbounded nets, structural
analysis should be used, however, more efficient methods for structural analysis are needed
as the currently known ones are not really efficient.

The proposed approach can be extended in many ways, for example, temporal charac-
teristics of components can be included into net models and used for performance analysis
[22]. Similar components could be “folded” by introducing token attributes, as in colored
Petri nets [10].

The strategy described in this paper represents an initial, but important step in the
continuing evolution of the design and construction of dependable software systems. Es-
tablishing a well defined and formal method for determining the extent to which two or
more components are able to successfully interact can serve to significantly enhance reuse
of software components in a given software architecture. Ultimately, this may contribute
to the reliable evolution of a deployed component-based software system.

Acknowledgements

This work was supported in part by the Natural Sciences and Engineering Research Council
of Canada through Grant RGPIN-8222.

References

[1] K. Beck. Extreme Programming explained : Embrace Change. Addison-Wesley, 2000.

[2] B. Boehm and R. Turner. Balancing Agility and Discipline: A Guide for the Perplexed.
Addison-Wesley Pearson Education, 2004.



Compatibility of Software Components – Modeling and Verification 18

[3] D. Bugden. Software Design. Pearson Addison-Wesley, second edition, 2003.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Soft-
ware Architecture: A System of Patterns. John Wiley & Sons, 1996.

[5] F. Chu and X. Xie. Deadlock analysis of Petri nets using siphons and mathematical program-
ming. IEEE Transactions on Robotics and Automation, 13(6):793–804, 1997.

[6] D.Craig. Compatibility of Software Components — Modelling and Verification. Ph.D. Thesis.
Memorial University of Newfoundland, 2005.

[7] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools and Applica-
tions. Addison-Wesley, Inc., 2000.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[9] D. Garlan and D. E. Perry. Introduction to the special issue on software architecture. IEEE
Transactions of Software Engineering, 21(4):269–274, Apr 1995.

[10] K. Jensen. Coloured Petri nets. In Advanced Course on Petri Nets 1986, volume 254 of Lecture
Notes in Computer Science pages 248–299. Springer-Verlag, 1987.

[11] R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-based analysis of software archi-
tecture. IEEE Software, 13(6):47–55, Nov 1996.

[12] E. Kindler. A compositional partial order semantics for petri net components. In P. Azéma
and G. Balbo, editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture
Notes in Computer Science, pages 235–252. Springer-Verlag, 1997.

[13] A. Martens. Usability of web services. In Proceedings of the Fourth International Conference on
Web Information Systems Engineering Workshops, pages 182–190. IEEE Computer Society,
2003.

[14] N. Medvidovic and R. Taylor. A framework for classifying and comparing architecture descrip-
tion languages. In Software Engineering — ESEC/FSE ’97, volume 1301 of Lecture Notes in
Computer Science, pages 60–76. Springer-Verlag, 1997.

[15] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Communica-
tions of the ACM, 15(12):1053–1058, Dec 1972.

[16] D. L. Parnas, P. C. Clements, and D. M. Weiss. The modular structure of complex systems.
IEEE Transactions on Software Engineering, 11(3):259–266, Mar 1985.

[17] C. Sibertin-Blanc. A compositional partial order semantics for petri net components. In
M. Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes
in Computer Science, pages 377–396. Springer-Verlag, 1993.

[18] D. H. Steinberg and D. W. Palmer. Extreme Software Engineering: A Hands-on Approach.
Pearson/Prentice Hall, 2004.

[19] P. Tonella. Concept analysis for module restructuring. IEEE Transactions of Software Engi-
neering, 27(4):351–363, Apr 2000.

[20] W. van der Aalst. Workflow verification: Finding control-flow errors using petri-net-based
techniques. In W. van der Aalst, J. Desel, and A. Oberweis, editors, Business Process Manage-
ment: Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Computer
Science, pages 161–183. Springer-Verlag, 2000.

[21] W. van der Aalst, K. van Hee, and R. van der Toorn. Component-based software architectures:
A framework based on inheritance of behaviour. Science of Computer Programming, 42(2–
3):129–171, Feb/Mar 2002.

[22] W.M Zuberek. Timed Petri nets – definitions, properties and applications. Microelectronics
and Reliability (Special Issue on Petri Nets and Related Graph Models), 31(4):627–644, 1991.


