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Abstract

Body temperature is known to affect human ventilation (YJ, yet the

nature and mechanisms of this relationship are not resolved. The first study

in this thesis explores how exercise-induced increases in body temperature

affects ventilatory componems, namely tidal volume (VT) and frequency of

respiration (0, and if these relationships are reproducible. Expressed as a

function of esophageal temperature (T.J in seven adult males during

incremental exercise to maximum, ventilation and its components were

reproducible using intraclas." correlation coeffiCients, 0.84 < R < 0.93

(p<O.05). Since the relationships between ventilation variables and T", were

reprodUCible. a second study examined whether the mechanism of this effect

could he mediated by an increased ventilatory sensitivity to CO2. Central

sensitivity to CO2 was assessed using a modified Read rehreathing protocol

before and after exercise induced warming in 6 male subjects. The slope and

threshold point of ventilation expressed as a function of end tidal carbon

dioxide were increased and decreased respectively, indicating an increased

to sensitivity to CO2after body warming. In conclusion, the results support



core temperature influence on human ventilation in a reproducible manner

and that the effect of ventilation may be partially mediated by an increased

central sensitivity to carbon dioxide.
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Introduction

Background of Study

The study of the control ofventHation during exercise has received

considerable attention in the scientific literature (7, 14), however, no single

theory seems to fully account for the entire increase in ventilation (YJ which

accompanies incremental exercise. Many researchers have demonstrated that

an increased core body temperature is linked to the control of ventilation,

during both passively induced body warming (1*3, 5, 6, 8, II, 13) and

actively induced body warming (15,16). Hence body temperature could be

one of the factors that leads to the hyperpnea which accompanies exercise.

Relative to other potential mediators of exercise-induced changes in

ventilation (7), body temperatures have received considerably less study.

Thus it remains to be established how body temperature changes during

exercise are related to exercise induced changes in ventilation.

Overview of Study

This main purpose of this thesis is to investigate the relationship

between body temperature and ventilation (YJ. Chapter 2 is a review of the

I-I



literature pertaining to the regulation of body temperature, the control of

ventilation and the way in which both control systems interact with each

other.

White and Cabanac (16) used a cycle ergometer to increase the core

body temperature of six trained males. They observed core temperature

thresholds for the ventilatory equivalent for oxygen (VEt\bJ and the

ventilatory equivalent for carbon dioxide (VEf\tOz) , which would suggest

that the hyperpnea displayed by humans at the ventilatory threshold may be

pardy due to core temperature. Chapter 3 is a study of the reproducibility of

these thresholds. As well, the study in chapter 3 investigated if such

thresholds also exist for tidal volume (VT) and the ventilatory frequency (t),

and if present, whether or not these thresholds were reproducible.

One of the ways body temperature is hypothesized to influence 'iEis

by affecting the ventilatory response to CO2(1,4-6, 10). Researchers have

found that increasing core temperature increases the sensitivity and/or

decreases the partial pressure of end tidal CO2 (PnC02) threshold point at

which VEstarts to increase rapidly (I, 4·6, 10). Chapter 4 investigates how \IE

'-2



responds to increasing levels of PETC02 al normo- and hyperthermia. The

difference between this and previous studies in this area is the combined use

of esophageal temperatures as an indicator of core temperature. the use of

breath-by· breath analysis for assessmem of ventilation and exercise-induced

body warming.

Esophageal temperature has been shown to be a good indicator of core

body temperature whereas rectal temperature is a slow responding

representation of core temperature (9). In addition properly posiliuned

tympanic temperature lhermocouple is an excellent measure of core

temperature. The more recently developed hand-held infrared tympanic

thermometers have been shown to be an unstable with poor reproducibility

(12).

Brcath-by-brealh analysis gives a greater precision for assessment of

changes in ventilation than does non-breath-by-breath indirect calorimetry,

since the results are being colleCled at a rate closer to real time. Attributes of

interest such as thresholds, and slopes are more precisely identified with this

method of data collection.

Exercise-induced body warming gives this study better external

validity when trying to establish the reasons for exercise hyperpnea.
1-3



Compounding factors that are inherent with exercise may be integral for the

ventilatory response to hyperthemia.
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Review of Literature

Human Temperature Regulation

Introduction

In humans and other mammals body temperature must be controlled

with considerable precision to allow normal function of the body's

physiological and metabolic systems. The control system for human body

temperature is yet to be completely resolved (8). Animals need a way to

sense temperature, since a deviation from optimal conditions requires

compensatory measures to maintain a constant internal body temperature.

Sensing is performed by temperature sensitive neurons (34) or

thermoreccptors.

The signals from these thermoreceptors must then be analyzed to

determine if-and-what thermoregulatory response is necessary (8). The

weight that the control system places on each input and the thermoregulatory

responses it initiates in response to particular inputs is not clear (9).

The identified mechanisms of thermoregulation include neural.

chemical and behavioral components. The effectors of these mechanisms

include peripheral vasomotor tone, blood distribution, sweating. shivering,

ventilation, non-shivering thermogenesis and adjusting the environment (i.e.
2-\



behavior). These effectors enable heat loss and/or heat gain by either

radiation. convection. conduction, evaporation or chemical processes (8).

Thcrmoreceptors

In humans, thennoreceptors are located both centrally and

peripherally in the body although this distinction is arbitrary since

thermoreceptors are evident at most tissue levels (8). The main receptors of

the central nervous system (CNS) arc thought to be in the hypothalamus but

other CNS sites have been found in {he spinal cord and the medulla (8).

Heating or cooling these areas causes a compensating thermoregulatory

response (9). How these sites may interact with each other is not completely

resolved (8).

Peripheral thermoreceptors can be located in the skin and these

receptors have been shown to regulate temperature since their activation.

with an isothermal core, elicits appropriate thermoregulatory responses (9).

Sensing temperature appears to involve two difTerem types of

thermoreceptors, cold and warm receptors. For both classes of

thermoreceptors their firing frequency is a non-linear function of their

ambient temperature. If body temperature is decreased from optimal

2·2



condilions the activity of the warm receptors decreases to a minimum and

the activity of the cold receptors increases to a maximum, subsequent

decreases in body temperature causes a decrease in the activation of the cold

receptors, As temperature is increased above resting levels, the frequency of

the cold receptors decreases to a minimum and the activity of the warm

receptors increases to a maximum. Subsequent increases in body

temperatures cause a reduction in frequency of the warm receptors (34).

Regulation of Body Temperature

As the temperature at these thermosensitive sites drops below a (ower

threshold, vasoconstriction, metabolic rate, and shivering takes place in an

effort to increase heat production, As body temperature increases above an

upper boundary, sweating and/or panting and vasodilation occur and

progressively increase in proportion with further increases in body

temperature (8). While keeping the skin temperature constant, the range of

core body temperatures between the upper threshold, indicating the onset of

sweating, and the lower threshold, indicating the onset of shivering, has been

proposed as the 'null zone' (54). The core temperature set-points for the

onset of sweating and for shivering is altered by skin temperature. A higher
2-3



skin temperature would cause the set-point for sweating and for shivering to

lower, and a lower skin temperature would cause the sct-point for sweating

and shivering to increase (7, 54).

Thermoregulatory EfTector:s

Peripheral Blood Distribution

When the core body temperature is in the proposed null zone, there

are periodic fluctuations in cutaneous blood flow due to peripheral

vasodilation and peripheral vasoconstriction. As ambient temperature

increases, there is an increase in the proportion of vasodilation to

vasoconstriction. During lower ambient temperatures, there is an increase in

the time period of peripheral vasoconstriction. The magnitude of these

changes is dependent on the ambient temperature (8). Thus the body is

capable of controlling, to some extent, the amount of heat lost through

thermal radiation (60).

In addition, venous blood can return to the core in vessels that are

adjacent to arteries or in veins that are located at a distance from arteries.

During cold stress, blood is diverted into veins that are running close to the

arteries, the resulting countercurrent heat exchange warms the blood
2-4



entering the core and cools the blood entering the appendages. preventing

warm blood from reaching areas where there is a high surface area to

volume ratio (1); hence, this prevents appendages from acting like a thermal

radiator. During heat stress the opposite response occurs, blood is diverted

into veins that are nm close to the arteries (8) so less COUnlercurrem heat

exchange occurs (I). The result is that the skin is at a temperature close to

Ihe core temperature, promoting radiation (8).

The mechanism for vasoconstriction is known to be due to the

sympathetic release of noradrenaline (42). The mechanisms involved in

vasodilatation is not as clear (41). In response to heat there is an initial

dilation that occurs due to the removal of sympathetic vasoconstrictor tone

(42,63) and this has been labeled as passive vasodilatation (41). However,

vasodilatation exceeds the passively achieved blood flow increase, which

would indicate that some active mechanism is present resulting in active

vasodilatation (41). One possible substance that may cause (72) or be partly

responsible for active vasodilation (26) is nitrous oxide. Another possibility

is that vasodilatation is enabled by a cotransmitter released by sympathetic

cholinergic nerves (43). Since atropine partially blocks this active

2-5



vasodilation acetylcholine and an unidentified co-transmitter are thought to

mediate this response (41).

Sweating

The conversion of a liquid 10 a gas involves a change of stale, and

hence requires energy in the form of heat. The quantity of this energy is

known as the lalent heat of vaporization. liquid released onto the surface of

the epidermis will absorb heat from the body 10 undergo this phase change,

effectively removing heat energy from the body. In humans. ecrine sweat

glands are cholinergically innervated and are activated during high core

temperatures and during exercise (8).

Shivering

Catabolism of Adenosine Tri-phosphate (ATP) molecules is an

inefficient process (2), this inefficiency enables excess energy to be released

as heal, thus warming occurs. Efficiency is defined as the amounl of work

done divided by the total energy expended (29), large muscle activities such

as walking are typically 25% efficient (28). Shivering is a rhythmic

2-6



asynchronous contraction of skeletal muscles, the asynchronous nature

prevents work from being done, but the increased muscle activity brings

about an increase in the rate of ATP use and heat production (10).

Non-shivering Thermogenesis

Some mammals and young humans have cells which are capable of

increasing energy expenditure. An uncoupling mechanism dissociates the

main process of ATP production from the catabolism of food by shunting

hydrogen ions across the inner mitochondrial membrane, hence the

hydrogen ion gradient created by the electron transport chain is not

converted into chemical energy (ATP). The result is an increase in heat

production in a manner that is not coupled with work, allowing energy

reserves to be used for the sale purpose of heat production (37). The main

tissue type thought to be responsible for this method of thermogenesis is

brown adipose tissue (36), although more recent work shows several other

tissues in which heat production is influenced by uncoupling proteins (22).



Ventilation

Increased ventilation of the upper airways is also a potemial

thermoregulatory heat loss effector (8, 12,46,61,84). Rasch and colleagues

(61) found the lolal heat loss from the head and the respiratory tract to be

200 to 250 W at a workload of 150 W. This is a substantial fraction of the

total heat generated in the body at this workload, which was estimated to be

about 520 W. Rasch's study illustrated the importance of respiratory heal

loss in human total body heat balance.

The effects of body temperature on ventilation in humans are the crux

of this literature review. Consequently a review of the currenl literature

pertaining to the control of ventilation ensues. Following that assessment is a

review of how temperature plays a role in this control. The possibility of

ventilation as a thermoregulatory response brings about the question of how

body core temperature affects ventilation and through which mechanisms

this occurs.
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Control of Ventilation during Exercise

Ventilatory Response Pattern During Submaximal Exercise

Ventilation (\Q expressed as a function of exercise intensity during

moderate, submaximal, exercise has been shown to have either a biphasic or

triphasic response to exercise. There is an initial surge in ventilation that

begins with the onset of exercise (20) which may be independent of the work

rate (82). The first response is subsequently replaced by a period of a slower

rate of increase (phase 2). The second phase may be signaled by an altered

gas composition in the mixed venous blood and increasing rates of oxygen

and carbon dioxide flow in the alveoli. The third phase is thought to be the

sum of the first two phases (82) and is a steady-state level (74). At higher

intensities the phase I response is a lower percentage of the phase 3 \IE and

phase 2 has a longer time period (74).

2-9
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Figure 2.1 Ventilation at rest and during sub-maximal exercise
expressed as II function of exercise intensity or oxygen consumption.

Figure obtained from Wassennan (4).

Ventilatory Response Pattern During Incremental Exercise

In progressively more difficult or incremental exercise the increase in

ventilation is initially accounted for by an increase in Udal volume (VT).

Once a VT plateau is reached the increase in ventilation becomes due to an

increase in frequency of respiration (f) (35, 48). This change in ~

component behavior Iypically occurs al about half of the vital capacity (35,

48). Ventilation increases as a function of the rate of oxygen consumption,
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after passing the anaerobic threshold VE begins to increase at a faster rate

despite a steadily increasing in work rate.

V[,,]~.,·
l.'_"'S~ .•

, ""·IlIt:. ,..u-~
,

"\1
01

IJnll ~TII'CI

Figure 2.2. Tidal Volume (Vr) and frequency of respiration (0 and
ventilation expressed as a function of oxygen consumption during
incremental exercise to the point of exhaustion. Indicated in the figure are
VOt thresholds for the Vr plateau, the onset of elevated f and the
'ventilatory' break point. Figure obtained from Martin and colleagues
(7).
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Potential Metabolic Factors Influencing Ventilation During Exercise

Carbon Dioxide and Exercise Ventilation

Arterial Carbon Dioxide Partial Pressure

The arterial partial pressure of carbon dioxide (PaCD2) is known to be

responsible for the control of the respiratory system at rest (68, 79). Low

levels of Paco! auenuate ventilation and high levels of Pac02accentuate

ventilation. Approximately 80% of the resting ventilatory response is

mediated by the central respiratory control center and 20% of the response is

mediated by the peripheral chemoreceptors (79). However. the involvement

of PaC02 in the control of ventilation during exercise is questionable. Both

non-human and human studies have focused on the influence of Pac02on

changes in ventilation during exercise

Non-Human Studies of Pac02 and Exercise Ventilation

In ponies studied at various steady state treadmill workloads, the Paw2

has been shown to decrease maximally during the first 30-60 s of exercise

(27) or in the first 90 s (59) this initial decrease in Paco2was followed by a
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slower progressive decrease or a steady state (27, 59). The decrease in PaC02

was observed to have a direct inverse relationship to the rate of oxygen

consumption (27). In goats and other mammals, the levels of PaC02 during

exercise are similar to levels at rest (56). Mitchell (56) believes that the

mechanisms responsible for controlHng ventilation act in a way so as to

maintain resting levels of pac02• since the ralio of the rate of inspiration to

the rate of carbon dioxide production changes in a manner that maintains a

constant level of arterial CO2• The results support the hypothesis that in non~

human mammals either, PaC02 does not account for the large increase in \IE

observed during exercise or thai the sensitivity to CO2 is increased during

exercise due to other factors such as temperature.

Human Studies of Paco2 and Ventilation

During incremental exercise to maximum in humans, the arterial level

of carbon dioxide has also been shown to be maintained or move in a

direction opposite to that which would increase resting ventilation (32, 52).

Ventilation increases linearly with carbon dioxide production, maintaining

isocapnia or over compensates for the increased carbon dioxide production
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to produce a slight hypocapnia. Again, arterial carbon dioxide would appear

not to be a mechanism of control of ventilation since Paco2 does not increase

despite an increased VE. or rhe sensitivity to carbon dioxide increases with

exercise due to other factors that are affected by exercise and the resulting

increased sensitivity increases \i with no change in Paw2•

Carbon Dioxide Flow Rate and Ventilation

Carbon dioxide flow rate is the amount of carbon dioxide that flows

to, or across the lungs. Some investigators suggest that increased CO2 flow

to the lung is the sole mechanism for the exercise induced increase in

ventilation (21, 76). This view supports that if CO2 flow rate to the lung is a

mediaLOr of ventilation, then changing the CO2 flow should give

proportionate changes in ~. Again both human and non-human studies have

examined the role of CO2 flow rate and the control of ventilation.
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Non-human Studies of Carbon Dioxide Flow rate and

Ventilation

To experimentally increase the CO2 flow rate to the lung Wasserman

(76) chemically increased the cardiac output of dogs. Increasing the heart

rate should cause more blood to flow to the lungs thereby increasing the CO2

flow rate across the lungs. Heart rate was increased with an injection of the p

receptor agonist isoproterenol Into the superior vena cava in lightly

anesthetized dogs. The increase in cardiac output resulted in an increased '{

with little or no change in end tidal CO2 pressure. Removing the tachycardia

with preceptor blockers removed this hyperpnea. This ventilatory response

to heart rate was termed .cardiodynamic hyperpnea' and was not affected by

removal of the carotid bodies, breathing 100% oxygen or by bilateral

cervical vagotomy. Cardiac hyperpnea maintained isocapnia and was

attenuated by hypocapnia inliated by mechanical hyperventilation prior to

the isoproterenol injection (76). This provides supporting evidence to the

CO2flow rale theory.

The effects of using venous CO2 loading to increase CO2 flow across

the lung on ventilation has also been studied by Wasserman et aI. (76). The
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femoral artery in anaesthetized dogs was cannulated and the blood was

passed through a membrane gas exchanger equilibrated with 5% COz in air

and returned to the femoral vein on the ipsilateral side. It was found that

ventilation changed in a manner such that arterial CO, pressure remained

constant. The VEincreased proportionately to the increase in end tidal COz

Pressure (76). Both of Wasserman's studies suggests that the ventilatory

drive is tightly coupled with CO, flow in the central circulation in dogs. so

as 10 maintain arterial isocapnia. So the results would suggest that in dogs

the level of CO2 in the blood enveloping the lungs gives proportional

changes in VE•

Human Studies of CO2 flow rate and Ventilation

Decreasing the flow rate of blood to the lungs in humans, by

decreasing the cardiac output with an infusion of pblockers (propranolol)

should temporarily decrease Ihe flow rate of CO2 to the lungs. Wasserman

(76) decreased heart rate in this manner and the result was a simultaneous

decrease in ~ and \t0z production. Ventilation rate and \tOz subsequently

returned to pre infusion rates despite an ongoing decreased heart rate,
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returning CO2 flow to normal levels. This decrease in ventilation was

attributed to a transient discrepancy between carbon dioxide produced by the

tissues and the carbon dioxide flow to the lungs (76). Throughout the

protocol there was little increase (average, 0.71 mmHg) or no change in

end-tidal CO2 pressure, suggesting a tight coupling between the rate of CO2

production and "E'

Another attempt to observe the effects of CO2 now rate on ventilation

was made by Heigenhauser and colleagues (33). The methodology included

reducing the muscle glycogen in subjects through repeated maximum

exercise and a high fat-protein diet. Heigenhauser theorized that a reduction

in muscle glycogen would cause the subjects to rely more on free fany acids

utilization for energy, this would cause a reduction in the R resulting in an

associated fall in CO2 production. The subjects underwent incremental

exercise on a cycle ergometer to maximum intensity. Although the

methodology failed to reduce the rate of carbon dioxide production, \tEfor a

given work rate was higher on the high fat -protein diet than in control

conditions. Since the increase in ventilation was not accompanied by an
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increase in CO2flow rate in the lungs, the authors concluded thai other

factors must also serve to modulate VE (33).

So the literature is divided on the CO2 flow rale hypothesis in humans

and although CO2 flow rate seems to playa role in ventilation it is probably

not the sale mechanism for its control since it can only be demonstrated at

rest and there are dissociations between CO2 flow rate 10 the lungs and

ventilation (76). Wasserman's (76) study. however interesting. is still

indirect since the changes to ventilation were induced in resting animals. 11

remains to be demonstrated how CO2 now rate during exercise innuences

ventilation, if at all.

Carbon Dioxide Effects on the Carotid Body

The chemoreceplors in the carotid body are responsible for peripheral

control of ventilation in resting subjects. During exercise the possible role of

the carotid bodies in the control of ventilation has been examined in a series

of studies.

Smith and colleagues (70) found that perfusion of the carotid bodies

with hypocapnic blood in tile dog served as a powerful inhibitor of

ventilation and high levels of carbon dioxide in the perfused blood did not

2-18



act as an initiator ofhypetvcntilation (70). Although it is not specificaUy

mentioned, datum from Pan et al. (59) seem to support this notion. Ponies in

whom the carotid body was denervated demonstrated a significantly greater

hypocapnia then nonnal ponies during the first 90 seconds of exercise.

When the carotid body was removed, carotid body mediated inhibition ofVE

was also removed and the ponies hypetventilated to a lower Paw2.

However, in goats it was obsetved that carotid body dencrvation

(CBD) resulted in a resting hypoventilation and an increased Pacor This is

despite the finding that PaC02 was regulated by the goals with the same

precision during rest and exercise as the carotid body intact group (56). In

this study the Paco2 was observed during exercise in normal and CSO goats,

Paro2remained at resting levels during exercise in both groups (56).

So the literature is divided on the affect that CO2 has on the carotid

body and ventilation. The carotid body may inhibit ventilation during

hypocapnia (70) or the carotid body may be relatively unimportant since the

PaC02 was regulated to the same precision in CSD goats (56).
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Carbon dioxide effects on the component" of ventilation

One method for assessing the effects of CO2 on ventilation is to see

how arterial carbon dioxide affects the tidal volume and frequency of

respiration or components of ventilation. A possible link between CO2 and

tidal volume is indicated in work by Martin and Wei! (48). During

progressive exercise to maximum intensity, humans at some pOint exhibit a

threshold in VE when expressed as a function of \02' This threshold is

indicated by a rapid increase in the slope of ventilation relative to work rate

or \02' It been shown that in humans preventing the onset of hypocapnia that

accompanies the ventilatory threshold increases the point at which the

increase in VE switches from being primarily due to VT to being due to

increases in f (48). Hence, for a given ~. VT is greater and f is lower when

hypocapnia is prevented by breathing hypercapnic gas, indicating that CO2 is

innuencing the components of ventilation during exercise in humans.

Further support for the effect of CO2 on VT is given by some

researchers who show that the lowered airway CO2 pressure increases

intrafusal stretch receptor activity (67). Intrafusal stretch receptors respond
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to changes in muscle length by contracting the muscle where they are

located. which indicates that airway hypocapnia can induce the VT limitation

(48). Changes in Vr during carbon dioxide rebreathing (oxygen levels held

constant) have been shown to be the same as the changes in tidal volume

during exercise (35). The nature ofthe dependence ofVr on CO2 and the

effects of other factors. such as temperature, on this dependence is an area

that requires further work.

Oxygen and Ventilation

Effect of Oxygen on Carotid Bodies and the Components of

Ventilation

As mentioned previously. the carotid chemoreceptors are thought by

some researchers to have a role in the control of ventilation in response to

CO2 (56, 70). There are also studies which have shown that carotid bodies

are influenced by arterial oxygen (38, 44). Mammals normally show a

biphasic response to hypoxia. The initial phase involves an increase in ~

and the second phase begins after a short period of lime (5 minutes for a Pao
2

of 40 - 55 Torr) and involves a steady decline in \IE known as the hypoxic
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ventilatory decline (HVD) , the reasons for the biphasic response is

ambiguous (44).

Carotid body denervated cats were compared to intact cats under

conditions of hypoxia to establish the effeCl of oxygen on the carotid bodies

(41). The normal cats displayed the typical biphasic response for ventilation

that has been observed in both humans and cats. Ventilation initially

increased for 5 min to a maximum of about 211% of resting value then

decreased to 114% of resting value at 25 min. In carotid body denervated

cats there was no response 10 either isocapnic hypoxia or hypoxia augmented

with 2% hypercapnia. This would indicate that the carotid bodies are in

some way responsible for the hyperventilation that accompanies hypoxia and

may be involved in the HVD that occurs after the initial increase in \IE (44).

In humans HVD decline did not occur in patients who had undergone carotid

body resection 20 y prior to experimentation, suggesting that oxygen

influences the carotid bodies and further supporting the theory that the

carotid'bodies are responsible for HVD (38). It is unknown what secondary

compensations that these rescctioned patients may have adopted.
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Increases in ventilation due to hypoxia in the carotid body were

shown in female dogs at rest 10 be entirely the result of an increase in Vr

(70). Hypoxia in conjunction with hypocapnia al the carotid body also

induces an increase in \IE thaI is entirely due to an increase in VT, but this

increase in \IE is substantially lower then hypoxia alone (70). However, other

sludies have indicated that HVD may not be due to the carotid bodies. In two

studies on anesthetized animals, carotid sinus nerve discharges remain

elevated during HVD (78) and phrenic nerve activity was depressed during

10 min of sustained hypoxia in anaesthetized, paralyzed. and

glocomectomlzed cats (55). Hence the HVD seems to be caused at a stage

laler than the afferent (carotid body) and prior to the activation of effector

nerve (phrenic nerve) in the neural pathway that is responsible for the

control of the muscles affecting ventilation.

Acidity and Ventilation

Evidence to support that hyperventilation in response to heavy

exercise is due 10 the resulting acidosis either in the arteries (24, 81) or in the

extracellular fluid bathing the muscle (57). It is reasoned that the increased
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metabolic acid production induces a respiratory compensation marked by an

increase in VE (24, 77, 81).

Arterial Acidity

Arterial pH has been shown by many researchers to affect ventilation

(24,77,81). This effect can be either carotid body mediated (3, 77) or

carotid body independent (24). The carotid chemoreceptor is thought of as a

mediator of the dominant component of acute ventilatory response to

metabolic acidosis (24,77,81). During exercise there is an increase inlhe

non-metabolic fraction of blood carbon dioxide due to the buffering of lactic

acid, this increase In CO2 may stimulate the carotid body chemoreceptors

and cause the exponential or disproportionately large increase in ventilation.

relative to the rate of oxygen consumption (75).

Non-human Studies of Arterial Acidity and Ventilation

There is evidence to suggest that the VE response to arterial acidosis is

independent of the carotid bodies. To investigate the response to lactic acid

Erickson et al, (24) observed the changes in \'E that occurred in normal, CBD
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and Hilar nerve denervated (HND) ponies during intravenous lactic acid

infusion Ougular vein) and treadmill exercise at various intensities. During

rest and low intensity exercise in all groups, and during moderate exercise in

CBD ponies, there was an increase Pacoz by about 2 Torr (266.6 Pa) during

the first 2 minutes of Infusion. Between 2 and 10 min there was significant

decrease in Pacoz of about 5 Torr (666.6 Pal, which was similar for all

groups. Ventilation changed after 30 s until about 2 min, after which there

was no significant change in \IE for all groups at rest or at exercise. For the

remainder of the protocol there was no significant difference between all

groups. The authors concluded that lactic acid accentuates ventilation at rest

and during submaximal exercise in the ponies but the role of the carotid

bodies and the Hilar nerve afferents are not critical for this response (24).

In contrast, CBO dogs, which normally hyperventilated in response to

lactic acid, failed to hyperventilate in response to lactic acid infusion during

resl or exercise (3) supporting the idea that lactic acid mediates control of

ventilalion by the carotid chemoreceptor. Comparing CBO, hilar nerve

denervated (HNO), and normal ponies has also demonstrated that
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hyperventilation during high intensity exercise is independent of acidosis

and the carotid chemorcceptors (59).

Human Studies of Arterial Acidity and Ventilation

The view that there is acid-base involvement in the control of

ventilation by the carotid chemoreceptor is supported by data gathered on

asthmatic patients with carotid body resection. These individuals were

compared to normal subjects during steady state and incremental exercise.

The researchers observed that, as expected, rescclioned carotid bodies did

not affect the initial, abrupt. increase in ventilation (phase II) or the steady

state (phase lID response to exercise (Fig 2.1). However, the time course to

achieve steady state ventilation (phase II) was significantly slower in the

carotid body resected subjects. Above the' anaerobic threshold' as defined

by Wassennan (77). their VEwas significantly lower then subjects without

carotid body resection (77). This suggests, according to Wasserman (77),

that the carotid bodies are responsible for the respiratory compensation for

exercise-induced metabolic acidosis but not for the phase I response to
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exercise. However, the ongoing pathologies of these patients in the study

may have influenced the results (80).

Despite these conclusions. the evidence supports that lactic acid is

only partially responsible for the ventilatory responses to exercise. In

humans, although it has been accepted by many (19, 77) to use the

ventilatory threshold as a non-invasive means of the determination of the

point of elevated lactic acid production, this hilS been brought into question

by McLellan (52). The venlilatory response to incremental exercise is argued

to include two successive thresholds (53, 56). The initial ventilatory

threshold (VT j ) is indicated non-invasively by a continued decrease in the

ventilatory equivalent for carbon dioxide (\V\tO) and an increase in the

ventilatory equivalent for oxygen (VJ\b~. Ventilation increases out of

proportion to \02 due to the increased carbon dioxide production resulting

from lactic acid (LA) buffering or the non-metabolic increase in COzlevels.

Buffering of LA increases arterial CO2 according to the following

Henderson-Hasselbalch equation:

CO,+l/P~H,COJ~fr+HCO; (1)
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According to the equation the rise of blood lactic acid (OBLA) during

exercise increases H+ ions concentration. These ions must be buffered by

blood bicarbonate. This causes the above equilibrium to shift to the left

(LeChatalier's principle) resulting in an increase in alveolar CO2 and hence

an increased CO2 flow to the lung. The arterial CO2subsequently remains

constant (i.e. this is an isocapnic buffering period) since this buffering of the

excess carbon dioxide is precisely matched with an increase in \b which is

why the VEl\taz decreases. This first threshold (VT I) is defined as the

~anaerobic" threshold since it is the buffering of the excess lactic acid

production which causes the increased VE(52). The second ventilatory

threshold (VT2J is indicated by an increase in VEI\tOl and hence, a fall in

Paco2. The mechanism involved for the hyperpnea at higher \th or

workloads is not fully understood, and McLellan believes it to be of neural

origin (53).

Further support for two separate ventilatory thresholds was given

when the hyperventilatory threshold during progressive exercise was

dissociated from the anaerobic threshold indicated by a sudden increase in
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lactic acid (31,33,40) in subjects in whom lactic acid production was

altered by dietary manipulation (glycogen depletion causes a decrease in R).

McLellan's (52) work is also supported by Simon et al. (69) who showed

that that the ventilatory threshold (VTz) and the anaerobic threshold (VT])

occur al diflerent levels of \02 and power outpUI.

Subjects with McArdle's disease hyperventilate during exercise (32),

even though they are incapable of increasing arterial lactate and H~

concentrations. These subjects lack muscle phosphorylase and. hence, are

incapable of producing lactic acid. As a result some researchers have used

these individuals as a method of studying the extent to which lactic acid

affects ventilation. Hagberg (1982) found that McArdle's disease patients

still had a hyperventilatory response to exercise and the abrupt increase in

ventilation, VTz, which, during incremental exercise occurs, occurred at a

percent of maximum \02 (75-80%) that was not significantly different from

the percent of maximum~ at which VTz occurred in normal subjects (32).

Based on these results, Hagberg concluded that nonhumoral mechanisms are

the most likely cause of hyperventilation.
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Hagberg's (32) result was criticized by Whipp (81) who argued that

the hyperventilatory response to exercise could be attributed to the pain

associated with exercising with McArdles's disease (81). Hagberg (32)

countered that only two of the subjects experienced mild pain. and the pain

was not experienced until after hyperventilation had occurred (81).

McLellan (52) believes that since Hagberg (32) used a venlilatory threshold

(VT2) instead of an anaerobic threshold (VT I), the conclusion that. the data

from the McArdle's patients support a coincidental, not a cause and effect,

relationship between lactic acid and ventilation, is unjustified (52). McLellan

(52) suggests that Hagberg's (32) data support the theory that carbon dioxide

production is the mediator of ventilation below 80% of maximum oxygen

consumption and that above 80% the mechanism of control may be neural

(52).

Further evidence against lactic acid as an initiator of hyperventilation

comes from a study on eight healthy males undergoing incremental exercise

at two different intensities until a peak~ was reached. One test, which was

conducted at 60 revolutions per minute, used a standard power output step

increment of 60 W every 3 min (SI). The second test was conducted at 90
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revolutions per minute and used a higher power output step increment of 90

W every 3 min (HI). As previously shown, the subjects demonstrated a

similar relationship between oxygen uptake (\OJ and 'Ie and between ~ and

carbon dioxide production (\to) at both exercise intensities. However, the

results demonstrated that there was a dissociation between blood lactate

concentration and venHlation for incremental stationary cycling. Blood

lactate accumulation was lower for graded exercise at HI compared to SI.

Blood lactate was related to the rate of power OUlput and nol to VE, while

venlilation was related 10 \bz and \to! (73). The results do nOI support the

hypolhesis that VE changes coincide with changes in blood LA.

In conclusion, the literature is dearly divided on the effects of arterial

acidity on \to Some researchers believe acidity is involved in the control of

VE by its effect on the carotid body (77). Others believe that arterial acidity

does not influence the \IE threshold (31,33.40). Evidence exists to support

the independence of \IE from arterial acidity (32, 73). More complicated

interpretations also exist as McLellan (52) suggests: the mechanisms may be
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metabolic before the anaerobic threshold, and neural after. Clearly more

research needs to be done in this area to elucidate how anerial acidity and

ventilation are related during exercise,

Extracellular Fluid Acidity

Ventilation is thought to be increased by various metabolites in the

eXlraceliular fluid such as potassium (85) and hydrogen ions (25, 64). The

pH of the eXlraceliular fluid is thought to increase ventilation (65) by

stimulating group· IV afferents (25, 64),

It is difficult to measure the hydrogen ion concentration of

extraceUular fluid without affecting the muscle, Instead, the pH of

intracellular fluid (pHi) can be estimated non-invasively using 31P_magnetic

resonance spectroscopy elp-MRS), A marker (phenylphosphonic acid) is

added 10 the extracellular space and reacts with hydrogen ions, the product

has a distinct resonance peak in the Nuclear Magnetic Resonance (NMR)

spectrum. Hydrogen ion concentration of intracellular fluid is known to be a

good indicator of the pH of extracellular fluid (25), as such. pHi levels are

used as an indication of the pH bathing the group-IV afferents. The pH of
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the extracellular fluid in muscle is linked to ventilation (25, 64, 65) hence.

pHi is also linked to ventilation. Oelberg (57) concluded that skeletal muscle

hydrogen ion in the extracellular fluid contributes to the exercise-induced

ventilatory response, Oelberg found evidence of this when a subject's

ventilation was found to vary linearly with the pHi in the vastus medialis.

and did not change in parallel with changes in arterial pH (57). Wasserman

(76) argues against Oelberg's theory. He argues that a chemically-induced

decrease in heart rate should concentrate metabolites known to stimulate

ventilation in the proximity of the group-IV afferent receptors. However. his

results showed that a chemically induced decrease in cardiac output actually

reduced ventilation (76). As such, despite accumulation of metabolites in the

proximity of the group-IV afferent receptors, VEdecreased in Wasserman's

study,

Although it appears that the pH of the extracellular fluid and the

arterial pH may playa role in the regulation of ventilation, it seems unlikely

that they are the sale factors in the control of ventilation during exercise.

2-33



Neural Reiliponseili

Many researchers believe that ventilatory responses are not based

purely on metabolites, but also consists of a neural component. The neural

components thought to influence ventilation during exercise are divided into

behavioral, limb movement, hypothalamic, and thenna!.

Behavioral

The first phase of the ventilatory response to exercise (81) is

hypothesized to be due 10 a behavioral component (6), sensory cues

initiating increased ventilation based on past experience, This phase

typically lasts about 15 -30 s (81). In order to study the immediate changes

in VT and f, Beaver and Wasserman studied blindfolded men ([0 remove any

visual cues) using random intermittent exercise-and-rest periods, Exercise

was initiated in response to verbal command from researchers in a random

fashion so as to remove anticipatory reactions. The results demonstrated that

there was an instantaneous change in f and VT when exercise began before

any change In metabolites had occurred. The respiratory frequency generally

Increased and VT was variable but generally decreased immediately with the

onset of exercise. Beaver and Wasserman believe the variability in the
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responses indicates a learned response and not a fundamemal physiological

mechanism (6).

Limb Movement

Limb movement changes rapidly wilh the onset of exercise, Therefore

it has been hypothesized to have a neurally mediated effect on ventilation (6,

11,20,58). Forster (27) designed a study to investigate this phenomena in

the pony, The objective of the study was to determine whether changes in

limb movement affected PaC02' The ponies performed incremental tests with

varying speed. grades and step frequencies, and exercised with either four

limbs or two limbs. It was concluded that the decrease in PaC02 brought

about by exercise-induced hyperventilation was not influenced by the

frequency of limb movement or the number of limbs involved in the

exercise. Hence limb movements appear not to be an initiator of ventilation.

or as mentioned in the next section, it may be related to ventilation in a

manner that is not cause and effect.



Neural Activation of Ventilation from the Hypothalamus

Work by Eldridge and colleagues (23) on unanesthetized decorticate

cats has given evidence that parallel neural signals from the locomotor

region of the hypothalamus are primarily responsible for locomotory,

respiratory, and some cardiovascular responses to exercise. Decorticated cats

had Iheir vagus and carotid sinus nerves sectioned. Cats were able to walk

spontaneously when suspended over a free-running treadmill, respiratory

activity was measured by measuring the electrical activity in a phrenic nerve

root. and skeletal muscle activity was measured with electrodes placed in the

quadriceps. Treadmill activity was immediately accompanied by an

increased respiration and arterial pressure, without a concurrent increase in

end-tidal CO2 tension. When activity ceased a rapid decrease in Vr and f

was observed and this supports the hypothesis that ventilation is induced by

a pathway which is also involved in locomotion. Furthermore, feedback

mechanisms from muscle activity were shown not to be necessary in this

response, since rendering the cats paralyzed with gallamamine triethiodide

produced the same results as nonparalyzed cats (23). Hence. in cats. il

appears that there is a strong neural influence from the hypothalamus, which
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initiates both locomotion and cardiovascular responses as well as ~ changes

in a parallel fashion. How the other initiators of ventilation such as

metabolites, behavior, and temperature combine with this response is still in

question.

Body Temperature and Ventilation

Body temperature, sensed by thermoreceptors. is believed by some

researchers to be a variable which has a relationship with exercise-induced

hyperventilation. Passive heating of human core temperatures by 2'C in a

water bath has been shown to increase pulmonary ventilation by 49% (5,

66), oxygen consumption by 19% (66), to decrease end-tidal carbon dioxide

tension by 17% (66) or by an average of 4.8 mmHg (5) and to induce a 16%

increase in carbon dioxide production (66). Since the temperature-induced

increases in '{ were out of proportion with metabolic needs, this supports

that body temperature may be an independent stimulus to ventilation.

Measurements of subjects for Saxton's experiments (66) were done in a

thermoneutral environment and during passively (heat chamber) induced

hyperthermia (Tympanic temperature, 39.0 - 39.S"C). The changes in
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metabolic rate were suggested to be due to an increase in the basal metabolic

rate and not due 10 'arousal activities' (66). This conclusion was inferred

since the increased work due to hyperpnoea at rest only 'cost's' 0.35 ml of

oxygen per liter increase in \IE (13) and the cost of sweating only account for

a minuscule part of the overall rate of oxygen consumption (66). Saxton's

datum also suggests that there is an increased sensitivity to CO2with raised

body temperature, which supports later studies by Cunningham and

O'Riordan in passively heated humans (18).

Other researchers have found that passive heating of humans in a hot

water bath caused a significant increase in \i (4,12, 15). This increase in

ventilation was not accompanied by an increase in f and no significant

increase in~ (12, 15). These results suggest that the hyperthermia induced

hyperpnea is not due to increased metabolic requiremem but may be a

vestigal panting response (J 2). This hyperthermic hyperpnea was

demonstrated by Cabanac and White (12) to follow distinct core temperature

thresholds for ventilation (12). Choukroun (i 5) also showed that increasing

water bath temperature caused a decrease in vital capacity and a decrease in

maximum breathing capacity (MBC). However, the hydrostatic effects of
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water have been shown to decrease expiratory reserve volume, functional

residual capacity and vital capacity (15). Changes in either of these volumes

may affect their remarks about temperature being the mechanism of change.

since the hydrostatic effect may be partly responsible for the observed

changes.

In another study (71), subjects exercised with and without an

elevation in core temperature. Rectal temperature was passively elevated to

approximately 38.S"C in the test condition in a climatic chamber. During the

exercise at normo- and hyperthennia, rectal temperature was kept constant

through the use of cold water sprayed on the subjects and varying the room

humidity. In the exercise session fwas higher and VTwas lower, O2

consumption rate lower, and CO2 production lower than in the normothermic

exercise session (COnlroi). Although ventilation was not difTerem between

normothermic and hyperthermic subjects, the ventilatory equivalents for

oxygen (YEI\QJ and for carbon dioxide (VE!\tQJ were greater in

hyperthermic subjects. The observed increase in f and decrease in Vr may

represent what is left of a panting response in humans, and therefore, could

be a form of heat loss (45, 46,71).
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Cotes (16) observed an increase in ventilation with increasing body

temperature while arterial PC02was held constant. Rises in body

temperature with an increase in arterial PC02 were shown to have an

additive effect on ventilation (17) thus CO2appears to accentuate the

ventilatory response to temperature, i.e. CO2 sensitivity seems 10 increase

with increasing temperature. However Cotes (17) only perfonned the

experiment on one subject, so the results are not generally accepted.

Ventilation has also been argued by some researchers to be a method

of thermal regulation in humans (12, 46, 61, 84), thus providing a

physiological rationale for a temperature induced hyperpnea in humans.

Removal of an upper respiratory bypass in conscious patients has been

shown to rapidly lower the temperature between the frontal Jobes and the

cribriform plate (TcRl by 0.4 - 0.8"C (46). In this study by Mariak and

colleagues (46). the intracranial temperature also fell below esophageal

temperature, indicating the presence of selective brain cooling (SSC) in

post-operative patients (46).

Similar results were obtained in a sludy by Mariak et a!. (45). The

researchers examined the relationship between cranial temperatures and
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noninvasive measurements of core temperatures. For this study (42),

tympanic, esophageal, rectal and 3 to 4 cranial temperatures were

simultaneously recorded from five subjects during open brain surgery. The

brain temperatures during the protocol decreased and were closely followed

by tympanic temperature. Simultaneously, esophageal temperature (T.,J rose

and was significantly higher than both the cranial and tympanic temperatures

supporting thai Tes does not give the best intracranial temperature index.

Further support for this ventilation-induced drop in cranial temperature was

found when subjects were asked to breathe intensively for three minutes, TCR

was shown to drop by a rate of ",,6·CIh (46). The results support the view

that cranial temperatures can be influenced by ventilation.

Selective brain cooling has also been shown to occur in goals (14) and

numerous other animals (12). In goats, SBe competes with trunk cooling by

controlling the direction of the cooled nasal blood flow. The amount of brain

cooling increased significantly with rising cerebrallemperature and

decreased with rising trunk temperature (14). When brain temperature was

damped at 41·C the intensity of SBC was essentially independent of trunk

temperature, suggesting thai SBe takes precedence over trunk cooling (14).
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The occurance of selective brain cooling in humans seems likely

because of the close proximity the roof of the nasal cavity to the floor of the

anterior cranial fossa (46). Hence, the majority of inhaled air warming

occurs in the upper part of the airways (51). Cabanac and White (12) showed

that during passive heating in a water bath, tympanic temperature dropped

below esophageal temperature (12). In their study involving the direct

simultaneous measurement of tympanic, esophageal, and three cranial

temperatures, Mariak and colleagues (45) found that tympanic temperature

and esophageal temperature are good indicaHons of overall brain

temperature and core temperature respectively (45). Therefore, the

previously mentioned SBC appears to be supported in humans.

nlere is also evidence against the existence of SBC. McFadden (50)

believes that the humans are designed in such a way that minimizes heal and

water loss to the environment, hence, making respiration a poor means of

heat loss. Data on subjects breathing frigid air (-17.8 ± 1.8·C) showed that

the lemperature of the airways falls to levels only a few degrees higher than

the air temperatures and that there was no difference in airway temperature

between exercise and passively induced hyperthermia (50). McFadden (50)
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suggests that these findings illustrate that there is little blood bathing the

airways. By thennal mapping of the lungs during inspiration and expiration

some researchers believe that the main effect of heat transfer during

inspiration is to cool down the airways and that the opposite effect can occur

during expiration and heat and water can be reclaimed (49, 50). However,

breathing frigid air may have affected the subject's normal responses, and

the five min exercise of his protocol may not have been long enough to

increase core temperature and initiate thermal control by ventilation.

It is probable that temperature has some effect on ventilation since

this has been shown in many studies (4, 16, 18,39). The mechanism by

which temperature affects ventilation is still yet to be properly elucidated.

One possible mechanism may be that temperature affects a human's

sensitivity to CO2(4,16,18,39).

Panting versus Non-Panting Response to Hyperchcrmia

Strange-Peterson and Vejby-Christensen (71) demonstrated, during

exercise, that as a body temperature increased above an extrapolated core

temperature threshold of 38'C, an increased frequency of respiration was

observed with no significant change in ventilation. Strange-Peterson and
2-43



Vejby-Christensen (71) may have failed to see an increase in YEdue to an

insufficient increase in core temperature. Many researchers have found that a

rise of 1.S - 2"C is required to increase ventilation (12, 66). Martin (47)

observed that passive heating and exercise-induced healing produced similar

changes in ventilation, as body core temperature (rectal) rose, r increased

and VTfell (47). An observed Increase In f with a decrease or no change in

VTcould be an indication ofa vestigal panting mechanism in humans (47).

Cabanac and White (12) found that a passively induced rise in body

temperature above esophageal (38.S·C) and tympanic (38.1·C) temperature

thresholds resulted in an increase in YE. This result is supported by Gaudio

and Abramson (30). The increase was due to an increase in VTwith no

significant change in f, thus. the increase in ventilation did not resemble a

panting response.

How temperature affects the components of ventilation appears to be

still in question (II, 27, 44, 68). It remains to be resolved whether a rise ill

core temperature increases VTor f. or both (12).
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The relationship between Neural and Metabolic Responses

The presence of both neural and metabolic components of ventilation

is almost certain. However, the relationship between these mechanisms is

ambiguous. It is not certain if they are purely additive or if the two

mechanisms are interrelated.

The main focus of this thesis is to explore the relationship between

core body temperature and [he components of ventilation. A basis for

exploring this relationship is to first establish if these relationships are

reproducible. Further research will examine whether there is a relationship

between body core temperature and CO2sensitivity.

As mentioned previously, Cunningham et al. (1957) observed that a

passively raised body temperature (rectal) increased CO2 sensitivity. Carbon

dioxide sensitivity was defined as the slope of the regression linc on a graph

of ventilation as a dependent variable plolted against alveolar peo2• This

sensitivity was shown to increase by approximately two fold with

hyperthermia. An altered slope suggests that the effects of passive

hyperthermia and alveolar peo2are not merely additive (18). Cotes (17)

found these factors to be addItive, however his experiment was based on

only a single subject.
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Clark and colleagues (16) studied nine trained athletes at various

exercise-induced~ levels while exposed to 5 different levels of inspired

PCOz for each exercise leveL The researchers found the vemilatory response

to carbon dioxide was increased during light exercise (~, 1.08 1/min) and

this accentuated response was reduced with increasing workloads. The

results indicated that the chemical and non-chemical components of exercise

hyperpnea were not directly additive, since the ventilatory response to

hypercapnia at rest and during exercise were not parallel (16).

The effect of passive hyperthermia on carbon dioxide sensitivity was

also studied by Baker and colleagues (4). Body temperature (Infrared

Tympanic) was elevated by 1.5'C in six male subjects. This hyperthermia

was shown to increase ventilation, heart rate, metabolic rate and the

sensitivity of the ventilatory response to CO2• However, the threshold point

of the CO2 response of \IE versus PETC02 did not change with hyperthermia

(4).

The effect of passive hyperthermia on ventilation was also

investigated by House and Holmes (39) who perfonned a Read rebreathing

test (62) on four subjects before and after body wanning induced by a hot
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water bath. Breath-by-breath gas concentrations was analyzed by mass

spectrometry. House and Holmes (39) did not observe a decrease in the

P~02 threshold or an increase in the slope of the \'E as a function of

PETC02curve (i.e. CO2sensitivity). They did. however, like Baker and

colleagues (4), see an additive effect of core temperature on the ventilatory

response to CO2 (39).

Research Hypothesis

It is hypothesized that core temperature is an independent and

reproducible stimulus to ventilation during incremental exercise. In addition

it is hypothesized that the sensitivity to CO2will increase with increases in

body temperature during exercise.

Testable Hypotheses

(I) Esophageal tempe,.tture thresholds for fand VT plateau points are

reproducible during incremental exercise in similar exercise

conditions
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(2) Esophageal temperature thresholds forV~ and VE!'\to:! are

reproducible during incremental exercise in similar exercise

conditions

(3) Carbon dioxide sensitivity during CO2 rebreathing, as indicated by the

slope of the VE versus PETC02 relationship, will increase in

hyperthermia versus normothermia

(4) Thresholds for the onset of increased VI: will be decreased during CO2

rebreathing in hyperthermia versus normothermia

Significance of Study

As the review oflilerature has shown, the control of ventilation in

humans during exercise and hyperthermia is poorly understood. There are

numerous conflicting theories aU of which have supporting and conflicting

evidence. Some of these theories claim metabolites such as CO2 (21, 76),

and pH (25, 64, 65) as the initiator of ventilation, some theories advocate

neural mediation of ventilation in response to stimuli such as temperature

(12,20,61,83,84), and limb movements (6).
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Still other theories support ajoint neural and metabolic influence on

ventilation (52) (4,18, 39). In addition. there are researchers who are

interested in the influence of passive body temperature on ventilation (4, 18,

39) however, the influence of exercise induced body temperature on

ventilation is still poorly understood.

This thesis will provide further research on the laller model; the joint

effect of metabolic and neural influences on ventilation during exercise

induced hyperthermia. The results will be directed towards a better

understanding of the control of human ventilation during exercise.

Instrumentation

Breath analysis requires: a mouthpiece, a flow meter, a mixing box, a

carbon dioxide analyzer and an oxygen analyzer.

Ventilation Measurement

The subjects breathe through a mouthpiece held in their jaw. From the

mouthpiece expirations are directed to the appropriate sensing devices. This

either consists of a system of one-way valves. or simply tubes which direct

gas towards the Oz and COz analyzers.
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The volume of expired gas must be measured by a pneumotach or

flow meter. The flow meter measures how much gas is expelled with each

exhalalion and, depending on the pneumotach used, it may also measure the

rate of expiration. For example the Mass Flow Sensor™ on the

Sensonnedics YMAX 229c metabolic cart uses gold plated stainless steel

wires. The onboard computer senses how much power it must provide to

maintain a constant temperature in these wires. The amount of power is

proportional to the flow rate of gas over the wires, coupled with time, the

mass flow sensor can measure volume, rate, and flow. In systems equipped

with a mass flow sensor, detection occurs immediately after the mouthpiece.

In metabolic carts where a compact flow sensing device such as the

mass flow sensor is not used, the volume of expiration is determined before

mixing the gas by a pneumotach. Flexible Collin' s tubing connects the

mouthpiece to the pneumotach and the tubes must be between 30 and 50 mm

in diameter so that resistance is minimized and so that too much air does not

remain in the tubing. For the same reasons the pipe must be as short as is

possible without interfering with the experiment. After passing through the

mass flow sensor the gas flows into the mixing box. The size of the mixing

box must be chosen with care. a large box allows for good mixing but takes
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a relatively 10l1g lime to wash out, whereas a small box has a shorter wash

out lime but may not mix the gases adequately. The exact size of the box is

therefore dependent on the aims of the experiment being conducted, for

example if large tidal volumes are part of the experiment then a larger

mixing chamber will be preferred. Typically the mixing box size is between

0.005 and 0.015 m3. The gases are mixed with either a series of baffles or a

fan. A fan must be used carefully to prevent gas from being pulled through

the respiratory valves.

After being mixed (or after Ule mass flow sensor) some of the gas is

sampled the rest of the gas is expelled to the environment. In the VMAX

229c metabolic cart this sampling rate is 500 ml/min. The room should have

adequate ventilation so that the expelled gas does not accumulate in the

room and change the inspired gas mixture which could influence the

estimation of~ and \tD.!. The sampled gas is taken to a carbon dioxide

analY7.-er and an oxygen analyzer.
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Metabolic Measurement

Commonly used carbon dioxide analyzers utilize infrared absorption

as a basis for measuring the concentration of carbon dioxide in a sample of

gas. Carbon dioxide absorbs infrared light over a specific range of

wavelengths (2000 nm < A< 2250 nm), so as infrared light is passed through

the sample cell, certain frequencies of light are absorbed. The beam passed

through the sample is compared to a reference beam, the amount of

absorption in the appropriate wavelengths (corresponding 10 carbon dioxide)

indicates the concentration of carbon dioxide in the sample. A higher

proportion of infrared light absorption corresponds to a higher concentration

of CO2 in the sample.

Oxygen analysis can use a solid oxide solution, specifically calcia­

zirconia. At high temperatures these solid solutions can act as conductors for

oxide ions. Placing the solution in an open circuit and exposing the solution

to the sample gas allows the solution to conduct the oxide ions. The resultant

voltage carried by the oxide ions is proportional to the concentration of

oxygen by a calibration equation. Oxygen concentration can also be

determined by taking advantage of oxygen's paramagnetic properly. A
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diamagnetic bell suspended in a magnetic field rotates proportionally to the

concentration of oxygen surrounding it.

A mass spectrometer can also be used to obtain the concentration of

any gas. A mass spectrometer can separate ions and hence determine

concentration according to their mass to charge ratio. Ions entering a

magnetic field recieve a force perpendicular 10 the direction of propagation.

The magnitude of this force is proportional to the charge and velociry of the

particle and the strength of the magnetic field. When ions of a specific

velocity enler the uniform magnetic field of a mass spectrometer they

undergo circular motion due to the perpendicular magnetic force. The radius

of this circle is proportional to the mass and charge of the particle.

Knowledge of the concentrations of oxygen and carbon dioxide in

addition to the knowledge of flow rate and volume from the flow meter we

can determine other useful information such as respiration, exercise and

metabolic rate.
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Introduction

At rest. changes in arterial carbon dioxide are tightly correlated to

changes In ventilation (30), however the mechanisms underlying the

hyperventilation relative to metabolic need during exercise are poorly

understood (6). In heavy exercise, arterial carbon dioxide (C00 either

decreases or remains at resting levels (12. 21) suggesting a changed role for

arterial CO2 in the control of ventilation during exercise. Several hypotheses

on the control of ventilation during exercise have been developed (6), The

increased CO2 flux across the lungs during exercise is suggested to be one

important stimulus to ventilation (8, 27). but other possible stimuli to

ventilation during exercise are also evident (1, 2, 9. 10, 18, 19.22.23,28,

29). These include that ventilation is influenced by exercise-induced

increases in lactate (18, 19,29), arterial acidity (I, 9, 28), extra-cellular

acidity (10. 22) and limb movements (2, 23). The body warming that

accompanies exercise is another stimulus known to increase ventilation (13,

32), but this mediator of ventilation has received considerably less study (6).

Since both hot water immersion (3,13,17,24) and exercise-induced

body warming (25, 31, 32) induce a hyperventilation relative to metabolic
3~2



needs, it appears that body temperature is an independent stimulus to

ventilation. During passive and exercise induced body warming, distinct

core temperature thresholds for ventilation were identified (3, 3l) and

subsequent to these thresholds ventilation increases proportionately to body

core temperatures (3. 31). For humans rendered hyperthermic by exercise it

remains to be determined how the components of ventilation change as a

function of core temperature during progressive exercise to maximal

attainable levels. It is also not yet known if the relationships between core

temperature and each of ventilation, tidal volume (VT), and frequency of

respiration (0 are reproducible in progressive exercise protocols. The

purpose of Ihis study was 10 assess these two questions.

Material and Methods

Seven men between the ages of 18 and 40 (mean age"" 24 ± 2.1 years;

mean weighl 71.4 ± 3.0 kg: mean height 1.77 ± 1.6 m; mean ± SE)

participated in the sludy. During the experiments the subjects wore athletic

shorts and a short sleeved athletic shirt. The ambient temperature during the

exercise sessions was 22.1 ± 0.3°e. An ethics committee for human



experimentation at Memorial University of Newfoundland approved the

experiments and all subjects signed an informed consent prior to

participating in the study.

Instrumentation

Esophageal temperature was measured using a pediatric sized

thermocouple (-2 mm) inserted a mean of 403 ± 3 mm past the nares, a

depth which corresponds lO the level of the ventricles (20). Skin temperature

was recorded from thermocouples at 3 sites (center of forehead. right upper

chest, and right thigh) and values are expressed as the un-weighted meall.

The subject breathed from a low resistance mouthpiece fitted with two one­

way valves. The inspired air was from the laboratory and exhaled air was

collected in a fluted mixing box. Expiratory gas drawn from the mixing box

was analyzed for carbon dioxide and oxygen content by MMC Horizons

metabolic cart (Sensormedics, USA). Ventilation was determined with a

pneumotach integral to the metabolic cart. Esophageal temperature and

ventilation were recorded at 15-s intervals and skin temperatures were

recorded at 30-s intervals. Values were expressed at I-min intervals.
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Protocol

The protocol involved two sessions using the same incremental

exercise on a mechanically braked cycle ergometer (Monark, Sweden). Each

experimental trial occurred at the same time of day and followed a 24-hour

period without heavy or prolonged physical activity. The cycle ergometer

power was increased by 40 W every 2 min. This continued until {he subject

could no longer maintain the prescribed cadence of 80 rpm or if the subject's

rate of oxygen consumption ceased to increase. The average number of days

between trials was 5.9 ± 2.1 days.

Analysis and Statistics

Tidal volume, frequency of respiration, and the ventilatory equivalents

for oxygen (VE!\t)J and carbon dioxide (VE!\tW were ploued as a function

of esophageal temperature. Esophageal temperature thresholds (31, 32) for

the ventilatory equivalents were independently determined from these

graphs by two observers and, in the case of a discrepancy. a third observer

was used. Mean esophageallCmperature points, esophageal temperature

3-5



plateau points for VT and mean esophageal temperature thresholds for f, '4N

O! and VE!\.to! were compared between trials using a paired, two-tailed

Student's t-test (SPSS v. 10, Chicago, IlL, USA). Reproducibility of

individual esophageal temperature thresholds for f, VI:.J\.b2 and VE!\.tOz and

individual esophageal temperature plateau points for VT was assessed with

between-trial scatter plots. The slope of the best-fit linear regression

equation in these scatterplots was compared to the line of identity and uni­

variate intraclass correlation coefficients (R) were calculated between trials

for each of these four (f. '4!\.tJz, VE!\.taz, and VT) variables. The level of

significance was set at p< 0.05 for all statistical tests.

RESULTS

Esophageal temperature as a function of time followed a three-phase

response during the exercise protocol. At the beginning of the exercise

protocol the T.. in the two trials displayed a small initial decrease of about

a.2°C from the resting value of 36.89±0.09°C. Nextlhere was a gradual

and consistent increase in T.. until approximately five minutes. Finally, T..



rose at a faster rate until the end of the exercise, 10 a value of approximately

37.8°C. The Tos followed a similar profile of increase in each trial and values

were 1I0t significantly different between trials.

Figure 3-1 is a sample plot from one subject and it illustrates the

typical responses of fand VT as a function ofT",. The main VT increase was

during the first few tenths of a degree increase in Tes, however, after this

initial response, during a localized range of T... tidal volume ceased to

increase. This localized region ofT.. was labeled the VT plateau point as

indicated by an arrow in the top panel of Figure 3-1. Frequency of

respiration followed approXimately the inverse pattern to VT. Inilially there

was little increase in ffor approximately I,O'C increase in T... After this

initial range of T.., a threshold was reached and f increased as an

approximately linear function ofT... The mean Te. plateau point for VT in

Trial 1 of 37.26 ± O.16°C was not significantly differem than the mean T...

plateau point in Trial 2 of37.17 ± O.l3°C (Table 3-1). The mean Tt •

threshold fin Trial 1 of 37.37 ± O.l4°C and in Trial 2 of 37.46 ± a.lrc

were also not significantly different between trials (Table 3-1). The mean,
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two-lrial pooled T.. plaleau poinl for VTof 37.22 ± a.lOoe and the mean

two-trial pooled T",lhreshold for fof 37.42 ± 0.11 °C were also not

significantly different from each other. The pooled data from the IWO trials

for VTand f responses as a function ofT~. appear in Figure 3-2.

A sample subject's plots of~!\t>.z and V£!\tOzeach as a function of

T.,. are given in Figure 3-3. There was initially no change in both ventilatory

equivalents until a threshold T.., at which point these values increased in

proportion to T•• until the end of the exercise. Individual and mean

esophageal temperature thresholds for the ventilatory equivalents are given

in Table 3-2. Both the TO' mean thresholds for VE~ between trials and the

mean T.. lhresholds for VEI\tOz between trials were nOI significantly

different. The pooled, two-trial mean of the Tn threshold points for VE!\t>.z

of37.49 ± a.lloe and for ~1\t0z of 37.52 ± O.12°C were also not

Significantly different.

Reproducibility plOlS ofT.. plateau points for VTand for the T..

thresholds for f are given in Figure 3-4 and for the T.. thresholds ventilalOry
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equivalents in Figure 3-5. All intraclass correlation coefficients between

trials were significant (p < 0.05) and the slopes in the two plots were not

significantly different from the line of identity. The intraclass correlations

between the T.. plateau points in the two trials for VT was 0.93. The

intraclass correlation between the To,; thresholds for f was 0.84, for \!~2

was 0.91, and for ~/C02 was 0.88.

DISCUSSION

The present study has two main new findings. The first is that during

progressively increasing exercise intensity the increases in ventilation at

lower T.. were due to increases in VT and at higher T"" further increases in

ventilation were due to increases in f. These relationships between the

components of ventilation and Te> were shown to be reproducible (fig 3-4,

Table 3-1). The second main finding in rhis study was thai Te<lhresholds for

ventilatory equivalents were also reproducible in these conditions (Fig 3-5,

Table 3-2). The Te< thresholds for the ventilatory equivalents were first

demonstrated by White and Cabanac (31, 32), but it was unknown if these

relationships were reproducible. Together these two findings strengthen the
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hypothesis that core temperature is a stimulus to ventilation during the

actively induced hyperthermia of exercise.

There has been little study of the effects of actively induced

hyperthennia on VT and f(7, 17.25, 26). The studies that exist were for sub·

maximal (- 50 to 70 % of maximal work capacities), steady state, prolonged

exercise (7, 17,25.26). The results from these suh-maximal studies still

support the present results (Fig 3-2) since at higher body temperatures and

levels of ventilation, the increases in ventilation were accounled for by

increases in f (7. 17, 25, 26) as reported in the present study (Fig 3-2). This

is in contrast (Q some studies of passively induced hyperthermia where the

increase in ventilation at elevated core temperatures was accounted by an

increased tidal volume (VT) with a normal f (3,11). Despite these results (3.

11), passive body warming has also been reported to induce rapid. shallow

breathing with elevated f and decreased VT (17, 25). The reasons for the

differences in the pattern of ventilation during passive body warming remain

to be resolved.
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Many of the previous studies of passively and exercise induced body

warming and ventilation (4, 5. 17, 24, 25) have used rectal temperatures as

an index of body core temperature. This has brought these results into

question since reclal temperature is a poor index ofbolh central blood (14.

16) and cranial temperatures (16). Esophageal temperature (T.J has been

shown to be a good index of central blood body temperature (14) and a

reasonable index of cranial temperatures (15). Future sludies will examine if

tympanic temperature. known to be an excellent index of cranial temperature

(16), has a similar relationship to the components of ventilation.

CONCLUSION

The results indicate thaI YT, f and the ventilatory equivalents

for carbon dioxide have reproducible relationships with esophageal

temperature during progressive exercise to maximal attainable levels. At a

reproducible. esophageal temperature. ventilation increase switches from

being primarily due 10 tidal volume 10 being dependent on the frequency of

respiration. The ventilatory equivalents for oxygen and carbon dioxide show

a profile of slow increase until after a threshold point, at which point both
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equivalents increase at an augmented rate. This threshold is the same for

both ventilatory equivalents and it is reproducible.
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Table 3-1: Individual and mean (±SE) esophageal temperature (T",,:C)
thresholds for frequency of respiration (I) and tidal volume (VT) plateau
poims from plots of fand VT as a function Tes during seated incremental
cycle ergometer exercise to the point of exhaustion

Subject #

Mean±SE

Two Trial
Meall±SE

T.,. Thresholds for f
Trial 1 Trial 2
36.94 36.62
36.94 37.42
37.12 37.25
37.64 37.86
37.86 37.59
37.62 38.00
37.48 37.48

37.37 ± 0.14 37.46 ± 0.17
········NS········
37.42 ± O.ll·C

Te• Plateau Points for VT
Trial I Trial 2
36.89 36.62
36.83 36.99
36.99 36.99
37.75 37.64
37.91 37.48
37.05 37.10
37.42 37.37

37.26 ± 0.16 37.17 ± 0.13
··NS········

37.22 ± 0.10·C

·····NS·· .
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Table 3-2: Individual and mean (±SE) esophageal temperature (T",:C)
thresholds for ventilatory equivalents for oxygen consumption and carbon
dioxide production. Thresholds were laken from plots of the ventilatory
equivalents as a function ofT~ during incremental seated cycle ergometer
exercise to the point of exhaustion

Subject #

Mean±SE

Two Trial
Mean±SE

Thresholds for ~t\t>z

Tria! 1 Trial 2
36.85 36.70
37.00 37.30
37.40 37.45
37.80 37.90
38.00 37.70
37.60 38.00
37.60 37.55

37.46 ± 0.12 37.51 ± 0.09
o-------NS-------o
37.49 ± O.l1°C

Thresholds for VEt\tOz
Trial! Trial 2
36.95 36.60
37.00 37.30
37.50 37.45
37.80 37.90
38.10 37.70
37.70 38.10
37.60 37.55

37.52±O.!3 37.51±O.1O
o-------NS-------o
37.52 ± O.12°C

-----NS-------------o
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Introduction

At rest, arterial carbon dioxide (Pacoz) is a dominant mediator of

human ventilation (\IJ as evidenced by small elevations in the partial

pressure of end-tidal carbon dioxide (PETCOZ) inducing large compensatory

increases in \IE' at a given inspired oxygen tension (J 9). During human

exercise ventilation increases by as much as 20 fold over resting levels (20),

but the role of carbon dioxide in this ~ response has not been resolved (see

(9) for a review). Despite these large increases in ventilation, human Pacoz is

either al rest levels during low to moderate exercise (18. 23) or decreased at

higher levels of exercise (10, 23). A potential explanation for these large

increases in ventilation, despite unchanged or decreasing levels of PaC02' is

thaI there is a temperature-induced change in the sensitivity of peripheral

and/or central respiratory control centers to arterial carbon dioxide levels.

This follows from studies that show during passive body warming carbon

dioxide sensitivity increases at higher core temperatures (I, 8).
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From the studies that have assessed carbon dioxide sensitivity changes

during exercise~induced hyperthermia (4-6,12,22,24). either body core

temperature and the degree of hyperthermia was not assessed (24), rectal

temperature (5, 6, 22) was employed that does not follow core or brain

temperatures in a reliable manner (14, 15) or the CO2 breathing (5, 6, 12,22,

24) was not preceded by a hyperventilation to allow the establishment of a

central chemo~renex threshold (4). To address these concerns we assessed

core temperature using esophageal temperature that gives a more reflective

change of central blood temperature (II) and examined carbon dioxide

sensitivity with a Read rebreathing test (21). preceded by a hyperventilalioll

(4), before and after subjects were rendered hyperthermic by exercise. We

hypothesized that the exercise-induced elevated ventilation could be in part

due to a positive interaction of PaC02 (19) and core temperature (1,3,8, 13)

during the hyperthermia induced by exercise. Carbon dioxide sensitivity and

the central chemoreflex threshold were compared between normothermic

and hyperthermic subjects to test this hypothesis.

Material and Methods
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Seven men between the ages of 18 and 40 (26.6 ± 1.0 years; 74.9 ±

1.5 kg; 1.759 ± 0.006 m; mean ± SE) volunteered to perform two

experimental incremental exercise sessions on a seated cycle ergometer

separated by a minimum of three days. Each session was performed at about

the same time of day with a maximum of a one-hour time difference

between the two sessions. The ambient temperature was 23.9±0.5"C and

relative humidity was 40 to 50%. The experiments were approved by an

ethics committee for human experimentation al Memorial University of

Newfoundland.

Measurement and Instrumentation

Pulmonary function variables and oxygen consumption were collected

using a breath-by-breath Senosonnedics VMAX 229c metabolic cart (Yorba

Linda, California) from subjects wearing a nose clip and fitted wilh a

mouthpiece connected to a Mass Flow Sensor™. Before all experimental

sessions the flow sensor was calibrated with known syringe volumes and

rates. The inhaled air directed over the mass flow sensors of the metabolic

cart was controlled by two inflatable balloon valves. This allowed the
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subject to be switched from breathing room air to the five liter rebreathing

bag without having to remove the mouthpiece.

A gas sample was drawn from the inspired and expired air in the ma'iS

now sensor to the metabolic cart through Permapure1M tubing for gas

analysis at a rate of 500 ml/min. Carbon dioxide concentration was

measured using Non-Dispersive Infrared Spectroscopy and oxygen

concentration was measured using paramagnetic sensors. Gas concentrations

of the expired and inspired air were also determined on a breath-by-breath

basis and both gas analyzers were calibrated immediately prior to all

experimental sessions. The first gas was 26% oxygen with the balance from

nitrogen. the second gas was 4% CO2, 16% O2 and the balance from

nitrogen. and the last gas was atmospheric.

Esophageal temperature was recorded from a pediatric sized (-2 mm

diameter) copper-constantan thermocouple (Mon-A-Therm. St. Louis. USA)

inserted in the esophagus to the level of the right ventricle (17). Skin

temperatures were measured using copper-constantan thermocouples taped

to the forehead, chest. and thigh. Esophageal and skin thennocouples were
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connected to a National Instruments SCXI-I 000 data acquisition device

(Austin. Texas) and values were recorded to a spreadsheet every 5 sand

expressed every 30 s using an interface module designed in the National

Instruments LabView 5.I™ programming environment.

All exercise sessions were performed on an electrically braked seated

cycle ergometer (Lode Excaliber, Groningen). The pedaling cadence was

set to a rate of 70 revolutions per minute despite work rate being

independent of pedaling frequency (30 - 120 RPM) for this cycle ergometer.

Protocol

The first exercise session was used 10 determine the subject's

maximum attainable workload: this was used to determine the appropriate

workload for use in the second session, The workload on the ergometer was

increased by 20 W/min until the subject's rate of oxygen consumption

reached a maximum plateau or the subject failed to maintain the prescribed

pedaling cadence.
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Exercise during the second session was incremented from an initial

level of 20 W by 20 WImin until the steady state level was reached. The

steady state was set at approximately 75% of the maximum attained

workload in the first session (workload% ± SE; 13,0 ± 0.8%). This level was

above the ventilatory threshold (VT2) (16) in all trials. Subjects maintained

this level until a core temperature (esophageal) of approximately 38.1 Twas

obtained. During exercise subjects wore two sets of full-length sweat suits

(80% colton, 20% polyester) with an approximate insulation value of -2 clo.

The second session also involved two modified Read rebreathing (21)

sessions. both before and after performing the steady Slate exercise. Prior to

each rebreathing period, subjects were asked to hyperventilate (4) for

approximately 3 min until their PETC02 reached a plateau of 2.3±O.1O kPa

and at this PETC02 point rebreathing began. This hyperventilation was

perfonned so thai the central chemoreflex PETC02 threshold could be located

(4). Rebreathing was implemented from a 5 L bag filled wilh a gas mixture

consisting of 43% oxygen, 7% CO2, and the balance from nitrogen. The bag

was hidden from view to remove the possibility of visual feedback affecting
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the subject' s ventilation rate and/or depth. After exercise, sufficient time

was allowed to elapse for the subject's \IE to come back!O resting or near

resting values before attempting the second rebreathing period. This

typically required 4-5 min. An elevated core temperature was maintained

during recovery by placing blankets around the subject. Esophageal

temperature at the end of exercise was 1.41 ± 0.03·C higher then resting

values of 36.61 ± 0.03·C. After the 4-5 min recovery the mean elevation of

T<$ was 0.84 ± 0.02"C. A sample subject's Pn C02 and ventilation over the

time course of (he entire second session is given in Figure 4-1. A sample

subject's T~ and skin temperatures over the time course of the protocol is

given in Figure 4-2.

Analysis and Statistics

For both normothermic and hyperthennic rebrealhing tests, ventilation

was plotted as a dependent variable against PETC02. Quantification of the

physiological response to CO2 was obtained by determining the threshold

and slope of the ~ versus PU C02 curves during the rebreathing sessions

(21). The threshold was denoted as the PuC02 where \IE began to increase.
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The slope was obtained from a best-fit simple regression line for the supra

PETC02 threshold points. Thresholds were determined independently by two

observers and a third observer was used in the case of ambiguity.

The Pn ·C02 threshold and slope of the VEversus PETCOZ curve (i.e.

COz sensitivity) was detennined before and after heating using paired, two­

tailed Student's Hest. The level of significance was set at p< 0.05 for

comparison of mean thresholds between the two conditions. For regression

lines fit to the supra PE-rCOzthreshold data. for 7 subjects with two-tailed

hypothesis testing. a r value of greater than 0.754 is significant for a pless

than 0.05.

Results

The mean maximum workload attained by the subjects during the first

cycle ergometer session was 272 ± 6.6 W. From the first session, steady

state workloads were specified for each individual and the mean load was

197± 3.5 W.
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Figure 4-2 displays a sample subject's T•• and skin temperature values

over the course of the protocol. Esophageal temperature demonstrated a

consistent rise in temperature after about 13 minutes until the end of the

exercise period. Figure 4~3 is a sample plot of one subject's pre- and post-

warming rebreathing periods and it illustrates the typical '{ and PUCOl

pattern observed in the study. The lines of best fit and PU C02 thresholds are

also given on the graph.

During the second exercise session esophageal temperature increased

by 1.47 ± O.03"C from the mean resting value of36.67 ± O.03'C. After

ventilation returned to pre-exercise values, during the second CO2

rebreathing test, T.. was 0.84 ± 0.02'C above resting values. Both individual

PETeD, threshold points were distinct and the slopes ofVE versus PETCD,

were fit to the supra PnCD2 threshold data. For the regression lines fit to the

supra PETCD, threshold data, high mean r1 values were evident for the CO2

rebreathing before (r =0.85 ± 0.01) and after (r =0.91 ± O.OJ) exercise

warming. In all trials, except one, the slope of the ~ versus PETCD2 line

increased from the normothermic to hypcrthcnnic condition (Table 4~ I). The
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mean slope of the VE versus PETC02 line was significantly increased (p <

0.05) from 15.6 ± 2.6 L-min"-kPa" in normothermic subjects to 24.0 ± 2.4

L-min-'ekPa'! in hyperthennic subjects (Figure 4-4). In all subjects

following the hyperthennia induced by exercise the PETC02 threshold point

decreased (Table 4-1). The mean PIo,C02 threshold gave a significant

decrease (p<0.05) from 6.95 ± 0.13 kPa to 6.15 ± 0.10 kPa.

Discussion

The modified Read rebreathing technique (4) employed in this study

was chosen to test the central respiratory center responses to elevated

inspired carbon dioxide levels during a hyperthermia induced by exercise.

The results in this study show a decreased PuC02 threshold point for

ventilation during carbon dioxide rebreathing with an esophageal

temperature elevated by exercise (Table 4-1). These results support the

hypothesis that a lower arterial blood CO2level is needed to Initiate a

hyperventilation during exercise-Induced hyperthermia and that an

equivalent or lower PaC0;l may be providing an enhanced stimulus to the

central respiratory control centers to increase YE. The data also revealed a
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greater slope of the ~ versus PETC02 relationship, or carbon dioxide

sensitivity, after the exercise-induced rise in body temperature (Table 4-1).

This gives further support to the Idea that the central respiratory center is

responding more to a given Pac0
2
in the hyperthermia induced by exercise.

These results could give an indication as to why resting Pac0
2

(18, 23) or

lower than resting Paco2(10, 23) can be present during the hyperventilation

which accompanies exercise.

The results in the literature that examined changes of carbon dioxide

sensitivity and PETC02 thresholds during human exercise are equivocal (4-7,

12,24). Casey, Duffin, and McAvoy(4), both before and after exercise in

humans, dctermined PE;TC02 threshold and slopes by Read CO2 rebreathing

preceded by a hyperventilation. They did not obtain different slope or

PETC02 threshold in the two conditions. The difference between this present

study and Casey et al. is probably due to the lower intensity of the exercise

they employed and the possible lack of hyperthermia in their subjects. Their

subject's body temperatures wcre not measured or maintained following

exercise so the level of hyperthermia in their subjects was not documented.
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We have shown previously that ventilation increases in direct proportion to

core temperatures after an elevation of core temperature of -l.O~C (3, 25).

From the present results. with an increase ofTes of -O.soC during the

hyperthermic CO2 rebreathing, it would appear that approximately this core

temperature increase is needed prior to the positive interaction of carbon

dioxide and core temperature on ventilation becoming evident.

For studies that have measured core temperature during exercise, with

elevated inspired levels of CO2 to assess changes in carbon dioxide

sensitivity. rectal temperatures were employed (5. 6. 22). Rectal temperature

is an inherently slow responding core temperature (15) and is not

representative of central blood or cranial temperatures (14. 15). This would

appear to explain why some of these studies, during exercise, showed an

increased sensitivity of human ventilation to elevated inspired CO2 (5. 7),

while other exercise studies did not shown any changes to human ventilation

inspired with elevated CO2 levels (6, 12, 24).

The PETCOZ thresholds in this study were obtained with a brcath-by-

breath analysis while the subject performed the Read rebreathing test (2 t).
4-13



This was preceded by a hyperventilation (4) to allow from below-threshold

to supra-threshold P~02 levels to be observed and this allowed detection

of the Pl:1·C02 threshold for ventilation. As such, the hyperventilation prior

to each rebreathing period decreased the Paco2below the PnC02lhreshoid

level. All previous exercise studies, except that by Casey el al (4), have

estimated PETC02thresholds during exercise with elevated inspired C02

levels (6, 7, 12,24). Since their subjects did not hyperventilate prior to the

CO2 rebreathing their PnC02 thresholds are only estimates and would be

difficult to compare to the present results.

When the present results are compared to other hyperoxic CO2

rebreathing studies, but during passive warm bath-induced rather than

exercise-induced increases in core temperature. a similar increased

sensitivity of ventilation to inspired carbon dioxide levels (1, 8, 13,22) is

evident. For studies with passively induced hyperthermia, mat preceded (1,

13) the hyperoxic CO2rebreathing with a hyperventilation, no change in

PnC02 thresholds were evident. The reason for this difference is not clear

but may suggest that a post-exercise metabolite could be contributing to the
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responses in the present study. For previous researchers who found a change

in the P(,;,C02 threshold (6, 8) during passively induced hyperthermia, this

may have been because they extrapolated from supra-threshold data points

therefore failing to account for the drive in ventilation due to the additive

effect of an increased body temperature.

Core temperature having an effect on ventilation provides evidence to

support the hypothesis that ventilation is a thermoregulatory effector. Some

possible consequences of elevated heat loss from the upper airways include

selective brain cooling (2) in hyperthermic humans. The temperature

induced increases in ventilation in resting hyperthermic humans or

exercising humans might be vIewed as a vestigial panting response (2).

Conclusion

The results support the hypothesis that there is a positive interaction

of the exercise-induced increase in core temperature and end-tidal carbon

dioxide levels on human ventilation. A modified Read rebreathing (21)

following hyperventilation gave a significantly lower threshold and a
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significantly steeper slope between end-tidal carbon dioxide and VE

indicating that actively increased body temperature increases the sensitivity

to CO2• The results suggest that a given level of carhon dioxide during the

hyperthermia of exercise would give a proportionately greater ventilation

responses to that observed in the same normothermic subjects.
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Table 4-1: Individual and mean (±SE) end-tidal carbon dioxide (PErCOll

lhresholds for ventilation ('{.) and slopes of the relationship of VI( expressed
as a function of PETC02in normothermic and in hyperthermic males
following cycle ergometer exercise

PElC02Thresholds (kPa) COl Response Slopes (L_min-1.kPa·1)

Subject' Pre-Warming Post-Warming Pre-Warming (R~ Post-Warming (R1

6.3 5.8 16.0(0.93) 28.9(0.92)

6.4 6.' 6.4(0.78) 22.1(0.95)

7.' 7.' 18.0 (O.92) 17.7(0.91)

6.8 6.5 11.3(0.83) 18.0 (0.97)

6.3 5.4 13.0(0.82) 18.6(0.81)

80 6.0 29.0 (0.95) 29.7(0.91)

5.8 5.2 15.2(0.74) 32.9 (0.92)

Mean±SE 6.8±O.l2 6.0±O.O9 15.6± 1.0 24.0±0.9
(0.85±O.OJ) (O.91 ±O.OI)

* Significant difference P < 0.05
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Summary

This thesis explored the possible relationship between neural and

metabolic mediators of human ventilation. Chapter 3. Reproducibility of the

Relationships between Ventilation and Esophageal Temperature During

Hyperthermia in Humans. investigates if there Is a consistent relationship

between temperature and ventilation. The study demonslrated that core

body temperature is correlated with ventilation~~ and VE/\to;) and

willi the components of \'E (VT and 0 and that these relationships are

reproducible.

Having shown that there appears to be a reproducible relationship a

second study was perfonned to assess the possibility of a cause-and-effect

relationship. Specifically, the effect that body temperature has on the

ventilatory response to CO2 was studied. This venue was chosen because

CO2 is the dominant mediator of VE at rest and it would stand to reason that

it would playa dominant role in the control of \'E during exercise also. This

study is chapter 4, Changes in the Ventilation Response to Carbon Dioxide

Following Exercise Induced Hyperthennia in Humans.
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The results of this study indicate that body temperature affects COz

sensitivity since the partial pressure of end tidal COz (PetCOz) point at

which there is a rapid increase in \IE was lowered during carbon dioxide

rebreathing. The results support the hypothesis that carbon dioxide begins to

affect YEat lower partial pressures during actively iJlduced hyperthermia.

Also, after this PETCOzthreshold. an increase in PETCOZ has a greater effect

on ~ after body warming then before a body temperalure increase of about

a.s°c. In summary. an increased core temperature causes PETCOZ to have an

earlier and more pronounced effect on YE,

The effect of body temperature on YEhas various implications. One

such implication is that it supports the idea of ventilation as a means of

thermoregulation. In man, the upper respiratory tf'det (2) has been shown to

be a site of ventilatory heat loss and this may contribute 10 selective brain

cooling and cranial temperature regulation in hyperthermic humans (1).
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