
2-nd Int. Conference on Application of Concurrency to System Design, Newcastle, UK, June 25–29, 2001, pp.43-52.

Copyright c© IEEE (DOI 10.1109/CSD.2001.981763).

Analysis of Performance Limitations in Multithreaded

Multiprocessor Architectures

W.M. Zuberek

Department of Computer Science
Memorial University of Nfld
St.John’s, Canada A1B 3X5

wlodek@cs.mun.ca

Abstract
The performance of modern multiprocessor systems
is increasingly limited by interconnection delays or
long latencies of memory subsystems. Instruction–
level multithreading is a technique to tolerate such
long latencies by switching from one instruction thread
to another and continuing instruction execution con-
currently with the long–latency operations. Using
timed Petri net models, the paper analyzes perfor-
mance limitations introduces by different components
of distributed–memory multithreaded multiprocessor
systems. Simulation results are used to compare per-
formance improvements obtained by replicating critical
components of the system to those obtained using com-
ponents with better performance characteristics.

1. Introduction

Modern multiprocessor systems are becoming in-
creasingly limited by the performance of components
other than the processor, mainly memory subsystems
and interconnections. Due to continuous progress in
fabrication technologies, the performance of proces-
sors have been doubling every 18 months (the so–called
Moore’s law [9]). However, the bandwidth of memory
chips has been increasing by only 10% per year [16],
which makes it difficult to provide the memory band-
width required to match the processor performance.
Also, the increasing density of on–chip circuits reduces
the distances the electrical signals must traverse be-
tween consecutive operations, but it also increases the
difference of communication delays between on–chip
and off–chip operations. In effect, it is becoming in-
creasingly the case that the performance of applica-
tions depends on the performance of components other
than the processor.

Much research has focused on reducing and toler-
ating memory access latencies. Techniques for reduc-
ing the frequency and impact of cache misses include
hardware and software prefetching [5, 12], speculative
loads and speculative execution [17] and multithread-
ing [1, 4].

As effective memory latency is reduced, memory
bandwidth consumption increases. For example, when
processor simultaneously fetches k data items from
memory, the effective latency per data item is reduced
k times, but the memory bandwidth consumption in-
creases k times. Since the effective latency is the in-
verse of the consumed bandwidth [6], memory latency
cannot be fully tolerated without infinite bandwidth.
This is the reason that in many real machines, program
performance is bounded by the limited rate at which
data operands are delivered to the processor, regard-
less of the processor’s speed. Comprehensive analysis
of bandwidth, that is required at different stages of
memory hierarchy for program execution, is presented
in [6]; several program transformations which improve
program performance by reducing its memory band-
width requirements are also proposed in [6].

To maximize the memory bandwidth, modern
DRAM components allow pipelining of memory ac-
cesses, provide several independent memory banks,
and cache the most recently accessed row of each bank
[16]. While these features increase the peak supplied
memory bandwidth, they also make the performance
of the DRAM highly dependent on the access pattern.

In distributed–memory systems, the effects of long–
latency operations are even more pronounced as the
memory access requests must often perform a number
of hops from one node of the distributed system to
another to reach its destination and then the results
must be transferred back to the originating node. The
delays (and congestion) in the interconnecting network
is often another factor limiting the performance of the
multiprocessor systems.

Instruction–level multithreading, and in particular
block–multithreading [1, 2, 4], tolerates long–latency
memory accesses and synchronization delays by switch-
ing to another thread rather than waiting for the
completion of a long–latency operation which, in a
distributed–memory system, can require hundreds or
even thousands of processor cycles. A combination
of multithreading and superscalar architecture is also



Analysis of Performance Limitations in Multithreaded Multiprocessor Architectures 44

an approach used in high–performance microprocessors
[13].

The growing mismatch between the performances
of processors and their memories results in memory
being often the system’s bottleneck, and limiting the
performance of all other components of the system. In
distributed–memory systems, the interconnecting net-
work can be another source of performance limitations.
The purpose of this paper is to study the performance
of distributed–memory multithreading systems, and in
particular, the performance limitations introduced by
memory and the interconnecting network. Since sim-
ply reducing the memory latency or the delays of in-
terconnecting networks may not be possible, the pa-
per studies the effects of additional concurrency intro-
duced by replicating the critical elements of the system.
In the case of memory, this corresponds to splitting
the memory into thread–level independent banks. For
the interconnecting network, the performance can be
improved by using multiple parallel switches. Timed
Petri nets [19] are used to model several multithreaded
multiprocessor systems at the instruction execution
level, and simulation of these models provides perfor-
mance characteristics of the analyzed multithreaded
systems.

2. Multithreaded multiprocessor sys-
tems

A multiprocessor system with 16 processors con-
nected by a 2–dimensional torus–like network is used
as a running example in this paper; an outline of such
a system is shown in Fig.1.1.

Fig.1.1. Outline of a 16–processor system.

It is usually assumed that the requests sent from one
node to another are routed along the shortest paths. It
is also assumed that this routing is done in a nondeter-
ministic way, i.e., if there are several shortests paths
between two nodes, each of them is equally likely to
be used. Consequently, the traffic is assumed to be
uniformly distributed in the interconnecting network.
The average length of the shortest path between two
nodes, or the average number of hops (from one node
to another) that a request must perform to reach its
destination, is usually determined assuming that the
memory accesses are uniformly distributed over the

nodes of the system. This average length, denoted by
nh, is one of modeling parameters (for a 16–processor
system, with a uniform distribution of accesses over
the nodes, the value of nh is close to 2 [8]; in general,
for a system with p × p processors connected by a 2–
dimensional torus network, nh can be approximated
reasonably well by p/2).

Although many specific details refer to this 16–
processor system, most of them can easily be adjusted
to other systems by changing the values of only a few
parameters.

Each node in the system shown in Fig.1.1 is a mul-
tithreaded processor which contains a processor, lo-
cal memory, and two network interfaces, as shown in
Fig.1.2. The outbound switch handles outgoing traf-
fic, i.e., requests to remote memories originating at this
node as well as results of remote accesses to the mem-
ory at this node; the inbound interface handles incom-
ing traffic, i.e., results of remote requests that ‘return’
to this node and remote requests to access memory at
this node.

ProcessorQueue

Interconnecting
Network

Memory
Queue Memory

Outbound
Interface

Inbound
Interface

Processor

Fig.1.2. Outline of a single multithreaded processor.

Fig.1.2 also shows a queue of ready threads (Proces-
sor Queue); whenever the processor performs a con-
text switching (i.e., switches from one thread to an-
other), a thread is selected from this queue and the
execution continues until another context switching is
performed. In block multithreading, context switching
is performed for all long–latency memory accesses by
‘suspending’ the current thread, forwarding the mem-
ory access request to the relevant memory module (lo-
cal, or remote using the interconnecting network) and
selecting another thread for execution; when the re-
sult of this request is received, the status of the thread
changes from ‘suspended’ to ‘ready’, and the thread
joins the queue of ready threads, waiting for another
execution phase on the processor.

The average number of instructions executed be-
tween context switching is called the runlength of a
thread, ℓt, and is one of important modeling parame-



Analysis of Performance Limitations in Multithreaded Multiprocessor Architectures 45

Inp

Ready

Trun Lmem

Trmem
Tlmem

Rmem

Tloc

Trem

Proc

Memory

Sout
Tsout

Dec

Sinp
Tsinp

Tgo

Mem

to Inp

to Inp

to Inp

to Inp

Tret

Tsel Tend

Tnxt

Pnxt Pend

Out

Rem

Tcsw Pcsw

from Out

from Out

from Out

from Out

Tmem

Fig.2.1. Instruction–level Petri net model of a multithreaded processor.

ters. It is directly related to the probability that an
instruction requests a long–latency memory operation.

Another important modeling parameter is the prob-
ability of long–latency accesses to local, pℓ, (or re-
mote, pr = 1 − pℓ) memory (in Fig.1.2 it corresponds
to the “decision point” between the Processor and
the Memory Queue); as the value of pℓ decreases (or
pr increases), the effects of communication overhead
and congestion in the interconnecting network (and its
switches) become more pronounced; for pℓ close to 1,
the nodes can be practically considered in isolation.

In Fig.1.2, the memory is represented as a single
“server” with the service time corresponding to the
average time of performing memory operations. In
real systems, the memory system is hierarchical and
contains several levels of memories with different per-
formance characteristics (e.g., assuming that the first
level cache is integrated with the processor, the mem-
ory system may include the second level cache, possibly
the third level cache, and main memory). It appears,
however, that the detailed representation of memory
hierarchy has only minor effect on the performance
characteristics of the system, so a simple model (as
shown in Fig.1.2) with the average characteristics is
often satisfactory.

The (average) number of available threads, nt, is
yet another modeling parameter. In order to simplify

the models, it is assumed that the value of nt does not
change during program execution.

3. Petri net models

Petri nets [15, 14] are popular models of systems
that exhibit concurrent and parallel activities. In
timed Petri nets [19], the durations of modeled activ-
ities are also taken into account in order to study the
performance characteristics of the systems.

A timed Petri net model of a multithreaded pro-
cessor at the level of instruction execution is shown
in Fig.2.1 [20]. As usual, timed transitions are repre-
sented by “thick” bars, and immediate ones, by “thin”
bars.

The execution of each instruction of the ‘running’
thread is modeled by transition Trun, a timed tran-
sition with the firing time representing one processor
cycle. Place Proc represents the (available) processor
(if marked) and place Ready – the queue of threads
waiting for execution. The initial marking of Ready
represents the (average) number of available threads,
nt.

If the processor is available (i.e., Proc is marked)
and Ready is not empty, a thread is selected for exe-
cution by firing the immediate transition Tsel. Execu-
tion of consecutive instructions of the selected thread



Analysis of Performance Limitations in Multithreaded Multiprocessor Architectures 46

Inp

Ready

Trun Lmem

Trmem
Tlmem

Rmem

Tloc

Trem

Proc

Memory

Sout
Tsout

Dec

Sinp

Tsinp

Tgo

Mem

to Inp

to Inp

to Inp

to Inp

Tret

Tsel Tend

Tnxt

Pnxt Pend

Out

Rem

Tcsw Pcsw

from Out

from Out

from Out

from Out

Tmem

Sinp’

Tsinp’

Fig.2.2. Petri net model of a multithreaded processor with two inbound switches.

is performed in the loop Pnxt, Trun, Pend and Tnxt.
Pend is a free–choice place with the choice probabili-
ties determined by the runlength, ℓt, of the thread. In
general, the free–choice probability assigned to Tnxt
is equal to (ℓt−1)/ℓt, so if ℓt is equal to 10, the proba-
bility of Tnxt is 0.9; if ℓt is equal to 5, this probability
is 0.8, and so on. The free–choice probability of Tend
is just 1/ℓt.

If Tend is chosen for firing rather than Tnxt, the ex-
ecution of the thread ends, a request for a long–latency
access to (local or remote) memory is placed in Mem,
and a token is also deposited in Pcsw. The timed tran-
sition Tcsw represents the context switching and is as-
sociated with the time required for the switching to a
new thread, tcs. When its firing is finished, another
thread is selected for execution (if it is available).

Mem is a free–choice place, with a random choice of
either accessing local memory (T loc) or remote mem-
ory (Trem); in the first case, the request is directed
to Lmem where it waits for availability of Memory,
and after accessing the memory (T lmem), the thread
returns to the queue of waiting threads, Ready. Mem-
ory is a shared place with two conflicting transitions,
Trmem (for remote accesses) and T lmem (for local ac-
cesses); the resolution of this conflict (if both requests
are waiting) is based on marking–dependent (relative)
frequencies determined by the numbers of tokens in

Lmem and Rmem, respectively.
The free–choice probability of Trem, pr, is the prob-

ability of long–latency accesses to remote memory; the
free–choice probability of T loc is pℓ = 1− pr.

Requests for remote accesses are directed to Rem,
and then, after a sequential delay (the outbound switch
modeled by Sout and Tsout), forwarded to Out, where
a random selection is made of one of the four (in this
case) adjacent nodes (all nodes are selected with equal
probabilities). Similarly, the incoming traffic is col-
lected from all neighboring nodes in Inp, and, after a
sequential delay (the inbound switch Sinp and Tsinp),
forwarded toDec. Dec is a free–choice place with three
transitions sharing it: Tret, which represents the satis-
fied requests reaching their “home” nodes; Tgo, which
represents requests as well as responses forwarded to
another node (another ‘hop’ in the interconnecting net-
work); and Tmem, which represents remote requests
accessing the memory at the destination node; these
remote requests are queued in Rmem and served by
Trmem when the memory module Memory becomes
available. The free–choice probabilities associated with
Tret, Tgo and Tmem characterize the interconnecting
network [8]. For a 16–processor system (as in Fig.1.1),
and for memory accesses uniformly distributed among
the nodes of the system, the free–choice probabilities
of Tmem and Tgo are 0.5 for forward moving requests,



Analysis of Performance Limitations in Multithreaded Multiprocessor Architectures 47

Inp

Ready

Trun

Trem

Proc

Sout
Tsout

Dec

SinpTsinp

Tgo

Mem

to Inp

to Inp

to Inp

to Inp

Tret

Tsel Tend

Tnxt

Pnxt Pend

Out

Rem

Tcsw Pcsw

from Out

from Out

from Out

from Out

Memory1

Rmem1

Rmem2

Trmem1

Trmem2

Memory2

Tloc1

Tloc2

Lmem2

Tlmem2

Lmem1

Tlmem1

Tmem2

Tmem1

Fig.2.3. Petri net model of a multithreaded processor with two memory banks.

and 0.5 for Tret and Tgo for returning requests.

The traffic outgoing from a node (place Out) is
composed of requests and responses forwarded to an-
other node (transition Tgo), responses to requests from
other nodes (transition Trmem) and remote memory
requests originating in this node (transition Trem).

If the performance of the system is limited by the
switches in the interconnecting network (i.e., if the
switch is the bottleneck in this systems), the two most
obvious remedies are (i) to reduce the delay introduced
by the switch (i.e., the firing time associated with tran-
sitions Tsinp and Tsout), or (ii) to introduce multiple
switches which does not reduce the latency, but which
increases the throughput of the interconnecting net-
work, so it reduces the times spent on waiting in the
queues, and increases the performance of the system.

A Petri net model of a processor with two inbound
switches is shown in Fig.2.2. The delay of each switch
is the same, ts, but if there is more than one request to
be forwarded to other nodes, both switches will handle
the traffic at the same time, increasing the throughput
of the interconnecting network and reducing the delays
imposed by the network.

It should be observed that a model equivalent to
that in Fig.2.2 can be obtained from the one shown in

Fig.2.1 by increasing the initial marking of place Sinp
to the number of switches, in this case two.

In the case when the memory is the component lim-
iting the performance of the system, and simply reduc-
ing the access time to memory is not an available op-
tion, the performance can be increased by splitting the
memory into two (or more) banks in such a way that all
banks are accessed with the same probability. It should
be noticed that such a splitting is introduced exclu-
sively for multithreading and should not be confused
with memory interleaving and other techniques used to
increase the throughput of memory at the instruction–
execution level. Consequently, this thread–level split-
ting does not affect the memory access time, so the
banks retain their original performance characteristics.

A Petri net model of a system with two memory
banks is shown in Fig.2.3, in which the representation
of memory (place Memory) is replicated with its all
adjacent transitions, and connected with the remain-
ing part of the model through free–choice places Mem
and Dec. In effect, all local memory accesses have
now additional choice of selecting the first or the sec-
ond memory bank (immediate transitions T loc1 and
T loc2); similarly, remote memory access requests, af-
ter reaching the target node, must select one of the



Analysis of Performance Limitations in Multithreaded Multiprocessor Architectures 48

Inp

Ready

Trun Lmem

Rmem

Tloc

Trem

Proc

Sout
Tsout

Dec

Sinp
Tsinp

Tgo

Memory

Mem

to Inp

to Inp

to Inp

to Inp

Tret

Tsel Tend

Tnxt

Pnxt Pend

Out

Rem

Tcsw Pcsw

from Out

from Out

from Out

from Out

Tmem

Tlmem2

Trmem2Trmem1

Tlmem1

Fig.2.4. Petri net model of a multithreaded processor with two levels of memory.

two memory banks (immediate transitions Tmem1 and
Tmem2). It is assumed that the accesses are uniformly
distributed, so the selection of each memory bank is
equally probable.

It should be noticed that the model shown in Fig.2.3
cannot be equivalently represented by the model shown
in Fig.2.1 with two initial tokens in place Memory; the
difference is due to the fact that in case of memory,
several requests can be queued to the same bank while
the other bank is idle.

Fig.2.4 shows another refinement of the model
shown in Fig.2.1, which introduces two levels of mem-
ory (e.g., second level cache and main memory). These
two levels of memory, with significantly different per-
formance characteristics, are represented as additional
choices for (local and remote) accesses; for example,
Tlmem1 and Trmem1 can represent accesses to second
level cache and Tlmem2 and Trmem2 accesses to main
memory. The firing times associated with these transi-
tions and their choice probabilities will typically differ
by an order of magnitude.

Finally, in cases when the processor is the bottle-

neck, a replication of the processor (or some of its
parts) should be considered. For example, in “simulta-
neous multithreading” [7, 18] several threads simulta-
neously issue instructions to a common set of execution
units.

4. Performance results

It is convenient to assume that all timing charac-
teristics are expressed in processor cycles (which is as-
sumed to be 1 unit of time). The basic model param-
eters and their typical values are as follows:

symbol parameter values

nt the (average) number of threads 2,...,20
ℓt thread runlength 5,10,20
tcs context switching time 1,2,5
tm memory cycle time 10,20
ts switch delay 5,10

pℓ, pr probability of accesses to
local/remote memory 0.1,...,0.9



Analysis of Performance Limitations in Multithreaded Multiprocessor Architectures 49

Fig.3.1 shows the utilization of the processor as a
function of the number of available threads, nt, and the
probability of long–latency accesses to local memory,
pℓ, for fixed values of other modeling parameters.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

number of threads

Processor utilization

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 10 units

Memory cycle: 20 units

Runlength: 10 units

Context swch: 1 unit

Fig.3.1. Processor utilization; tcs = 1,
ℓt = 10, tm = 20, ts = 10.

It can be observed that, for values of pℓ close to
1 (i.e., when most of memory references are to local
memory), the utilization increases with the number of
available threads, nt, and tends to the bound 0.5 which
is determined, in this case, by the ratio of ℓt/tm (the
memory is the bottleneck in this region).

For smaller values of pℓ, the utilization of the pro-
cessor “saturates” very quickly and is practically in-
sensitive to the number of available threads nt. This
is a clear indication that some other component of the
system is the bottleneck (i.e., a component with uti-
lization close to 100%, which limits the performance of
all other components of the system).

The bottlenecks can be identified by comparing ser-
vice demands for the different components of the sys-
tem [10]; the component with the highest service de-
mand is the first one to reach its utilization bound
(i.e., utilization of almost 100%), so it is the bottle-
neck that limits the utilization of all other components
of the system.

The service demands (per one long–latency memory
access) are [20]:

component service demand

processor ℓt
memory tm
inbound switch 2 ∗ pr ∗ nh ∗ ts
outbound switch 2 ∗ pr ∗ ts

If tm = 2ℓt, ℓt = ts, and nh = 2 (as in Fig.3.1), the
inbound switch becomes the bottleneck for pr > 0.5
(or pℓ < 0.5); for pr < 0.5 (or pℓ > 0.5) the memory
is the bottleneck. The utilization of memory is shown

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

number of threads

Memory utilization

prob to access local mem

m
em

or
y 

ut
ili

za
tio

n

Switch delay: 10 units

Memory cycle: 20 units

Runlength: 10 units

Context swch: 1 unit

Fig.3.2. Memory utilization; tcs = 1,
ℓt = 10, tm = 20, ts = 10.

in Fig.3.2, and it can be easily observed that Fig.3.2 is
very similar to the utilization of the processor (Fig.3.1)
but at the level close to 100%, i.e., twice the utilization
of the processor (as the consequence of tm = 2ℓt).

Fig.3.3 shows the utilization of the processor (also
as a function of the number of available threads and
the probability of long–latency accesses to local mem-
ory) for the case of memory composed of two banks,
with equal probabilities of accessing each of them. For
values of pℓ close to 1, the utilization of the pro-
cessor in Fig.3.3 tends to its limiting value which,
due to the overhead of context switching, is equal to
ℓt/(ℓt + tcs) = 0.91.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 10 units

Memory cycle: 2*20 units

Runlength: 10 units

Context swch: 1 unit

Fig.3.3. Processor utilization; tcs = 1,
ℓt = 10, tm = 2 ‖ 20, ts = 10.

The effects of splitting the memory in two indepen-
dent banks are practically the same as using a single
memory bank with one half of the original latency;
Fig.3.4 shows the utilization of the processor for the
case when the memory cycle time is reduced from 20



Analysis of Performance Limitations in Multithreaded Multiprocessor Architectures 50

to 10 processor cycles. The results in Fig.3.4 differ
insignificantly from those in Fig.3.3.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 10 units

Memory cycle: 10 units

Runlength: 10 units

Context swch: 1 unit

Fig.3.4. Processor utilization; tcs = 1,
ℓt = 10, tm = 10, ts = 10.

It should be also observed that the processor’s uti-
lization is sensitive to memory latency only in the re-
gion in which the memory is the bottleneck; for small
values of pℓ (or pr close to 1), the utilization is practi-
cally the same in all cases (Fig.3.1, Fig.3.3 and Fig.3.4).

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

number of threads

Processor utilization

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Memory cycle: 5+25 units

Switch delay: 10 units

Context swch: 1 unit

Runlength: 10 units

Fig.3.5. Processor utilization; tcs = 1,
ℓt = 10, tm1 = 5, tm2 = 25, ts = 10.

Fig.3.5 shows the utilization of the processor for the
case when several levels of memory are explicitly repre-
sented in the model. Two levels of memory are taken
into account in this case, as shown in Fig.2.4. The
parameters of memory levels are selected in such a
way that the average memory access time is consis-
tent with that in Fig.3.4 (i.e., one level of memory has
access time of 5 time units and choice probability of
0.75, and the other level has access time of 25 time
units, and the choice probability of 0.25). The results
shown in Fig.3.5 are practically the same as in Fig.3.4

and Fig.3.3, which is another indication that a detailed
model of the memory system is needed only for very
accurate performance analyses.

For small values of pℓ, the utilization of the proces-
sors shown in Fig.3.3 and Fig.3.4 is rather low which
indicates that some other component of the system be-
comes the bottleneck in this region. Indeed, a com-
parison of service demands shows that it is the input
switch, which, for pℓ < 0.75, becomes the bottleneck.
Fig.3.6 shows the utilization of the input switch as a
function of the number of available threads, nt, and the
probability pr of accessing remote (not local) memory,
so the front part of Fig.3.6 corresponds to the back
part of Fig.3.3.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

number of threads

Switch utilization

prob to access remote mem

sw
itc

h 
ut

ili
za

tio
n

Switch delay: 10 units

Memory cycle: 10 units

Runlength: 10 units

Context swch: 1 unit

Fig.3.6. Switch utilization; tcs = 1,
ℓt = 10, tm = 10, ts = 10.

Fig.3.6 clearly shows that with the exception of
small values of nt or pr, the input switch is utilized
practically in 100%, which means that it is simply “too
slow” for this system.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization (16 proc)

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 5 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.3.7. Processor utilization; tcs = 1,
ℓt = 10, tm = 10, ts = 5.



Analysis of Performance Limitations in Multithreaded Multiprocessor Architectures 51

Fig.3.7 shows the utilization of the processor for the
case when the switch delay is reduced from 10 to 5 pro-
cessor cycles. The extended region of high utilization
of the processor, due to the reduced switch delay, can
be easily observed in Fig.3.7.

The utilization of the processor with two parallel
switches (as shown in Fig.2.2) used instead of a single
switch with reduced delay, is shown in Fig.3.8. These
results are practically the same as in Fig.3.7.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 2*10 units

Memory cycle: 10 units

Runlength: 10 units

Context swch: 1 unit

Fig.3.8. Processor utilization; tcs = 1,
ℓt = 10, tm = 10, ts = 2 ‖ 10.

5. Concluding remarks

The presented performance analysis of multi-
threaded multiprocessor systems shows that perfor-
mance improvements that can be achieved by using
components with improved performance characteris-
tics are practically the same as obtained by replicating
the critical components of the system. This may be
especially attractive when the components with im-
proved performance characteristics are not available;
the replication of critical components can still pro-
vide significant improvements of the performance of
the whole systems. Such improvements can also be
used to balance the system, i.e., to utilize all compo-
nents of the system at (approximately) the same level.

The utilization of processors with several replicated
components is shown in Fig.4.1. In this case, there are
two parallel switches (as in Fig.2.2), each with delay
ts = 10 time units, and two banks of memory (as in
Fig.2.3), each with two levels (as in Fig.2.4) character-
ized by access times tm1 = 10 time units with proba-
bility 0.75, and tm2 = 50 time units with probability
0.25. Consequently, the maximum throughput of the
memory component (when memory is the bottleneck)
is 0.1 accesses per time unit which corresponds to the
effective access time of 10 time units. Similarly, the
effective switch delay (when switch is the bottleneck)
is 5 time units.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of threads

Processor utilization

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 2*10 units

Memory cycle: 2*(10+50) units

Runlength: 10 units

Fig.4.1. Processor utilization; tcs = 1, ℓt = 10,
tm = 2 ‖ (10 ∗ 0.75 + 50 ∗ 0.25), ts = 2 ‖ 10.

Comparing Fig.4.1 with Fig.3.7 it can be observed
that significant differences are only in the region in
which the values of pℓ are close to 1, in which the mem-
ories and the switches are not utilized fully. In this
region the performance depends on the delays intro-
duced by individual components rather than the (to-
tal) throughputs; the results shown in Fig.4.1 represent
gradual transition from the results shown in Fig.3.1 to
those shown in Fig.3.7.

The results presented in this paper indicate that
only a small number of threads is needed to achieve the
performance close to its upper bound; the influence of
additional threads beyond 6 to 8 is rather insignificant
in all presented cases.

The derived models assume that accesses to mem-
ory are uniformly distributed over the nodes of the sys-
tem. If this assumption is not realistic and some sort
of ‘locality’ is present, the only change that needs to
be done is an adjustment of the value of nh; for exam-
ple, if the probability of accessing nodes decreases with
the distance (i.e., nodes which are close are more likely
to be accessed that the distant ones), the value of nh

will be smaller than that determined for the uniform
distribution of accesses, and will result in improved
performance.

The developed performance models can be used for
approximate characterization of the performance [21].
For very small values of nt, queueing effects can be
practically neglected, so the performance can be pre-
dicted by taking into account only the delays of sys-
tem’s components. On the other hand, for large val-
ues of nt, the system can be considered in saturation,
which means that one of its components will be utilized
in almost 100 %, limiting the utilization of other com-
ponents as well as the performance of the whole sys-
tem. Identification of this limiting component (called
the bottleneck) also allows to estimate the performance



Analysis of Performance Limitations in Multithreaded Multiprocessor Architectures 52

of the system.
Finally, it can be observed that Petri net models

of multiprocessor systems contain many “regularities”
which can be used for model reduction. For example,
in colored Petri nets [11], tokens are associated with
attributes (called colors), so different activities can be
associated with tokens of different types. An imme-
diate application of colors is to represent the differ-
ent processors (or nodes) by different colors within the
same processor model; consequently, a colored Petri
net will need only one processor model (for any num-
ber of processors). Some other aspects of colored net
models are discussed in [8].

Acknowledgments

The Natural Sciences and Engineering Research
Council of Canada partially supported this research
through grant RGPIN-8222.

References

[1] Agarwal, A., “Performance tradeoffs in multi-
threaded processors”; IEEE Trans. on Parallel
and Distributed Systems, vol.3, no.5, pp.525-539,
1992.

[2] Boothe, B. and Ranade, A., “Improved multi-
threading techniques for hiding communication la-
tency in multiprocessors”; Proc. 19-th Annual Int.
Symp. on Computer Architecture, Gold Coast,
Australia, pp.214-223, 1992.

[3] Burger, D., Goodman, J.R., Kaegi, A.: “Memory
bandwidth limitations of future microprocessors”;
Proc. 23-rd Annual Int. Symp. on Computer Ar-
chitecture, Philadelphia, PA, pp.78-89, 1996.

[4] Byrd, G.T., Holliday, M.A., “Multithreaded pro-
cessor architecture”; IEEE Spectrum, vol.32,
no.8, pp.38-46, 1995.

[5] Chen, T-F., Baer, J-L.: “A performance study of
software and hardware data prefetching scheme”;
Proc. 21-st Annual Int. Symp. on Computer Ar-
chitecture, Chicago, IL, pp.223-232, 1994.

[6] Ding, C., Kennedy, K.: “The memory bandwidth
bottleneck and its amelioration by a compiler”;
Proc. 14-th Int. Parallel and Distributed Process-
ing Symp., Cancun, Mexico, pp.181-189, 2000.

[7] Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L.,
Stamm, R.L., Tullsen, D.M., “Simultaneous mul-
tithreading – a platform for next generation pro-
cessors”; IEEE Micro, vol.17, no.5, pp.12-19,
1997.

[8] Govindarajan, R., Suciu, F., Zuberek, W.M.,
“Timed Petri net models of multithreaded mul-
tiprocessor architectures”; Proc. 7-th Int. Work-
shop on Petri Nets and Performance Models, St.
Malo, France, pp.153-162, 1997.

[9] Hamilton, S., “Taking Moore’s law into the next
century”; IEEE Computer Magazine, vol.32, no.1,
pp.43-48, 1999.

[10] Jain, R., “The art of computer systems perfor-
mance analysis”; J. Wiley & Sons 1991.

[11] Jensen, K., “Coloured Petri nets”; in: “Ad-
vanced Course on Petri Nets 1986” (Lecture Notes
in Computer Science 254), Rozenberg, G. (ed.),
pp.248-299, Springer–Verlag 1987.

[12] Klaiber, A.C., Levy, H.M.: “An architecture for
software-controlled data prefetching”; Proc. 18-
th Annual Int. Symp. on Computer Architecture,
Toronto, Canada, pp.43-53, 1991.

[13] Loh, K.S., Wong, W.F., “Multiple context mul-
tithreaded superscalar processor architecture”;
Journal of Systems Architecture, vol.46, pp.243-
258, 2000.

[14] Murata, T., “Petri nets: properties, analysis and
applications”; Proceedings of IEEE, vol.77, no.4,
pp.541–580, 1989.

[15] Reisig, W., “Petri nets - an introduction” (EATCS
Monographs on Theoretical Computer Science 4);
Springer–Verlag 1985.

[16] Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P.,
Ovens, J.D.: “Memory access scheduling”; Proc.
27-th Annual Int. Symp. on Computer Architec-
ture, Vancouver, BC, pp.128-138, 2000.

[17] Rogers, A, Li, K.: “Software support for specu-
lative loads”; Proc. 5-th Symp. on Architectural
Support for Programming Languages and Oper-
ating Systems, pp.38-50, 1992.

[18] Tullsen, D.M., Eggers, S.J., Levy, H.M., “Simulta-
neous multithreading: maximizing on-chip paral-
lelism”; Proc. 22-nd Annual Int. Symp. on Com-
puter Architecture (ISCA’22), Santa Margherita
Ligure, Italy, pp.392-403, 1995.

[19] Zuberek, W.M., “Timed Petri nets – defini-
tions, properties and applications”; Microelec-
tronics and Reliability, (Special Issue on Petri
Nets and Related Graph Models), vol.31, no.4,
pp.627–644, 1991.

[20] Zuberek, W.M., “Performance modeling of mul-
tithreaded distributed memory architectures”,
Proc. 2-nd Workshop on Hardware Design and
Petri Nets, Williamsburg, VA, pp.63–82, 1999.

[21] Zuberek, W.M., “Approximate performance eval-
uation of multithreaded distributed memory ar-
chitectures”; Proc. 15-th Performance Engineer-
ing Workshop, Bristol, UK, pp.81-92, 1999.


