
IEEE Int. Conf. on Systems, Man, and Cybernetics, Tokyo, Japan, 12-15 October 1999, pp.841-847.

Copyright c© 1999 IEEE (DOI 10.1109/ICSMC.1999.814201).

Petri Net Models of Process Synchronization Mechanisms

W.M. Zuberek

Department of Computer Science

Memorial University of Newfoundland

St.John’s, Canada A1B 3X5

Abstract

Inhibitor Petri net models of several popular process
synchronization mechanisms are presented and dis-
cussed. Semaphores and extended semaphores, mon-
itors and rendezvous concepts are used in simple ex-
amples of process synchronizations. The correspond-
ing Petri net models are used to verify basic properties
such as mutual exclusion, presence or absence of dead-
locks, or priorities in accessing shared resources.

1. Introduction

Petri nets are formal, mathematical models of sys-
tems with asynchronous concurrent activities [1, 18,
14]. Examples of such systems include multiproces-
sor computer systems, distributed databases and real-
time industrial process control systems. As a modeling
tool, Petri nets offer a simple and general formalism
for representation of concurrent activities and syn-
chronization of events, with a well–development for-
mal foundation for analysis of such models.

At a higher level of abstraction, Petri nets can
model many synchronization and coordination mech-
anisms developed for concurrent programming [3, 20];
mutual exclusion in accessing shared information and
message passing in distributed systems are examples
of simple applications of such mechanisms. Due to
developments in processor technology, multiprocessor
systems constructed from a number of similar self-
contained processors, are becoming quite popular. In
order to use such systems on a single task, the com-
ponent processors must be able to communicate and
to synchronize with each other. Many methods have
been proposed for such synchronization: semaphores,
critical and conditional critical regions, monitors, path
expressions, rendezvous and others. Although they
have been demonstrated to be adequate for their pur-
pose, there is no widely recognized criterion for choos-
ing among them.

The main goal of this paper is to show that many
diverse synchronization mechanisms can be compared
within one, uniform framework of (inhibitor) Petri
net models. Moreover, simple properties of Petri nets
(e.g., boundedness, absence of deadlocks) can be used
for verification of typical synchronization problems.
This can help to understand and clarify different no-
tations that have been proposed in the literature to
deal with parallelism.

This paper is organized in five main sections. Sec-
tion 2 recalls basic concepts for inhibitor Petri nets.

Semaphores with some extensions are discussed in Sec-
tion 3. Monitors and their models are briefly presented
in Section 4, and the concept of rendezvous – in Sec-
tion 5. All synchronization mechanisms are presented
rather informally, using a simple ‘standard’ program-
ming notation. Several classical synchronization prob-
lems, with well–known correct and incorrect solutions,
are used as illustrations.

2. Inhibitor Petri nets

An inhibitor (place/transition, ordinary) Petri net
[18, 14] is a quadruple N = (P, T,A,B), where P is a
finite, nonempty set of places, T is a finite, nonempty
set of transitions, A is a set of directed arcs connect-
ing places with transitions and transitions with places,
A ⊆ P × T ∪ T × P , and B is a finite set of inhibitor
arcs connecting places with transitions, which is dis-
joint with A, B ⊂ P × T , A ∩B = ∅.

A place p is an input (or an output) place of a
transition t iff there exists an arc (p, t) (or (t, p), re-
spectively) in the set A. The sets of all input and out-
put places of a transition t are denoted by Inp(t) and
Out(t), respectively. Similarly, Inp(p) and Out(p) de-
note the sets of input and output transitions of a place
p. A place p is an inhibitor place of a transition t iff
there exists an inhibitor arc (p, t) in the set B.

A marked inhibitor net M is a pair M = (N,m0)
where N is an inbibitor Petri net, N = (P, T,A,B),
and m0 is an initial marking function which assigns a
nonnegative integer number of so called tokens to each
place of the net, m0 : P → {0, 1, ...}.

Let any function m : P → {0, 1, ...} be called a
marking of a net N = (P, T,A,B).

A transition t is enabled by a marking m iff every
input place of this transition contains at least one to-
ken and every inhibitor place of t contains zero tokens.
The set of all transitions enabled by a marking m is
denoted by E(m).

Every transition enabled by a marking m can fire.
When a transition fires, a token is removed from each
of its input places (but not inhibitor places) and a
token is added to each of its output places. This de-
termines a new marking in a net, a new set of enabled
transitions, and so on.

A marking mj is directly reachable from a marking
mi in a net N iff there exists a transition tk enabled by
the marking mi, tk ∈ E(mi), such that for all p ∈ P :

Petri net models of process synchronization mechanisms 842

mj(p) =







mi(p)− 1, if p ∈ Inp(tk)−Out(tk),
mi(p) + 1, if p ∈ Out(tk)− Inp(tk),
mi(p), otherwise.

Also, a marking mj is (generally) reachable from
a marking mi in a net N iff there exists a sequence
of directly reachable markings (mi0mi1mi2 ...mik) such
that mi0 = mi and mik = mj .

A set of reachable markings, M(M), of a marked
net M = (N,m0) is the set of all markings which are
reachable from the initial marking m0 in the net N.

A marking graph G(M) of a marked Petri net M

is a directed graph G(M) = (W,D) where W is a
set of vertices which is equal to the set of reachable
markings of the net M, W = M(M), and D is a set of
directed arcs, D ⊂ W ×W , such that (mi,mj) is in D
iff mj is directly reachable from mi in M. Quite often
additional information is attached to vertices or arcs
of a marking graph. In particular, the arcs connecting
the nodes (i.e., markings) can be labeled by the firing
transitions.

Marking graphs provide complete behavioral char-
acterization of marked nets. One of the most impor-
tant behavioral properties of nets is boundedness; a
marked net M is bounded iff its set of reachable mark-
ings M(M) is finite. For nets without inhibitor arcs
many properties can be deduced from the structure of
the net [6]; for bounded inhibitor nets, such structural
properties are often insufficient, so the set (or graph)
of reachable markings is used for further analyses.

Each net N = (P, T,A,B) can conveniently be
represented by a connectivity (or incidence) matrix
C : P × T → {−1, 0,+1} in which places correspond
to rows, transitions to columns, and for all p ∈ P and
all t ∈ T , the entries are defined as:

C[p, t] =







−1, if t ∈ Out(p)− Inp(t),
+1, if t ∈ Inp(p)−Out(p),
0, otherwise.

If a marking mj is obtained from another marking
mi by firing a transition tk then (in vector notation)
mj = mi +C[k], where C[k] denotes the k-th column
of C, i.e., the column representing tk.

Connectivity matrices disregard inhibitor arcs and
‘selfloops’, that is, pairs of arcs (p, t) and (t, p); any
firing of a transition t cannot change the marking of
p in such a selfloop. A pure net is defined as a net
without selfloops [18].

A P–invariant (place invariant) [18, 14, 6] of a net
N is any nonnegative, nonzero integer (column) vector
I which is a solution of the matrix equation

C
T × I = 0,

where C
T denotes the transpose of matrix C. It fol-

lows immediately from this definition that if I1 and I2
are P–invariants of N, then also any linear (positive)
combination of I1 and I2 is a P–invariant of N.

A basic P–invariant of a net is defined as a P–
invariant which does not contain simpler invariants.
All basic P–invariants I of ordinary nets are binary
vectors [18], I : P → {0, 1}.

A net Ni = (Pi, Ti, Ai, Bi) is a Pi-implied subnet
of a net N = (P, T,A,B), Pi ⊂ P , iff:

(1) Ti = {t ∈ T | ∃ p ∈ Pi : (p, t) ∈ A∨ (t, p) ∈ A},

(2) Ai = A ∩ (Pi × T ∪ T × Pi),

(3) Bi = B ∩ (Pi × Ti).

It should be observed that in a pure net N, each
P–invariant I of N determines a PI -implied (invari-
ant) subnet of N, where PI = {p ∈ P | I(p) > 0};
all nonzero elements of I select rows of C, and each
selected row i corresponds to a place pi with all its
input (+1) and all output (–1) arcs associated with it.

P(sem)

V(sem)

NCS1 CS1 sem

P(sem)

V(sem)

CS2 NCS2

t1

t2

t3

t4

Fig.1. Net model of mutual exclusion.

NCS1 CS1

t1

t2

CS2 NCS2

t3

t4

CS1 sem CS2

t1

t2

t3

t4

Fig.2. P–invariant–implied subnets for Fig.1.

For the Petri net shown in Fig.1, the connectivity
matrix is:

C t1 t2 t3 t4
NCS1 −1 +1 0 0
CS1 +1 −1 0 0
sem −1 +1 −1 +1
CS2 0 0 +1 −1

NCS2 0 0 −1 +1

and there are three basic P–invariants, I1 =
[1, 1, 0, 0, 0], I2 = [0, 1, 1, 1, 0], and I3 = [0, 0, 0, 1, 1]. It
can be observed that the basic invariants correspond
to the smallest subsets of rows of the connectivity ma-
trix with the (component–wise) sums equal to (vector)
zero.

The PI–implied subnets are simple nets in which all
transitions have single input and single output places,
as shown in Fig.2. Consequently, the total number of
tokens in each P–invariant subnet remains the same
for all reachable marking. If a net is covered by such
P–invariants, it is bounded for any initial marking m0.

Finding basic P–invariants is a ‘classical’ problem
of linear algebra [12, 6].

Petri net models of process synchronization mechanisms 843

3. Semaphores

Providing mutual exclusion for a set of concurrent
processes which access common (or shared) data is one
of the basic synchronization problems [3, 17]. Usually
such an exclusive access to shared data is localized
within critical sections, so a synchronization mecha-
nism is needed to guarantee that, at any time, at most
one of concurrent processes is in its critical section.

An elegant solution to the mutual exclusion prob-
lem was proposed by Dijkstra in the form of
semaphores [7]. Informally, a (counting) semaphore
is an integer variable with just two indivisible opera-
tions called P (test and decrement) and V (increment).
A process executing a P operation must wait until
the semaphore is positive before it can decrement the
semaphore’s value and continue. A V operation sim-
ply increases the semaphore’s value, possibly allowing
some other process to execute a delayed P operation
and continue. No two P or V operations on the same
semaphore can be executed simultaneously.

A simple solution to mutual exclusion of two cyclic
processes, Process1 and Process2, with their criti-
cal sections CS1 and CS2, respectively, uses a global
semaphore sem, initialized to 1, as shown in Tab.1.

var sem : semaphore = 1;

Process1: process; Process2: process;
begin loop begin loop

.....
P(sem); P(sem);
critical section 1; critical section 2;
V(sem); V(sem);
.....

end loop end loop

end process; end process;

Tab.1. Mutual exclusion using semaphores.

A Petri net model of this solution is shown in Fig.1.
The semaphore sem is represented by a place with the
initial marking representing its initial value (i.e., 1 in
this case). The processes are represented by two cyclic
subnets in which P and V operations are modeled by
transitions with arcs from (for P operations) or to (for
V operations) sem; each P operations requires a pos-
itive value of the semaphore (otherwise the transition
cannot be enabled), and each V operation increases
the number of tokens in the semaphore by one.

It should be observed that the semaphore sem and
both critical sections belong to one of the P–invariant–
implied subnets shown in Fig.2. Since the initial mark-
ing assigns only one token to this subnet (the ini-
tial value of sem), the places CS1 and CS2 cannot
be marked simultaneously, so at most one of critical
sections can be ‘active’ at any time. Consequently,
the solution guarantees the mutual exclusion of critical
sections. Moreover, the model can easily be extended
to any number of processes with any number of inter-
actions between processes (controlled by identical or
independent semaphores). Then, however, deadlocks
can be created.

Semaphores are often used in resource alloca-
tion systems providing exclusive use of (shared) re-
sources. Tab.2 shows two cyclic processes, Process1
and Process2, dynamically requesting (P operations)
and releasing (V operations) two resources r1 and r2
controlled by semaphores R1 and R2. It is known [16]
that in such single–request systems, immediate grant-
ing of requests may result in a deadlock.

var R1,R2 : semaphore = 1,1;

Process1: process; Process2: process;
begin loop begin loop

.....
P(R1); P(R2);
P(R2); P(R1);
use r1,r2; use r1,r2;
V(R2); V(R1);
V(R1); V(R2);
.....

end loop end loop

end process; end process;

Tab.2. Single-resource allocation using semaphores.

A Petri net model of this process synchronization
is shown in Fig.3, and its reachability graph in Fig.4.
The node 9 clearly indicates a deadlock which can be
reached by executing P(R1) operation by Process1
and then P(R2) operation by Process2 (or first P(R2)
by Process2 and then P(R1) by Process1).

R1

R2

P(R2)

P(R1)

V(R1)

V(R2)

P(R1)

P(R2)

V(R2)

V(R1)

Fig.3. Resource allocation using semaphores.

It should be noted that since the net in Fig.3 does
not use inhibitor arcs, the deadlock can also be iden-
tified by structural methods in this case [6].

The possibility of a deadlock in such resource al-
location schemes is well known in operating system
theory [19], and it can be avoided either by ordered
resource policy or by general requests in which all re-
sources are requested (and allocated) simultaneously.

Petri net models of process synchronization mechanisms 844

0

1

2

3

4

5

6

7

8

9

P(R1)

P(R2)

P(R2)

P(R1)

V(R1)

V(R2)

P(R2)

V(R2)

V(R1)

P(R2) P(R1)

V(R2)V(R1)

Fig.4. Marking graph for the net shown in Fig.3.

The second solution uses multiple semaphore opera-
tions, i.e., P and V operations which update simulta-
neously a list of semaphores [2], as shown in Tab.3,
with a net model shown in Fig.5.

var R1,R2 : semaphore = 1,1;

Process1: process; Process2: process;
begin loop begin loop

.....
P(R1,R2); P(R1,R2);
use r1, r2; use r1, r2;
V(R1,R2); V(R1,R2);
.....

end loop end loop

end process; end process;

Tab.3. Resource allocation with multiple semaphores.

CS2 NCS2NCS1 CS1

R1

R2

P(R1,R2)

V(R1,R2)

P(R1,R2)

V(R1,R2)

Fig.5. Resource allocation with multiple semaphores.

Modeling of systems with priorities of some opera-
tions has resulted in the discovery of some limitations
of Petri net models [11]. Inhibitor arcs has been pro-
posed as an extension of basic Petri nets [1, 14], and
it has been shown that Petri nets with inhibitor arcs
are equivalent, with respect to ‘modeling power’, to
Turing machines. Readers and writers problem [16] is
a good illustration of limitations of Petri nets without
inhibitor arcs.

A classical solution to this problem uses three
semaphores [2], two counting semaphores nr and nw,
both initialized to zero, and a binary semaphore s ini-
tialized to one. Extended semaphore operations P and
V can be performed on several semaphores simultane-
ously, and also P operations can test semaphores for
‘zero conditions’ (if the second list, separated by “;”, is
nonempty) [2]. The solution shown in Tab.4 assumes
two classes of identical Reader and Writer processes
(in general case the processes may be different).

var nw,nr,s : semaphore = 0,0,1;

Reader: process; Writer: process;
begin loop begin loop

.....
P(s;nw); V(nw);
V(s,nr); P(s;nr);
read; write;
P(nr); V(s);
..... P(nw);
.....

end loop end loop

end process; end process;

Tab.4. Readers-writers synchronizations using
extended semaphores.

nw

s

nr

wait

write

cont

V(nw)

P(s;nr)

P(nw)

V(s)

writers

P(s;nw)

V(s,nr)

read

P(nr)

enter

readers

Fig.6. Readers–writers synchronization.

A Petri net model of this solution is shown in Fig.6
(inhibitor arcs have small circles instead of arrows).
By analyzing P–invariants and the set of reachable
markings, it can be shown that the solution provides
priority of Writer processes over Reader ones (i.e.,
when a Writer process is ‘ready’, no new Reder pro-
cesses are allowed to enter their “read” section), that
Reader processes have concurrent access to “reading”,
and that there is mutual exclusion of Reader and
Writer processes.

4. Monitors

An approach inspired by the class concept of
Simula–67, and calledmonitor [4], is formed by encap-
sulating both, the shared data objects and operations
that manipulate them:

<monitorname> : monitor;

<decls of common variables and conditions>

<definitions of monitor procedures>

<definitions of other (local) procedures>

begin <initialization code> end;

A monitor consists of a collection of variables that
can be manipulated by all monitor procedures (but

Petri net models of process synchronization mechanisms 845

Buffer

wait

fetch

wait

store

K

signal signal

fetch

Consumer

consume

fetched

Producer

store

stored

produce

Fig.7. Model of a bounded–buffer monitor.

which are inaccessible from outside the monitor), a set
of monitor procedures that are used for manipulations
of monitor variables and which are invoked by prefixed
invocations:

<monitorname> . <proc-name> (<list of args>)

and a set of local procedures used by monitor proce-
dures only. The <initialization code> is executed
when a monitor is created.

Execution of all monitor procedures is ‘automati-
cally’ guaranteed to be mutually exclusive. This en-
sures that the monitor common variables are never
accessed by more than one process. Moreover, special
condition variables are used to delay processes exe-
cuting monitor procedures. Two operations, signal
and wait, are defined for condition variables. If x is
a condition variable, then execution of x.wait causes
the invoking process to be blocked on x and to re-
linquish its mutually exclusive control of the monitor.
However, there are several ‘interpretations’ of the op-
eration signal [16]. In one [4], the process invoking
the operation immediately leaves the monitor making
it available for the reactivated process (the invocation
of signal operation is required to be the last statement
of the corresponding monitor procedure). In another
interpretation [9], the execution of x.signal depends
upon the condition of the variable x; if there is no pro-
cess blocked on x, the invoking process continues, oth-
erwise the invoking process is temporarily suspended
and one process blocked on x is reactivated and contin-
ued; the process suspended due to a signal operation
continues when there is no other process executing in
the monitor. Also, such processes are given priority
over processes trying to begin execution of monitor
procedures.

The monitor implementation of the bounded-buffer
producer-consumer scheme uses a monitor Buffer with
(buffer) operations store and fetch (the actual buffer
is represented by an array B of K data elements),
as shown in Tab.5. The buffer is accessed by cyclic

Producer and Consumer processes shown in Tab.6.

Buffer : monitor;
var B : array [1..K] of data;

first,last,count : integer;
empty,full : condition;

procedure store (x : data);
begin if count=K then full.wait;

B[last] := x;
last := (last mod K)+1;
count := count+1;
empty.signal

end;
procedure fetch (var x : data);
begin if count=0 then empty.wait;

x := B[first];
first := (first mod K)+1;
count := count-1;
full.signal

end;
begin count := 0; first := 1; last := 1 end;

Tab.5. Bounded-buffer as a monitor.

Producer: process; Consumer: process;
var item : data; var item : data;
begin loop begin loop

produce(item); Buffer.fetch(item);
Buffer.store(item) consume(item)

end loop end loop

end process; end process;

Tab.6. Producer and consumer processes.

Fig.7 shows a Petri net model of the producer–
consumer bounded–buffer monitor; inhibitor arcs in

Petri net models of process synchronization mechanisms 846

this model are used to indicate priorities of simultane-
ous events. It can be verified that the model is coverd
by simple P–invariants, so it is bounded and provides
mutual exclusion of its operations; reachability analy-
sis can be used to verify correctness of priorities.

5. Rendezvous

Rendezvous is an intertask communication and syn-
chronization mechanism introduced in Ada. The pri-
mary mechanisms is composed of accept statements:

accept <entryname> (<parameters>) do <body> end

and entry calls:

<taskname> . <entryname> (<parameters>)

For two cooperating tasks (or processes), T1 and T2,
let task T1 issue a call of an entry of task T2. There
are two possible executions:

1. The entry call is issued before T2 reaches the cor-
responding accept statement; in this case T1 is
suspended until T2 reaches its accept statement
and completes the execution of its body.

2. The accept statement is reached by T2 before a
call is received on that entry; in this case T2 is
suspended until T1 issues its call.

As soon as T2 reaches its accept statement and a
call of the corresponding entry is issued by T1, T1 is
suspended while T2 executes the body of its accept
statement, after which both tasks can continue their
executions. This interaction is called rendezvous. It
should be noted that the mechanism is ‘asymmetric’
since the same accept entry can be called by many
tasks (there is a queue of tasks associated with each
accept entry), while a call of an accept entry always
uniquely identifies the entry.

An accept statement can be embedded within a
select statement which provides a form of a (nonde-
terministic) multiple choice statement:

select when <condition-1> => <statements-1>

or when <condition-2> => <statements-2>

or when ...

else <statements>

end select

Execution of a select statement is composed of
three consecutive steps [21]:

1. all when conditions are evaluated to determine
which alternatives are “open”;

2. an open alternative <statements-j> (i.e., an al-
ternative for which the corresponding <condition-j>
is satisfied) is selected; an open alternative starting
with an accept statement may be selected only if the
corresponding rendezvous is possible;

3. <statements-j> or, if all alternatives are
“closed”, the else body <statements> is executed.

Bounded–buffer producer–consumer scheme is
again used as an example, and the “Buffer” task is
shown in Tab.7, while cyclic Producer and Consumer
tasks are shown in Tab.8.

task body Buffer is
B : array (1..K) of data;
first,last: integer range 1..K := 1,1;
count : integer range 0..K := 0;
begin loop

select

when count < K =>

accept store (item : in data)
do B(last) := item end;

last := (last mod K)+1;
count := count+1

or when count > 0 =>

accept fetch (item : out data)
do item := B(first) end;

first := (first mod K)+1;
count := count-1

end select

end loop

end Buffer;

Tab.7. Bounded-buffer task.

task body Producer is task body Consumer is
item : data; item : data;
begin loop begin loop

produce item; Buffer.fetch(item);
Buffer.store(item) consume item

end loop end loop

end Producer; end Consumer;

Tab.8. Producer and consumer tasks.

A Petri net model of bounded-buffer task synchro-
nization is shown in Fig.8; it looks rather simple when
compared with Fig.7. The model is covered by P–
invariants, so it is bounded and guarantees mutual
exclusion of its operations.

A more detailed description of intertask communi-
cation and synchronization, including aborts and ex-
ceptions during rendezvous, is given in [10].

6. Concluding remarks

It has been shown that inhibitor Petri nets can
represent many different process synchronization con-
cepts. Moreover, simple properties of nets (e.g.,
boundedness, absence of deadlocks) are very useful in
verification of concurrent programs.

Similar net models can be derived for other con-
current programming constructs, such as path expres-
sions [8], or CSP’s input and output commands [9].

Semaphores (basic as well as extended) provide a
“low-level” synchronization mechanism, which is very
flexible but also errorprone, so it must be used in a rig-
orous, consistent way in complex applications. More
structured constructs restrict all accesses to shared ob-
jects to clearly identified sections of code; they also
provide mutual exclusion of shared data within such
sections. Monitors protect access to shared data by in-
tegrating the data and operations performed on them
within one structure; in fact, the shared data are
accessible only “through” corresponding operations.

Petri net models of process synchronization mechanisms 847

K
store

stored

produce

Producer Buffer Consumer
fetch

fetched

consume
acceptaccept

Fig.8. Model of a producer–consumer bounded–buffer synchronization.

This may appear too inflexible in practical applica-
tions since nested monitors as well as mutual moni-
tor operations (i.e., monitor procedures invoked from
other monitors) must be used very cautiously because
of possibility of deadlocks. Rendezvous concept which
provides a synchronous [15] one-way naming mecha-
nism, is quite simple as a basic idea, however, it is
considerably obscured by many “special cases”, ex-
ceptions, etc. [13, 10]. Therefore successors to exist-
ing concurrent programming concepts should proba-
bly return to attractive simplicity of semaphores, but
also provide a finely grained selective access control
and dynamic control of access rights that could be
passed from one process to another, independently of
the static structure of their definitions. The develop-
ment of a comprehensive set of concurrent program-
ming primitives must be based on a better understand-
ing of the nature of concurrency, and this remains an
important topic for further research. This further re-
search, however, cannot simply ignore several decades
of work in this area, work that contributed many im-
portant, if not generally appreciated, results [5].

Acknowledgements

The Natural Sciences and Engineering Research
Council of Canada partially supported this research
through Research Grant OGP-8222.

References

[1] Agerwala, T., “Putting Petri nets to work”; IEEE
Computer, vol.12, no.12, pp.85-94, 1979.

[2] Agerwala, T., “Some extended semaphore primi-
tives”; Acta Informatica, vol.8, no.3, pp.201-220,
1977.

[3] Andrews, G.R., Schneider, F.B., “Concepts and nota-
tions for concurrent programming”; ACM Computing
Surveys, vol.15, no.2, pp.3-43, 1983.

[4] Brinch Hansen, P., “The programming language Con-
current Pascal”; IEEE Trans. on Software Engineer-
ing, vol.1, no.3, pp.199-207, 1975.

[5] Brinch Hansen, P., “Java’s insecure parallelism”;
SIGPLAN Notices, vol.34, no.4, pp.38-45, 1999.

[6] Desel, J., “Basic linear algebraic techniques for
place/transition nets”; in: Lectures on Petri Nets
I: Basic Models (Lecture Notes in Computer Science
1491), pp.257-308, Springer–Verlag 1998.

[7] Dijkstra, E., “Cooperating sequential processes”; in:
Programming Languages, Genuys, F. (ed.), pp.43-112,
Academic Press 1968.

[8] Campbell, R.H., Habermann, A.N., “The specifica-
tion of process synchronization by path expressions”;
in: Operating Systems (Lecture Notes in Computer
Science 16), pp.89-102, Springer–Verlag 1974.

[9] Hoare, C.A.R., “Communicating sequential proces-
ses”; Communications of the ACM, vol.21, no.8,
pp.666-677, 1978.

[10] Gedela, R.K., Shatz, S.M., “Modeling of advanced
tasking in Ada-95: a Petri net perspective”; Proc. 2-
nd Int. Workshop on Software Engineering for Parallel
and Distributed Systems (PDSE’97), pp.4-14, 1997.

[11] Kosaraju, S.R., “Limitations of Dijkstra’s semaphore
primitives and Petri nets”; Operating Systems Review,
vol.7, no.4, pp.122-126, 1973.

[12] Krueckeberg, F., Jaxy, M., “Mathematical methods
for calculating invariants in Petri nets”; in: Advances
in Petri Nets 1987 (Lecture Notes in Computer Sci-
ence 266), G. Rozenberg (ed.), pp.104-131, Springer–
Verlag 1987.

[13] Mandrioli, D., Zicari, R., Ghazzi, C., Tisato, F.,
“Modeling the Ada task system by Petri nets”; Com-
puter Languages, vol.10, no.1, pp.43-62, 1985.

[14] Murata, T., “Petri nets: properties, analysis and
applications”; Proceedings of IEEE, vol.77, no.4,
pp.541–580, 1989.

[15] Murata, T., Shenker, B., Shatz, S.M., “Detection
of Ada static deadlocks using Petri net invariants”;
IEEE Trans. on Software Engineering, vol.15, no.3,
pp.314-326, 1989.

[16] Peterson, J.L., Silberschatz, A., Operating Systems
Concepts (5-th ed.); Addison–Wesley 1998.

[17] Raynal, M., Algorithms for Mutual Exclusion; MIT
Press 1986.

[18] Reisig, W., Petri nets - an introduction (EATCS
Monographs on Theoretical Computer Science 4);
Springer–Verlag 1985.

[19] Shaw, A.C., The Logical Design of Operating Systems;
Prentice Hall 1974.

[20] Wegner, P., Smolka, S.A., “Processes, tasks, moni-
tors: a comparative study of concurrent programming
primitives”; IEEE Trans. Software Engineering, vol.9,
no.4, pp.446-462, 1983.

[21] Welsh, J., Lister, A., “A comparative study of task
communication in Ada”; Software Practice and Expe-
rience, vol.11, no.3, pp.257-290, 1981.

