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Abstract

The performance of distributed generation of the
state space for timed Petri nets is rather sensitive to
the type of analyzed nets. In order to analyze the per-
formance of such an application, the distributed gener-
ation is represented by a timed Petri net and the behav-
ior of this net is studied, using simulation techniques,
for different combinations of modeling parameters.

1. Introduction

Implementation of complex, real-world systems is
usually preceded by extensive studies of their formal
models. For systems which exhibit concurrent activi-
ties, Petri nets are a popular choice of modeling for-
malism, because of their ability to express concurrency,
synchronization, precedence constraints and nondeter-
minism. Moreover, Petri nets “with time” (stochastic
or timed) include the durations of modeled activities
and this allows to study the performance aspects of the
modeled system [1, 7, 12].

Three basic approaches to the analysis of Petri net
models are known as structural analysis, reachability
analysis and discrete-event simulation [8, 13]. Struc-
tural methods predict the properties of net models on
the basis of their structure (i.e., connections between
elements); structural analysis is usually rather simple,
but it can be applied only to nets with special prop-
erties. Reachability analysis is based on an exhaustive
generation of all reachable states; reachability analysis
is the most suitable method when a detailed analysis
of the model’s behavior is needed [7, 8]. Net simulation
is based on the fact that a (timed or stochastic) Petri
net is a discrete event system, where the events corre-
spond to the firings (or occurrences) of net transitions;
simulation can be applied to a large class of tempo-
ral nets, but may be unsuccessful or very inefficient in
capturing events which occur rarely.

In reachability analysis, the states of the model and
the transitions between states are organized in the
reachability graph which is used for verifying the re-
quired qualitative properties (such as absence of dead-
locks or liveness). For timed and stochastic Petri nets,
this graph is a Markov chain, whose stationary prob-
abilities can be determined using known numerical

methods [10]; these stationary probabilities are used
to derive many performance measures of the model
[1, 2, 12].

For large net models, the state space can easily ex-
ceed the resources of a single computer system. The
availability of clusters of workstations and portable
message passing libraries makes distributed generation
of the state space an attractive possibility.

The purpose of this paper is to investigate the sig-
nificant differences in the speedup that have been ob-
served [9] during distributed analysis of different timed
Petri nets; in some cases the speedup curve is an al-
most linear function of the number of processors, np, as
illustrated in Fig.1.1; in other cases, this curve reaches
saturation and even decreases for large number of pro-
cessors, as shown in Fig.1.2.
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Fig.1.1. Speedup as a function of np; case 1.
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Fig.1.2. Speedup as a function of np; case 2.
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Section 2 recalls the basic sequential algorithm for
reachability analysis. Section 3 presents its distributed
version, that was used to generate the results shown
in Fig.1.1 and Fig.1.2. A timed Petri net model of a
cluster of processors connected by a switch is presented
in Section 4, Section 5 discusses the results obtained
from the presented model, and Section 6 concludes the
paper.

2. Sequential generation

A typical algorithm for the sequential generation of
the state graph of a (bounded) net is given below [11];
there are several variations of this algorithm, but the
differences are rather insignificant.

1. Sequential state graph generation:
2. var m0; (* initial marking *)
3. States := ∅; (* set of states *)
4. Arcs := ∅; (* set of arcs *)
5. unexplored := ∅; (* queue of states *)
6. begin
7. for each state in initial states(m0) do
8. States := States ∪ {state};
9. insert(unexplored, state)
10. endwhile;
11. while nonempty(unexplored) do
12. state := remove(unexplored);
13. for each s in successors(state) do
14. if not found(States, s) then
15. States := States ∪ {s};
16. insert(unexplored, s)
17. endif;
18. Arcs := Arcs ∪ {(state.id, s.id, s.prob)}
19. endfor

20. endwhile

21. end.

This algorithm constructs the state graph G =
(States,Arcs) for a timed Petri net with an initial
marking m0. It uses a queue, unexplored, for the un-
explored states. The function initial states(m0) re-
turns the set of initial states corresponding to the ini-
tial marking m0, the function successors(s) returns
the set of states directly reachable from the current
state s, and the logical function found(States,s) returns
true if the state s exists in the set of states States.

3. Distributed generation

In distributed generation of the state graph, the (yet
unknown) state space is partitioned into n disjoint re-
gions, R1, R2, ..., Rn, and these regions are constructed
independently by n identical processes running concur-
rently on different machines. At the end, the regions
can be integrated in one state graph if needed.

The disjoint regions of state graphs are determined
by a partitioning function, which maps each state into

the region to which it belongs. This partitioning func-
tion is similar to the one used in [6], but, for timed
nets, it also takes into account the firing transitions:

region(s) = [

|P |∑

i=0

αi m(pi) +

|T |∑

i=0

βi f(ti)] mod (n)

where |P | is the cardinality of the set of places P , |T |
is the cardinality of the set of transitions T , the coeffi-
cients αi and βi are integer numbers, and m and f are
marking and firing components of a state s [12].

Distributed generation of the state space can be per-
formed by three kinds of (logical) processes [9]: a pro-
cess starting the distributed system and initiating the
computations, called Spawner; several processes con-
structing the regions of the state space, called Gen-
erators, and a process collecting and integrating the
results, called Collector. Technically, the Collector can
be the same process as the Spawner, because they exist
in disjoint periods of time.

The distributed generation starts with the execution
of the Spawner which creates the Collector and spawns
n Generators on the other hosts; it also organizes the
addresses of all created processes in a proc table, which
it broadcasts to all processes so they can send messages
to each other:

1. Spawner:
2. var m0; (* initial marking *)
3. n; (* the number of hosts *)
4. proc table[]; (* processor identifiers *)
5. begin
6. input virtual machine and model descriptions;
7. spawn Collector on this host;
8. for i := 1 to n do

9. proc table[i] :=spawn Generator on host[i]
10. endfor;
11. broadcast(proc table);
12. for each s in initial states(m0) do
13. send(proc table[region(s)], 〈s, 0, s.prob〉)
14. endfor

15. end.

Each Generatori determines all successors for each
state belonging to region Ri. A successor state can be
in the same region (in which case it is called an internal
state and the connecting arc is an internal arc) or in a
different region (in which case it is called an external
state and the connecting arc is called a cross–arc).

Each Generator sends all external states, with the
appropriate cross-arcs, to the Generators determined
by the partitioning function. In order to perform
state processing concurrently with communication,
each Generator is composed of three processes (Fig-
ure 3.1): the Worker, responsible for the processing of
states, the Sender, responsible for sending states and



Modeling and Analysis of Distributed State Space Generation for Timed Petri Nets 95

arcs to other processes, and the Receiver, responsible
for receiving states and arcs from other processes and
for the termination detection. When the Spawner cre-
ates the Generators, it actually creates Worker pro-
cesses. As the first step, each Worker creates its Re-
ceiver and Sender processes.

Sender

ReceiverWorker

external states

non−local states

recv_buffer

send_buffer

termination 
detection

Fig.3.1. The structure of a Generator.

The Worker, Receiver, and Sender of each Genera-
tor reside on the same processor. Their communication
is based on shared variables: the Worker communi-
cates with the Receiver using a shared memory seg-
ment recv buffer in the standard producer–consumer
scheme; similarly, the Worker and the Sender commu-
nicate via a shared memory segment send buffer also
using the producer–consumer scheme.

Each Generator processes the states from the inter-
nal queue unexplored (local states) and from recv buffer
(non–local states), with non–local states taking prior-
ity over local ones. External cross-arcs are not critical
for the state space generation, so they are collected
at the generating hosts and sent to the appropriate
regions after the termination of the state space gener-
ation. Such a solution reduces the traffic in the con-
necting links during state space generation.

1. Worker:
2. var Statesi := ∅; (* set of states *)
3. Arcsi := ∅; (* set of arcs *)
4. unexplored := ∅; (* queue of states *)
5. cont := true; (* continuation flag *)
6. begin
7. spawn Receiver, Sender on this host;
8. while cont do

9. if empty(recv buffer) ∧
nonempty(unexplored) then

10. state := remove(unexplored);
11. new := true

12. else

13. 〈state, id〉 :=get(recv buffer);
14. if state = null then

15. cont :=false

16. else

17. new := not found(Statesi, state);
18. if new then

19. Statesi := Statesi ∪ {state}
20. endif;
21. Arcsi := Arcsi ∪ {〈id, state.id,

state.prob〉}

22. endif

23. endif;
24. if cont ∧ new then

25. for each s in successors(state) do
26. if region(s) = i then

27. if not found(Statesi, s) then
28. Statesi := Statesi ∪ {s};
29. insert(unexplored, s)
30. endif;
31. Arcsi := Arcsi ∪ {〈state.id,

s.id, s.prob〉}
32. else

33. put(send buffer, 〈s, state.id〉)
34. endif

35. endfor

36. endif

37. endwhile

38. end.

An important aspect of distributed applications is
the termination condition. When a Generator runs out
of unexplored states, it waits for states from other pro-
cesses. In order to prevent a “wait forever” situation in
which all Generators are idle and wait for each other,
a global termination detection algorithm, proposed by
Dijkstra [3], is interleaved with the computation. This
termination algorithm checks if all processors have fin-
ished their computations.

When the construction of all regions is completed,
each Generator sends the states and arcs to the Col-
lector and then terminates.

Physical processes residing on different hosts consti-
tute a “virtual machine”; they communicate by mes-
sage passing using the popular PVM (Parallel Virtual
Machine) package [4].

4. Petri net model

The experiments illustrated in Fig.1.1 and Fig.1.2
were performed on a cluster of computers connected
to a switch by a 100 Mb Ethernet. An outline of such
a cluster is shown in Fig.4.1 (for 4 machines; in the
original experiments there were 32 machines).

SwitchWorkstation Workstation

Workstation

Workstation

Fig.4.1. An outline of a cluster of 4 workstations.

A Petri net model of a single machine connected to a
switch, with independent processes for state generation
and for message passing to other processors, is shown
in Fig.4.2.
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The processing of states is represented by transition
tip with the average time of processing one state as-
signed to it as the firing time. The queue of states wait-
ing for processing is represented by place pir, which,
in Fig.4.2, contains 2 tokens (i.e., 2 states).

pip

tip

tsi psi

pis
tistio

pii

tii

pio

pir

pin

Fig.4.2. Petri net model of a processor and its link.

Transitions tis and tsi represent message passing to
and from the switch, respectively. Since the messages
share the same link, place pii is a shared resource (the
link) which can be used either for sending (tis) or for
receiving (tsi) a message.

For a 4–machine cluster (Fig.4.1), the switch con-
necting the machines is shown in Fig.4.3; each of mes-
sages incoming from four directions (p1s, p2s, p3s and
p4s) has a free–choice structure which forwards the
message to one of the other hosts connected to the
switch. It is assumed that the states are uniformly
distributed over the regions, so all free–choice proba-
bilities associated with the selections within the switch
are equal, and, in Fig.4.3, are equal to 1/3.

p1s

ps1

ps4 p4s

p3s

ps3

ps2p2s

Fig.4.3. Petri net model of a switch.

In Fig.4.2, the result of processing a state is a new
state, which, after termination of tip’s firing, is inserted
into place pin. If this new state is local, it is forwarded,
by firing tii, to the waiting queue pir for further pro-
cessing; if the new state is external, it is sent to pio

by firing tio, and then to its target host by firing first
tis and then tsj of the selected host j (the selection is
within the switch).

Place pin is a free–choice place, and the selection
of local or external state is described by free–choice
probabilities associated with tii and tio; for a cluster of
np machines, assuming uniform distribution of states
over regions, these free–choice probabilities are 1/np

for tii and (np − 1)/np for tio. Moreover, within the
switch, the free–choice transitions connected to places
pis have the free–choice probabilities equal to 1/(np −
1), so all hosts are selected with the same probabilities
equal to 1/np.

5. Analysis of the model

The performance of distributed applications de-
pends upon several factors, which include the gran-
ularity of the tasks and the balancing of the work-
load among the processors, and also the amount of
communication which is needed for the execution of
tasks distributed among the processors. It appears
that a ratio of computation to communication time,
rcomp/comm, is one of important factors characterizing
the performance of distributed applications. For dis-
tributed state space generation, this ratio characterizes
the amount of computation and communication needed
for processing a single state.

In order to represent the steady–state performance
of distributed state space generation, it is assumed
that each analyzed state generates one new state.
The workload of the system is controlled by the ini-
tial marking of places pir (Fig.4.2), and it is assumed
that the initial marking is uniformly distributed over
the processors (otherwise the initial transient behavior
would occur to remove the differences).

The utilization of processors, for different values of
the computation to communication time ratio and for
several numbers of processors is shown in Fig.5.1 for
small workload (the initial marking of pir equal to 2),
in Fig.5.2 for medium workload (the initial marking of
pir equal to 4), and in Fig.5.3 for high workload (the
initial marking of pir equal to 8); the figures show the
utilization of processors as a function of two variables,
the number of processors np (from 2 to 16) and the
value of time ratio rcomp/comm, with the values from
0.25 to 2.5.

All plots have similar character, and it can be ob-
served that the utilization increases with the increase
of the workload, although Fig.5.3 shows some “satura-
tion effects” for larger values of rcomp/comm. Moreover,
for communication times greater than the computation
time (i.e., for rcomp/comm less than 1.0), processor’s uti-
lization is rather poor, below 50%, and almost linearly
tends to 0 with the value rcomp/comm.
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Fig.5.1. Utilization of processors for m0 = 2.
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Fig.5.2. Utilization of processors for m0 = 4.
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Fig.5.3. Utilization of processors for m0 = 8.

Processor utilization can be used to determine the
speedup as a function of the number of processors, np.
The speedup S(np) of an np–processor system is usu-
ally defined as the ratio of execution time of an ap-
plication on one processor, T (1), to the application’s
execution time on np processors, T (np):

S(np) =
T (1)

T (np)
.

For the ideal, uniform distribution of workload on
all processors, the execution time on np processors can
be expressed as:

T (np) =
T (1)

np

1

up(np)

where up(np) is the utilization of each processor in an
np–processor system, and then the speedup is simply:

S(np) = npup(np).

Fig.5.4 shows several speedup curves corresponding
to the processor utilization shown in Fig.5.2 (i.e., for
medium workload). Although almost linear speedup is
obtained in all cases, the actual value of the speedup
depends in a significant way on the value of the ratio
rcomp/comm; the larger is this values, the closer is the
real speedup to the ideal one.
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Fig.5.4. Speedup as a function of np;
(1) rcomp/comm = 2, (2) rcomp/comm = 1,

(3) rcomp/comm = 0.5.

The results shown in Fig.5.4 are obtained with the
assumption that there is sufficient workload for all pro-
cessors used. If this is not the case, and if the same
workload is divided among the processors, the increas-
ing number of processors will result in decreasing work-
load assigned to each of the processors, which decreases
the utilization of the processors.

Fig.5.5 shows the speedup characteristics corre-
sponding to this situation, for two cases, when the ratio
is equal to 0.5 and when it is equal 2.0.

It should be observed that the speedup values
in Fig.5.5 are significantly smaller than the ones in
Fig.5.4.

6. Concluding remarks

The paper presents a very preliminary study of
the performance of distributed generation of the state
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Fig.5.5. Speedup as a function of np;
(1) rcomp/comm = 2, (2) rcomp/comm = 0.5.

space for timed Petri nets. A timed Petri net model
is used to represent the essential features of the dis-
tributed application. Evaluation of the this model (by
simulation techniques) provides an insight into the in-
fluence of major modeling parameters on the perfor-
mance of the application, and the speedup that can be
obtained on np processors.

The presented approach uses many assumptions to
simplify the model as much as possible and still cap-
ture the essential aspects of the distributed behavior.
For example, any realistic application cannot be char-
acterized by the ideal distribution of the workload; the
steady–state behavior is also an idealization of the real
behavior. However, the obtained characterizations are
consistent with experimental results, and it is expected
that further refinements of the model will provide fur-
ther insight into the behavior of distributed applica-
tions.

Petri net models of distributed systems contain
many ‘regularities’ which can be used for model re-
duction. For example, in colored Petri nets [5], tokens
are associated with attributes (called colors). An im-
mediate application of such attributes is to represent
different processors (or nodes) of a system by different
colors and “fold” the model of a distributed system into
a single processor, significantly simplifying the model,
but not its analysis.

The presented approach is not restricted to the dis-
cussed state space generation; it can be used to analyze
the behavior of other applications which are based on
reachability analysis, e.g., model checking or verifica-
tion of discrete systems.

Acknowledgement

The Natural Sciences and Engineering Research
Council of Canada partially supported this research
through grant RGPIN–8222.

References

[1] M. Ajmone Marsan, G. Balbo, and G. Conte,
“A class of generalized stochastic Petri nets for
the performance evaluation of systems”; ACM
Transactions on Computer Systems, vol. 2, no. 2,
pp. 93–122, 1984.

[2] F. Bause, and P. Krinzinger, Stochastic Petri Nets
- An Introduction to the Theory. Vieweg 1996.

[3] E. Dijkstra, W. Feijen, and A. van Gasteren,
“Derivation of a termination detection algorithm
for distributed computations”; Information Pro-
cessing Letters, vol. 16, no. 5, pp. 217–219, 1983.

[4] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam, PVM: Parallel
Virtual Machine. A Users’ Guide and Tutorial.
MIT Press 1994.

[5] K. Jensen, “Coloured Petri nets”; in: Advanced
Course on Petri Nets 1986 (Lecture Notes in
Computer Science 254), Rozenberg, G. (ed.),
pp. 248–299, Springer–Verlag 1987.

[6] P. Marenzoni, S. Caselli, and G. Conte, “Analy-
sis of large GSPN models: a distributed solution
tool”; Proc. IEEE Int. Workshop on Petri Nets
and Performance Models (PNPM’97), pp. 122–
131, 1997.

[7] T. Murata, “Petri nets: properties, analysis, and
applications”; Proceedings of the IEEE, vol. 77,
no. 4, pp. 541–580, 1989.

[8] J. Peterson, Petri Net Theory and the Modeling
of Systems. Prentice Hall 1981.

[9] I. Rada, “Distributed generation of state space for
timed Petri nets”; M.Sc. Thesis, Department of
Computer Science, Memorial University of Nfld,
St.John’s, Canada A1B 3X5, 2000.

[10] W. Stewart, Introduction to the Numerical So-
lution of Markov Chains. Princeton University
Press 1994.

[11] W.M. Zuberek, “On generation of state space for
timed Petri nets”; Proc. of ACM 16th Annual
Computer Science Conference, pp. 239–248, 1988.

[12] W.M. Zuberek, “Timed Petri nets, definitions,
properties, and applications”; Microelectronics
and Reliability (Special Issue on Petri Nets and
Related Graph Models), vol. 31, no. 4, pp. 627–
644, 1991.

[13] W.M. Zuberek, “Petri nets and timed Petri nets:
basic concepts and properties” (Lecture notes for
the course “Modeling and Analysis of Computer
Systems”); Technical Report #2000–01, Depart-
ment of Computer Science, Memorial University
of Nfld, St. John’s, Canada A1B 3X5, 2000.


