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In this paper, energy consumption analysis and a process to identify appropriatemodels based on heat dynamics for large structures
are presented. The analysis uses data from heating, ventilation, and air-conditioning (HVAC) system sensors, as well as data from
the indoor climate and energy software (IDA Indoor Climate and Energy (IDA-ICE) 4.7 simulation program). Energy consumption
data (e.g., power and hot water usage) agrees well with the new models. The model is applicable in a variety of applications, such
as forecasting energy consumption and controlling indoor climate. In the study, both data-derived models and a grey-box model
are tested, producing a complex building model with high accuracy. Also, a case study of the S. J. Carew building at Memorial
University, St. John’s, Newfoundland, is presented.

1. Introduction

Heating, ventilation, and air-conditioning (HVAC) systems
are crucial for indoor climate management and air quality.
These systems are also a key factor in overall operational
costs. For industrial buildings, nearly one-third of the energy
usage depends on HVAC system operation [1–3]. The recent
rapid industrialization of the world’s developing nations has
led to an increase in energy demand, followed by a rapid rise
in pollution levels. As a result, researchers are investigating
ways to mitigate or prevent further environmental damage
through a combination of conservation methods and wide-
scale adoption of renewable energy systems [4].

Ideally, HVAC (heating, ventilation, and air-condition-
ing) systems are developed to form an interior environment
that provides user-comfort with operational cost-efficiency.
Tomaintain consistent user-comfort and affordability amidst
changing variables, a suitable control system is needed.
Several options have been modeled. One popular method
uses data to create a mathematical-based HVAC system that
considers input and output variables to find and set system
parameters. Data-drivenHVACcan readily identify strategies
for system refinement and enhancement. These types of

model determination are termed system identification (SI) in
the literature (ASHRAE, 2005) [5].

In previous studies, researchers categorized modeling
approaches into two main types, namely, black box and grey
box. For the black box method, no prior information is
required, but for the grey-box strategy, there must be a reser-
voir of preexisting knowledge. Due to these constraints, the
black box modeling approach is generally better represented
in the literature. Examples of black box models applied to
HVAC systems are polynomial forms such as ARX, ARMAX,
BJ, and OE. Despite its popularity, the black box model
strategy overlooks the physical features of a system, leading to
issues around the practical application in real-world designs.

For example, Chi-Man Yiu et al. [6] looked at black box
strategies for air-conditioning systems. The researchers con-
trasted two ARMAX models: the first, a single-input/single-
output system, and the second, a multi-input/multi-output
(MIMO) system. For the MIMO system, Chi-Man Yiu et
al. [6] employed parameters derived from the recursive
extended least squares method. Mustafaraj et al. [7] inves-
tigated temperature and humidity models (ARX, ARMAX,
BJ, and OE) for office environments, using a black box
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approach. The same researchers [8] continued their work
by applying nonlinear autoregressive models with NARX
inputs to gauge temperature and humidity levels while
comparing and contrasting the outcomes for these models
with those of linear ARX models. Additionally, Mustafaraj
et al. [8] examined CO

2
concentrations’ effect on model

performance, considering that occupancy levels in a building
are directly correlated to CO

2
. Rabl [9] provided a summary

of approaches applied for dynamic analysis of power usage
by modeling heat dynamics. These models were applied in
studies by Sonderegger [10] and Boyer et al. [11], using differ-
ential equations. For dynamic models, parameter estimation
and system identification are essentially the same processes.

This paper uses the grey-box method for modeling
dynamic systems. This approach, which is accurate and
comprehensive, enables the collection of information on
a structure’s thermal properties [12–14]. Grey-box models
employ discrete-time measurement equations and contin-
uous time stochastic differential equations. An HVAC sys-
tem’s yearly power usage can be predicted using energy
performance analysis tools, such as SIMBAD, EnergyPlus,
eQUEST, HVACSIM+, IDA-ICE, and TRNSYS at set time
frames (hourly or less) by a set of equations describing
a building’s thermal performance. Calculations comparing
various design options are usually made for part-load and
full-load performance [15–18].

This paper simulates a whole building (the S. J. Carew
building in St. John’s, Newfoundland) using the IDA Indoor
Climate and Energy (IDA-ICE) 4.7 simulation program. In
addition to examining the modeled structure’s power use, the
study investigates a 3D model, a heat model (with variable
parameters), and an IDA-ICE model library. The IDA-ICE
was developed to investigate different thermal climate zones
occurring in indoor environments [19].

By actual details and logged data of a large building in
a cold climate, we used the IDA-ICE software and building
logged data to model the building in IDA-ICE software.
We propose 12 inputs and 12 outputs dynamic model for
the system. The dynamic model is required to design and
test system controllers before actual implementation. To
determine a state-space system model, we use MATLAB
system identification toolbox. For the model determination,
we used data from IDA-ICE software. Contributions of this
paper are building data, proposed system dynamic model,
a method to determine the system model, and developed
system dynamic model parameters. The primary objectives
of this paper are as follows:

(1) Apply the IDA-ICE program to model the S. J. Carew
building (Memorial University, St. John’s, Newfound-
land) using all real dimensions and building materials
information from Department of Facilities Manage-
ment and the Honeywell office, which is responsible
for running and monitoring the system.

(2) By using the IDA-ICE software we can divide the
single valve of hot water coming from the main room
to four distinct units, enabling each air-handling unit
(AHU) to have an individual valve for control the
mechanical hot water flow for each zone as another

Figure 1: 3D model for the structure.

input of the system are supply fan speed and fresh air
dampers position.

(3) Compare the data from the IDA-ICE program with
the building logged data for validating the power use
outcomes.

(4) Determine the potential of applying the system iden-
tification approach to reduce the time needed to
simulate the building and use the system model
simulation results in identifying the dynamics related
to a building’s climate control.

2. The Building for This Case Study

A case study on the S. J. Carew building, with an interior size
of 25,142 m2, is conducted. The building is located on the
campus of Memorial University, St. John’s, Newfoundland,
and includes several teaching rooms and research labs for
the Memorial’s Faculty of Engineering and Applied Science.
The building also features a large cafeteria. There are four
individual air-handling units (AHUs) in 300 zones within the
building. Figure 1 illustrates a 3D model for the structure,
applying the IDA-ICE program mentioned in the previous
section, while Table 1 provides an energy report.

3. Simulation Tool

TheS. J. Carew building ismodeled by employing IDA-ICE as
a dynamic thermal simulation tool. This program is selected
because it is widely accepted as a viable thermal building
performance simulator towards the study of power usage and
indoor thermal climate of whole buildings [19]. The IDA-
ICE program uses symbolic equations framed in a modeling
language and a variable time-step differential-algebraic (DAE
solver). The models can be expressed through the Neutral
Model Format (NMF)/Modelica and act as both computer
code and readable document, which are applicable to various
simulation environments [20, 21].

The simulation tool IDA-ICE 4.7 is employed to predict
the power usage and interior climate of the S. J. Carew
building. The IDA-ICE 4.7 tool is ideal for modeling of
multiple-zone HVAC systems as in the S. J. Carew build-
ing. IDA-ICE 4.7 is able to determine the general thermal
comfort level of the building by measuring the internal air
quality (IAQ) and performing dynamic simulations. The heat
exchanger uses controllers to maintain zonal temperatures,
which can be set as fixed points bymodulating control valves.
Meanwhile, in the real system (as shown in Figure 2), a hot
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Figure 2: AHU
2
for S. J. Carew building.

water valve collects relevant data for water heated by a heating
coil. Although the building’s system features a single valve
for its hot water production, the IDA-ICE software divides
the single valve into four distinct units, enabling each air-
handling unit (AHU) to have an individual valve [22, 23].

4. Building Model

IFC files were used to develop a simulation model from the
building information model (BIM). As shown in Figure 3, the
third floor of the building features an AHU and all floors in
the building have their own individual AHU.

Data from the Facilities Management Department at
Memorial University are used to source construction infor-
mation regarding building dimensions and elements such as
windows, doors, and walls. The data then are inputted to the
IDA-ICE program.

Figure 4 depicts eight different kinds of windows used in
the Carew building, while Figure 5 illustrates the building’s
south elevation. Heating system information (e.g., radiator
type and position) is presented in Figure 6, and Figure 7
depicts the main room’s ventilation system for AHU

1
, AHU

2
,

and AHU
3
. Each of the areas has individual internals loads

(i.e., occupancy and light based on floor type and usage) that
have been determined by applying national building code
monthly values.The ventilation design determines the supply
and exhaust air flows, with standard commercial building
pressure coefficients applied. There are doors dividing nearly
all of the areas in the structure, enabling bidirectional air
flow (even through closed doors). Air tightness is measured
as an n50-parameter, while infiltration and exfiltration are
simulated using the IDA-ICE air flow network feature.

5. Simulation Results

The IDA-ICE 4.7 program was used to analyze energy use
in the S. J. Carew building at Memorial University, St.

John’s, Newfoundland. The analysis involved a number of
factors, such as weather data, infiltration, external/internal
heat gain, and overall heat capacity. The simulation was
done for the course of one full year (January 1, 2016, to
December 31, 2016). The space heating and total energy
consumption analysis results for the building in five points as
following.

5.1. AHU Results

(i) AHUs Temperature. Figure 8 shows AHU
1
supply air

and return air, as well as the outdoor air temperature. As
can be seen, the air temperature represents a mixture of
temperatures from individual zones, while the air supply
temperature represents the temperature of the air terminal
zone following any alterations made to the duct or fan
systems.The supply air temperature set-point refers to the air
temperature prior to these alterations.

(ii) AHU Airflow. The flows represent the total flow from
every zone impacted by AHU

1 (Figure 9) and have been
multiplied according to weight (i.e., how many zones are the
same type). This value is included in every zone. The flow is
volumetric and assessed for actual temperatures. Therefore,
it can differ from the set-point flow for each zone. Set-point
flows are determined frommass flows based on variations in
density.

(iii) Heating and Cooling AHUs Coils. Figure 10 depicts the
central cooling and energy for AHU

1
. In circuits that are

water-based, the energy consumption can be measured in
the circuit according to temperature changes and mass flow
(i.e., supply/return). Therefore, heat can be calculated after
generation losses are included, but prior to the calculation of
emission and distribution losses. Cooling energy is included
as a positive quantity in the calculations.
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Figure 3: The third floor of the building.

Figure 4: Details of windows used in the Carew building.

5.2. Heat Balance. Figure 11 depicts the zones’ sensible (dry)
and full latent (moist) heat balance. To find the sensible heat
balance only, the details for the zone’s power report need to be
logged. In this setup, the control volume indicates air-wetted
surface area located at the room unit zone-side, backed by
an air gap. Heat balance contributions can be allocated as
shown in Figure 11.

(i) Equipment Heat. This type of heat emanates out of
equipment like printers and computers as a form of radiant
or convective heat.

(ii) Floor and Wall Heat. As the control volume is positioned
directly below the surface of floors and walls, any measure-
ment of heat indicates the presence of conductive heat passing
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Figure 5: South elevation of the building.

Figure 6: Fourth-floor layout.

through the structural element. This type of thermal energy
can include net transmission and heat storage, in addition
to internal heat functions (e.g., in-floor radiant heat). The
thermal energy that has been stored as a function of room
masses, such as in furniture, also is in this category.

(iii) Daylight Heat. This type of heat describes sunlight
streaming into open doors or through windows, taking
into consideration any short-wave radiation which exists.
Solar radiation that has been absorbed and retransmitted is
excluded from this category.

(iv) Heating/Cooling Room Heat. This type of heat is repre-
sented by controlled room units (e.g., radiators or chilled

beams). In hydronic systems, there is an automatic calcula-
tion to account for the radiation and convection aspects, as
described in the manual. Floor heating is excluded from this
category.

(v) Window Heat. This type of heat describes heat emit-
ted from window surfaces, such as through retransmitted
absorbed solar radiation or through conduction. Long-wave
radiation entering via openings such as opened doors falls
under this category of heat. Solar radiation can have two
major impacts on a room’s heat:

(i) It can be absorbed by the window covering or pane
and then emanate through the room as a radiative or
convective process.
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Figure 7: Main room’s ventilation system.
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(ii) It can be directly transmitted as short-wave radia-
tion and be reflected by room surfaces until finally
absorbed by internal room masses (furniture, equip-
ment, people, etc.).

(vi) Air Flow Heat. This describes all air flows, includ-
ing infiltration, flowing from other zones and mechanical
ventilation.

5.3. Energy Delivered. The report on the energy delivered
provides a general overview of the total energy purchased or
generated in the S. J. Carew building, as shown in Figure 12.
The reported items are matched to the energy meters. The
report also shows the primary form of energy employed,
as well as the cost and estimates for CO

2
emitted. These

are presented according to the structure’s floor area and
with regard to absolute values. Conversion factors from
the meter energy to other measures are given as energy
meters.

5.4. Results: Energy from Systems. The results also provide a
general review for HVAC system energy flow. As shown in
Table 2, the review is in three categories: use energy, utilized
free energy, and auxiliary energy.The results provide ameans
to validate real data and then apply this data for system
identification to obtain the Carew building’s HVAC system’s
state-space model.

5.5. Results: Energy from Zones. The results provide infor-
mation on the sensible heat balance in the Carew building’s
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zones. Information on total (i.e., dry and wet) heat balance,
are presented in the heat balance Figure 6. The data are
provided formonthly and one-year (simulation period) basis.
Figure 13 provides details on envelope transmission losses,
with control volume being positioned at the surface of
the floor as well as on the ceiling and inside walls. For
slab (embedded) cooling and heating processes, the control
volume also involves activated layers and thus includes large
thermal masses.

6. Simulation Validation for IDA-ICE

A viable model must provide accurate results and also
meet the required specifications. In the present work, the
building data used was provided by Memorial University’s
Department of Facilities Management and the Honeywell
Office. The data provided in Tables 3 and 4 (energy and
hot water consumption) for the S. J. Carew building were
collected between April 2012 and May 2017, inclusive. These
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Table 3: Energy from hot water consumption.

Y2012 Y2013 Y2014 Y2015 Y2016 Y2017
MONTH MMBTU MMBTU MMBTU MMBTU MMBTU MMBTU
APR 1,646 1,838 1,932 2,333 2,109 1,640
MAY 1,318 1,446 1,806 1,956 1,745 1,985
JUN 1,164 1,251 1,273 1,615 1,391 0
JUL 774 1,067 856 1,464 1,150 0
AUG 525 932 974 1,019 1,071 0
SEP 391 958 1,017 1,289 1,368 0
OCT 1,438 1,519 1,510 1,793 1,906 0
NOV 1,659 1,740 1,803 2,117 1,946 0
DEC 1,915 2,313 2,143 2,073 2,732 0
JAN 2,389 2,228 2,638 2,546 2,898 0
FEB 2,051 2,175 2,512 2,276 2,473 0
MAR 1,939 2,405 2,615 2,502 2,605 0
TOT 17,210 19,871 21,079 22,983 23,394 3,625
LITRES 565,029 633,115 666,618 719,885 762,559 116,177

Table 4: Electrical power consumption.

Y2012 Y2013 Y2014 Y2015 Y2016 Y2017
MONTH kWh kWh kWh kWh kWh kWh
APR 366,300 375,458 462,454 526,557 485,348 444,139
MAY 393,773 425,824 471,612 503,663 398,352 434,982
JUN 434,982 357,143 407,509 503,663 489,927 0
JUL 407,509 508,242 563,187 425,824 467,033 0
AUG 366,300 366,300 471,612 462,454 494,505 0
SEP 402,930 393,773 425,824 430,403 370,879 0
OCT 439,560 407,509 425,824 526,557 434,982 0
NOV 412,088 476,190 512,821 439,560 489,927 0
DEC 393,773 444,139 526,557 434,982 508,242 0
JAN 439,560 462,454 476,190 448,718 476,190 0
FEB 398,352 439,560 494,505 444,139 430,403 0
MAR 402,930 416,667 467,033 508,242 476,190 0
TOT 4,858,059 5,073,260 5,705,128 5,654,762 5,521,978 879,121

were used to compare, and contrast power consumption
derived from real data with power consumption derived from
the IDA-ICE program data.

The first step for comparison was to verify design details
for the Carew building. These details included aspects such
as building materials, location, dimensions, total area, etc.
The second step was to make a comparison using the
file for outdoor air temperature/weather as represented in
the IDA-ICE program (based on readings from St. John’s
Airport, [ASHRAE, 2013]) and the building’s actual outdoor
air temperature obtained from the Honeywell software data.
Figure 3 depicts the sensor (-1.4∘ OA); the average of the
temperature readings from2016 in one-hour time samples for
both data was the same.

A viable model needs to have both accurate results and
the ability to satisfy any required specifications. Figure 14
shows the IDA-ICE model of hot water usage from January
toDecember 2016.The energy consumption for hot water was

more than 800,000 kWh in Jan and Dec. Also, it was almost
300,000 in the summer time (Jul and Aug). Furthermore,
although the actual data for hot water usagemeasured slightly
low in some months and slightly high in others, it compared
well to the IDA simulated data. Regarding overall energy
consumption, the modeled data are only somewhat different
than the actual data. Figure 15 shows the actual (measured)
data as moderately higher than the simulation data, but these
slight differences could be due to discrepancies in the lab
readings due to miscalibrated equipment.

7. System Identification

Our study used the IDA-ICE 4.7 simulation software for
measuring the interior environment as well as the overall
energy performance. This software is able to simulate and
model multiple-zoned HVAC systems and is also gauge



12 Journal of Energy

Jan  Feb  Mar  Apr  May  Jun  Jul  Aug Sep Oct Nov Dec
Months

Energy use from hot water 

Real data
IDA-ICE program data

0
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000
900,000

kW
h

Figure 14: Energy use from hot water.
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Figure 15: Electrical power use.

interior air quality (IAQ), energy requirements, and thermal
comfort levels. To model the S. J. Carew building, the zonal
inputs and outputs must be included in the identification
data. There are three main steps in system identification [24–
27]:

(i) Collecting the data towards model identification.
(ii) Choosing an appropriate model structure.
(iii) Building a model that provides the best functionality

(i.e., satisfies specifications and gives accurate results).
During these steps, the focus is on optimizing the chosen

model to suit a real-life system. In this study, a structure
is used that features four AHUs as a means for identifying
the state-space model of the system. The data used for sys-
tem identification were collected during the winter months,
which means that the cold-water valve was not operating.
Additionally, because the S. J. Carew building has four floors,
the system features twelve inputs and twelve outputs overall,
calculated from three inputs (𝑈) and three outputs (𝑌) per
floor. Figure 16 illustrates the details.

(1) Zonal Temperature ∘C (Tz) (𝑦
1
, 𝑦
4
, 𝑦
7
, 𝑦
10
). These

data are derived from the IDA-ICE software.
Although the actual system features sensors in every
room, the temperature on each floor still needs to

be measured. The data from the IDA-ICE software
are used to control the hot water valve. Figure 17
illustrates the outputs.

(2) Hot Water Valve for Heating Coil/Zones (𝑢
1
, 𝑢
4
,

𝑢
7
, 𝑢
10
).These data are also derived from the IDA-ICE

software. In the actual system (as shown in Figure 16),
a hot water valve collects data on hot water use.
Note that this system only has one valve for hot
water production, whereas in the IDA-ICE software
there are four valves, which enables every floor to
have a separate valve. Figure 18 shows these inputs
as percentage of opening and closing operation of the
hot water valves.

(3) Fresh Air Dampers (𝑢
3, 𝑢6, 𝑢9, 𝑢12). As shown in

Figure 18, the fresh air sensors positioned in AHUs
are able to gauge, in percentage, the amount of fresh
air entering the building. The sample time (𝑇

�푠
) used

in these calculations is used in all data.
(4) CO

2
Levels (CO

2
) (𝑦
3
, 𝑦
6
, 𝑦
9
, 𝑦
12
). This data is ob-

tained from the sensors for return air flow ducts
for individual AHUs. Figure 19 depicts CO

2
levels

occurring in AHUs. These outputs can be applied in
moderating fresh air dampers.
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Figure 18: All inputs of the system.
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level of AHUs.

(5) Static Air Pressure (Ps) (𝑦
2
, 𝑦
5
, 𝑦
8
, 𝑦
11
). This data

comes from two sensors: one for hot ducts and one for
cold ducts. As illustrated in Figure 20, these outputs
can be applied to the control of supply fan speed.

(6) Supply Fan Speed (𝑢
2
, 𝑢
5
, 𝑢
8
, 𝑢
11
).This data is derived

from AHUs, the sensor. Figure 18 depicts the sensors
measuring the fan speed of AHUs. The sample time
(𝑇
�푠
) for gathering the data is one hour, and the input

signals are obtained in percentages.

System disturbances (𝑤) can occur with changes to wind
speed/direction and outside temperature. These changes are
recorded in the IDA-ICE software and the input/output signal
data series organized through MATLAB.The ordering of the
data is imperative before moving onto the next stage, which
is system identification using the System Identification (SI)
Toolbox. Every individual data set is cut in two: one-half
represents estimation data, while the other half represents
validation data.
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Figure 20: The static air pressure of AHUs.
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level of AHU

3
.

Data from the first half (Data 1) are organized as
input/output sets using MATLAB. The inputs are arranged
into 12 columns, with every column relating to a specific input
signal. Note that the number of rows is equal to the number
of simulation period hours. Similarly, the outputs are also
arranged into 12 columns, with every column relating to a
specific output signal and the number of rows being equal
to the number of input arrays. In these calculations, both
the estimation and validation data have a 90-day time frame.
Figures 21, 22, and 23 show some of the time plots of this data
for estimation. The CO

2
level of AHU

3
, static air pressure of

AHU
2
and zone temperature of AHU

1
is shown. The output

is the upper plot and the input is the lower plot.
Every state-space model is estimated in the SI Toolbox.

The models undergo a comparison based on the degree of
accuracy between the validation data sets’ estimated and

measured (i.e., real) outputs. In comparison, the estimated
and real outputs are plotted for every model, after which a
numerical value is allotted regarding the model’s “fit.” Using
the SI Tool, the estimated outputs for numerous models are
able to be plotted quickly and at the same time, with the
model showing the highest value (i.e., the best “fit”) deemed
to have the greatest reliability. As an outcome of the process,
we can obtain state-space models for Data 1 data groups and
compare models across different seasons. For detrending the
data, there are no alterations made to any relative differences
among inputs and outputs.

Figure 24 shows the output of the model that follows the
temperature of a zone in AHU

1
with the same output as the

real system.The agreement between these graphs can be seen
as a percentage of the error. Ideally, this result is 57%. Also,
Figure 25 shows that the system performance percentage
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Figure 24: Validation of real measurements and outputs of CO2 level model fit 75%.
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Figure 25: Validation of real measurements and outputs of zone temperature model fit 57%.
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Figure 26: Validation of real measurements and outputs of the static air pressure model fit 49%.

for the estimated model and the actual system of CO
2
level

of zone 3 in AHU
3
was 75%. Also, the percentage of the

estimation model of the static air pressure the simulated or
predicted model output is shown together with the measured
validation data in Figure 26.

The part of the system data that the model could not
describe is called the residuals [28–30]. They contain impor-
tant information about the quality of the estimated model.
The cross-correlation between residuals and the correct
model does not exceed the confidence level [28]. If this is
the case, the original model has captured the underlying
properties of the system. The remaining autocorrelation
indicates whether the error pattern is accurate. Standard
processmodels donot evaluate the errormodel and unknown
interference is not in the original model, thus the remaining
runtime is not used formodel verification. Figures 27, 28, and

29 show plots of the autocorrelation and cross-correlation
of system responses to inputs. It is clear from the cross-
correlation diagram of these figures that the estimated
model is very similar to the responses of the system to
the inputs; the correlation curves lie between the dashed
lines.

To determine model settings for the system, a linear
parametric model can be estimated from a state-space struc-
ture. In general, the state-space model discrete-time settings
generally feature the following structure:

𝑋(𝑡 + 𝑇𝑠) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐾𝑒 (𝑡)
𝑌 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) + 𝑒 (𝑡) (1)

where the 𝑥(𝑡) represents the states of the system and
𝑦(𝑡), 𝑢(𝑡) 𝑎𝑛𝑑 𝑒(𝑡) represent the output, input and error.
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The 𝐴, 𝐵, 𝐶, 𝐷 𝑎𝑛𝑑 𝐾 matrices contain the mod-
el parameters, and 𝑇𝑠 is the sampling time of the
system.

For modeling multi-input/multi-output (MIMO) sys-
tems, state-space models have been proven to be the most

popular option, likely because the state-space method is
relatively simple. For the system used in the present work
(twelve inputs and twelve outputs), the discrete-time state-
space model for order 12 (sampled as Ts = 3600 s) and the
A, C, and K matrices are as follows:

A

=

[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

1.018596 0.024987 −0.09841 −0.01809 0.029826 0.011551 0.122706 −0.09652 −0.02257 −0.03334 0.021134 0.044136
−0.04802 0.953931 −0.18782 −0.10913 0.017903 0.012705 0.02266 0.044524 −0.00967 −0.02612 −0.00755 0.013065
0.006735 0.161472 1.00175 0.153348 −0.17807 −0.0057 −0.07445 0.089848 −0.18638 −0.04874 −0.0658 −0.09062
0.102572 0.106159 0.015012 0.876272 −0.05667 0.040026 0.034899 0.063895 0.046081 −0.0318 0.058022 0.151734
−0.01012 0.119388 0.032058 0.193805 0.875773 0.105007 0.06194 −0.11106 −0.27665 0.118682 −0.04009 −0.12357
0.034182 0.001981 0.218893 −0.06499 0.003683 0.698464 −0.15637 0.16687 −0.06375 0.068068 −0.1383 0.073127
−0.06088 −0.03718 0.018276 0.026644 0.006168 −0.00484 0.700056 0.134608 0.025221 −0.05818 0.065294 −0.06174
0.128313 −0.04206 −0.25685 −0.11438 0.260537 −0.27507 0.000851 0.632401 0.220702 −0.20081 0.253606 0.220525
−0.01409 0.071827 0.152001 −0.06185 0.079589 0.449275 0.220342 0.126901 0.679172 0.092466 0.145962 0.114791
0.029159 −0.04508 −0.12238 0.073543 0.029797 −0.28537 −0.13111 0.07257 −0.04701 0.726139 −0.02971 0.136616
0.147829 −0.16104 −0.06659 −0.35556 0.222772 −0.21727 −0.0814 −0.01191 0.091189 0.117558 0.900431 0.262343
0.018322 0.124913 0.198312 −0.06154 0.143552 −0.17269 0.228241 −0.13141 0.238771 −0.21135 −0.01898 0.833612

]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

C

=

[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

−32.3819 3.032522 0.850361 1.320461 1.654051 0.228377 −1.25475 0.711672 −1.12264 0.011717 −0.98978 0.435679
−4.96281 4.825874 2.834766 1.076908 2.428522 −0.77537 1.650816 0.829984 1.838859 −1.4162 −1.79384 0.42955
−789.668 315.0027 −248.299 258.1054 147.2952 −161.542 −225.011 100.9488 120.8973 83.13542 −194.598 −118.225
−32.582 3.739006 1.189215 0.456838 2.628477 −0.97674 0.321862 −0.63062 −1.01303 0.477141 −0.11792 0.126173
−7.89485 3.602045 0.534273 0.073331 −0.29611 0.260542 2.093179 0.593547 0.695332 −0.01057 2.583058 −3.38128
−596.62 338.8736 128.9263 −51.9804 −268.546 −222.936 −531.204 −263.779 58.86106 194.4376 142.4278 −27.9924
−32.5222 3.375469 0.211781 −0.90622 2.133119 −0.3489 −0.90599 −0.03896 −1.00358 0.530528 −0.06908 −0.21883
−5.4587 1.758807 1.588113 0.661421 1.924165 −2.58504 1.562919 2.286861 1.189903 −0.49241 −0.05558 0.912613
−928.097 287.0009 −266.691 428.3191 393.2388 −234.874 −209.795 90.12368 −223.088 −365.806 31.59467 −280.605
−32.443 3.893139 −0.18864 3.345291 3.703252 −0.71339 −0.36698 0.15893 0.455992 −0.00349 0.598077 1.910353
−6.3736 0.362166 1.90677 3.073253 2.246129 −1.03295 0.390075 −1.42084 1.838677 0.77659 −1.90933 1.183602
−736.847 466.1483 −328.719 73.65842 118.4599 −142.761 −464.838 183.0777 −43.4737 −86.4524 −281.692 −65.8117

]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

K

=

[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

−0.02247 0.002415 −0.00017 0.006293 −0.00173 0 −0.00404 −0.00078 −0.00012 0.006362 0.00369 0.000173
−0.03766 0.008826 0.000201 0.019432 0.012113 0 0.006975 −0.00743 0 0.012768 −0.01539 0.000242
0.033593 0.016611 0 0.004704 0.002891 0.000146 −0.01335 −0.00477 −0.00877 −0.02582 0.004979 −0.00043
0.03453 −0.00396 0.000281 −0.01639 0.002948 0.000201 −0.05972 0.003692 0.000146 0.040423 0.001516 0.003516
−0.03892 0.023262 −0.00018 0.037843 −0.00404 −0.00028 0.00469 −0.01357 0 −0.01751 0.014066 0
0.051835 0.000717 −0.00015 −0.03922 −0.00076 −0.00837 −0.00337 −0.01172 0 −0.00887 0.006588 −0.00045
−0.02582 0.005204 0.000455 0.030462 0.009431 −0.00026 0.011997 0.002781 0.000145 0.00114 −0.02152 −0.0003
−0.01015 −0.01334 0 −0.04976 0.014821 −0.00084 0.001932 0.016727 0 0.036388 −0.02471 0
−0.01445 0.018199 0.000477 −0.02753 0.006731 0.000156 0.001845 −0.00527 −0.00022 0.030758 0.010523 0.000299
−0.03034 −0.00941 0.000446 0.010668 0.006548 0 0.021502 0.01097 −0.00015 −0.01222 −0.0214 −0.00045
−0.01857 −0.02641 0 −0.04546 0.014413 −0.00011 0.01149 0.013894 0.000132 0.034855 −0.01938 −0.00053
0.01201 0.001892 −0.00049 0.008802 −0.02405 0 −0.06658 0.00417 −0.00037 0.067378 0.02137 0.000465

]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

(2)
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Figure 27: Autocorrelation y1 and cross-correlation of system responses u1 & y1.
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Figure 28: Autocorrelation y5 and cross-correlation of system responses u5 & y5.
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Figure 29: Autocorrelation y12 and cross-correlation of system responses u12 & y12.
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8. Conclusions

In this paper, the S. J. Carew building was modeled using
the IDA-ICE program using all details of HVAC system
and instructions of the building. This model provides good
approximations comparing the consumption of hot water and
electricity with the measured data for a full year (2016). It
also compares the average of the outside temperature of the
weather file of IDA-ICE program and the measured data. All
system inputs and outputs were selected, and a linear state-
space model was identified describing the thermal response
of the system. The dynamic model is required to design and
test system controllers before actual implementation. The
model was derived using MATLAB’s System Identification
(SI) Toolbox. The model has twelve state variables, twelve
inputs, and twelve outputs. The model responses when
compared with actual data are within the allowed range.
Validation data and autocorrelation function for the residuals
as well as the cross-correlation function between input and
residuals are computed and presented.
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